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Abstract

Clifford-Steerable CNNs (CSCNNs) provide a unified framework that allows
incorporating equivariance to arbitrary pseudo-Euclidean groups, including E(n)
and Poincaré-equivariance on Minkowski spacetime. In this work, we analyze
the shortcomings of the approach. We demonstrate that the kernel basis used in
CSCNN:ss is not complete. Furthermore, we suggest to restore missing degrees of
freedom by using an extra information obtained directly from data at virtually no
cost. Our approach significantly and consistently outperforms baseline methods on
PDE forecasting tasks, specifically fluid dynamics and relativistic electrodynamics.

1 Introduction

Physical systems are often associated with symmetries that govern their evolution. Therefore, it is
desirable to respect those symmetries in the modelling process to faithfully capture the dynamics.
Equivariant Neural Networks have proven to be strong candidates for learning such dynamics due to
their ability to produce outputs that transform consistently under these symmetries. As part of the
equivariant family, Steerable Convolutional Neural Networks ensure equivariance by enforcing a
constraint over their convolution kernels. The steerability constraint is group-specific and has been
solved and implemented for several common symmetry groups, such as for O(2) (Weiler and Cesal
2019), O(3) (Geiger et al., 2022), and for general compact groups E(n) as demonstrated by [Lang
and Weiler| (2020); Cesa et al.|(2022).
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(a) Default Clifford-steerable Kernel  (b) Conditioned Clifford-steerable Kernel

Figure 1: Comparison of default vs. conditioned kernels for O(2). The missing angular frequency
2 basis kernels can be observed as the sparse scatters (which are just noise) in the antidiagonal of
subfigure[Tal In comparison, subfigure [Tb]shows how our implementation recovers these missing
kernels. Due to the kernel’s input-dependent activation, the typical four-lobed quadrupole patterns
may not be visible, despite being present.
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Clifford Steerable Convolutional Neural Networks (CSCNNs), introduced by [Zhdanov et al.| (2024),
extend steerability to a more general class of symmetries - pseudo-Euclidean group E(p, ¢), which
covers, for instance, E(n)-equivariance and Poincaré-equivariance on Minkowski spacetime. By
using implicit parameterization of the kernels, CSCNNs are able to process feature fields defined on
pseudo-Euclidean spaces, allowing CNNs to learn system dynamics in both non-relativistic (e.g. fluid
dynamics) and relativistic (e.g. electromagnetism) scenarios. However, as pointed out by the authors,
the original implementation yields incomplete kernel basis, which in turn limits the expressivity of
the model as it is unable to represent certain degrees of freedom and therefore capture corresponding
interactions (see the missing anti-diagonals in Figure[I).

The authors suggested that this degree of freedom may be recovered; however, this has yet to
be proven or experimentally validated. We present Conditioned Clifford-Steerable Kernels which
augment the kernel with an independent representation constructed from the input field, recovering
the missing degrees of freedom, thereby achieving a strictly more expressive parameterization. The
contributions of this paper are the following:

* We show that the original parametrization of CS-CNN kernels is missing kernels of angular
frequency 2.

* We prove analytically that the missing degrees of freedom can be recovered by extending the
input vector of the kernel by a global representation of the feature field, at little to no cost.

* We propose an efficient implementation and evaluate it on multiple PDE simulations,
outperforming other convolutional baselines.

This paper is organised as follows: Section[2]provides a brief introduction to Steerable CNNs and
the Clifford Algebra. Section 4| uncovers the main limitation of Clifford-Steerable CNN kernels,
and introduces Conditioned Clifford-Steerable Kernels as a solution. After deriving their improved
properties, the new kernels are empirically validated against the original implementation in Section 5]
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Figure 2: Illustration of Conditioned Clifford-Steerable Kernels. Similar to CSCNNSs, the parameteri-
zation is implicit, with the only difference that the kernel network is augmented with an equivariant
representation of the input feature field.

2 Theoretical Background

2.1 Pseudo-Euclidean Spaces

Pseudo-Euclidean spaces generalize Euclidean space by allowing an indefinite metric, so the squared
length of a nonzero vector can be positive, zero, or negative. Every finite dimensional pseudo-
Euclidean space is isometric to the standard pseudo-Euclidean space, to which we restrict our
attention (O’ Neill, [1983)).

Definition 2.1 (Standard pseudo-Euclidean vector spaces). Let ey, ..., e,44 be the canonical basis
of the real vector space RPT4. Define an inner product of signature (p, q)-that is, a non-degenerate
symmetric bilinear form with p positive and q negative eigenvalues-by 77(vy,v2) = v] AP v,
where v1,v; € RPT, and AP? := diag(1,...,1,-1,...,-1).

—— —— —

p times q times

The resulting inner-product space RP»? := (Rp”, np’q) is the standard pseudo-Euclidean vector

space of signature (p, q). This is the space where our feature vectors are defined, and also the space
the symmetry groups we are interested in are acting on.
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2.2 Clifford algebra and multivector fields

In previous works Ruhe et al.|(2023));|Zhdanov et al.|(2024)), it has been demonstrated that Clifford
algebra CI(RP+7) is a representation space of the pseudo-orthogonal group O(p, ¢). In simpler words,
it means that elements of the algebra - multivectors - can be used to represent actions of the group.
Below we provide the formal definition. Let V' be a vector space over a field F, equipped with a
bilinear form: n: V x V — R, (vy,v3) — n(v1, ve). The Clifford Algebra generated by V is the
unitary, associative, non-commutative algebra such that

v; 0 v; = n(vi,vs) - Loy, Vv €V CCL(V,n) (1)

Where o := CL(V,n) x Cl(V,n) — C1(V,n) is the geometric product, an O(p, q)-equivariant opera-
tion enabling us to multiply elements of the algebra while respecting their geometric properties. Such
elements are multivectors, which can be constructed by linearly combining products of vy, ...v,, € V
the following way: x = Zie] ci - Vi1 ®---ev;;, where index set [ is finite, v; , € V and ¢; € R.

We can decompose the algebra into vector subspaces c1™ (V,n), n=0,...,d, which we refer
to as grades. One grade n = |A| is composed by choosing n out of the maximum d basis vectors

of the underlying vector space V' and has dimensionality dim 1@ (V,nm) = (Z) Grades n = 0 and
n = 1 consist of scalars and vectors, respectively. For n > 2, one encounters bivectors, trivectors
and higher-grade multivectors, which geometrically represent oriented points, areas and their higher-
dimensional analogues. For a more in depth introduction to the Clifford Algebra, we refer the reader
to Appendix D of Zhdanov et al.[(2024).

2.3 Clifford Steerable CNNs

Clifford-Steerable CNNs process multivector fields, which are functions f : RP*? — CI(RP-7)°
assigning a feature f(x) to each point € R?+? in feature vector space C1(IRP>%)¢ where ¢ denotes the
feature channel dimension. They are required to commute with the pseudo-Euclidean symmetry group
E(p,q) = (R, +) x O(p, q), which is the semi-direct product of the the translation group (RP?, +)
and the pseudo-orthogonal group O(p,q) = {g € GL(RP) | g7 AP9g = AP-7}. Convolutions
are by construction rotation equivariant, thus the task of constructing an E(p, ¢) equivariant CNN
reduces to an O(p, ¢) equivariance requirement. Previous work by [Weiler et al.[(2023) showed that to
achieve this, the convolution kernels K : R4 — Homyec(CI(RP:7)¢», C1(IRP-7)%u) need to obey
the O(p, q)-steerability constraint K (gz) = pou(9) K(z) pin(9) ™%, Vg € O(p,q), = € RP9.

Several approaches have been proposed to solve this constraint, for example (Lang and Weiler}, |2020;
Cesa et al., |2022) analytically derived steerable kernel bases. Kernels can also be implemented as
channel permutations in the matrix dimensions, such as in (Cohen and Welling}, | 2016; Bekkers et al.,
2018). Both methods however are only suitable for compact groups, leaving out O(p, ¢). Numerical
approaches have been proposed by (De Haan et al.||2020; |Shutty and Wierzynski, 2023)) based on Lie-
algebra irreps, however only for connected subgroups of O(p, ¢). (Zhdanov et al., 2023)) solved the
steerability constraint implicitly by parametrising the kernel using an equivariant neural network. This
method was adapted to work on Clifford algebras, by using Clifford Group Equivariant neural net-
works (Ruhe et al., 2023)) to parametrise the kernels of Clifford Steerable CNNs (Zhdanov et al.,[2024)).

The implicit kernel K serving as the convolution kernel of Clifford Steerable CNN is a composition
of two operators: K = H o KC, where I is the parametrising Kernel Network, and H denotes a kernel
head, which transforms the kernel network output to be used as a convolution kernel on multivector
fields.

Definition 2.2 (Kernel network). The Kernel network C : R4 — CI(RP+7) eut *¢in jg an O(p, q)-
equivariant Clifford-group equivariant neural network (CGENN) (Ruhe et al.,|2023). Let k = 0,...d
denote the multivector grades and w,(,]f% € R weights. A CGENN is built only from operations that

are O(p, ¢)-equivariant by construction:

1. Grade-wise linear maps Ly (T1,. s Tey) = Do wk 2, which act independently
inside every irreducible sub-representation (grade) of the respective Clifford metric space

CI(RP-9)(*);
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2. Weighted geometric-product layers P (1, x5) := Zi:o ZZ:O wk . (xgm) ("’))(k)
Additionally, the network contains component-wise nonlinearities and norm-based normalisations
that depend only on the quadratic form and therefore remain invariant under the group action.
Because every CGENN layer is a multivector polynomial, the universal result that “all multivector
polynomials are O(p, ¢)-equivariant” applies (Ruhe et al., 2023), which guarantees that their
composition in K satisfies K(gv) = pcire.a)(g) K(v) for all g € O(p, q).

Definition 2.3 (Kernel head). The kernel head: H :  ClRP:?)CutXcin  —
Homye (CI(RP:2)¢n, CI(RP-9)%u) is a grade-projected, partially evaluated geometric prod-
uct that turns each multivector component k = [k;;| into an R-linear map between channel
stacks:
d
(k) _ (k) (m) ¢ p(n)y (k)
[H(k) f]z - Z Z wmn,ij (kij .fj ) :
jE[Cin] m,n=0
The scalars wf,];)” ; (shared over space) merely re-weight already equivariant terms; hence H itself

is O(p, q)-equivariant. A proof can be found in Appendix E.1 of [Zhdanov et al.|(2024)). Since both
K and H are O(p, q)-equivariant, their composition K = H o K obeys the steerability constraint.
Convolving with K therefore yields an operator that is exactly E(p, ¢)-equivariant (Theorem 3.4 in
Zhdanov et al.|(2024))).

3 Missing basis of regular CSCNN kernels

This section takes a representation theoretic investigation of the original CSCNN kernel implementa-
tion by [Zhdanov et al.|(2024)), uncovering the missing kernel basis. To overcome this limitation,
we introduce Conditioned-Clifford Steerable Kernels, that recover the missing kernels without
breaking equivariance, allowing for the full parametrization of the convolution kernels. Note that
here we restrict our attention to O(2) acting on R2, however, the same decomposition can be used to
generalise the analysis to O(n) and O(p, q).

To understand what is meant by angular frequency 2 kernels, it is worth investigating the kernel
functions in the frequency domain. We can do this, as it was shown by |Weiler and Cesal (2019);
Weiler et al.| (2018), the irreducible representations of O(2) are one- or two—dimensional circular
harmonic modes. More precisely, every kernel obeying the steerability constraint admits a polar
decomposition
K(r,p) = Z R (1) Yo (),  Yiu(p) = ™.
meEZ

Where m is the grade (irrep) of the multivector output and where the angular factors Y,,, are fixed and
only the radial parts are freely learned R,,,. As such, the kernel can be fully expressed by the different
angular frequency bases and their learned radial part. Depending on the field types a convolution
operator is mapping between, its kernel is required to contain specific angular frequency bases for the
mapping to be fully complete.

3.1 Clebsch-Gordan requirements for kernels

To identify what angular frequencies are required for convolutions, we use the Clebsch—Gordan
decomposition of its tensor products, which was adapted by [Lang and Weiler, (2020) for kernel
irreps. When a kernel maps one field type (irrep j) to another field type (irrep 1), the tensor product
DU @ DU must supply the trivial representation so that contraction with an input feature can
yield an output feature. For multivector grades C1(R??)(*) the Clebsch-Gordan decomposition

DWW DO =~ @Z::l\j—ﬂ D™ is shown in Table

Examining j = [ = 1 (so the vector field — vector field mapping) yields the set of required harmonic
blocks m € {\1 -1}, 1+ 1} = {0, 2}. Which means that if we want our mapping from vector
— vector to be complete, we need bases with angular frequencies m € {0, 2} to be represented in the
kernel. The scalar part m = 0 can be recovered easily: it already "lives" in grades 0 and 2. However,
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Table 1: Clifford field types by grade and O(2) irreducible representations

grade field type irrep  angular frequency
CI(RZ9)©)  scalar DO m =0 (even)
CI(RZ9)M)  vector DM m=1

CI(R2%)®  pseudoscalar DY) m = 0 (odd)

the quadrupole part with angular frequency m = 2 can appear only through the symmetric traceless
component of a product of two independent vectors (Zou and Zheng| [2003).

The implicit kernel of a Clifford-Steerable CNN, K = H o I, receives a single grade-1 vector per
edge, namely the displacement v := x — y € R? 2 CI(R?)(M) (Zhdanov et al., 2023, 2024). Inside
of kernel network /C, the transformations applied to this vector (as detailed in Definition[2.2) only do
the following:

1. Grade-wise linear maps reshuffle channels but never change the spatial irrep: a vector stays
a vector (m = 1).
2. Geometric products take two copies of the same vector. Their product immediately projects

(due to the Clifford rules in Equation (I)) into grade 0 or grade 2, i.e. frequency m = 0.

Because both operands derive from the same direction, no symmetric-traceless rank-2 object-and
hence no m = 2 harmonic-can be formed at any depth inside a single kernel network. This is not
changed by the kernel head H either, since its operation is also a (partially evaluated) geometric
product. This results in the incomplete vector— vector mapping of the convolutional layers, and
the original CSCNN architecture. To complete the parametrisation, the interaction of independent
vectors are needed.

4 Conditioned Clifford-Steerable Kernels

4.1 Conditioned Steerable Convolution

We follow the derivation of a steerable convolution from |Weiler et al.| (2023 (Theorem 4.3.1). Let us
start with a convolutional operator

I [F] (z) = y dy K(x —y)F(y) 2

that is parameterized by a kernel X : R — Rut*n_For the convolutional layer to be G-equivariant,
the kernel must be G-steerable, that is,

K(gz) = pout(9) K (z)pin(9)™"  VzeR% geq. 3)

where pi, and poyy are representations of input and output feature fields, respectively.

Let us now introduce an equivariant function 7' : L?(R¢,R¢) — R¢ which computes a vector
representation of a feature field. We will use the function to augment the kernel function, yielding the
following quasi-linear transformation

I [F) (2) = o dy K(z —y, T[F))F(y). )

Since the conditioning function 7" is equivariant, we have by definition T'[¢g.F'] = p(g)T[F].
Lemma 1. The quasi-linear map[@]is G-equivariant if and only if

K (gz, pin(9)T[F]) = pHom(9) (K (z, T[fin]))

We provide the proof of the lemma in the Appendix [B.1}
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4.2 Conditioned Clifford-Steerable Convolution

The quasi-linear map provides a framework to tackle the issue of missing degrees of freedom in
Clifford-Steerable convolutions. As discussed, the kernel basis of the latter is incomplete, as it relies
on implicit kernels that are unable to generate high-frequency components from a positional vector
alone. Furthermore, the key idea of our approach is to condition the implicit kernel on relative
position, as well as a field representation, whose interaction together will yield the otherwise missing
high-frequency components of the kernel basis.

As discussed in Section[2.3] in the framework of Clifford-Steerable CNNs, the kernel K is defined
as a composition K = H o K. The kernel head H transforms the output of the kernel network X to
matrix-valued kernels and is agnostic to the form of K. Furthermore, we only need to adapt the kernel
network to be compatible with conditioned convolution. Specifically, let us define conditioned kernel
network Kp : RP>? CI(RP-?)%n — Cl(RP7)%ut*¢in which now additionally takes the multivector
representation of the input field generated by the conditioning function 7' : L?(R?, C1(RP:9)¢) —
CI(RP9)¢. Since we use CGENN s to implement K, the function is O(p, ¢)-equivariant by definition.
Having the conditioned kernel network, we define Conditioned-Steerable kernels as K = H o Krp.

Lemma 2 (Equivariance of conditioned Clifford-steerable kernels). Every conditioned Clifford-
steerable kernel X' = H o Kr is O(p, g)-steerable w.r.t. the standard action p(g) = g and prom:

K(gv, pin(9)T[F]) = prom(9) (K (v, T[fw])) Vg€ O(p,q), v e R

We provide the proof in Appendix [B.2]

Equipped with conditioned kernels, we are now able to tackle the issue with missing degrees of
freedom in the original framework of CSCNNSs:

Corollary 4.1 (Completeness of the kernel basis). Let the output of T'[f;,,] have non-trivial grade 1
component. Then the kernel basis of conditioned Clifford-Steerable CNNSs is complete.

5 Experimental Results

To test the efficacy of our new kernel implementation, we compared its performance to the original
CSCNN model and several strong baselines in three PDE learning tasks: the 2-dimensional (R?)
Navier-Stokes (NS2) equations, the 3-dimensional (R®) Maxwell (MW3) equations, and the relativistic
2-dimensional (R'2?) Maxwell (MW2) equations.

5.1 Notes on implementation

For the simplicity, we choose the conditioning function 7" to be the global mean pooling operation.
The operation is equivariant, as proven inWeiler et al.|(2023). Compared to the original CSCNNSs,
our model’s only additional computational cost comes from computing the condition. However, since
this step uses highly optimized operations (like mean and max pooling), the resulting overhead is
minimal. The implementation is done in JAX (Bradbury et al.,|2018). More details can be found in

Appendix

5.2 Experiment Setup

The goal of each experiment is to empirically learn the dynamics of the systems from numerical
simulations, and predict future states based on previous timesteps (Gupta and Brandstetter, [2022)).
For the non-relativistic tasks, variables describing the states in the 4 previous timesteps are taken
as input, with each timestep serving as an additional feature channel, and the goal is to predict the
subsequent state. Although improper, this setup allows us to compare our results to prior models
which otherwise would not be able to handle a full spacetime. For Navier-Stokes, the input state
is described by a velocity vector for the vector part, and the pressure field for the scalar part, with
the bivector part padded with zeros to keep the multivector structure consistent. For the MW3 task,
the inputs are vector electric fields and bivector magnetic fields, with the rest of the blades padded.
For the relativistic Maxwell task, time forms its own spacetime dimension of size 32, thus the task
becomes predicting the next 32 timesteps based on the previous 32. The input is an electromagnetic
field, which forms the bivector part of a multivector. This setup properly incorporates the time
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5.3 Model Architectures

Our model is built upon the ResNet architecture, where we substitute the standard convolutional layers
with our novel Conditioned Clifford-Steerable convolutions. We compare Conditioned CSCNNs
against architecturally similar networks: the standard ResNet, the Clifford ResNet (Brandstetter
et al.}2022), the O(n)-steerable CNN (Weiler and Cesal, 2019; Weiler et al., [2023)) and the original
Clifford-Steerable CNN (Zhdanov et al., 2024)). Additionally, we evaluate the prominent PDE learner
Fourier Neural Operator (FNO) (Li et al.,[2021) and its D4 < O(2) equivariant variation, G-FNO
(Helwig et al.} [2023). All models were scaled to match the parameter count of the basic ResNet
architecture.

5.4 Results

{ = Cond. CSCNN (Ours) = CSCNN = FNO = G-FNO = Clifford ResNet = ResNet = Steerable ResNet }

102 \\.%. 1021 101

MSE

=S |
10 \k‘\ 1073, o :?n\.
0 2000 4000 200 400 1000 2000
No. of Training Simulations No. of Training Simulations No. of Training Simulations

Figure 3: Mean squared errors for (1) Navier-Stokes R?, (2) Maxwell R3, and (3) relativistic
Maxwell R"2? simulation tasks as a function of the simulations included in the training dataset.
Conditioned-CSCNNs outperform all baselines, with the gap widening as data increases.

Figure [3] shows the MSE on the test set. On all tasks, our Conditioned-CSCNN outperforms
every baseline, including the original CSCNN implementation. Its advantage becomes more
pronounced as more simulations are included in the training set, which is an experimental proof
of the added model complexity from the recovered angular frequency 2 kernels. Indeed, as shown
in Figure [ the highest MSE improvement against the baseline CSCNN comes from the vector
component of the loss, suggesting complete vector— vector mappings of the convolution layers. Note
that we can only test this for the NS experiment, where we have ground truth data for the vector output.

58.9

D
(=]
!

37.3

[\)
(=]
!

MSE reduction (%)
s

0 : , ,
Scalar Vector Total

Figure 4: Per-grade MSE reduction of our model vs. baseline CSCNN for the Navier—Stokes
experiment with n = 2048 simulations in the training dataset. We see the largest improvement in the
vector component.

To test whether our model is still equivariant, we calculated relative equivariance error between the
output of the transformed input vs the transformed output of the original input: err( g, 1:) =
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Table 2: Relative equivariance errors for Clifford-Steerable convolutions

Kernel Relative error (mean) Relative error (max)
Default CS Convolution 2.4 %1077 1.1x 1073
Conditioned CS Convolution 3.4x 1077 5.9 x 1074

%. Table [2|shows the O(2) relative errors for the original and our conditioned convolu-
tions. While the error is slightly higher for the conditioned convolutions, it is still equivariant up to

numerical artifacts.

6 Conclusion

We introduce Conditioned Clifford-Steerable CNNSs, a generalization of Clifford-Steerable CNN's
that employs quasi-linear convolutions. By conditioning the convolution kernel on representations
of the input feature field, our method recovers the degrees of freedom that were absent in the
original framework. Conditioned Clifford-Steerable CNNs can therefore express complete mappings
between multivector fields on (pseudo-)Euclidean spaces while maintaining consistent transformation
properties under the general Euclidean group E(p, ¢). This capability makes our approach particularly
well-suited for learning the physical dynamics of both relativistic and non-relativistic systems.
We demonstrate this advantage across various PDE learning tasks, where Conditioned CSCNN5s
consistently outperform strong baselines, including the original CSCNN implementation.

Limitations Our work has two primary limitations. First, we analytically derive the missing basis
kernels only for the special case of O(2,0), leaving the proof for the general case of O(p, ¢) as future
work. However, our empirical results demonstrate that addressing this limitation yields dramatically
improved performance across all tasks, indicating a more expressive underlying transformation.
Second, our implementation has significantly slower runtimes than baseline CSCNNs for higher-
dimensional groups, which we attribute to suboptimal optimization of conditioned CNNs. We
anticipate that more efficient implementations—such as those utilizing Triton—could resolve these
computational bottlenecks.

Impact Statement Our approach has broad applications in equivariant physical modeling, including
neural PDE surrogates, weather forecasting, and fluid dynamics simulation. By incorporating known
symmetries into deep learning models, one can improve data efficiency and robustness to domain
shifts, which is important in real-world applications. Additionally, we also hope to apply the
framework to robotics, where exploiting symmetries can dramatically improve sample efficiency
when training a physical robotic system Wang et al.| (2022).
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A Appendix

A.1 Implementation details

The basic ResNet architecture that was used for constructing the Conditioned-CSCNN, the CSCNN,
the Clifford ResNet and the O(n)-steerable ResNet were based on the setup of [Wang et al.| (2021);
Brandstetter et al.| (2022)); |Gupta and Brandstetter| (2022). They consist of 8 residual blocks with 7 x 7
and 7 x 7 x 7 sized kernels for the 2D and 3D experiments respectively. We used two embedding
and two output layers. For constructing the FNO (Li et al., [2021)) and G-FNO (Helwig et al., |2023)),
we followed the original implementations. The models have approximately 7M parameters for the
Navier Stokes and 1.56M for Maxwell’s experiments.

A.1.1 Conditioned CS kernel implementation

In constructing the Conditioned Clifford-Steerable Kernels, we built on the architecture described in
Appendix A of|Zhdanov et al.|(2024)). We form the conditioning vector by a masked spatial mean
computed for each channel ¢ and blade/grade k. On a grid 2 C R? and with the indicator x g, of the
largest centered ball B,. (the circular/spherical mask, which we explain below), the pooled stack is

(Tpool[fln (k) = ‘Q| ZX 1nr )

zeQ

The resulting conditioning multivector stack is then concatenated with the relative position vector to
form the input to the Kernel Network.

Circular mask : In practice, the multivector feature fields are often discretised as square shaped
arrays (c, X1 ... X4, 2%). Thus, an operation defined solely on this finite grid will break equivariance
towards the corners of the domain, as shown in Figure [5] To overcome this, we apply circular
masking (set grid values outside of the circle/sphere to 0) before the pooling operation, making it

O(n)-equivariant in the continuum.
(2

Figure 5: Illustration of how the receptive field of the finite, discretised kernel changes under rotations.
The square shape causes any operation defined on it to break equivariance towards the corners.

kb

A.1.2 Training details

We adopted the optimised hyperparameters from [Zhdanov et al.| (2024)) for all of our models and
experiments. We used Adam optimizer (Kingma and Ba, [2017) with cosine learning rate scheduler.
Each model was trained to convergence. The models were trained on one node of Snellius, the Dutch
national computing cluster with 4 NVIDIA A100 GPUs.

A.1.3 Datasets

2D Navier Stokes equations The ground truth simulations are taken from Gupta and Brandstetter|
(2022) and are based on ®Flow by |[Holl et al.|(2020). From the corresponding validation and test
partitions, we randomly sampled 1024 trajectories. The simulations were generated on a 128 x 128
pixel grid with uniform spatial spacing Az = Ay = 0.25m and a time step of At = 1.5s.

3D Maxwell’s equations  Within the non-relativistic C1(R3°) setting, we represent the electric field
F as a vector field and the magnetic field B as a bivector field. The dataset, drawn from |Brandstetter|
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et al.| (2022), consists of 3D Maxwell simulations discretized on a 32 x 32 x 32 voxel grid with
uniform spacing Az = Ay = Az = 5 x 10~" m and time step At = 50s. The validation and test
splits together contain 128 simulations.

2D relativistic Maxwell’s equations We generate a dataset for Maxwell’s equations in 2+1D
spacetime (R%:2) utilizing the PyCharge simulation package by [Filipovich and Hughes|(2022). The
simulations model the dynamics of electromagnetic fields emitted by oscillating and orbiting point
charges moving at relativistic speeds. The spacetime grid is discretized with a resolution of 128 x 128
points, corresponding to a spatial extent of 50 nm and a temporal duration of 3.77 - 10~ !*s.

Each simulation is initialized with a unique configuration of charge sources, governed by the following
randomly sampled parameters: Source Composition: A combination of 2 to 4 oscillating charges
and 1 to 2 orbiting charges, with integer magnitudes sampled uniformly from the range [—3e, 3e].
Initial Conditions: Sources are placed uniformly on the grid with a predefined minimum separation.
Each is assigned a random linear velocity and either oscillates in a random direction or orbits with a
random radius. Relativistic Constraint: Oscillation/rotation frequencies and velocities are sampled
such that the total particle velocity does not exceed 0.85¢, a necessary constraint to ensure the stability
of the PyCharge solver.

To handle the wide dynamic range of the resulting field strengths, we apply a normalization scheme.
The generated field bivectors are divided by their Minkowski norm and then multiplied by the
logarithm of that norm. Although Minkowski norms can be zero or negative, we found they were
consistently positive in our generated data. Finally, we filter numerical artifacts by removing any
outlier simulations that exhibit a standard deviation greater than 20. The curated dataset is split into
2048 training, 256 validation, and 256 test simulations.

B Proofs
B.1 Proof of Lemmal[l]
Proof. We seek to proof the G-equivariance of the quasi-linear convolution
H(F@) = [ dy K=y TIF)F) )

where the conditioning function T is G-equivariant. We will use the notation of |Weiler et al.| (2023)),
where the action of a group G on a feature vector field of type p is written as

[tg > F] (z) = p(g)F ((tg) ") 6)
The G equivariance of the convolutional layer then formally means that
L9 von Fl=g vp I [F],  Vg€G ™

where p;, and p,y stand for the type of input and output feature fields, respectively.

By expanding the left-hand side of the equation above, we obtain

1o o0, F)= [ dyK(@—y. Tlg », F)lg >, F) o) ®
e | W E@ =y, (T [FlpnF (7') ©)
Ty K@= gy, ()T (FouF ) (10)

The right-hand side then yields

9 Po It [F] = /R LW pout(9)K (97" —y, T[F]) F(y) (1)

These expressions agree for any g € G and any feature map F € L%(R¢,R%») if and only if
K(z = gy, pin(9)T [F])pin = pout(9)K (97" —y, T[F]). (12)
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After substitution g~ !

K(gz, pin(9)T [F]) = pout(9)K (, T [F]) pin(9)™" = pHom(9) (K (z, T[F]))  (13)
O

x — x and x — y = x, we obtain the constraint:

B.2 Proof of Lemma[2

Proof. Kr is O(p, q)-equivariant by definition, and the kernel head H is O(p, ¢)-equivariant by
Proposition 3.2 in|Zhdanov et al.{(2024). The O(p, q)-equivariance of their composition follows from

K (gv, p&3 (9) Tlfin]) =H (K7 (9v, 0 (9) T[fin])) (14)
ST (o< () K (0, T fin]) (15)
:pHom(g)H(’CT(U7T[finD) (16)

:pHom(g)K(Ua T[fin]) (17)

O
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