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Abstract

Clifford-Steerable CNNs (CSCNNs) provide a unified framework that allows1

incorporating equivariance to arbitrary pseudo-Euclidean groups, including E(n)2

and Poincaré-equivariance on Minkowski spacetime. In this work, we analyze3

the shortcomings of the approach. We demonstrate that the kernel basis used in4

CSCNNs is not complete. Furthermore, we suggest to restore missing degrees of5

freedom by using an extra information obtained directly from data at virtually no6

cost. Our approach significantly and consistently outperforms baseline methods on7

PDE forecasting tasks, specifically fluid dynamics and relativistic electrodynamics.8

1 Introduction9

Physical systems are often associated with symmetries that govern their evolution. Therefore, it is10

desirable to respect those symmetries in the modelling process to faithfully capture the dynamics.11

Equivariant Neural Networks have proven to be strong candidates for learning such dynamics due to12

their ability to produce outputs that transform consistently under these symmetries. As part of the13

equivariant family, Steerable Convolutional Neural Networks ensure equivariance by enforcing a14

constraint over their convolution kernels. The steerability constraint is group-specific and has been15

solved and implemented for several common symmetry groups, such as for O(2) (Weiler and Cesa,16

2019), O(3) (Geiger et al., 2022), and for general compact groups E(n) as demonstrated by Lang17

and Weiler (2020); Cesa et al. (2022).18
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(a) Default Clifford-steerable Kernel
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(b) Conditioned Clifford-steerable Kernel

Figure 1: Comparison of default vs. conditioned kernels for O(2). The missing angular frequency
2 basis kernels can be observed as the sparse scatters (which are just noise) in the antidiagonal of
subfigure 1a. In comparison, subfigure 1b shows how our implementation recovers these missing
kernels. Due to the kernel’s input-dependent activation, the typical four-lobed quadrupole patterns
may not be visible, despite being present.
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Clifford Steerable Convolutional Neural Networks (CSCNNs), introduced by Zhdanov et al. (2024),20

extend steerability to a more general class of symmetries - pseudo-Euclidean group E(p, q), which21

covers, for instance, E(n)-equivariance and Poincaré-equivariance on Minkowski spacetime. By22

using implicit parameterization of the kernels, CSCNNs are able to process feature fields defined on23

pseudo-Euclidean spaces, allowing CNNs to learn system dynamics in both non-relativistic (e.g. fluid24

dynamics) and relativistic (e.g. electromagnetism) scenarios. However, as pointed out by the authors,25

the original implementation yields incomplete kernel basis, which in turn limits the expressivity of26

the model as it is unable to represent certain degrees of freedom and therefore capture corresponding27

interactions (see the missing anti-diagonals in Figure 1).28

The authors suggested that this degree of freedom may be recovered; however, this has yet to29

be proven or experimentally validated. We present Conditioned Clifford-Steerable Kernels which30

augment the kernel with an independent representation constructed from the input field, recovering31

the missing degrees of freedom, thereby achieving a strictly more expressive parameterization. The32

contributions of this paper are the following:33

• We show that the original parametrization of CS-CNN kernels is missing kernels of angular34

frequency 2.35

• We prove analytically that the missing degrees of freedom can be recovered by extending the36

input vector of the kernel by a global representation of the feature field, at little to no cost.37

• We propose an efficient implementation and evaluate it on multiple PDE simulations,38

outperforming other convolutional baselines.39

This paper is organised as follows: Section 2 provides a brief introduction to Steerable CNNs and40

the Clifford Algebra. Section 4 uncovers the main limitation of Clifford-Steerable CNN kernels,41

and introduces Conditioned Clifford-Steerable Kernels as a solution. After deriving their improved42

properties, the new kernels are empirically validated against the original implementation in Section 5.43
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Figure 2: Illustration of Conditioned Clifford-Steerable Kernels. Similar to CSCNNs, the parameteri-
zation is implicit, with the only difference that the kernel network is augmented with an equivariant
representation of the input feature field.

2 Theoretical Background44

2.1 Pseudo-Euclidean Spaces45

Pseudo-Euclidean spaces generalize Euclidean space by allowing an indefinite metric, so the squared46

length of a nonzero vector can be positive, zero, or negative. Every finite dimensional pseudo-47

Euclidean space is isometric to the standard pseudo-Euclidean space, to which we restrict our48

attention (O’Neill, 1983).49

Definition 2.1 (Standard pseudo-Euclidean vector spaces). Let e1, . . . , ep+q be the canonical basis50

of the real vector space Rp+q. Define an inner product of signature (p, q)-that is, a non-degenerate51

symmetric bilinear form with p positive and q negative eigenvalues-by ηp,q(v1, v2) := vT1 ∆p,q v252

where v1, v2 ∈ Rp+q, and ∆p,q := diag
(
1, . . . , 1︸ ︷︷ ︸
p times

,−1, . . . ,−1︸ ︷︷ ︸
q times

)
.53

The resulting inner-product space Rp,q :=
(
Rp+q, ηp,q

)
is the standard pseudo-Euclidean vector54

space of signature (p, q). This is the space where our feature vectors are defined, and also the space55

the symmetry groups we are interested in are acting on.56
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2.2 Clifford algebra and multivector fields57

In previous works Ruhe et al. (2023); Zhdanov et al. (2024), it has been demonstrated that Clifford58

algebra Cl(Rp,q) is a representation space of the pseudo-orthogonal group O(p, q). In simpler words,59

it means that elements of the algebra - multivectors - can be used to represent actions of the group.60

Below we provide the formal definition. Let V be a vector space over a field F, equipped with a61

bilinear form: η : V × V → R, (v1, v2) 7→ η(v1, v2). The Clifford Algebra generated by V is the62

unitary, associative, non-commutative algebra such that63

vi • vi = η(vi, vi) · 1Cl(V,η), ∀vi ∈ V ⊂ Cl(V, η) (1)

Where • := Cl(V, η)× Cl(V, η) → Cl(V, η) is the geometric product, an O(p, q)-equivariant opera-64

tion enabling us to multiply elements of the algebra while respecting their geometric properties. Such65

elements are multivectors, which can be constructed by linearly combining products of v1, ...vn ∈ V66

the following way: x =
∑

i∈I ci · vi,1 • · · · • vi,li where index set I is finite, vi,k ∈ V and ci ∈ R.67

We can decompose the algebra into vector subspaces Cl(n)(V, η), n = 0, . . . , d, which we refer68

to as grades. One grade n = |A| is composed by choosing n out of the maximum d basis vectors69

of the underlying vector space V and has dimensionality dimCl(d)(V, η) =
(
d
n

)
. Grades n = 0 and70

n = 1 consist of scalars and vectors, respectively. For n ≥ 2, one encounters bivectors, trivectors71

and higher-grade multivectors, which geometrically represent oriented points, areas and their higher-72

dimensional analogues. For a more in depth introduction to the Clifford Algebra, we refer the reader73

to Appendix D of Zhdanov et al. (2024).74

2.3 Clifford Steerable CNNs75

Clifford-Steerable CNNs process multivector fields, which are functions f : Rp,q −→ Cl(Rp,q)c76

assigning a feature f(x) to each point x ∈ Rp,q in feature vector space Cl(Rp,q)c where c denotes the77

feature channel dimension. They are required to commute with the pseudo-Euclidean symmetry group78

E(p, q) = (Rp,q,+)⋊O(p, q), which is the semi-direct product of the the translation group (Rp,q,+)79

and the pseudo-orthogonal group O(p, q) =
{
g ∈ GL(Rp,q) | g⊤∆p,qg = ∆p,q

}
. Convolutions80

are by construction rotation equivariant, thus the task of constructing an E(p, q) equivariant CNN81

reduces to an O(p, q) equivariance requirement. Previous work by Weiler et al. (2023) showed that to82

achieve this, the convolution kernels K : Rp,q −→ HomVec

(
Cl(Rp,q)cin ,Cl(Rp,q)cout

)
need to obey83

the O(p, q)-steerability constraint K(gx) = ρout(g)K(x) ρin(g)
−1, ∀g ∈ O(p, q) , x ∈ Rp,q .84

85

Several approaches have been proposed to solve this constraint, for example (Lang and Weiler, 2020;86

Cesa et al., 2022) analytically derived steerable kernel bases. Kernels can also be implemented as87

channel permutations in the matrix dimensions, such as in (Cohen and Welling, 2016; Bekkers et al.,88

2018). Both methods however are only suitable for compact groups, leaving out O(p, q). Numerical89

approaches have been proposed by (De Haan et al., 2020; Shutty and Wierzynski, 2023) based on Lie-90

algebra irreps, however only for connected subgroups of O(p, q). (Zhdanov et al., 2023) solved the91

steerability constraint implicitly by parametrising the kernel using an equivariant neural network. This92

method was adapted to work on Clifford algebras, by using Clifford Group Equivariant neural net-93

works (Ruhe et al., 2023) to parametrise the kernels of Clifford Steerable CNNs (Zhdanov et al., 2024).94

95

The implicit kernel K serving as the convolution kernel of Clifford Steerable CNN is a composition96

of two operators: K = H ◦K, where K is the parametrising Kernel Network, and H denotes a kernel97

head, which transforms the kernel network output to be used as a convolution kernel on multivector98

fields.99

Definition 2.2 (Kernel network). The Kernel network K : Rp,q −→ Cl(Rp,q) cout×cin is an O(p, q)-100

equivariant Clifford-group equivariant neural network (CGENN) (Ruhe et al., 2023). Let k = 0, . . . d101

denote the multivector grades and w
(k)
mn ∈ R weights. A CGENN is built only from operations that102

are O(p, q)-equivariant by construction:103

1. Grade-wise linear maps L(k)
m (x1, . . . , xcin) :=

∑cin
n=1 w

k
mn · x(k)

n , which act independently104

inside every irreducible sub-representation (grade) of the respective Clifford metric space105

Cl(Rp,q)(k);106
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2. Weighted geometric-product layers P (k)(x1, x2) :=
∑d

m=0

∑d
n=0 w

k
mn ·

(
x
(m)
1 • x(n)

2

)(k)
107

Additionally, the network contains component-wise nonlinearities and norm-based normalisations108

that depend only on the quadratic form and therefore remain invariant under the group action.109

Because every CGENN layer is a multivector polynomial, the universal result that “all multivector110

polynomials are O(p, q)-equivariant” applies (Ruhe et al., 2023), which guarantees that their111

composition in K satisfies K(gv) = ρCl(Rp,q)(g)K(v) for all g ∈ O(p, q).112

113

Definition 2.3 (Kernel head). The kernel head: H : Cl(Rp,q) cout×cin −→114

HomVec

(
Cl(Rp,q)cin ,Cl(Rp,q)cout

)
is a grade-projected, partially evaluated geometric prod-115

uct that turns each multivector component k = [kij ] into an R-linear map between channel116

stacks:117 [
H(k) f

](k)
i

=
∑

j∈[cin]

d∑
m,n=0

w
(k)
mn,ij

(
k
(m)
ij • f (n)

j

)(k)
.

The scalars w(k)
mn,ij (shared over space) merely re-weight already equivariant terms; hence H itself118

is O(p, q)-equivariant. A proof can be found in Appendix E.1 of Zhdanov et al. (2024). Since both119

K and H are O(p, q)-equivariant, their composition K = H ◦ K obeys the steerability constraint.120

Convolving with K therefore yields an operator that is exactly E(p, q)-equivariant (Theorem 3.4 in121

Zhdanov et al. (2024)).122

3 Missing basis of regular CSCNN kernels123

This section takes a representation theoretic investigation of the original CSCNN kernel implementa-124

tion by Zhdanov et al. (2024), uncovering the missing kernel basis. To overcome this limitation,125

we introduce Conditioned-Clifford Steerable Kernels, that recover the missing kernels without126

breaking equivariance, allowing for the full parametrization of the convolution kernels. Note that127

here we restrict our attention to O(2) acting on R2, however, the same decomposition can be used to128

generalise the analysis to O(n) and O(p, q).129

130

To understand what is meant by angular frequency 2 kernels, it is worth investigating the kernel131

functions in the frequency domain. We can do this, as it was shown by Weiler and Cesa (2019);132

Weiler et al. (2018), the irreducible representations of O(2) are one- or two–dimensional circular133

harmonic modes. More precisely, every kernel obeying the steerability constraint admits a polar134

decomposition135

K(r, φ) =
∑
m∈Z

Rm(r)Ym(φ), Ym(φ) = eimφ.

Where m is the grade (irrep) of the multivector output and where the angular factors Ym are fixed and136

only the radial parts are freely learned Rm. As such, the kernel can be fully expressed by the different137

angular frequency bases and their learned radial part. Depending on the field types a convolution138

operator is mapping between, its kernel is required to contain specific angular frequency bases for the139

mapping to be fully complete.140

3.1 Clebsch–Gordan requirements for kernels141

To identify what angular frequencies are required for convolutions, we use the Clebsch–Gordan142

decomposition of its tensor products, which was adapted by Lang and Weiler (2020) for kernel143

irreps. When a kernel maps one field type (irrep j) to another field type (irrep l), the tensor product144

D(j)⊗D(l) must supply the trivial representation so that contraction with an input feature can145

yield an output feature. For multivector grades Cl(R2,0)(k) the Clebsch-Gordan decomposition146

D(j)⊗D(l) ∼=
⊕j+l

m=|j−l| D
(m) is shown in Table 1147

Examining j = l = 1 (so the vector field → vector field mapping) yields the set of required harmonic148

blocks m ∈
{
|1− 1|, 1 + 1

}
=

{
0, 2

}
. Which means that if we want our mapping from vector149

→ vector to be complete, we need bases with angular frequencies m ∈ {0, 2} to be represented in the150

kernel. The scalar part m = 0 can be recovered easily: it already "lives" in grades 0 and 2. However,151
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Table 1: Clifford field types by grade and O(2) irreducible representations
grade field type irrep angular frequency

Cl(R2,0)(0) scalar D(0) m = 0 (even)
Cl(R2,0)(1) vector D(1) m = 1

Cl(R2,0)(2) pseudoscalar D
(0)
odd m = 0 (odd)

the quadrupole part with angular frequency m = 2 can appear only through the symmetric traceless152

component of a product of two independent vectors (Zou and Zheng, 2003).153

154

The implicit kernel of a Clifford-Steerable CNN, K = H ◦ K, receives a single grade-1 vector per155

edge, namely the displacement v := x− y ∈ R2 ∼= Cl(R2)(1) (Zhdanov et al., 2023, 2024). Inside156

of kernel network K, the transformations applied to this vector (as detailed in Definition 2.2) only do157

the following:158

1. Grade-wise linear maps reshuffle channels but never change the spatial irrep: a vector stays159

a vector (m = 1).160

2. Geometric products take two copies of the same vector. Their product immediately projects161

(due to the Clifford rules in Equation (1)) into grade 0 or grade 2, i.e. frequency m = 0.162

Because both operands derive from the same direction, no symmetric-traceless rank-2 object-and163

hence no m = 2 harmonic-can be formed at any depth inside a single kernel network. This is not164

changed by the kernel head H either, since its operation is also a (partially evaluated) geometric165

product. This results in the incomplete vector→ vector mapping of the convolutional layers, and166

the original CSCNN architecture. To complete the parametrisation, the interaction of independent167

vectors are needed.168

4 Conditioned Clifford-Steerable Kernels169

4.1 Conditioned Steerable Convolution170

We follow the derivation of a steerable convolution from Weiler et al. (2023) (Theorem 4.3.1). Let us171

start with a convolutional operator172

Ik [F ] (x) :=

∫
Rd

dy K(x− y)F (y) (2)

that is parameterized by a kernel K : R → Rcout×cin . For the convolutional layer to be G-equivariant,173

the kernel must be G-steerable, that is,174

K(gx) = ρout(g)K(x)ρin(g)
−1 ∀x ∈ Rd, g ∈ G. (3)

where ρin and ρout are representations of input and output feature fields, respectively.175

Let us now introduce an equivariant function T : L2(Rd,Rc) → Rc which computes a vector176

representation of a feature field. We will use the function to augment the kernel function, yielding the177

following quasi-linear transformation178

ITk [F ] (x) :=

∫
Rd

dy K(x− y, T [F ])F (y). (4)

Since the conditioning function T is equivariant, we have by definition T [g.F ] = ρ(g)T [F ].179

Lemma 1. The quasi-linear map 4 is G-equivariant if and only if180

K(gx, ρin(g)T [F ]) = ρHom(g) (K(x, T [fin]))

We provide the proof of the lemma in the Appendix B.1.181
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4.2 Conditioned Clifford-Steerable Convolution182

The quasi-linear map provides a framework to tackle the issue of missing degrees of freedom in183

Clifford-Steerable convolutions. As discussed, the kernel basis of the latter is incomplete, as it relies184

on implicit kernels that are unable to generate high-frequency components from a positional vector185

alone. Furthermore, the key idea of our approach is to condition the implicit kernel on relative186

position, as well as a field representation, whose interaction together will yield the otherwise missing187

high-frequency components of the kernel basis.188

As discussed in Section 2.3, in the framework of Clifford-Steerable CNNs, the kernel K is defined189

as a composition K = H ◦ K. The kernel head H transforms the output of the kernel network K to190

matrix-valued kernels and is agnostic to the form of K. Furthermore, we only need to adapt the kernel191

network to be compatible with conditioned convolution. Specifically, let us define conditioned kernel192

network KT : Rp,q,Cl(Rp,q)cin → Cl(Rp,q)cout×cin which now additionally takes the multivector193

representation of the input field generated by the conditioning function T : L2(Rd,Cl(Rp,q)c) →194

Cl(Rp,q)c. Since we use CGENNs to implement KT , the function is O(p, q)-equivariant by definition.195

Having the conditioned kernel network, we define Conditioned-Steerable kernels as K = H ◦ KT .196

Lemma 2 (Equivariance of conditioned Clifford-steerable kernels). Every conditioned Clifford-197

steerable kernel K = H ◦ KT is O(p, q)-steerable w.r.t. the standard action ρ(g) = g and ρHom:198

K(gv, ρin(g)T [F ]) = ρHom(g) (K(v, T [fin])) ∀g ∈ O(p, q), v ∈ Rp,q.

We provide the proof in Appendix B.2.199

Equipped with conditioned kernels, we are now able to tackle the issue with missing degrees of200

freedom in the original framework of CSCNNs:201

Corollary 4.1 (Completeness of the kernel basis). Let the output of T [fin] have non-trivial grade 1202

component. Then the kernel basis of conditioned Clifford-Steerable CNNs is complete.203

5 Experimental Results204

To test the efficacy of our new kernel implementation, we compared its performance to the original205

CSCNN model and several strong baselines in three PDE learning tasks: the 2-dimensional (R2)206

Navier-Stokes (NS2) equations, the 3-dimensional (R3) Maxwell (MW3) equations, and the relativistic207

2-dimensional (R1,2) Maxwell (MW2) equations.208

5.1 Notes on implementation209

For the simplicity, we choose the conditioning function T to be the global mean pooling operation.210

The operation is equivariant, as proven in Weiler et al. (2023). Compared to the original CSCNNs,211

our model’s only additional computational cost comes from computing the condition. However, since212

this step uses highly optimized operations (like mean and max pooling), the resulting overhead is213

minimal. The implementation is done in JAX (Bradbury et al., 2018). More details can be found in214

Appendix A.1.215

5.2 Experiment Setup216

The goal of each experiment is to empirically learn the dynamics of the systems from numerical217

simulations, and predict future states based on previous timesteps (Gupta and Brandstetter, 2022).218

For the non-relativistic tasks, variables describing the states in the 4 previous timesteps are taken219

as input, with each timestep serving as an additional feature channel, and the goal is to predict the220

subsequent state. Although improper, this setup allows us to compare our results to prior models221

which otherwise would not be able to handle a full spacetime. For Navier-Stokes, the input state222

is described by a velocity vector for the vector part, and the pressure field for the scalar part, with223

the bivector part padded with zeros to keep the multivector structure consistent. For the MW3 task,224

the inputs are vector electric fields and bivector magnetic fields, with the rest of the blades padded.225

For the relativistic Maxwell task, time forms its own spacetime dimension of size 32, thus the task226

becomes predicting the next 32 timesteps based on the previous 32. The input is an electromagnetic227

field, which forms the bivector part of a multivector. This setup properly incorporates the time228
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dimension into spacetime.229

230

5.3 Model Architectures231

Our model is built upon the ResNet architecture, where we substitute the standard convolutional layers232

with our novel Conditioned Clifford-Steerable convolutions. We compare Conditioned CSCNNs233

against architecturally similar networks: the standard ResNet, the Clifford ResNet (Brandstetter234

et al., 2022), the O(n)-steerable CNN (Weiler and Cesa, 2019; Weiler et al., 2023) and the original235

Clifford-Steerable CNN (Zhdanov et al., 2024). Additionally, we evaluate the prominent PDE learner236

Fourier Neural Operator (FNO) (Li et al., 2021) and its D4 < O(2) equivariant variation, G-FNO237

(Helwig et al., 2023). All models were scaled to match the parameter count of the basic ResNet238

architecture.239

5.4 Results240
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Figure 3: Mean squared errors for (1) Navier-Stokes R2, (2) Maxwell R3, and (3) relativistic
Maxwell R1,2 simulation tasks as a function of the simulations included in the training dataset.
Conditioned-CSCNNs outperform all baselines, with the gap widening as data increases.

Figure 3 shows the MSE on the test set. On all tasks, our Conditioned-CSCNN outperforms241

every baseline, including the original CSCNN implementation. Its advantage becomes more242

pronounced as more simulations are included in the training set, which is an experimental proof243

of the added model complexity from the recovered angular frequency 2 kernels. Indeed, as shown244

in Figure 4, the highest MSE improvement against the baseline CSCNN comes from the vector245

component of the loss, suggesting complete vector→ vector mappings of the convolution layers. Note246

that we can only test this for the NS experiment, where we have ground truth data for the vector output.247

248
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Figure 4: Per-grade MSE reduction of our model vs. baseline CSCNN for the Navier–Stokes
experiment with n = 2048 simulations in the training dataset. We see the largest improvement in the
vector component.

To test whether our model is still equivariant, we calculated relative equivariance error between the249

output of the transformed input vs the transformed output of the original input: err
(
f ; g, x

)
=250
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Table 2: Relative equivariance errors for Clifford-Steerable convolutions
Kernel Relative error (mean) Relative error (max)

Default CS Convolution 2.4× 10−7 1.1× 10−3

Conditioned CS Convolution 3.4× 10−7 5.9× 10−4

|f(g·x) − g·f(x)|
|f(g·x) + g·f(x)| . Table 2 shows the O(2) relative errors for the original and our conditioned convolu-251

tions. While the error is slightly higher for the conditioned convolutions, it is still equivariant up to252

numerical artifacts.253

6 Conclusion254

We introduce Conditioned Clifford-Steerable CNNs, a generalization of Clifford-Steerable CNNs255

that employs quasi-linear convolutions. By conditioning the convolution kernel on representations256

of the input feature field, our method recovers the degrees of freedom that were absent in the257

original framework. Conditioned Clifford-Steerable CNNs can therefore express complete mappings258

between multivector fields on (pseudo-)Euclidean spaces while maintaining consistent transformation259

properties under the general Euclidean group E(p, q). This capability makes our approach particularly260

well-suited for learning the physical dynamics of both relativistic and non-relativistic systems.261

We demonstrate this advantage across various PDE learning tasks, where Conditioned CSCNNs262

consistently outperform strong baselines, including the original CSCNN implementation.263

Limitations Our work has two primary limitations. First, we analytically derive the missing basis264

kernels only for the special case of O(2, 0), leaving the proof for the general case of O(p, q) as future265

work. However, our empirical results demonstrate that addressing this limitation yields dramatically266

improved performance across all tasks, indicating a more expressive underlying transformation.267

Second, our implementation has significantly slower runtimes than baseline CSCNNs for higher-268

dimensional groups, which we attribute to suboptimal optimization of conditioned CNNs. We269

anticipate that more efficient implementations—such as those utilizing Triton—could resolve these270

computational bottlenecks.271

Impact Statement Our approach has broad applications in equivariant physical modeling, including272

neural PDE surrogates, weather forecasting, and fluid dynamics simulation. By incorporating known273

symmetries into deep learning models, one can improve data efficiency and robustness to domain274

shifts, which is important in real-world applications. Additionally, we also hope to apply the275

framework to robotics, where exploiting symmetries can dramatically improve sample efficiency276

when training a physical robotic system Wang et al. (2022).277

8



References278

Bekkers, E. J., Lafarge, M. W., Veta, M., Eppenhof, K. A., Pluim, J. P., and Duits, R. (2018).279

Roto-translation covariant convolutional networks for medical image analysis. In Medical Image280

Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference,281

Granada, Spain, September 16-20, 2018, Proceedings, Part I, pages 440–448. Springer.282

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke,283

A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. (2018). JAX: composable transformations284

of Python+NumPy programs.285

Brandstetter, J., Berg, R. v. d., Welling, M., and Gupta, J. K. (2022). Clifford neural layers for pde286

modeling. arXiv preprint arXiv:2209.04934.287

Cesa, G., Lang, L., and Weiler, M. (2022). A program to build e (n)-equivariant steerable cnns. In288

International conference on learning representations.289

Cohen, T. and Welling, M. (2016). Group equivariant convolutional networks. In International290

conference on machine learning, pages 2990–2999. PMLR.291

De Haan, P., Weiler, M., Cohen, T., and Welling, M. (2020). Gauge equivariant mesh cnns:292

Anisotropic convolutions on geometric graphs. arXiv preprint arXiv:2003.05425.293

Filipovich, M. J. and Hughes, S. (2022). Pycharge: An open-source python package for self-consistent294

electrodynamics simulations of lorentz oscillators and moving point charges. Computer Physics295

Communications, 274:108291.296

Geiger, M., Smidt, T., Alby, M., Miller, B. K., Boomsma, W., Dice, B., Lapchevskyi, K., Weiler,297

M., Tyszkiewicz, M., Batzner, S., et al. (2022). Euclidean neural networks: e3nn. Preprint at298

https://doi. org/10.48550/arXiv, 2207.299

Gupta, J. K. and Brandstetter, J. (2022). Towards multi-spatiotemporal-scale generalized pde300

modeling. arXiv preprint arXiv:2209.15616.301

Helwig, J., Zhang, X., Fu, C., Kurtin, J., Wojtowytsch, S., and Ji, S. (2023). Group equivariant302

fourier neural operators for partial differential equations. In Proceedings of the 40th International303

Conference on Machine Learning, ICML’23. JMLR.org.304

Holl, P., Koltun, V., and Thuerey, N. (2020). Learning to control pdes with differentiable physics.305

CoRR, abs/2001.07457.306

Kingma, D. P. and Ba, J. (2017). Adam: A method for stochastic optimization.307

Lang, L. and Weiler, M. (2020). A wigner-eckart theorem for group equivariant convolution kernels.308

arXiv preprint arXiv:2010.10952.309

Li, Z., Kovachki, N. B., Azizzadenesheli, K., liu, B., Bhattacharya, K., Stuart, A., and Anandkumar,310

A. (2021). Fourier neural operator for parametric partial differential equations. In International311

Conference on Learning Representations.312

O’Neill, B. (1983). Semi-riemannian geometry with applications to relativity. Pure and Applied313

Mathematics/Academic Press, Inc.314

Ruhe, D., Brandstetter, J., and Forré, P. (2023). Clifford group equivariant neural networks. Advances315

in Neural Information Processing Systems, 36:62922–62990.316

Shutty, N. and Wierzynski, C. (2023). Computing representations for lie algebraic networks. In317

NeurIPS Workshop on Symmetry and Geometry in Neural Representations, pages 1–21. PMLR.318

Wang, D., Jia, M., Zhu, X., Walters, R., and Platt, R. W. (2022). On-robot learning with equivariant319

models. In Conference on Robot Learning.320

Wang, R., Walters, R., and Yu, R. (2021). Incorporating symmetry into deep dynamics models for321

improved generalization. In International Conference on Learning Representations.322

9



Weiler, M. and Cesa, G. (2019). General e (2)-equivariant steerable cnns. Advances in neural323

information processing systems, 32.324

Weiler, M., Forré, P., Verlinde, E., and Welling, M. (2023). Equivariant and coordinate independent325

convolutional networks. A Gauge Field Theory of Neural Networks, page 110.326

Weiler, M., Geiger, M., Welling, M., Boomsma, W., and Cohen, T. (2018). 3d steerable cnns:327

Learning rotationally equivariant features in volumetric data. CoRR, abs/1807.02547.328

Zhdanov, M., Hoffmann, N., and Cesa, G. (2023). Implicit convolutional kernels for steerable cnns.329

Advances in Neural Information Processing Systems, 36:17395–17407.330

Zhdanov, M., Ruhe, D., Weiler, M., Lucic, A., Brandstetter, J., and Forré, P. (2024). Clifford-steerable331

convolutional neural networks. arXiv preprint arXiv:2402.14730.332

Zou, D. and Zheng, Q.-s. (2003). Maxwell’s multipole representation of traceless symmetric tensors333

and its application to functions of high-order tensors. Proceedings of The Royal Society A:334

Mathematical, Physical and Engineering Sciences, 459:527–538.335

10



A Appendix336

A.1 Implementation details337

The basic ResNet architecture that was used for constructing the Conditioned-CSCNN, the CSCNN,338

the Clifford ResNet and the O(n)-steerable ResNet were based on the setup of Wang et al. (2021);339

Brandstetter et al. (2022); Gupta and Brandstetter (2022). They consist of 8 residual blocks with 7×7340

and 7× 7× 7 sized kernels for the 2D and 3D experiments respectively. We used two embedding341

and two output layers. For constructing the FNO (Li et al., 2021) and G-FNO (Helwig et al., 2023),342

we followed the original implementations. The models have approximately 7M parameters for the343

Navier Stokes and 1.5M for Maxwell’s experiments.344

A.1.1 Conditioned CS kernel implementation345

In constructing the Conditioned Clifford-Steerable Kernels, we built on the architecture described in346

Appendix A of Zhdanov et al. (2024). We form the conditioning vector by a masked spatial mean347

computed for each channel c and blade/grade k. On a grid Ω ⊂ Rd and with the indicator χBr of the348

largest centered ball Br (the circular/spherical mask, which we explain below), the pooled stack is349 (
Tpool[fin]

)(k)
c

:=
1

|Ω|
∑
x∈Ω

χBr
(x) f

(k)
in,c(x),

The resulting conditioning multivector stack is then concatenated with the relative position vector to350

form the input to the Kernel Network.351

Circular mask : In practice, the multivector feature fields are often discretised as square shaped352

arrays (c,X1 . . . Xd, 2
d). Thus, an operation defined solely on this finite grid will break equivariance353

towards the corners of the domain, as shown in Figure 5. To overcome this, we apply circular354

masking (set grid values outside of the circle/sphere to 0) before the pooling operation, making it355

O(n)-equivariant in the continuum.356

Figure 5: Illustration of how the receptive field of the finite, discretised kernel changes under rotations.
The square shape causes any operation defined on it to break equivariance towards the corners.

A.1.2 Training details357

We adopted the optimised hyperparameters from Zhdanov et al. (2024) for all of our models and358

experiments. We used Adam optimizer (Kingma and Ba, 2017) with cosine learning rate scheduler.359

Each model was trained to convergence. The models were trained on one node of Snellius, the Dutch360

national computing cluster with 4 NVIDIA A100 GPUs.361

A.1.3 Datasets362

2D Navier Stokes equations The ground truth simulations are taken from Gupta and Brandstetter363

(2022) and are based on ΦFlow by Holl et al. (2020). From the corresponding validation and test364

partitions, we randomly sampled 1024 trajectories. The simulations were generated on a 128× 128365

pixel grid with uniform spatial spacing ∆x = ∆y = 0.25m and a time step of ∆t = 1.5 s.366

3D Maxwell’s equations Within the non-relativistic Cl(R3,0) setting, we represent the electric field367

E as a vector field and the magnetic field B as a bivector field. The dataset, drawn from Brandstetter368
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et al. (2022), consists of 3D Maxwell simulations discretized on a 32 × 32 × 32 voxel grid with369

uniform spacing ∆x = ∆y = ∆z = 5× 10−7 m and time step ∆t = 50 s. The validation and test370

splits together contain 128 simulations.371

2D relativistic Maxwell’s equations We generate a dataset for Maxwell’s equations in 2+1D372

spacetime (R1,2) utilizing the PyCharge simulation package by Filipovich and Hughes (2022). The373

simulations model the dynamics of electromagnetic fields emitted by oscillating and orbiting point374

charges moving at relativistic speeds. The spacetime grid is discretized with a resolution of 128×128375

points, corresponding to a spatial extent of 50 nm and a temporal duration of 3.77 · 10−14 s.376

Each simulation is initialized with a unique configuration of charge sources, governed by the following377

randomly sampled parameters: Source Composition: A combination of 2 to 4 oscillating charges378

and 1 to 2 orbiting charges, with integer magnitudes sampled uniformly from the range [−3e, 3e].379

Initial Conditions: Sources are placed uniformly on the grid with a predefined minimum separation.380

Each is assigned a random linear velocity and either oscillates in a random direction or orbits with a381

random radius. Relativistic Constraint: Oscillation/rotation frequencies and velocities are sampled382

such that the total particle velocity does not exceed 0.85c, a necessary constraint to ensure the stability383

of the PyCharge solver.384

To handle the wide dynamic range of the resulting field strengths, we apply a normalization scheme.385

The generated field bivectors are divided by their Minkowski norm and then multiplied by the386

logarithm of that norm. Although Minkowski norms can be zero or negative, we found they were387

consistently positive in our generated data. Finally, we filter numerical artifacts by removing any388

outlier simulations that exhibit a standard deviation greater than 20. The curated dataset is split into389

2048 training, 256 validation, and 256 test simulations.390

B Proofs391

B.1 Proof of Lemma 1392

Proof. We seek to proof the G-equivariance of the quasi-linear convolution393

ITk [F ] (x) :=

∫
Rd

dy K(x− y, T [F ])F (y). (5)

where the conditioning function T is G-equivariant. We will use the notation of Weiler et al. (2023),394

where the action of a group G on a feature vector field of type ρ is written as395

[tg ▷ρ F ] (x) = ρ(g)F
(
(tg)−1x

)
. (6)

The G equivariance of the convolutional layer then formally means that396

ITk [g ▷ρin F ] = g ▷ρout I
T
k [F ] , ∀g ∈ G (7)

where ρin and ρout stand for the type of input and output feature fields, respectively.397

By expanding the left-hand side of the equation above, we obtain398

ITk [g ▷ρin F ] =

∫
Rd

dy K(x− y, T [g ▷ρ F ]) [g ▷ρ F ] (y) (8)

T equiv.
=

∫
Rd

dy K(x− y, ρin(g)T [F ])ρinF
(
g−1y

)
(9)

g−1y→y
=

∫
Rd

dy K(x− gy, ρin(g)T [F ])ρinF (y) (10)

The right-hand side then yields399

g ▷ρout
ITk [F ] =

∫
Rd

dy ρout(g)K
(
g−1x− y, T [F ]

)
F (y) (11)

These expressions agree for any g ∈ G and any feature map F ∈ L2(Rd,Rcin) if and only if400

K(x− gy, ρin(g)T [F ])ρin = ρout(g)K
(
g−1x− y, T [F ]

)
. (12)
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After substitution g−1x → x and x− y = x, we obtain the constraint:401

K(gx, ρin(g)T [F ]) = ρout(g)K (x, T [F ]) ρin(g)
−1 ≡ ρHom(g) (K (x, T [F ])) (13)

402

B.2 Proof of Lemma 2403

Proof. KT is O(p, q)-equivariant by definition, and the kernel head H is O(p, q)-equivariant by404

Proposition 3.2 in Zhdanov et al. (2024). The O(p, q)-equivariance of their composition follows from405

K (gv, ρcinCl (g) T [fin]) =H (KT (gv, ρcinCl (g) T [fin])) (14)
KT equiv.

= H
(
ρcout×cin
Cl (g)KT (v, T [fin])

)
(15)

=ρHom(g)H(KT (v, T [fin])) (16)
=ρHom(g)K(v, T [fin]) (17)

406
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