

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

OVID: OPEN- VOCABULARY INTRUSION DETECTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Various vision intrusion detection models have made great success in many scenarios, *e.g.*, autonomous driving, intelligent monitoring and security. However, their reliance on pre-defined classes limits their applicability in open-world intrusion detection scenarios. To remedy these, we introduce the *Open-Vocabulary Intrusion Detection* (OVID) project for the first time. Specifically, we first develop a novel dataset named Cityintrusion-OpenV for OVID, with more diverse intrusion categories and corresponding text prompts. Then, we design a multi-modal, multi-task, and end-to-end open-vocabulary intrusion detection framework named OVIDNet. It achieves open-world intrusion detection via aligning visual features with language embeddings. Further, two simple yet effective strategies are proposed to improve the generalization and performance of this specific task: (1) A **Multi-Distributed Noise Mixing** strategy is introduced to enhance location information of unknown and unseen categories. (2) A **Dynamic Memory-Gated** module is designed to capture the contextual information under complex scenarios. Finally, comprehensive experiments and comparisons are conducted on multiple dominant datasets, *e.g.*, COCO, Cityscape, Foggy-Cityscape, and Cityintrusion-OpenV. Besides, we also evaluate the universal applicability of our model in real scenarios. The results show that our method can outperform other classic and promising methods, and reach strong performance even under task-specific transfer and zero-shot settings, demonstrating its high practicality. All the source codes and datasets will be released.

1 INTRODUCTION

Vision-based intrusion detection tasks have numerous applications in life, *i.e.*, security, intelligent monitoring, and autonomous driving (Ye et al., 2024; Sun et al., 2020). Intrusion detection aims to determine whether potential objects go into a specific restricted Area-of-Interest (AoI) (Sun et al., 2020; Shi et al., 2022). Based on whether the camera is moving or not, intrusion detection tasks can be divided into static and dynamic intrusion detection. Static intrusion detection is relatively easy due to the fixed AoI and achieves great progress by some promising strategies, *e.g.*, Histogram of Oriented Gradients (HOG) (Zhang et al., 2015), Conditional Random Field (CRF) (Matern et al., 2013), Adaptive Background Subtraction (ABS) (Stauffer & Grimson, 2000). However, static intrusion detection can not meet the requirements of *real-time* and *accuracy* under dynamic scenes. Fortunately, with the continuous development of computer vision, some promising detection and segmentation frameworks are proposed (Wang et al., 2023; Chen et al., 2018), which provide new schemes and paradigms for solving the problem of dynamic-view intrusion detection, *i.e.*, based on *overlapping pixel points* between objects and AoI (Sun et al., 2020; Shi et al., 2022). Nevertheless, these proposed models can only detect a single intrusion category, *i.e.*, **Pedestrians**. Considering the lack of sufficient practicality, MF-ID (Han et al., 2024b) and MMID-bench (Han et al., 2024c) propose the first concept and task of multi-category and multi-domains intrusion detection, which successfully extends the intrusion categories and domains, *i.e.*, **1→4**. Meanwhile, Ada-iD (Han et al., 2024a) proposes a new active domain adaptation intrusion detection method to further improve the performance of intrusion detection in adverse environments. Although these promising works extend the intrusion categories and scenarios by effective strategies, *e.g.*, Unsupervised Domain Adaptation, Active Domain Adaptation, their reliance on pre-defined object classes limits their applicability in **Open-World** intrusion detection scenarios, as shown in Figure 1. A pre-defined intrusion detection framework can only detect specific or labeled categories in training sets and can not detect categories unseen and undefined, which severely limits the practicality of intrusion detection.

For some unseen intrusion categories, *e.g.*, Car or Truck, the previous models can not give correct intrusion detection results. To address this problem, we propose the **Open Vocabulary Intrusion Detection**, namely **OVID**, to detect unseen and undefined intrusion categories effectively.

To accomplish the above OVID task, the greatest difficulty is that there is still a lack of relevant datasets. Currently, some promising datasets, *e.g.*, ImageNet (Deng et al., 2009), COCO (Lin et al., 2014) and specific autonomous driving datasets, *e.g.*, Cityscapes (Cordts et al., 2016b), BDD100K (Yu et al., 2020) are proposed. These datasets are not suitable for our intrusion detection task due to the lack of intrusion labels. Fortunately, in recent works, some encouraging intrusion detection datasets have been proposed, *e.g.*, Cityintrusion (Sun et al., 2020), Cityintrusion-Multicategory (Han et al., 2024b), and Multi-Domain Multi-Category Datasets (Han et al., 2024c). These datasets provide multi-category, multi-domain and intrusion labels ('N'/'Y'), *i.e.*, 'N' and 'Y' denotes No-intrusion and Intrusion. Although these datasets contain multiple categories and domains, they can not meet the requirements of the OVID task. On one hand, these datasets still lack lots of common intrusion categories, *e.g.*, Car, Bus, Truck. On the other hand, these datasets solely contain image labels without matching text labels, which impairs their practicality in open-world intrusion detection where the model is required to generalize to new, unseen objects. To this end, we propose an extensive and comprehensive intrusion detection dataset, Cityintrusion-OpenV, for the OVID task.

The second difficulty is that there is still a lack of an effective and efficient open-vocabulary intrusion detection framework. Although some promising multi-task intrusion detection frameworks (Sun et al., 2020; Han et al., 2024b) and open-vocabulary detectors are proposed (Kim et al., 2023; Yao et al., 2023), these detectors still can not meet the requirements of the OVID task. The main reason is that the former is constrained by limited detection categories, and the latter can only perform a detection task. Inspired by promising works (Han et al., 2024b), we propose an *effective, multi-modal, multi-task, and end-to-end* open vocabulary intrusion detection framework, OVIDNet, to accomplish the task. The input of OVIDNet contains two different modalities, images and text. Subsequently, these inputs are sent to encoders to extract features, then decoded and predicted using the decoder. In the decoder, two simple yet effective strategies are designed to boost the performance of OVIDNet: 1) A Multi-Distributed Noise Mixing strategy is introduced to enhance the location information of unknown and unseen categories. 2) A Dynamic Memory-Gated module is designed to capture the contextual information in complex scenarios. Finally, the intrusion detection results are determined jointly by the upper and lower branches.

In summary, our contributions are as follows: **(1) Novel task and dataset.** To the best of our knowledge, the task of dynamic-view **Open Vocabulary Intrusion Detection** is proposed for the first time. This is the first multi-modal try in the vision-based intrusion task. A new benchmark, including a dataset called Cityintrusion-OpenV, and some strong baselines, is given for this task. **(2) Effective design and strategy.** An effective, multi-modal, multi-task, and end-to-end framework, OVIDNet, is designed as a strong baseline for this new benchmark. Besides, two effective strategies are proposed to improve the generalization and performance of the framework, including the Multi-Distributed Noise Mixing Strategy and the Dynamic Memory-Gated module. **(3) Adequate experiments and strong results.** Comprehensive experiments and comparisons are conducted to verify the effectiveness of the proposed framework and methods. The results show that our framework not only reaches the current SOTA level but also maintains strong high practicality with task-specific transfer and zero-shot prediction abilities.

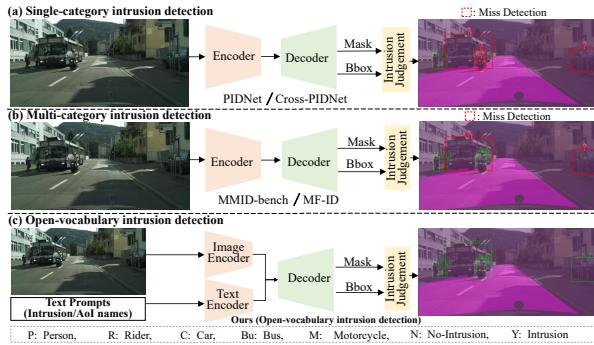


Figure 1: **Workflow comparisons** of different intrusion detection methods. Here, (a), (b), and (c) denote the Single-category, Multi-category, and proposed Open-vocabulary intrusion detection paradigms, respectively. ‘?’ denotes the missed detection (False Negative). We can find that previous works can only detect the pre-defined intrusion category; our framework can detect more categories correctly, which demonstrates the validity of our paradigm.

108 2 RELATED WORKS

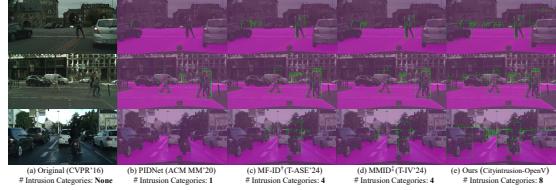
110 **Traditional Vision-based Intrusion Detection.** Intrusion detection can be divided into static and
 111 dynamic intrusion detection. Static intrusion detection has been explored in detail due to its sim-
 112 plicity, *e.g.*, Adaptive Background Subtraction (Stauffer & Grimson, 2000), Histogram of Oriented
 113 Gradients (Zhang et al., 2015). However, static intrusion detection does not meet the requirements
 114 of dynamic intrusion detection. The primary reason is that images captured by cameras can change
 115 at any time, which imposes higher real-time and accuracy requirements. Fortunately, with the rapid
 116 development of computer vision, some promising works are proposed to solve the dynamic-view
 117 intrusion detection, *e.g.*, PIDNet (Sun et al., 2020), Cross-PIDNet (Shi et al., 2022). However, the
 118 practice of these works is limited due to the **single category** of intrusion. To compensate for the lim-
 119 itations, some encouraging works are designed to border the intrusion category, *e.g.*, MF-ID (Han
 120 et al., 2024b), MMID-bench (Han et al., 2024c). Although intrusion detection has expanded signif-
 121 icantly, the intrusion category remains fixed and single, which seriously hinders the practicality in
 122 the real world. To address these, we propose an open vocabulary intrusion detection task (OVID)
 123 for the first time, to solve the problem with limited intrusion categories and improve its practicality.
 124

125 **Open-Vocabulary Detection.** Open-vocabulary detection (**OVD**) aims to detect unseen classes in
 126 the training stage in a zero-shot manner. Some promising open vocabulary detectors are designed to
 127 solve the OVD task, *e.g.*, Grounding DINO (Liu et al., 2023), YOLO-world (Cheng et al., 2024), and
 128 achieve excellent performance on real-world detection tasks. However, these OVD works are not
 129 suitable for our intrusion detection task. A major reason is that our OVID task is a multi-task with
 130 detection and segmentation simultaneously, not only a single detection task. OpenSeed (Zhang
 131 et al., 2023) proposes a new framework for joint detection and segmentation, but this framework
 132 cannot meet the requirements of our OVID task due to a lack of intrusion judgment capability. For
 133 this reason, we propose a new framework, OVIDNet, to meet the needs of our OVID task.
 134

135 3 SYSTEMATIC DATASETS

136 To compensate for the lack of richness in
 137 the categories of intrusion detection datasets,
 138 we develop an Open-Vocabulary Intrusion
 139 Detection dataset, namely **Cityintrusion-**
 140 **OpenV**, for the first time. The detailed au-
 141 tomatic generation method of the proposed
 142 datasets is presented in **Appendix A.1**. Our
 143 new dataset is established on the promising
 144 Cityscape (Cordts et al., 2016b). Inspired by
 145 promising work MMID-bench (Han et al.,
 146 2024c), our new dataset also contains multi-
 147 categories and multi-domains. Differently,
 148 proposed datasets have more intrusion cat-
 149 egories, not 4 categories in Multi-Domain Multi-Category datasets, but all potential/possible **8** intru-
 150 sion categories in the cityscape dataset. Following some promising works (Han et al., 2024c), the
 151 detail Intrusion('Y')/No-intrusion('N') labels are provided by Automated Label Processes. And the
 152 judgment threshold is also set to **20**. To demonstrate the superiority of our dataset, we first present
 153 some visualization comparison, as shown in Figure 2. We can observe that our datasets provide the
 154 correct intrusion and no-intrusion labels and have richer categories of intrusions.
 155

156 Then, we compare the quantitative results be-
 157 tween the proposed Cityintrusion-OpenV and
 158 other promising intrusion detection datasets,
 159 as shown in Table 1. We can find that our
 160 dataset contains more intrusion categories and
 161 has more sufficient 'Y'/'N' cases per image
 (**18.03** cases per image in the whole dataset),
 which significantly improves the intrusion de-
 162 tection dataset richness (about $2\times$ up compared to others). More detailed information, data statistics,
 163 and more visualization comparisons are presented in **Appendix A**.



164 Figure 2: The visualization comparison between
 165 our datasets and other promising intrusion detection
 166 datasets. \dagger and \ddagger denote fine-grained and multiple do-
 167 mains, respectively.

168 Table 1: The comparison between previous intru-
 169 sion detection datasets and our datasets. \dagger denotes
 170 multiple domains.

Intrusion Detection Dataset Names	Categories	'Y'/'N' Cases	Cases per image
Cityintrusion (Sun et al., 2020; Shi et al., 2022)	1	4599/15084	7.3
Cityintrusion-Multicategory (Han et al., 2024b)	4	5431/22683	9.59
Multi-Domain Multi-Category (Han et al., 2024c;a)	4	5431/22683 \dagger	9.59
Ours (Cityintrusion-OpenV)	8	24750/37899	18.03

162

4 THE PROPOSED FRAMEWORK AND METHODS

163

4.1 PRELIMINARY

166 In the proposed OVID task, given a specific object detection dataset \mathbf{D}^d , $\mathbf{D}^d = \{(\mathbf{I}_i^d, \mathbf{M}_i^d)\}_{i=1}^{|\mathbf{D}^d|}$
 167 and segmentation dataset \mathbf{D}^s , $\mathbf{D}^s = \{(\mathbf{I}_i^s, \mathbf{M}_i^s)\}_{i=1}^{|\mathbf{D}^s|}$, where \mathbf{I}_i^d and \mathbf{I}_i^s denotes the detection and
 168 segmentation samples, \mathbf{M}_i^d , \mathbf{M}_i^s denotes the corresponding labels. For \mathbf{M}_i^d , we usually use four
 169 bounding box labels (b) and a category label (c^d) to express it, $b \in \mathbb{R}^4$, $c^d \in \mathcal{C}^d$. \mathcal{C}^d denotes
 170 the category space of detection dataset (\mathbf{D}^d). For \mathbf{M}_i^s , we usually use fine labeling (assigning a
 171 category c^s to each pixel in the sample \mathbf{I}_i^s), $c^s \in \mathcal{C}^s$, \mathcal{C}^s denotes the category space of segmentation
 172 dataset (\mathbf{D}^s). Besides, we divide the detection and segmentation dataset into $(\mathbf{D}_T^d, \mathbf{D}_V^d)$, $(\mathbf{D}_T^s, \mathbf{D}_V^s)$.
 173 \mathbf{D}_T^d , \mathbf{D}_V^d denotes the training and validation of detection dataset. \mathbf{D}_T^s , \mathbf{D}_V^s denotes the training and
 174 validation of segmentation dataset. Following the Open-Vocabulary detection and segmentation
 175 paradigms, we can express the training and validation category as \mathbf{C}_T^d and \mathbf{C}_V^d , where \mathbf{C}_T^d is base
 176 categories and $\mathbf{C}_T^d \in \mathbf{C}_V^d$. The category space of the new categories in \mathbf{C}_V^d are named as \mathcal{C}^N , and
 177 $\mathcal{C}^N = \mathbf{C}_V^d \setminus \mathbf{C}_T^d \neq \emptyset$. The same is true for the segmentation dataset. For \mathbf{I}_i , we use the text
 178 Encoder (\mathbf{E}^T) to convert text information into text embeddings, *i.e.*, $\mathbf{F}^T = \mathbf{E}^T(\mathbf{Text})$ and use the
 179 image Encoder (\mathbf{E}^I) to extra the image feature, *i.e.*, $\mathbf{F}^I = \mathbf{E}^I(\mathbf{Img})$. All features are sent to a Decoder
 180 (\mathbf{D}) for decoding. Finally, the segmentation AoI and bonding box are extracted to calculate the
 181 intrusion results and express it as
 182

$$\mathbf{I}_s = \mathbf{J} \left\{ \mathbf{D} (\mathbf{F}^T, \mathbf{F}^I) \xrightarrow{e} (\mathbf{Box}^p, \mathbf{Aoi}^p) \right\}, \quad (1)$$

185 where \mathbf{I}_s denotes the final intrusion results. \mathbf{J} denotes the intrusion judgment module. \xrightarrow{e} denotes the
 186 extract two key information from the Decoder (\mathbf{D}). \mathbf{Box}^p , \mathbf{Aoi}^p denote the prediction of the bounding
 187 box and AoI, respectively.
 188

189

4.2 OVERALL FRAMEWORK

191 In this section, we introduce the proposed OVIDNet, as shown in Figure 3. We improve the original
 192 OpenSeeD (Zhang et al., 2023) to make it more suitable for our OVID task. Firstly, we use two
 193 different encoders, text and image encoders, to extract features for text prompts and images. The
 194 features are sent to the decoder. In the decoder, we design two effect methods to improve the
 195 generalization of the proposed framework: Multi-Distributed Noise Mixing and Dynamic Memory-
 196 Gated Module, respectively. Finally, we extract detection results and the segmentation results in the
 197 decoder to calculate the overlapping pixel values and determine whether it constitutes an intrusion.
 198 Once the overlapping pixel value exceeds a certain threshold (t), a warning ('Y/N, Class') will be
 199 added to the detected intruder surround box. Note that 'Y', 'N', and 'Class' denote the Intrusion,
 200 Non-intrusion, and Class name. (Here, class abbreviations are used instead of complete labels to
 201 easily show our results. The detailed correspondence between the two is shown in **Appendix A.4**.)
 202

203

4.3 MULTI-DISTRIBUTED NOISE MIXING STRATEGY

204 In the original OpenSeeD model, noise generation methods usually use a uniform noise distribution
 205 and a fixed percentage of noise dynamics, as shown in Equation 2.
 206

$$\mathbf{B}_f = \mathbf{C} \{ \mathbf{B}_e + \mathbf{N}_r \odot \Delta \odot \Upsilon, \mathbf{0}, \mathbf{1} \}, \quad (2)$$

208 where \mathbf{B}_e denotes the set of the bounding box, \mathbf{B}_e can be expressed by center point (\mathbf{x}, \mathbf{y}) and width,
 209 height (\mathbf{w}, \mathbf{h}). Δ denotes the range of the disturbance and $\Delta = \left\{ \frac{\mathbf{w}}{2}, \frac{\mathbf{h}}{2}, \mathbf{w}, \mathbf{h} \right\}$. Υ is a constant noise
 210 scaling factor. \mathbf{N}_r denotes the random distribution and $\mathbf{N}_r \sim \mathcal{U}(-1, 1)$. \odot denotes the element-
 211 wise product. \mathbf{C} denotes that all value is clamped between $\mathbf{0}$ and $\mathbf{1}$. However, in the real world,
 212 this method can not adapt to dynamic environments and scenarios, *e.g.*, different sizes and changing
 213 objects, and challenging intrusion scenarios. Therefore, to address this issue, we propose a new
 214 **Multi-Distributed Noise Mixing Strategy**, as shown in Equation 3. The idea of the proposed Multi-
 215 Distributed Noise Mixing Strategy is very simple yet effective. When confronted with complex
 dynamic environments, models need to cope with the variations of different targets and scenarios.

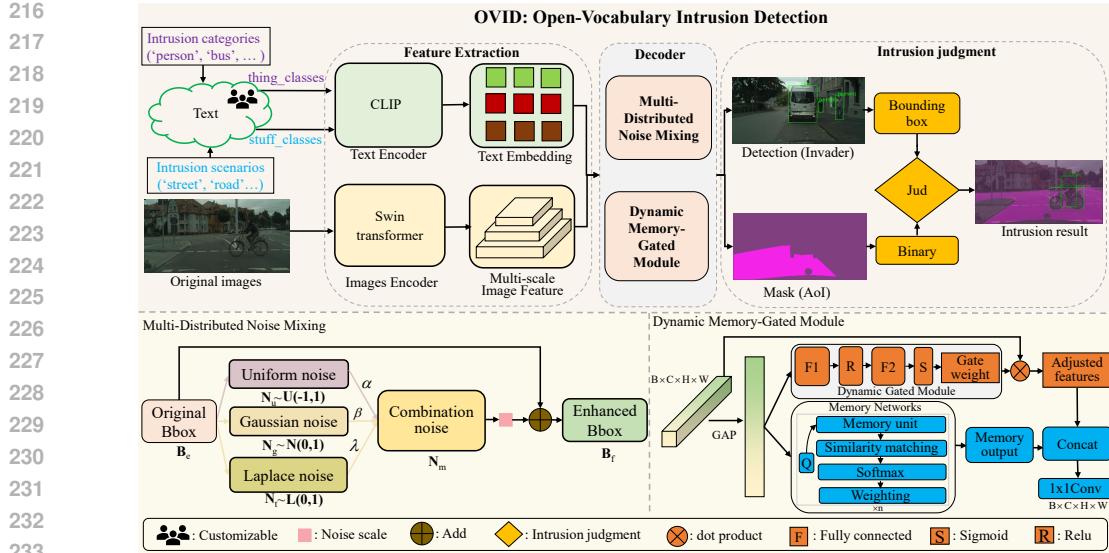


Figure 3: The overall framework and pipeline of our proposed OVIDNet. The input of OVIDNet consists of two different modalities: Text and Images. The text includes some customizable and common intrusion categories and scenarios. The image denotes the corresponding original images. Then, the text and images are sent to different encoders to extract features. These features will be sent to the decoder for decoding and prediction. In the encoder, we design a multi-distributed noise mixing strategy and a dynamic memory-gated module to enhance generalization in open scenarios. Finally, we extract the predicted bounding box and predicted AoI mask to calculate the overlapping pixels and give the final intrusion results. Once the overlapping pixels are greater than the threshold (t), it will be judged as an intrusion. Otherwise, it will be judged as no-intrusion.

Specifically, for tiny objects, fine-grained perturbations are used to preserve their detailed features. Meanwhile, large-scale perturbations to strengthen the global features for large objects.

$$\mathbf{B}_f = \mathbf{C} \{ \mathbf{B}_e + (\alpha \cdot \mathbf{N}_u + \beta \cdot \mathbf{N}_g + \gamma \cdot \mathbf{N}_t) \odot \Delta \odot \Theta, \mathbf{0}, \mathbf{1} \}, \quad (3)$$

where $\mathbf{N}_u \sim \mathcal{U}(-1, 1)$, $\mathbf{N}_g \sim \mathcal{N}(0, 1)$ and $\mathbf{N}_t \sim \mathcal{L}(0, 1)$. \mathcal{L} denotes the Laplace distribution. α, β and γ is the coefficient of \mathcal{U} , \mathcal{N} , and \mathcal{L} distributions, respectively. Note that $\alpha + \beta + \gamma = 1$. Θ denotes the proposed dynamic varying noise ratio based on the detection area of the bounding box, and $\Theta = \tau \cdot (1 + \log(1 + \mathbf{A}))$. \mathbf{A} denotes the area of the bounding box and $\mathbf{a} = \mathbf{w} \cdot \mathbf{h}$. Besides, \mathbf{C} and Δ are defined as the same as the Equation 2. Our detailed algorithm is shown in Algorithm 1.

4.4 DYNAMIC MEMORY-GATED MODULE

To address the challenges of insufficient long-term dependency modeling and poor dynamic scene adaptation in our OVID task, we propose a Dynamic Memory-Gated Module. Given a input feature $\mathbf{X} \in \mathbb{R}^{B \times C \times H \times W}$, we first use global average pooling (GAP) to extract a global context query vector ($\mathbf{Q} \in \mathbb{R}^{B \times C}$), express it as $\mathbf{Q} = \text{GAP}(\mathbf{X})$, where \mathbf{B} , \mathbf{C} , \mathbf{H} and \mathbf{W} denotes the batch_size, channel, height and width. Then, we introduce a dynamic memory retrieval module and express it as

$$\mathbf{O}_m = \text{softmax} \left(\frac{\mathbf{Q} \mathbf{M}_K^T}{\sqrt{d}} \right) \mathbf{M}_V, \quad (4)$$

where $\mathbf{Q} \in \mathbb{R}^{B \times C}$ denotes query vector, $\mathbf{M}_K \in \mathbb{R}^{B \times C}$ denotes the memory key, and \mathbf{M} is the number of memory units. $\mathbf{M}_V \in \mathbb{R}^{M \times C}$ denotes the memory value, and \mathbf{M}_V is used to store the feature information corresponding to the key. $\mathbf{O}_m \in \mathbb{R}^{B \times C}$ denotes the memory output by retrieving. Finally, retrieved memory output (\mathbf{O}_m) and input features (\mathbf{X}) are fused by concatenation and 1×1 Conv. We can express it as

$$\mathbf{X}_f = \text{Conv1x1}(\text{Concat}(\mathbf{X} \odot \mathbf{W}), \mathbf{O}_m), \quad (5)$$

where \mathbf{X}_f denotes the fusion feature. \mathbf{W} denotes the generate dynamic weights and $\mathbf{W} = \sigma(\mathbf{W}_2 \text{ReLU}(\mathbf{W}_1 Q))$. $\mathbf{W}_1, \mathbf{W}_2$ denotes the weight of fully connected networks. $\mathbf{W}_1 \in \mathbb{R}^{C \times d}$, $\mathbf{W}_2 \in \mathbb{R}^{d \times C}$. σ denotes the sigmoid function.

270 **Algorithm 1** Multi-Distributed Noise Mixing Strategy

271 **Require:** Bounding box parameters \mathbf{B}_e , Noise scale τ ; Uniform noise weight α , Gaussian noise
272 weight β , Laplace noise weight γ

273 **Ensure:** Augmented bounding box parameters \mathbf{B}_f .

274 1: $\triangleright \mathbf{D}$ is a tensor of the same shape as \mathbf{B}_e

275 2: Initialize $\mathbf{D} \leftarrow \mathbf{0}$

276 3: \triangleright Compute the area of each bounding box

277 4: $\mathbf{A} \leftarrow \mathbf{B}_e[:, 2] \cdot \mathbf{B}_e[:, 3]$.

278 5: \triangleright Compute dynamic noise scale for each box

279 6: $\Theta \leftarrow \tau \cdot (1 + \log(1 + \mathbf{A}))$

280 7: \triangleright Define perturbation directions for center and size

281 8: $\Delta[:, 2] \leftarrow \mathbf{B}_e[:, 2] / 2$ # Perturb center

282 9: $\Delta[:, 2] \leftarrow \mathbf{B}_e[:, 2]$ # Perturb width and height

283 10: \triangleright Generate noise from multiple distributions

284 11: $\mathbf{N}_u \sim \mathcal{U}(-1, 1)$, $\mathbf{N}_g \sim \mathcal{N}(0, 1)$ and $\mathbf{N}_l \sim \mathcal{L}(0, 1)$

285 12: \triangleright Compute the weighted combination of noise

286 13: $\mathbf{N}_m \leftarrow \alpha \cdot \mathbf{N}_u + \beta \cdot \mathbf{N}_g + \gamma \cdot \mathbf{N}_l$

287 14: \triangleright Add scaled noise to bounding box parameters

288 15: $\mathbf{B}_f \leftarrow \mathbf{B}_e + (\mathbf{N}_m \odot \Delta \odot \Theta)$

289 16: \triangleright Clamp augmented bounding boxes to the valid range

290 17: $\mathbf{B}_f \leftarrow \text{Clamp}(\mathbf{B}_f, \mathbf{0}, \mathbf{1})$

291 18: **return** \mathbf{B}_f

292

293 **5 EXPERIMENTS AND ANALYSES**

294

295 **5.1 EXPERIMENTAL SETTINGS**

296

297 **Implementation Details.** We conduct all experiments on a computer with 8 NVIDIA GeForce
298 RTX 2080Ti GPUs. Unless specified, the Max_Iter, Batch_size_total, CHECKPOINT_PERIOD,
299 EVAL_PERIOD of all experiments are set to 15000, 8, 15000, and 15000, respectively. The image
300 encoder and text encoder adopt tiny-swin-transformer (Liu et al., 2021) and Clip (Radford et al.,
301 2021), respectively. More hyperparameter details can be found in **Appendix B**.

302 **Datasets.** Our experiments are conducted in some public datasets, *e.g.*, COCO (Lin et al., 2014),
303 Cityscape (Cordts et al., 2016a), Foggy-Cityscape (Sakaridis et al., 2018) and Cityintrusion-OpenV.
304 In addition, to provide more visualization results, we also test and report visualization demo results
305 on other datasets, *e.g.*, the ShanghaiTech Campus dataset (Luo et al., 2017), and the UA-DETRAC
306 (Wen et al., 2020). Note that in our experiment, we adopt two manners, *i.e.*, zero-shot and task-
307 specific transfer, to evaluate the performance of the model.

308 **Metrics.** In order to report the quantitative results of our experiments more comprehensively, in-
309 spired by some previous promising work (Han et al., 2024c;b), the mIOU(%) and mAP(%) are
310 utilized to evaluate the sub-task performance of segmentation and object detection. For the in-
311 trusion detection performance, we also use three different intrusion detection metrics: AccY(%),
312 AccN(%), and Acc(%) to quantify. Besides, some additional metrics, *e.g.*, panoptic segmentation
313 metrics, PQ(%), SQ(%), RQ(%), and every AP(%), AP@.5(%) of intrusion categories, are reported
314 to evaluate the zero-shot performance of the model.

315 **Baseline/Comparison Models.** We compare with the OpenSeeD (Zhang et al., 2023) model be-
316 cause of its multi-task capability and its promising performance in open-vocabulary tasks. The
317 multi-task feature is consistent with our task. Besides, we also compare the latest and promising in-
318 trusion works, *e.g.*, PIDNet (Sun et al., 2020), Cross-PIDNet (Shi et al., 2022), MMID-bench (Han
319 et al., 2024c), MF-ID (Han et al., 2024b).

320

321 **5.2 MAIN RESULTS**

322

323 **Compared with promising open-vocabulary works.** We first compare the multiple performances
with the promising OpenSeeD model and report three zero-shot detection performances, *i.e.*, PQ(%),

SQ(%), RQ(%), and three task-specific transfer intrusion performances, *i.e.*, AccY(%), AccN(%), Acc(%), as shown in Table 2. We can find that in different tasks, for the panoptic segmentation performance (PQ), compared with OpenSeeD, our methods can improve it by 2.19% and 1.12%, respectively. Besides, for intrusion detection performance (Acc), our model can surpass it by 3.43% and 3.45%, respectively, which verifies the effectiveness of the proposed model and strategies.

Table 2: The Zero-shot and Task-specific transfer comparison results between promising multi-task open-vocabulary and proposed OVIDNet framework in different datasets.

Model	Zero-shot Detection (Panoptic segmentation)				Task-specific Transfer (Intrusion detection)			
	Test data 1	RQ(%)	SQ(%)	PQ(%)	Test data 2	AccY(%)	AccN(%)	Acc(%)
OpenSeeD	Cityscape	18.22	43.68	14.03	Ours (Normal)	18.72	36.19	29.36
	Foggy-Cityscape	18.07	36.71	14.28	Ours (Foggy)	22.04	25.88	24.38
OVIDNet (Ours)	Cityscape	20.36	36.17	16.22	Ours (Normal)	24.43	38.16	32.79
	Foggy-Cityscape	19.05	33.71	15.40	Ours (Foggy)	27.72	27.90	27.83

Compared with promising intrusion detection works. We also compare some intrusion detection works, as shown in Table 3. We can see that, compared with previous intrusion works, our model not only has an open structure but also detects more intrusion categories. More importantly, our model has strong generalization capability and achieves zero-shot detection, which is not only pre-trained/pre-undefined categories. In addition, we can observe that as the task difficulty increases, *i.e.*, common intrusion detection task (PIDNet, Cross-PIDNet, MF-ID)→domain adaptation intrusion detection task (MMID-bench)→Open-vocabulary intrusion detection task (OVID), the performance of each category continuously decreases. The main reason is that, as the difficulty of different intrusion detection tasks increases, the requirements of different intrusion detection frameworks are also raised in the open world, especially their generalization and zero-shot capabilities.

Table 3: The comparison between our work and promising intrusion detection works. Here, ‘close’ and ‘open’ denote the different detection structures, respectively. ‘ZSD’ denotes Zero-shot detection. ✓ and ✗ denote the intrusion category as assessable or not assessable, respectively. † denotes that the backbone is BNet.

Method	Venue	Structure	ZSD	P(%)	R(%)	M(%)	Bc(%)	Tk(%)	Bu(%)	Tn(%)	C(%)
PIDNet (Sun et al., 2020)	ACM MM’20	close	✗ ✗	67.1 63.3†	✗ ✗						
Cross-PIDNet (Shi et al., 2022)	T-IV’21	close	✗ ✗	74.7 72.1†	✗ ✗						
MF-ID (Han et al., 2024b)	T-ASE’24	close	✗	45.8	39.8	34.5	38.2	✗	✗	✗	✗
MMID-bench (Han et al., 2024c)	T-IV’24	close	✗	37.4	34.6	20.7	33.1	✗	✗	✗	✗
OVIDNet (Ours)	-	open	✓	28.6	0.0	27.8	36.5	32.9	45.4	13.6	47.0

Zero-shot and Task-specific transfer evaluation results on proposed strategies. We then test the zero-shot/task-specific transfer performance of the proposed strategies. Specifically, we train our model on the COCO dataset and validate it on the Cityscape datasets to obtain the segmentation and detection performance in a zero-shot manner. Besides, we also test the intrusion detection performance on the proposed Cityinvasion-OpenV datasets by a task-specific transfer manner, as shown in Table 4. **B** denotes the baseline. We can observe that as different strategies are added, multiple performances are improved, not only intrusion detection but also zero-shot performance, *e.g.*, PQ(%) and mIOU(%). Compared with the baseline, the intrusion performance (Acc) can surpass it by 3.43%. In addition, the zero-shot performance can surpass it by 2.19% (PQ) and 1.1% (mIOU), respectively. More detailed results can be found in **Appendix C.1**.

Generalization Verification in cross-domain tasks. We further test the performance of our OVIDNet framework and strategies in cross-adverse weather tasks, *e.g.*, Normal→Foggy, to verify generalization capabilities. Note that all performance results are given by the pre-trained (in Normal weather) and inference (in adverse weather) manners, as shown in Figure 4. We can find that our OVIDNet is effective even in adverse weather and exhibits promising intrusion performance. Under

Table 4: Zero-shot and Task-specific transfer quantitative results of the proposed different strategies.

B	DMG	MDNM	PQ(%)	mIOU(%)	mAP@.5(%)	AccY(%)	AccN(%)	Acc(%)
✓	✗	✗	14.03	28.34	27.58	18.72	36.19	29.36
✓	✓	✗	15.80	28.78	29.16	20.06	37.56	30.72
✓	✗	✓	15.33	29.40	28.56	21.01	38.64	31.75
✓	✓	✓	16.22	29.37	28.98	24.43	38.16	32.79

three different foggy coefficient setting, *i.e.*, $\alpha = 0.005$, $\alpha = 0.01$, $\alpha = 0.02$, our OVIDNet can surpass the baseline model by 2.96%, 3.22%, and 3.45%, respectively. Besides, our strategies can also improve the zero-shot performance under cross-domain tasks, *e.g.*, compared with the baseline of three different foggy coefficient settings, the PQ(%) in the Normal \rightarrow Foggy tasks can surpass them by 1.29%, 1.21%, and 1.12%, respectively. More details results can be found in **Appendix C.2**.

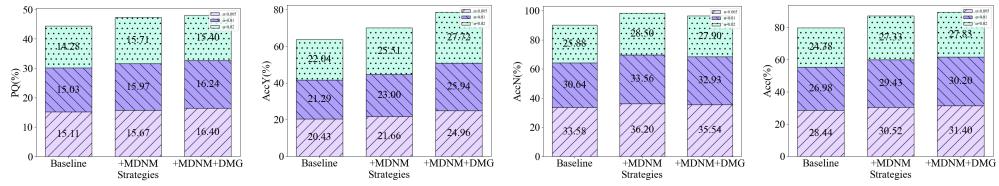


Figure 4: Generalization Verification in cross-domain tasks.

Visualization Comparisons. We also present some visualization comparison results to verify the zero-shot performance and effectiveness of the proposed framework and methods, as shown in Figure 5. We can find that our framework can present promising visualization detection results, not only detecting intrusion behaviors correctly but also giving correct Intrusion (‘Y’)/No-intrusion (‘N’) labels, which proves the effectiveness of our framework and approach. Note that our OVIDNet can improve the zero-shot segmentation performance of AoI; in this case, the AoI is the road. More visualization comparison results are presented in **Appendix C.3**.

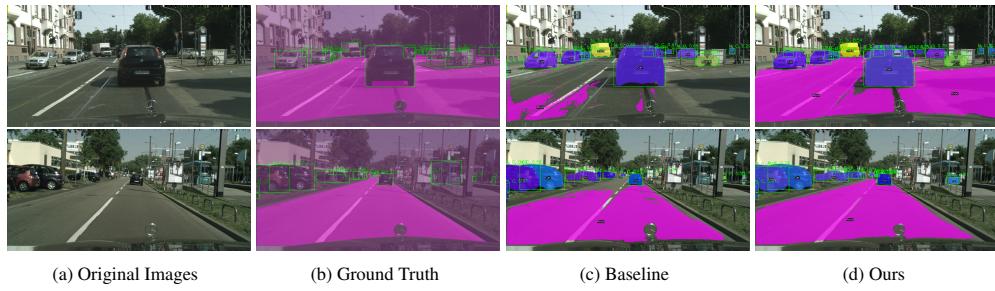


Figure 5: The visualization comparison results.

5.3 ABLATION EXPERIMENTS

Multi-Distributed Noise Mixing Strategy. We analyze the proposed multi-distributed noise mixing strategy and conduct extra ablation experiments to verify its effectiveness. The detailed results are shown in Table 5. We can find that when the $\alpha=0.5$, $\beta=0.1$, $\gamma=0.4$, the intrusion detection performance can reach the best, with a 31.75% intrusion accuracy. The main reason is that, in task-specific transfer, the model focuses more on texture features and spatial perturbations. Besides, the transfer task is performed during normal weather. Thus, the need for weather changes and light perturbations is low. In this paper, we set the α , β , γ to **0.5**, **0.1** and **0.4**, respectively.

Dynamic Memory-Gated Module. We also explore the effect of different memory unit sizes on intrusion detection performance, as shown in Table 5. IOU^r denotes the zero-shot segmentation results of the road. We can see that the best intrusion performance can be reached when **M=40**. The main reason is that the larger memory can help capture richer history and global features, especially in open-world intrusion detection. However, larger memory units also introduce more irrelevant information, making it difficult to focus on key memory features. Conversely, fewer memory units can help the model focus on features relevant to intrusion detection, but if the memory units are too low, it will lead to a loss of diversity and complexity required

Table 5: The ablation experiments of the proposed strategies. **B** denotes the baseline.

Ablation 1: Multi-Distributed Noise Mixing Strategy			Metrics				
B	# $\mathcal{U}(\alpha)$	# $\mathcal{N}(\beta)$	# $\mathcal{L}(\gamma)$	PQ	IOU ^r (%)	mAP(%)	Acc(%)
✓	✓(1)	✗	✗	14.03	74.1	27.6	29.36
✓	✓(0.5)	✓(0.4)	✓(0.1)	14.37	70.1	32.1	30.28
✓	✓(0.5)	✓(0.2)	✓(0.3)	14.78	68.8	25.8	30.48
✓	✓(0.5)	✓(0.3)	✓(0.2)	14.53	78.5	25.9	31.03
✓	✓(0.5)	✓(0.1)	✓(0.4)	15.33	74.6	28.6	31.75

Ablation 2: Dynamic Memory-Gated Module			Metrics			
B	Memory units		PQ	IOU ^r (%)	mAP(%)	Acc(%)
✓	✗		14.03	74.1	27.6	29.36
✓	✓(M=30)		14.84	76.0	27.5	30.31
✓	✓(M=40)		15.80	76.5	29.5	30.72
✓	✓(M=50)		13.03	83.5	27.1	28.42

432 for the intrusion task, affecting the understanding of complex intrusion scenarios. In this paper, we
 433 set the memory units to **40**.
 434

435 436 5.4 MORE INSIGHTFUL AND INTERESTING EXPERIMENTS

437 438 **Experiment 1: Why is the performance result of category ‘Rider’ is ‘0.0’ in the Table 3?**

439 To answer this question, 1) we first
 440 investigate some of the latest open-
 441 vocabulary works (Bianchi et al., 2024;
 442 Ma et al., 2024). Some works denote
 443 that the understanding of fine-grained
 444 properties of objects and their parts is
 445 important. From this view, we conduct
 446 some experiments and provide the visu-
 447 alization comparison, as shown in Fig-
 448 ure 6. We can find that our model recog-
 449 nizes the category ‘Rider’ as the category ‘Person’.
 450 The main reason is that these two cat-
 451 egories have similar features. 2) Besides,
 452 in the training dataset, the number of cat-
 453 egory ‘Person’ is much larger than the cat-
 454 egory ‘Rider,’ which leads to category
 455 imbalance. Therefore, these two factors
 456 will make it difficult to recognize the fine-grained cat-
 457 egory ‘Rider’. In the future, we will explore more effective ways to compensate for these two limita-
 458 tions.
 459

460 Figure 6: Some cases of recognizing ‘Rider (R)’ as ‘Per-
 461 son (P)’. ★ denotes the detailed case locations.

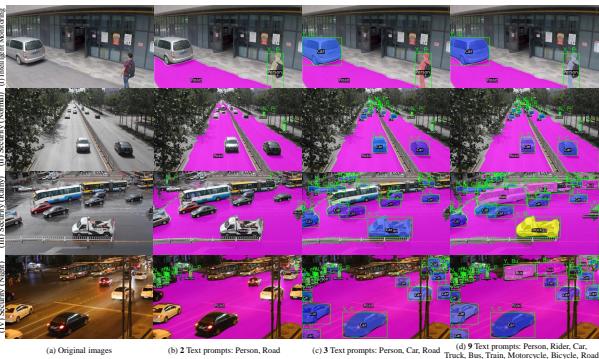
462 We can find that our model recognizes the category ‘Rider’ as the category ‘Person’. The
 463 main reason is that these two categories have similar features. 2) Besides, in the training dataset,
 464 the number of category ‘Person’ is much larger than the category ‘Rider,’ which leads to category
 465 imbalance. Therefore, these two factors will make it difficult to recognize the fine-grained category
 466 ‘Rider’. In the future, we will explore more effective ways to compensate for these two limita-
 467 tions.

468 469 **Experiment 2: Real-scenario applica- 470 tion exploration.**

471 To verify the high generality and universal applica-
 472 bility of our framework, we also pro-
 473 vide some visualization results under different static scenarios, *e.g.*,
 474 intelligent monitoring, and security.
 475 Since static scenarios lack relevant
 476 intrusion detection datasets and la-
 477 bels, the specific quantitative evalua-
 478 tion results cannot be measured and
 479 given. However, inspired by some
 480 super-resolution works (Gandikota &
 481 Chandramouli, 2024; Korkmaz et al.,
 482 2024), we can report some demo vi-
 483 sualization results. Here, we directly
 484 use our framework to infer public
 485 static scene datasets without any re-
 486 training process, *e.g.*, the Shang-
 487 haiTech Campus dataset (Luo et al.,
 488 2017), and the UA-DETRAC (Wen et al., 2020). Note that for different scenarios and intrusion cat-
 489 egories, the number of text prompts can be customized. In our paper, we report multiple visualization
 490 results with different customizable text prompts. Besides, we use different domains, *e.g.*, Normal,
 491 Rainy, and Night, to evaluate the model’s generalization performance, as shown in Figure 7. We can
 492 observe that our framework can detect and judge intrusion behavior, demonstrating the practicality
 493 and effectiveness of the proposed framework.

494 6 CONCLUSION

495 In this paper, we propose a new and vital intrusion detection task, Open-Vocabulary Intrusion De-
 496 tction (OVID). This is the first multi-modal attempt in the vision-based intrusion detection task. A
 497 new benchmark, including a relative dataset, an efficient multi-modal framework, and some strong
 498 baselines, is given for the specific task. Besides, two effective strategies are proposed to improve
 499 the generalization and enhance the performance of intrusion detection task in open scenarios, *i.e.*,
 500 the Multi-Distributed Noise Mixing and the Dynamic Memory-Gated module. Finally, rich exper-
 501 iments and comparisons are done to demonstrate the effectiveness of the proposed framework and
 502 strategies. In the future, we will further explore more useful methods to improve performance.



503 Figure 7: The visualization demo results in real scenar-
 504 ios. We directly utilize our framework to infer public static
 505 scenario datasets without any retraining process. We give
 506 three different text prompts customizable results, *i.e.*, 2 text
 507 prompts, 3 text prompts, and 9 text prompts, respectively.

486 REFERENCES
487

488 Lorenzo Bianchi, Fabio Carrara, Nicola Messina, Claudio Gennaro, and Fabrizio Falchi. The devil
489 is in the fine-grained details: Evaluating open-vocabulary object detectors for fine-grained under-
490 standing. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
491 nition*, pp. 22520–22529, 2024.

492 Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-
493 decoder with atrous separable convolution for semantic image segmentation. In *Proceedings of
494 the European conference on computer vision (ECCV)*, pp. 801–818, 2018.

495 Tianheng Cheng, Lin Song, Yixiao Ge, Wenyu Liu, Xinggang Wang, and Ying Shan. Yolo-world:
496 Real-time open-vocabulary object detection. In *Proceedings of the IEEE/CVF Conference on
497 Computer Vision and Pattern Recognition*, pp. 16901–16911, 2024.

498 Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
499 Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban
500 scene understanding. In *Proceedings of the IEEE conference on computer vision and pattern
501 recognition*, pp. 3213–3223, 2016a.

502 Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
503 Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban
504 scene understanding. In *Proceedings of the IEEE/CVF International Conference on Computer
505 Vision*, pp. 3213–3223, 2016b.

506 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
507 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
508 pp. 248–255. Ieee, 2009.

509 Kanchana Vaishnavi Gandikota and Paramanand Chandramouli. Text-guided explorable image
510 super-resolution. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
511 Recognition*, pp. 25900–25911, 2024.

512 Fujun Han, Peng Ye, Shukai Duan, and Lidan Wang. Ada-id: Active domain adaptation for intrusion
513 detection. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pp. 7404–
514 7413, 2024a.

515 Fujun Han, Peng Ye, Ke Li, Shukai Duan, and Lidan Wang. Mf-id: A benchmark and approach for
516 multi-category fine-grained intrusion detection. *IEEE Transactions on Automation Science and
517 Engineering*, 2024b.

518 Fujun Han, Peng Ye, Chunyan She, Shukai Duan, Lidan Wang, and Derong Liu. Mmid-bench: A
519 comprehensive benchmark for multi-domain multi-category intrusion detection. *IEEE Transac-
520 tions on Intelligent Vehicles*, 2024c.

521 Dahun Kim, Anelia Angelova, and Weicheng Kuo. Region-aware pretraining for open-vocabulary
522 object detection with vision transformers. In *Proceedings of the IEEE/CVF Conference on Com-
523 puter Vision and Pattern Recognition*, pp. 11144–11154, 2023.

524 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
525 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceed-
526 ings of the IEEE/CVF International Conference on Computer Vision*, pp. 4015–4026, 2023.

527 Cansu Korkmaz, A Murat Tekalp, and Zafer Dogan. Training generative image super-resolution
528 models by wavelet-domain losses enables better control of artifacts. In *Proceedings of the
529 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 5926–5936, 2024.

530 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
531 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer
532 Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014,
533 Proceedings, Part V 13*, pp. 740–755. Springer, 2014.

540 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
 541 Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for
 542 open-set object detection. *arXiv preprint arXiv:2303.05499*, 2023.

543

544 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 545 Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the*
 546 *IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021.

547

548 Weixin Luo, Wen Liu, and Shenghua Gao. A revisit of sparse coding based anomaly detection in
 549 stacked rnn framework. In *Proceedings of the IEEE International Conference on Computer Vision*
 550 (*ICCV*), Oct 2017.

551

552 Yuqi Ma, Mengyin Liu, Chao Zhu, and Xu-Cheng Yin. Ha-fgovd: Highlighting fine-grained at-
 553 tributes via explicit linear composition for open-vocabulary object detection. *arXiv preprint*
 554 *arXiv:2409.16136*, 2024.

555

556 Dierck Matern, Alexandru Paul Condurache, and Alfred Mertins. Automated intrusion detection for
 557 video surveillance using conditional random fields. In *MVA*, pp. 298–301, 2013.

558

559 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 560 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 561 models from natural language supervision. In *International conference on machine learning*, pp.
 562 8748–8763. PMLR, 2021.

563

564 Christos Sakaridis, Dengxin Dai, Simon Hecker, and Luc Van Gool. Model adaptation with synthetic
 565 and real data for semantic dense foggy scene understanding. In *Proceedings of the european*
 566 *conference on computer vision (ECCV)*, pp. 687–704, 2018.

567

568 Zhenyu Shi, Shibo He, Jingchen Sun, Tao Chen, Jiming Chen, and Hairong Dong. An efficient
 569 multi-task network for pedestrian intrusion detection. *IEEE Transactions on Intelligent Vehicles*,
 570 8(1):649–660, 2022.

571

572 Chris Stauffer and W. Eric L. Grimson. Learning patterns of activity using real-time tracking. *IEEE*
 573 *Transactions on pattern analysis and machine intelligence*, 22(8):747–757, 2000.

574

575 Jingchen Sun, Jiming Chen, Tao Chen, Jiayuan Fan, and Shibo He. Pidnet: An efficient network for
 576 dynamic pedestrian intrusion detection. In *Proceedings of the 28th ACM International Conference*
 577 *on Multimedia*, pp. 718–726, 2020.

578

579 Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Yolov7: Trainable bag-of-
 580 freebies sets new state-of-the-art for real-time object detectors. In *Proceedings of the IEEE/CVF*
 581 *conference on computer vision and pattern recognition*, pp. 7464–7475, 2023.

582

583 Longyin Wen, Dawei Du, Zhaowei Cai, Zhen Lei, Ming-Ching Chang, Honggang Qi, Jongwoo Lim,
 584 Ming-Hsuan Yang, and Siwei Lyu. Ua-detrac: A new benchmark and protocol for multi-object
 585 detection and tracking. *Computer Vision and Image Understanding*, 193:102907, 2020.

586

587 Yunyang Xiong, Bala Varadarajan, Lemeng Wu, Xiaoyu Xiang, Fanyi Xiao, Chenchen Zhu, Xiao-
 588 liang Dai, Dilin Wang, Fei Sun, Forrest Iandola, et al. Efficientsam: Leveraged masked image
 589 pretraining for efficient segment anything. In *Proceedings of the IEEE/CVF Conference on Com-
 590 puter Vision and Pattern Recognition*, pp. 16111–16121, 2024.

591

592 Lewei Yao, Jianhua Han, Xiaodan Liang, Dan Xu, Wei Zhang, Zhenguo Li, and Hang Xu. Det-
 593 clipv2: Scalable open-vocabulary object detection pre-training via word-region alignment. In
 594 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 595 23497–23506, 2023.

596

597 Tao Ye, Xiao Cong, Yuliang Li, Zhikang Zheng, Xiangpeng Deng, Xiangming Yan, Xiaosong Li,
 598 and Xi Zhang. Few-shot railway intrusion detection without forgetting via double rpn and detec-
 599 tor. *IEEE Transactions on Intelligent Vehicles*, pp. 1–16, 2024. doi: 10.1109/TIV.2024.3372776.

594 Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu, Vashisht Madha-
595 van, and Trevor Darrell. Bdd100k: A diverse driving dataset for heterogeneous multitask learn-
596 ing. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
597 2636–2645, 2020.

598 Hao Zhang, Feng Li, Xueyan Zou, Shilong Liu, Chunyuan Li, Jianwei Yang, and Lei Zhang. A sim-
599 ple framework for open-vocabulary segmentation and detection. In *Proceedings of the IEEE/CVF*
600 *International Conference on Computer Vision*, pp. 1020–1031, 2023.

602 Yong-Liang Zhang, Zhi-Qin Zhang, Gang Xiao, Rui-Dong Wang, and Xia He. Perimeter intrusion
603 detection based on intelligent video analysis. In *2015 15th International Conference on Control,*
604 *Automation and Systems (ICCAS)*, pp. 1199–1204. IEEE, 2015.

605 Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing
606 network. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
607 2881–2890, 2017.

609 Xu Zhao, Wenchao Ding, Yongqi An, Yinglong Du, Tao Yu, Min Li, Ming Tang, and Jinqiao Wang.
610 Fast segment anything. *arXiv preprint arXiv:2306.12156*, 2023.

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648 APPENDIX OVERVIEW
649650 Table of contents:
651

- 652 • § A: Cityintrusion-OpenV Dataset
653 § A.1: Method and Statistics for Proposed Dataset
654 § A.2: More Visualization Results
655 § A.3: More Intrusion Dataset Comparisons
656 § A.4: The Correspondence Between Full Name, Text Prompt, and Abbreviation
657 § A.5: Framework Design Motivation
658 • § B: More Experiment Settings
659 • § C: More Results for OVID Task
660 § C.1: Quantitative Results of Different Categories
661 § C.2: More Results of Cross-domain Task
662 § C.3: More Visualization Comparison Results
663 • § D: Limitation
664

665 A CITYINTRUSION-OPENV DATASET
666

667 In this subsection, we present additional information and details for the proposed Cityintrusion-
668 OpenV dataset, including data statistics, visualization results, intrusion Dataset Comparisons, and
669 the correspondence between full name, text prompt, abbreviation, and framework design motivation.
670

671 A.1 METHOD AND STATISTICS FOR PROPOSED DATASET
672

673 **Automatic Generation Method.** Inspired by promising intrusion detection works (Sun et al., 2020;
674 Shi et al., 2022; Han et al., 2024b), our Cityintrusion-OpenV dataset is built based on the Cityscape
675 dataset (Cordts et al., 2016a). The main reason is that the Cityscape datasets have segmentation and
676 detection labels for the same original image, which provides a prerequisite for our multiple intrusion
677 detection tasks. Additionally, following the relevant works (Han et al., 2024c), we also design an
678 automatic labeling program to generate Intrusion ('Y') and No-intrusion ('N') labels. Note that the
679 final intrusion detection overlapping pixel points are also set to **20** (Sun et al., 2020). The specific
680 processes are shown as follows.
681

- 682 · **Step 1:** We first clean the original Cityscape (Cordts et al., 2016b)/Foggy-Cityscape (Sakaridis
683 et al., 2018). After cleaning, we conduct frame alignment for these datasets. Note that a small
684 number of objects that we don't care about or are incorrectly labeled will be removed in this process.
685 · **Step 2:** Based on the results in step 1, we can read the bounding box coordinates of the interested
686 intrusion objects from the Cityscape/Foggy-Cityscape datasets. Additionally, we also read the area-
687 of-interest (AoI) in the Cityscapes segmentation dataset (Cordts et al., 2016b).
688 · **Step 3:** For the obtained area-of-interest (AoI) in step 2, we binarize them with **0** and **1**.
689 · **Step 4:** After step 3, the bounding box coordinates from step 2 are projected into the binarized
690 area-of-interest (AoI).
691 · **Step 5:** We calculate the overlapping pixel values between AoI and bounding box in step 4.
692 · **Step 6:** To get the final intrusion/no-intrusion labels: 'N/Y, Class', we compare overlapping pixel
693 values in step 5 with a setting threshold, where 'N' denotes Non-Intrusion, 'Y' denotes Intrusion,
694 and 'Class' denotes names of intrusion objects. Note that, following previous work Sun et al. (2020),
695 the threshold is set to 20.
696 · **Step 7:** To obtain and present our final intrusion detection dataset better, we blended the segmented
697 images containing the intrusion labels in step 6 with the original images in step 1.
698

702 · **Step 8:** Finally, to ensure the quality and accuracy of the proposed datasets, a team of three students
 703 are organized to manually inspect and verify the annotations.
 704

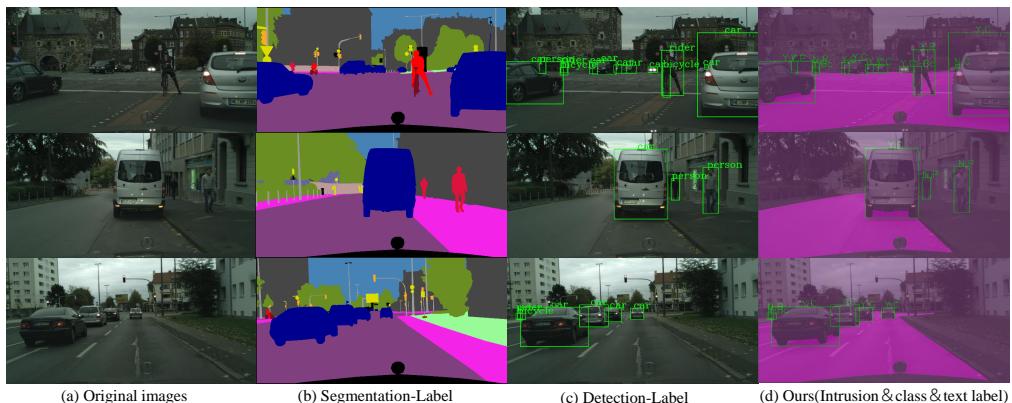
705 **Statistical Analysis.** Then, we conduct a detailed statistical analysis, as shown in Table 6. We
 706 provide details of the number of intrusion and non-intrusion cases for each category in the training
 707 and validation sets of the dataset, along with the total average. We can observe that some intrusion
 708 categories reach an average of 9.16 (car) and 6.16 (person). The total average of the whole dataset
 709 can reach **18.03**, surpassing previous promising intrusion detection datasets greatly. Rich labels can
 710 meet the requirements and provide a data foundation for the proposed OVID task.
 711

712 Table 6: The detailed statistics of proposed datasets. T and V denote the training and validation
 713 datasets, respectively. \dagger denotes the average of the sum of each category in the training and validation.
 714 \ddagger denotes the total average in the whole dataset.

Categories	Person T V	Rider T V	Car T V	Truck T V	Bus T V	Train T V	Motorcycle T V	Bicycle T V
Intrusion cases ('Y')	3567 716	698 226	14545 2493	246 52	219 67	88 9	270 55	1138 361
Non-Intrusion cases ('N')	14427 2703	1109 330	12610 2174	243 41	166 31	83 14	469 94	2591 814
Total cases	17994 3419	1807 556	27155 4667	489 93	385 98	171 23	739 149	3729 1175
Average (Per very image)	6.05 6.84	0.61 1.11	9.13 9.33	0.16 0.19	0.13 0.20	0.06 0.05	0.25 0.30	1.25 2.35
Average \dagger (Per very image)	6.16	0.68	9.16	0.17	0.14	0.06	0.26	1.41
Total average \ddagger (Per very image)	18.03							

721 A.2 MORE VISUALIZATION RESULTS

722 In order to better present our proposed dataset, we also provide more visualization results, as shown
 723 in Figure 8. Different from the previous single category (President) (Sun et al., 2020; Shi et al.,
 724 2022) and four categories (President, Motorcycle, Rider, Bicycle) (Han et al., 2024b;c), we can find
 725 that our Cityintrusion-OpenV dataset contains multiple different intrusion categories, not only single
 726 or four categories. All possible intruder categories can be considered in our dataset, e.g., Person,
 727 Rider, Car, Truck, Bus, Train, Motorcycle, Bicycle. Our new dataset can provide the prerequisite
 728 for the OVID task. Here, because of the labels, we utilize abbreviations instead of labels in order to
 729 easily show our results, e.g., 'N, P' denotes the 'No-Intrusion, Person', Text prompt: Person. 'Y, C'
 730 denotes the 'Intrusion, Car', Text prompt: Car. 'Y, Bu' denotes the 'Intrusion, Bus', Text prompt:
 731 Bus. The detailed correspondence between full name, text prompt, and abbreviation is shown in
 732 Table 7.
 733



748 Figure 8: More visualization results of our Cityintrusion-OpenV. Unlike previous intrusion detection
 749 datasets (Sun et al., 2020; Han et al., 2024b), our datasets encompass all common/possible intrusion
 750 categories in Cityscape datasets, providing richer and varied labels that meet the requirements of the
 751 proposed OVID task.

753 A.3 MORE INTRUSION DATASET COMPARISONS

754 In this subsection, we further compare our proposed datasets with other promising intrusion detec-
 755 tion datasets and provide more comparison results to verify the superiority of our dataset, as shown

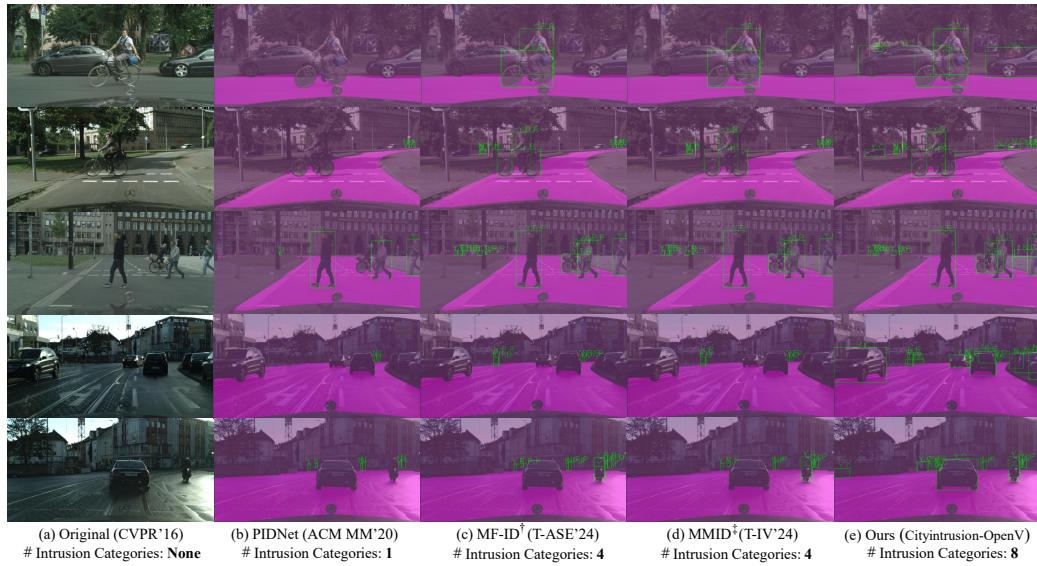


Figure 9: The compression between our datasets with other promising intrusion detection datasets. Unlike previous intrusion datasets (Sun et al., 2020; Han et al., 2024b), our datasets encompass a broader range of potential intruders. Our datasets can be used to train/evaluate the performance of the OVID task and validate the effectiveness of the proposed strategies.

in Figure 9. Compared to previous promising intrusion detection datasets (Sun et al., 2020; Han et al., 2024b;c), our dataset exhibits much superior and richer labels. Besides, the proposed datasets contain **8** intrusion categories, surpassing the previous works **1** or **4** categories. More importantly, our Cityintrusion-OpenV dataset contains text labels, which compensate for the lack of relevant datasets and meet the needs of the proposed OVID task.

A.4 THE CORRESPONDENCE BETWEEN FULL NAME, TEXT PROMPT, AND ABBREVIATION

To better help understand the different intrusion categories and the abbreviations in our paper, we provide the detailed correspondence between the full name, the text prompt, and the abbreviation. The detailed correspondence is shown in the Table 7, *e.g.*, ‘Person’ (# Full name) → ‘Person’ (# Text prompt) → ‘P’ (# Abbreviation), ‘Rider’ (# Full name) → ‘Rider’ (# Text prompt) → ‘R’ (# Abbreviation), ‘Car’ (# Full name) → ‘Car’ (# Text prompt) → ‘C’ (# Abbreviation), ‘Truck’ (# Full name) → ‘Truck’ (# Text prompt) → ‘Tk’ (# Abbreviation), ‘Bus’ (# Full name) → ‘Bus’ (# Text prompt) → ‘Bu’ (# Abbreviation).

Table 7: The correspondence between the full name, text prompt, and abbreviation. *Italic* denotes *thing classes* (AoI). All categories are customizable in different scenarios.

# No.	# Full name	# Text prompt	# Abbreviation
# 1	‘Person’	‘Person’	‘P’
# 2	‘Rider’	‘Rider’	‘R’
# 3	‘Car’	‘Car’	‘C’
# 4	‘Truck’	‘Truck’	‘Tk’
# 5	‘Bus’	‘Bus’	‘Bu’
# 6	‘Train’	‘Train’	‘Tn’
# 7	‘Motorcycle’	‘Motorcycle’	‘M’
# 8	‘Bicycle’	‘Bicycle’	‘Bc’
# 9	‘Road’	‘Road’	‘Ro’
# 10	:	:	:

810 A.5 FRAMEWORK DESIGN MOTIVATION
811

812 In this subsection, We first explore two basic yet important questions as motivations for our ap-
813 proach. (1) **Why** do we conduct open vocabulary intrusion detection research? Our goal is to break
814 through the dependencies and limitations of pre-defined categories. Truly enable intrusion detection
815 in the open world. (2) **How** to achieve the specific OVID task? A simple idea is that we can leverage
816 a collaborative model with Open-vocabulary segmentation (OVS), *e.g.*, SAM (Kirillov et al., 2023),
817 FastSAM (Zhao et al., 2023), EfficientSAM (Xiong et al., 2024), and Open-vocabulary detection
818 (OVD), *e.g.*, DetClip (Yao et al., 2023), Grounding DINO (Liu et al., 2023), YOLO-world (Cheng
819 et al., 2024) to train/infer and get final Intrusion/No-intrusion labels. As shown in Table 8, we list
820 and compare some feasible schemes. Unfortunately, although the model of ‘OVD+OVS’ is a fea-
821 sible solution, it is not suitable for intrusion detection. The main reason is that the training cost of the
822 End-to-End strategy combined with two **LLVMs** (Large Language Vision Models) is very expen-
823 sive. To alleviate this problem, we design a new efficient framework for the proposed OVID task,
824 namely OVIDNet. Our framework is established based on OpenSeeD (Zhang et al., 2023). Finally,
825 the OVIDNet is leveraged to collaborate to give the bounding box and mask image for the OVID
826 task, and the final intrusion labels (‘N/Y’) are given by the intrusion post-processing judgments. The
827 overall framework and pipeline of OVIDNet are illustrated below.

828 Table 8: The comparison of some feasible schemes for the proposed OVID task. OVD and OVS
829 denote the Open-vocabulary detection and segmentation models. Pre-trained TSM denotes the pre-
830 trained traditional segmentation models, *e.g.*, DeepLabv3+ (Chen et al., 2018), PspNet (Zhao et al.,
831 2017). Retrain denotes whether the model needs to be retrained under different scenarios. We can
832 find that our scheme is End-to-End and has a low training cost.

Scheme	OVD		OVS		Pre-trained TSM	End-to-End	Open-Vocabulary?	Retrain	Training Cost
	Train	Infer	Train	Infer					
S1	✓	✓	✓	✓	✗	✗	✓	✗	Very Large
S2	✓	✓	✗	✗	✓	✓	✗	✓	Large
S3	✓	✓	✗	✓	✗	✗	✓	✗	Low
Ours	✓	✓	✓	✓	✗	✓	✓	✗	Low

833 B MORE EXPERIMENT SETTINGS
834

835 In this section, we will introduce more implementation details and settings in the experiments. We
836 present more setting details for the experiment, as shown in Table 9. Due to the limitation of our
837 GPUs, we have to set the Image_size to 800 and reduce the iterations to 15000, which inevitably
838 makes some of our results lower than those in the original model (image_size: 1200×1200, max_iter:
839 368750) (Zhang et al., 2023). To ensure fairness and verify the correctness of our method, we also
840 set CHECKPOINT_PERIOD and EVAL_PERIOD to 15000, respectively, for all experiments. Ad-
841 ditionally, we retrain the baseline and verify the method’s validity. Note that our OVIDNet frame-
842 work is built based on the OpenSeeD (Zhang et al., 2023). The OpenSeeD is a simple but efficient
843 framework for open-vocabulary segmentation and detection. Differently, we modify the original
844 framework to meet the requirements of the OVID task. We first add an effective intrusion detection
845 judgment module to obtain the capability for intrusion detection. Then, we propose two strategies
846 for improving generalization and intrusion performance in the open world and verify the effective-
847 ness on multiple dominant datasets and tasks. Therefore, to be fair, our setting mainly refers to
848 Openseed and is adapted to our own tasks. Our OVIDNet framework consists of a text encoder
849 (Clip (Radford et al., 2021)), image encoder (Tiny-swin-transformer (Liu et al., 2021)), decoder,
850 and intrusion detection post-processing module. Note that the final overlapping pixel threshold is
851 set to 20 (Sun et al., 2020).

852 C MORE RESULTS FOR OVID TASK
853

854 In this section, we will provide additional results to evaluate and test the feasibility and effectiveness
855 of our framework and strategies. We first report quantitative results of different categories in normal
856 transfer conditions and cross-domain conditions. Then, we present more visualization results. The
857 specific results are shown below.

864

865

Table 9: The detailed illustration of the experiment setting.

# Name 1	Setting Category 1	Value	# Name 2	Setting Category 2	Value
TOKENIZER	CONTEXT_LENGTH	CLIP	WINDOW_SIZE	BACKBONE	7
WIDTH		18	PATCH_SIZE		4
HEADS		512	EMBED_DIM		96
LAYERS		8	DEPTHS		[2, 2, 6, 2]
		12	NUM_HEADS		[3, 6, 12, 24]
# Name 3	Setting Category 3	Value	# Name 4	Setting Category 4	Value
IGNORE_VALUE	ENCODER	255	NHEADS	DECODER	8
LOSS_WEIGHT		1.0	CLASS_WEIGHT		4.0
CONVS_DIM		256	MASK_WEIGHT		5.0
MASK_DIM		256	DICE_WEIGHT		5.0
COMMON_STRIDE		4	BOX_WEIGHT		5.0
TRANSFORMER_ENC_LAYERS		6	GIOU_WEIGHT		2.0
TOTAL_NUM_FEATURE_LEVELS		4	HIDDEN_DIM		256
NUM_FEATURE_LEVELS		3	NUM_OBJECT_QUERIES		300

871

872

C.1 QUANTITATIVE RESULTS OF DIFFERENT CATEGORIES

873

874

We first present additional results from various categories using the proposed strategies. Note that we give two types of metrics, *i.e.*, segmentation/detection metrics (IOU, AP, AP@.5) and intrusion detection metrics (AccY, AccN, Acc), respectively. The former is obtained via a zero-shot manner, the latter via a task-specific transfer manner. We conduct experiments in COCO, Cityscape, and Cityintrusion-OpenV, as shown in Table 10. From Table 10, we can find that when the proposed methodology is added, multiple metrics in multiple categories are improved to a certain extent. Compared with the baseline model, our strategies can surpass it by 3.4% (IOU), 1.0% (AP), and 1.4% (AP@.5), respectively, which verifies the effectiveness of the proposed strategies.

875

876

Table 10: The more quantitative results of different intrusion categories. Task: **COCO**→**Cityscape**, **Cityintrusion-OpenV**. We provide quantitative results for all possible intrusion categories to test the effectiveness of the proposed strategies. Additionally, to comprehensively measure the results across different categories, we report two distinct metrics, *i.e.*, segmentation/detection metrics (IOU, AP, AP@.5) and intrusion detection metrics (AccY, AccN, Acc), respectively. The **bold** is the best result.

Intrusion Categories, Task: COCO→Cityscape, Cityintrusion-OpenV											
Strategies			Segmentation and Detection Metrics								
Baseline	DMG	MDNM	Person(%)	Rider(%)	Car(%)	Truck(%)	Bus(%)	Train(%)	Motorcycle(%)	Bicycle(%)	Avg(%)
			IOU/AP/AP@.5	IOU/AP/AP@.5	IOU/AP/AP@.5	IOU/AP/AP@.5	IOU/AP/AP@.5	IOU/AP/AP@.5	IOU/AP/AP@.5	IOU/AP/AP@.5	IOU/AP/AP@.5
✓	✗	✗	64.7[9.1]23.8	0.0[0.0]0.0	80.8[17.2]36.7	24.0[18.6]25.3	62.8[36.1]53.9	2.2[13.7]25.4	45.8[10.3]25.1	69.6[10.4]30.4	43.7[14.4]32.5
✓	✗	✓	67.2[10.6]26.1	0.0[0.0]0.0	82.5[17.1]38.7	36.0[19.1]29.4	47.8[32.4]52.8	4.1[17.7]31.8	50.9[8.2]21.3	68.5[8.8]28.4	44.6[14.2]28.5
✓	✓	✗	69.9[12.3]32.1	0.0[0.0]0.0	80.1[21.4]45.5	24.2[14.5]20.5	51.0[36.2]53.1	0.6[12.5]20.0	56.1[10.7]25.7	72.2[11.5]36.4	44.26[14.8]29.16
✓	✓	✓	66.5[11.0]28.6	0.0[0.0]0.0	86.5[22.8]47.0	37.4[22.1]32.9	60.2[33.3]45.4	0.0[9.6]13.6	58.6[11.9]27.8	72.5[12.2]36.5	47.71[15.36]28.97
Intrusion Detection Metrics											
Baseline	DMG	MDNM	Person(%)	Rider(%)	Car(%)	Truck(%)	Bus(%)	Train(%)	Motorcycle(%)	Bicycle(%)	All Categories
			AccY/AccN/Acc	AccY/AccN/Acc	AccY/AccN/Acc	AccY/AccN/Acc	AccY/AccN/Acc	AccY/AccN/Acc	AccY/AccN/Acc	AccY/AccN/Acc	AccY/AccN/Acc
✓	✗	✗	12.43[46.39]39.28	0.00[0.00]0.00	22.74[29.48]25.88	30.77[7.32]20.43	31.34[35.48]32.65	0.00[0.00]0.00	14.55[21.28]18.79	12.19[38.70]30.55	18.72[36.19]29.36
✓	✓	✗	18.02[42.47]37.35	0.00[0.00]0.00	22.50[36.38]28.97	28.85[4.88]18.28	25.37[38.71]29.59	0.00[0.00]0.00	20.00[26.60]24.16	18.01[43.12]35.40	20.06[37.56]30.72
✓	✗	✓	21.51[39.99]36.12	0.00[0.00]0.00	22.70[42.87]32.10	21.15[14.63]18.28	35.82[32.26]34.69	11.11[7.14]8.70	12.73[23.40]19.46	20.22[42.26]35.49	21.01[38.64]31.75
✓	✓	✓	19.55[41.10]36.59	0.00[0.00]0.00	28.12[40.16]33.73	32.69[7.32]21.51	32.84[29.03]31.63	0.00[0.00]0.00	25.45[15.96]19.46	21.61[43.61]36.85	24.43[38.16]32.79

902

903

C.2 MORE RESULTS OF CROSS-DOMAIN TASK

904

905

906

907

908

Furthermore, we present additional intrusion detection results for various intrusion categories across different cross-domain tasks. In this experiment, we adopt three different foggy coefficients, *i.e.*, $\alpha=0.005$, $\alpha=0.01$, and $\alpha=0.02$. In these experiments, We conduct experiments in COCO, Foggy-Cityscape, and Cityintrusion-OpenV, as shown in Table 11. We can observe that, in various cross-domain tasks, our strategies enhance intrusion detection performance. In four different tasks, compared with the original baseline model, our framework can improve them by 2.96%, 3.22%, and 3.45%, respectively. Furthermore, our proposed approach can effectively improve the performance of intrusion detection for various categories. These performance improvements demonstrate the effectiveness of our approach, as well as the ability of our framework to generalize.

918
919
920
921
922

Table 11: The more quantitative results of different intrusion categories in the cross-domain task. We further test the effectiveness of the proposed strategies with a task-specific transfer manner. Task: **COCO→Foggy-Cityscape, Cityintrusion-OpenV**. Three foggy conditions are used to conduct comprehensive experiments, *i.e.*, $\alpha=0.005, \alpha=0.01, \alpha=0.02$. The **bold** is the best result.

			Intrusion Categories, Task: COCO→Foggy-Cityscape, Cityintrusion-OpenV								
			$\alpha = 0.005$								
Strategies			Person(%)	Rider(%)	Car(%)	Truck(%)	Bus(%)	Train(%)	Motorcycle(%)	Bicycle(%)	All Categories
Baseline	DMG	MDNM	AccY AccN Acc	AccY AccN Acc	AccY AccN Acc	AccY AccN Acc	AccY AccN Acc	AccY AccN Acc	AccY AccN Acc	AccY AccN Acc	AccY AccN Acc
✓	✗	✗	14.11 45.14 38.64	0.00 0.00 0.00	25.43 24.38 24.94	28.85 4.88 18.28	31.34 29.03 30.61	0.00 0.00 0.00	9.09 20.21 16.11	10.25 37.10 28.85	20.43 33.58 28.44
✓	✓	✗	19.13 41.21 36.59	0.00 0.00 0.00	23.67 30.96 27.06	38.46 4.88 23.66	29.85 32.26 30.61	0.00 0.00 0.00	23.64 22.34 22.82	18.56 41.15 34.21	21.29 34.75 29.49
✓	✗	✓	20.39 38.18 36.45	0.00 0.00 0.00	24.07 38.68 30.88	26.92 12.20 20.43	31.34 29.03 30.61	0.00 7.14 4.35	14.55 27.66 22.82	20.22 40.66 34.38	21.66 36.20 30.52
✓	✓	✓	20.81 39.55 35.62	0.00 0.00 0.00	28.28 35.05 31.43	32.69 7.32 21.51	38.81 25.81 34.69	0.00 0.00 0.00	27.27 19.15 22.15	22.44 42.26 36.17	24.96 35.54 31.40
Strategies			$\alpha = 0.01$								
Baseline	DMG	MDNM	AccY AccN Acc	AccY AccN Acc	AccY AccN Acc	AccY AccN Acc	AccY AccN Acc	AccY AccN Acc	AccY AccN Acc	AccY AccN Acc	AccY AccN Acc
✓	✗	✗	14.53 41.66 35.98	0.00 0.00 0.00	26.11 20.84 23.66	30.77 4.88 19.35	29.85 19.35 26.53	0.00 0.00 0.00	14.55 20.21 18.12	13.30 36.12 29.11	21.29 30.64 26.98
✓	✓	✗	19.55 38.81 34.78	0.00 0.00 0.00	24.79 27.51 26.06	36.54 4.88 22.58	29.85 22.58 27.55	0.00 0.00 0.00	20.00 22.34 21.48	20.22 38.94 33.19	22.14 32.16 28.24
✓	✗	✓	21.09 36.81 33.52	0.00 0.00 0.00	25.31 33.53 29.14	28.85 7.32 19.35	35.82 29.03 33.67	11.11 7.14 8.70	18.18 27.66 24.16	22.99 39.07 34.13	23.00 33.56 29.43
✓	✓	✓	20.95 37.81 34.28	0.00 0.00 0.00	30.00 30.50 30.23	28.85 7.32 19.35	29.85 25.81 28.57	0.00 0.00 0.00	25.45 20.21 22.15	23.55 40.17 35.06	25.94 32.93 30.20
Strategies			$\alpha = 0.02$								
Baseline	DMG	MDNM	AccY AccN Acc	AccY AccN Acc	AccY AccN Acc	AccY AccN Acc	AccY AccN Acc	AccY AccN Acc	AccY AccN Acc	AccY AccN Acc	AccY AccN Acc
✓	✗	✗	14.53 37.22 32.47	0.00 0.00 0.00	26.96 14.86 21.32	30.77 2.44 18.28	28.36 12.90 23.47	0.00 0.00 0.00	20.00 20.21 20.13	15.24 30.96 26.13	22.04 25.88 24.38
✓	✓	✗	21.23 34.48 31.71	0.00 0.00 0.00	26.75 20.10 23.66	32.69 4.88 20.43	29.85 16.13 25.51	0.00 0.00 0.00	23.64 24.47 24.16	22.44 33.05 29.79	23.88 26.90 25.72
✓	✗	✓	23.60 33.07 31.09	0.00 0.00 0.00	27.96 26.36 27.21	30.77 2.44 18.28	35.82 19.35 30.61	11.11 7.14 8.70	16.36 20.21 18.79	27.42 33.54 31.66	25.51 28.50 27.33
✓	✓	✓	21.79 33.59 31.12	0.00 0.00 0.00	32.25 23.83 28.33	28.85 4.88 18.28	32.84 16.13 27.55	0.00 0.00 0.00	25.45 17.02 20.13	25.48 34.52 31.74	27.72 27.90 27.83

C.3 MORE VISUALIZATION COMPARISON RESULTS

Finally, we also present more visualization comparison results to verify the effectiveness of the proposed framework and strategies. We set the text prompt of stuff_classes as Road and set the text prompt of thing_classes as ‘Person’, ‘Rider’, ‘Car’, ‘Truck’, ‘Bus’, ‘Train’, ‘Motorcycle’, ‘Bicycle’, as shown in Figure 10. From Figure 10, we can find that our framework can present promising visualization detection results, not only detecting all intruders correctly but also giving correct Intrusion (‘Y’)/No-intrusion (‘N’) labels, which proves the effectiveness of our approach.

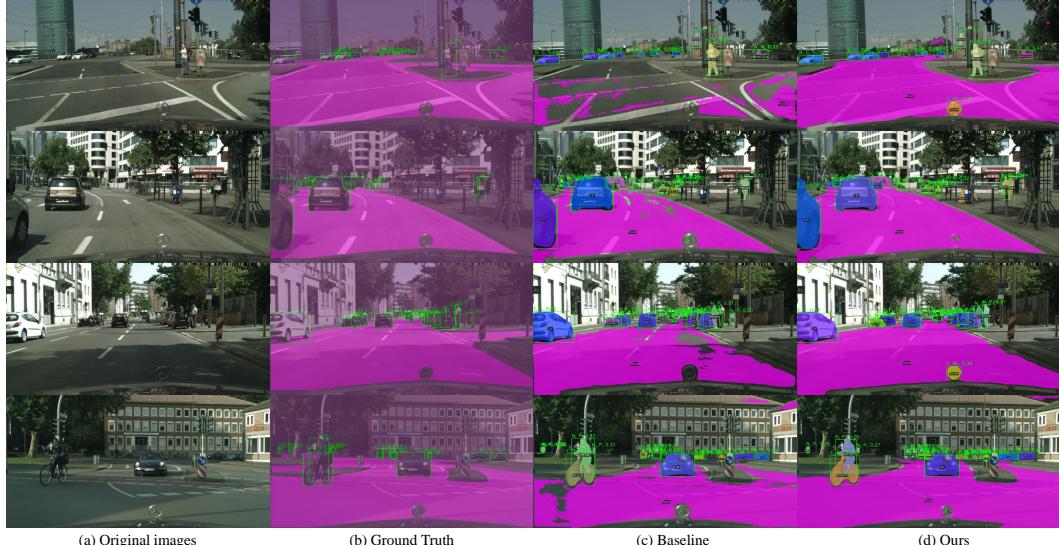


Figure 10: The visualization comprising results. Here, (a), (b), (c), and (d) denote Original images, Ground truth, Baseline results, and Ours, respectively. Text prompt: Road (stuff_classes), ‘Person’, ‘Rider’, ‘Car’, ‘Truck’, ‘Bus’, ‘Train’, ‘Motorcycle’, ‘Bicycle’, (thing_classes). For thing_classes, the abbreviations are used instead of complete labels to easily show our results. The correspondence between the abbreviation and full name can be referred to in the Table 7.

972 **D LIMITATION**
973

974 In this paper, we introduce the Open-Vocabulary Intrusion Detection (OVID) project for the first
 975 time, including a new task, an efficient framework, and a strong benchmark for vision-based in-
 976 trusion detection. Additionally, we design corresponding strategies to enhance intrusion detection
 977 performance in real-world scenarios and increase the practicality of the model. However, there are
 978 still some limitations that need to be addressed in the future, *e.g.*, enhance the ability to recognize
 979 fine-grained categories and improve generalization performance in the real world.

980
981 **E MORE VISUALIZATION EXPERIMENTS RESULTS**
982983
984 Figure 11: More Visualization experiments results.
985
986987 **F LLM USAGE DISCLOSURE**
988

989 In the preparation of this paper, we used the large language model to assist with language refinement,
 990 including improving and checking potential grammatical issues as well as enhancing clarity and
 991 readability. The model was not used to generate scientific content, ideas, experiments, or analyses.
 992 The authors take full responsibility for the accuracy and integrity of the paper’s content.
 993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025