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ABSTRACT

Various vision intrusion detection models have made great success in many sce-
narios, e.g., autonomous driving, intelligent monitoring and security. However,
their reliance on pre-defined classes limits their applicability in open-world in-
trusion detection scenarios. To remedy these, we introduce the Open-Vocabulary
Intrusion Detection (OVID) project for the first time. Specifically, we first develop
a novel dataset named Cityintrusion-OpenV for OVID, with more diverse intru-
sion categories and corresponding text prompts. Then, we design a multi-modal,
multi-task, and end-to-end open-vocabulary intrusion detection framework named
OVIDNet. It achieves open-world intrusion detection via aligning visual features
with language embeddings. Further, two simple yet effective strategies are pro-
posed to improve the generalization and performance of this specific task: (1) A
Multi-Distributed Noise Mixing strategy is introduced to enhance location infor-
mation of unknown and unseen categories. (2) A Dynamic Memory-Gated mod-
ule is designed to capture the contextual information under complex scenarios.
Finally, comprehensive experiments and comparisons are conducted on multiple
dominant datasets, e.g., COCO, Cityscape, Foggy-Cityscape, and Cityintrusion-
OpenV. Besides, we also evaluate the universal applicability of our model in real
scenarios. The results show that our method can outperform other classic and
promising methods, and reach strong performance even under task-specific trans-
fer and zero-shot settings, demonstrating its high practicality. All the source codes
and datasets will be released.

1 INTRODUCTION

Vision-based intrusion detection tasks have numerous applications in life, i.e., security, intelligent
monitoring, and autonomous driving (Ye et al., 2024; Sun et al., 2020). Intrusion detection aims to
determine whether potential objects go into a specific restricted Area-of-Interest (AoI) (Sun et al.,
2020; Shi et al., 2022). Based on whether the camera is moving or not, intrusion detection tasks can
be divided into static and dynamic intrusion detection. Static intrusion detection is relatively easy
due to the fixed AoI and achieves great progress by some promising strategies, e.g., Histogram of
Oriented Gradients (HOG) (Zhang et al., 2015), Conditional Random Field (CRF) (Matern et al.,
2013), Adaptive Background Subtraction (ABS) (Stauffer & Grimson, 2000). However, static in-
trusion detection can not meet the requirements of real-time and accuracy under dynamic scenes.
Fortunately, with the continuous development of computer vision, some promising detection and
segmentation frameworks are proposed (Wang et al., 2023; Chen et al., 2018), which provide new
schemes and paradigms for solving the problem of dynamic-view intrusion detection, i.e., based on
overlapping pixel points between objects and AoI (Sun et al., 2020; Shi et al., 2022). Nevertheless,
these proposed models can only detect a single intrusion category, i.e., Pedestrians. Considering
the lack of sufficient practicality, MF-ID (Han et al., 2024b) and MMID-bench (Han et al., 2024c)
propose the first concept and task of multi-category and multi-domains intrusion detection, which
successfully extends the intrusion categories and domains, i.e., 1→4. Meanwhile, Ada-iD (Han
et al., 2024a) proposes a new active domain adaptation intrusion detection method to further im-
prove the performance of intrusion detection in adverse environments. Although these promising
works extend the intrusion categories and scenarios by effective strategies, e.g., Unsupervised Do-
main Adaptation, Active Domain Adaptation, their reliance on pre-defined object classes limits their
applicability in Open-World intrusion detection scenarios, as shown in Figure 1. A pre-defined in-
trusion detection framework can only detect specific or labeled categories in training sets and can not
detect categories unseen and undefined, which severely limits the practicality of intrusion detection.
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For some unseen intrusion categories, e.g., Car or Truck, the previous models can not give correct
intrusion detection results. To address this problem, we propose the Open Vocabulary Intrusion
Detection, namely OVID, to detect unseen and undefined intrusion categories effectively.

(a) Single-category intrusion detection

(b) Multi-category intrusion detection

(c) Open-vocabulary intrusion detection
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Figure 1: Workflow comparisons of different intru-
sion detection methods. Here, (a), (b), and (c) denote
the Single-category, Multi-category, and proposed Open-
vocabulary intrusion detection paradigms, respectively.
‘?’ denotes the missed detection (False Negative). We
can find that previous works can only detect the pre-
defined intrusion category; our framework can detect
more categories correctly, which demonstrates the valid-
ity of our paradigm.

To accomplish the above OVID task, the
greatest difficulty is that there is still
a lack of relevant datasets. Currently,
some promising datasets, e.g., ImageNet
(Deng et al., 2009), COCO (Lin et al.,
2014) and specific autonomous driv-
ing datasets, e.g., Cityscapes (Cordts
et al., 2016b), BDD100K (Yu et al.,
2020) are proposed. These datasets are
not suitable for our intrusion detection
task due to the lack of intrusion la-
bels. Fortunately, in recent works, some
encouraging intrusion detection datasets
have been proposed, e.g., Cityintru-
sion (Sun et al., 2020), Cityintrusion-
Multicategory (Han et al., 2024b), and
Multi-Domain Multi-Category Datasets
(Han et al., 2024c). These datasets pro-
vide multi-category, multi-domain and
intrusion labels (‘N’/‘Y’), i.e., ‘N’ and
‘Y’denotes No-intrusion and Intrusion.
Although these datasets contain multi-
ple categories and domains, they can not
meet the requirements of the OVID task. On one hand, these datasets still lack lots of common
intrusion categories, e.g., Car, Bus, Truck. On the other hand, these datasets solely contain image
labels without matching text labels, which impairs their practicality in open-world intrusion detec-
tion where the model is required to generalize to new, unseen objects. To this end, we propose an
extensive and comprehensive intrusion detection dataset, Cityintrusion-OpenV, for the OVID task.

The second difficulty is that there is still a lack of an effective and efficient open-vocabulary intrusion
detection framework. Although some promising multi-task intrusion detection frameworks (Sun
et al., 2020; Han et al., 2024b) and open-vocabulary detectors are proposed (Kim et al., 2023; Yao
et al., 2023), these detectors still can not meet the requirements of the OVID task. The main reason
is that the former is constrained by limited detection categories, and the latter can only perform a
detection task. Inspired by promising works (Han et al., 2024b), we propose an effective, multi-
modal, multi-task, and end-to-end open vocabulary intrusion detection framework, OVIDNet, to
accomplish the task. The input of OVIDNet contains two different modalities, images and text.
Subsequently, these inputs are sent to encoders to extract features, then decoded and predicted using
the decoder. In the decoder, two simple yet effective strategies are designed to boost the performance
of OVIDNet: 1) A Multi-Distributed Noise Mixing strategy is introduced to enhance the location
information of unknown and unseen categories. 2) A Dynamic Memory-Gated module is designed
to capture the contextual information in complex scenarios. Finally, the intrusion detection results
are determined jointly by the upper and lower branches.

In summary, our contributions are as follows: (1) Novel task and dataset. To the best of our
knowledge, the task of dynamic-view Open Vocabulary Intrusion Detection is proposed for the first
time. This is the first multi-modal try in the vision-based intrusion task. A new benchmark, in-
cluding a dataset called Cityintrusion-OpenV, and some strong baselines, is given for this task. (2)
Effective design and strategy. An effective, multi-modal, multi-task, and end-to-end framework,
OVIDNet, is designed as a strong baseline for this new benchmark. Besides, two effective strategies
are proposed to improve the generalization and performance of the framework, including the Multi-
Distributed Noise Mixing Strategy and the Dynamic Memory-Gated module. (3) Adequate exper-
iments and strong results. Comprehensive experiments and comparisons are conducted to verify
the effectiveness of the proposed framework and methods. The results show that our framework not
only reaches the current SOTA level but also maintains strong high practicality with task-specific
transfer and zero-shot prediction abilities.
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2 RELATED WORKS

Traditional Vision-based Intrusion Detection. Intrusion detection can be divided into static and
dynamic intrusion detection. Static intrusion detection has been explored in detail due to its sim-
plicity, e.g., Adaptive Background Subtraction (Stauffer & Grimson, 2000), Histogram of Oriented
Gradients (Zhang et al., 2015). However, static intrusion detection does not meet the requirements
of dynamic intrusion detection. The primary reason is that images captured by cameras can change
at any time, which imposes higher real-time and accuracy requirements. Fortunately, with the rapid
development of computer vision, some promising works are proposed to solve the dynamic-view
intrusion detection, e.g., PIDNet (Sun et al., 2020), Cross-PIDNet (Shi et al., 2022). However, the
practice of these works is limited due to the single category of intrusion. To compensate for the lim-
itations, some encouraging works are designed to border the intrusion category, e.g., MF-ID (Han
et al., 2024b), MMID-bench (Han et al., 2024c). Although intrusion detection has expanded signif-
icantly, the intrusion category remains fixed and single, which seriously hinders the practicality in
the real world. To address these, we propose an open vocabulary intrusion detection task (OVID)
for the first time, to solve the problem with limited intrusion categories and improve its practicality.

Open-Vocabulary Detection. Open-vocabulary detection (OVD) aims to detect unseen classes in
the training stage in a zero-shot manner. Some promising open vocabulary detectors are designed to
solve the OVD task, e.g., Grounding DINO (Liu et al., 2023), YOLO-world (Cheng et al., 2024), and
achieve excellent performance on real-world detection tasks. However, these OVD works are not
suitable for our intrusion detection task. A major reason is that our OVID task is a multi-task with
detection and segmentation simultaneously, not only a single detection task. OpenSeeD (Zhang
et al., 2023) proposes a new framework for joint detection and segmentation, but this framework
cannot meet the requirements of our OVID task due to a lack of intrusion judgment capability. For
this reason, we propose a new framework, OVIDNet, to meet the needs of our OVID task.

3 SYSTEMATIC DATASETS

(c) MF-ID  (T-ASE’24)

＃Intrusion Categories: 4

† (d) MMID  (T-IV’24)

＃Intrusion Categories: 4

‡ (e) Ours (Cityintrusion-OpenV)
＃Intrusion Categories: 8

(b) PIDNet (ACM MM’20)

＃Intrusion Categories: 1

(a) Original (CVPR’16)

＃Intrusion Categories: None

Figure 2: The visualization comparison between
our datasets and other promising intrusion detection
datasets. † and ‡ denote fine-grained and multiple do-
mains, respectively.

To compensate for the lack of richness in
the categories of intrusion detection datasets,
we develop an Open-Vocabulary Intrusion
Detection dataset, namely Cityintrusion-
OpenV, for the first time. The detailed au-
tomatic generation method of the proposed
datasets is presented in Appendix A.1. Our
new dataset is established on the promising
Cityscape (Cordts et al., 2016b). Inspired by
promising work MMID-bench (Han et al.,
2024c), our new dataset also contains multi-
categories and multi-domains. Differently,
proposed datasets have more intrusion cate-
gories, not 4 categories in Multi-Domain Multi-Category datasets, but all potential/possible 8 intru-
sion categories in the cityscape dataset. Following some promising works (Han et al., 2024c), the
detail Intrusion(‘Y’)/No-intrusion(‘N’) labels are provided by Automated Label Processes. And the
judgment threshold is also set to 20. To demonstrate the superiority of our dataset, we first present
some visualization comparison, as shown in Figure 2. We can observe that our datasets provide the
correct intrusion and no-intrusion labels and have richer categories of intrusions.

Table 1: The comparison between previous intru-
sion detection datasets and our datasets. † denotes
multiple domains.

Intrusion Detection Dataset Names Categories ‘Y’/‘N’ Cases Cases per image
Cityintrusion (Sun et al., 2020; Shi et al., 2022) 1 4599/15084 7.3
Cityintrusion-Multicategory (Han et al., 2024b) 4 5431/22683 9.59

Multi-Domain Multi-Category (Han et al., 2024c;a) 4 5431/22683† 9.59
Ours (Cityintrusion-OpenV) 8 24750/37899 18.03

Then, we compare the quantitative results be-
tween the proposed Cityintrusion-OpenV and
other promising intrusion detection datasets,
as shown in Table 1. We can find that our
dataset contains more intrusion categories and
has more sufficient ‘Y’/‘N’ cases per image
(18.03 cases per image in the whole dataset),
which significantly improves the intrusion de-
tection dataset richness ( about 2× up compared to others). More detailed information, data statistics,
and more visualization comparisons are presented in Appendix A.
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4 THE PROPOSED FRAMEWORK AND METHODS

4.1 PRELIMINARY

In the proposed OVID task, given a specific object detection dataset Dd, Dd =
{(

Idi ,Md
i

)}|Dd|
i=1

and segmentation dataset Ds, Ds = {(Isi ,Ms
i )}

|Ds|
i=1 , where Idi and Isi denotes the detection and

segmentation samples, Md
i , Ms

i denotes the corresponding labels. For Md
i , we usually use four

bounding box labels (b) and a category label (cd) to express it, b ∈ R4, cd ∈ Cd. Cd denotes
the category space of detection dataset (Dd). For Ms

i , we usually use fine labeling (assigning a
category cs to each pixel in the sample Isi ), cs ∈ Cs, Cs denotes the category space of segmentation
dataset (Ds). Besides, we divide the detection and segmentation dataset into (Dd

T , Ds
T ), (Dd

V , Ds
V ).

Dd
T , Dd

V denotes the training and validation of detection dataset. Ds
T , Ds

V denotes the training and
validation of segmentation dataset. Following the Open-Vocabulary detection and segmentation
paradigms, we can express the training and validation category as Cd

T and Cd
V , where Cd

T is base
categories and Cd

T ∈ Cd
V . The category space of the new categories in Cd

V are named as CN , and
CN = Cd

V \ Cd
T ̸= ∅. The same is true for the segmentation dataset. For Ii, we use the text

Encoder (ET) to convert text information into text embeddings, i.e., FT = ET(Text) and use the
image Encoder (EI) to extra the image feature, i.e.,FI = EI(Img). All features are sent to a Decoder
(D) for decoding. Finally, the segmentation AoI and bonding box are extracted to calculate the
intrusion results and express it as

Is = J
{

D
(
FT,FI) e→ (Boxp,Aoip)

}
, (1)

where Is denotes the final intrusion results. J denotes the intrusion judgment module. e→ denotes the
extract two key information from the Decoder (D). Boxp, Aoip denote the prediction of the bounding
box and AoI, respectively.

4.2 OVERALL FRAMEWORK

In this section, we introduce the proposed OVIDNet, as shown in Figure 3. We improve the original
OpenSeeD (Zhang et al., 2023) to make it more suitable for our OVID task. Firstly, we use two
different encoders, text and image encoders, to extract features for text prompts and images. The
features are sent to the decoder. In the decoder, we design two effect methods to improve the
generalization of the proposed framework: Multi-Distributed Noise Mixing and Dynamic Memory-
Gated Module, respectively. Finally, we extract detection results and the segmentation results in the
decoder to calculate the overlapping pixel values and determine whether it constitutes an intrusion.
Once the overlapping pixel value exceeds a certain threshold (t), a warning (‘Y/N, Class’) will be
added to the detected intruder surround box. Note that ‘Y’, ‘N’, and ‘Class’ denote the Intrusion,
Non-intrusion, and Class name. (Here, class abbreviations are used instead of complete labels to
easily show our results. The detailed correspondence between the two is shown in Appendix A.4.)

4.3 MULTI-DISTRIBUTED NOISE MIXING STRATEGY

In the original OpenSeeD model, noise generation methods usually use a uniform noise distribution
and a fixed percentage of noise dynamics, as shown in Equation 2.

Bf = C {Be + Nr ⊙∆⊙Υ, 0, 1} , (2)

where Be denotes the set of the bounding box, Be can be expressed by center point (x, y) and width,
height (w, h). ∆ denotes the range of the disturbance and ∆ =

{w
2 ,

h
2 ,w,h

}
. Υ is a constant noise

scaling factor. Nr denotes the random distribution and Nr ∼ U (−1, 1). ⊙ denotes the element-
wise product. C denotes that all value is clamped between 0 and 1. However, in the real world,
this method can not adapt to dynamic environments and scenarios, e.g., different sizes and changing
objects, and challenging intrusion scenarios. Therefore, to address this issue, we propose a new
Multi-Distributed Noise Mixing Strategy, as shown in Equation 3. The idea of the proposed Multi-
Distributed Noise Mixing Strategy is very simple yet effective. When confronted with complex
dynamic environments, models need to cope with the variations of different targets and scenarios.

4
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Figure 3: The overall framework and pipeline of our proposed OVIDNet. The input of OVIDNet
consists of two different modalities: Text and Images. The text includes some customizable and
common intrusion categories and scenarios. The image denotes the corresponding original images.
Then, the text and images are sent to different encoders to extract features. These features will be
sent to the decoder for decoding and prediction. In the encoder, we design a multi-distributed noise
mixing strategy and a dynamic memory-gated module to enhance generalization in open scenarios.
Finally, we extract the predicted bounding box and predicted AoI mask to calculate the overlapping
pixels and give the final intrusion results. Once the overlapping pixels are greater than the threshold
(t), it will be judged as an intrusion. Otherwise, it will be judged as no-intrusion.

Specifically, for tiny objects, fine-grained perturbations are used to preserve their detailed features.
Meanwhile, large-scale perturbations to strengthen the global features for large objects.

Bf = C {Be + (α · Nu + β · Ng + γ · Nt)⊙∆⊙Θ, 0, 1} , (3)
where Nu ∼ U (−1, 1), Ng ∼ N (0, 1) and Nt ∼ L (0, 1). L denotes the Laplace distribution. α, β
and γ is the coefficient of U , N , and L distributions, respectively. Note that α + β + γ = 1. Θ
denotes the proposed dynamic varying noise ratio based on the detection area of the bounding box,
and Θ = τ · (1 + log(1 + A)). A denotes the area of the bounding box and a = w · h. Besides, C
and ∆ are defined as the same as the Equation 2. Our detailed algorithm is shown in Algorithm 1.

4.4 DYNAMIC MEMORY-GATED MODULE

To address the challenges of insufficient long-term dependency modeling and poor dynamic scene
adaptation in our OVID task, we propose a Dynamic Memory-Gated Module. Given a input feature
X ∈ RB×C×H×W , we first use global average pooling (GAP) to extract a global context query vector
(Q ∈ RB×C), express it as Q = GAP(X), where B, C, H and W denotes the batch size, channel,
height and width. Then, we introduce a dynamic memory retrieval module and express it as

Om = softmax
(

QMT
K√
d

)
MV , (4)

where Q ∈ RB×C denotes query vector. MK ∈ RB×C denotes the memory key, and M is the
number of memory units. MV ∈ RM×C denotes the memory value, and MV is used to store the
feature information corresponding to the key. Om ∈ RB×C denotes the memory output by retrieving.
Finally, retrieved memory output (Om) and input features (X) are fused by concatenation and 1×1
Conv. We can express it as

Xf = Conv1x1(Concat(X⊙W),Om), (5)
where Xf denotes the fusion feature. W denotes the generate dynamic weights and W =
σ(W2ReLU(W1Q)). W1,W2 denotes the weight of fully connected networks. W1 ∈ RC×d,
W2 ∈ Rd×C . σ denotes the sigmoid function.
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Algorithm 1 Multi-Distributed Noise Mixing Strategy
Require: Bounding box parameters Be, Noise scale τ ; Uniform noise weight α, Gaussian noise

weight β, Laplace noise weight γ
Ensure: Augmented bounding box parameters Bf .

1: ▷ D is a tensor of the same shape as Be

2: Initialize D← 0
3: ▷ Compute the area of each bounding box
4: A← Be[:, 2] · Be[:, 3].
5: ▷ Compute dynamic noise scale for each box
6: Θ← τ · (1 + log(1 +A))
7: ▷Define perturbation directions for center and size
8: ∆[:, : 2]← Be[:, 2 :]/2 # Perturb center
9: ∆[:, 2 :]← Be[:, 2 :] # Perturb width and height

10: ▷ Generate noise from multiple distributions
11: Nu ∼ U (−1, 1), Ng ∼ N (0, 1) and Nt ∼ L (0, 1)
12: ▷ Compute the weighted combination of noise
13: Nm ← α ·Nu + β ·Ng + γ ·Nl

14: ▷ Add scaled noise to bounding box parameters
15: Bf ← Be + (Nm ⊙∆⊙Θ)
16: ▷ Clamp augmented bounding boxes to the valid range
17: Bf ← Clamp(Bf , 0, 1)
18: return Bf

5 EXPERIMENTS AND ANALYSES

5.1 EXPERIMENTAL SETTINGS

Implementation Details. We conduct all experiments on a computer with 8 NVIDIA GeForce
RTX 2080Ti GPUs. Unless specified, the Max Iter, Batch size total, CHECKPOINT PERIOD,
EVAL PERIOD of all experiments are set to 15000, 8, 15000, and 15000, respectively. The image
encoder and text encoder adopt tiny-swin-transformer (Liu et al., 2021) and Clip (Radford et al.,
2021), respectively. More hyperparameter details can be found in Appendix B.

Datasets. Our experiments are conducted in some publiy datasets, e.g., COCO (Lin et al., 2014),
Citytscape (Cordts et al., 2016a), Foggy-Cityscape (Sakaridis et al., 2018) and Cityintrusion-OpenV.
In addition, to provide more visualization results, we also test and report visualization demo results
on other datasets, e.g., the ShanghaiTech Campus dataset (Luo et al., 2017), and the UA-DETRAC
(Wen et al., 2020). Note that in our experiment, we adopt two manners, i.e., zero-shot and task-
specific transfer, to evaluate the performance of the model.

Metrics. In order to report the quantitative results of our experiments more comprehensively, in-
spired by some previous promising work (Han et al., 2024c;b), the mIOU(%) and mAP(%) are
utilized to evaluate the sub-task performance of segmentation and object detection. For the in-
trusion detection performance, we also use three different intrusion detection metrics: AccY(%),
AccN(%), and Acc(%) to quantify. Besides, some additional metrics, e.g., panoptic segmentation
metrics, PQ(%), SQ(%), RQ(%), and every AP(%), AP@.5(%) of intrusion categories, are reported
to evaluate the zero-shot performance of the model.

Baseline/Comparison Models. We compare with the OpenSeeD (Zhang et al., 2023) model be-
cause of its multi-task capability and its promising performance in open-vocabulary tasks. The
multi-task feature is consistent with our task. Besides, we also compare the latest and promising in-
trusion works, e.g., PIDNet (Sun et al., 2020), Cross-PIDNet (Shi et al., 2022), MMID-bench (Han
et al., 2024c), MF-ID (Han et al., 2024b).

5.2 MAIN RESULTS

Compared with promising open-vocabulary works. We first compare the multiple performances
with the promising OpenSeeD model and report three zero-shot detection performances, i.e., PQ(%),

6
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SQ(%), RQ(%), and three task-specific transfer intrusion performances, i.e., AccY(%), AccN(%),
Acc(%), as shown in Table 2. We can find that in different tasks, for the panoptic segmentation
performance (PQ), compared with OpenSeeD, our methods can improve it by 2.19% and 1.12%,
respectively. Besides, for intrusion detection performance (Acc), our model can surpass it by 3.43%
and 3.45%, respectively, which verifies the effectiveness of the proposed model and strategies.

Table 2: The Zero-shot and Task-specific transfer comparison results between promising multi-task
open-vocabulary and proposed OVIDNet framework in different datasets.

- Zero-shot Detection (Panoptic segmentation) Task-specific Transfer (Intrusion detection)
Model Test data 1 RQ(%) SQ(%) PQ(%) Test data 2 AccY(%) AccN(%) Acc(%)

OpenSeeD Cityscape 18.22 43.68 14.03 Ours (Normal) 18.72 36.19 29.36
Foggy-Cityscape 18.07 36.71 14.28 Ours (Foggy) 22.04 25.88 24.38

OVIDNet (Ours) Cityscape 20.36 36.17 16.22 Ours (Normal) 24.43 38.16 32.79
Foggy-Cityscape 19.05 33.71 15.40 Ours (Foggy) 27.72 27.90 27.83

Compared with promising intrusion detection works. We also compare some intrusion detection
works, as shown in Table 3. We can see that, compared with previous intrusion works, our model
not only has an open structure but also detects more intrusion categories. More importantly, our
model has strong generalization capability and achieves zero-shot detection, which is not only pre-
trained/pre-undefined categories. In addition, we can observe that as the task difficulty increases, i.e.,
common intrusion detection task (PIDNet, Cross-PIDNet, MF-ID)→domain adaptation intrusion
detection task (MMID-bench)→Open-vocabulary intrusion detection task (OVID), the performance
of each category continuously decreases. The main reason is that, as the difficulty of different
intrusion detection tasks increases, the requirements of different intrusion detection frameworks are
also raised in the open world, especially their generalization and zero-shot capabilities.

Table 3: The comparison between our work and promising intrusion detection works. Here, ‘close’
and ‘open’ denote the different detection structures, respectively. ‘ZSD’ denotes Zero-shot detec-
tion. !and %denote the intrusion category as assessable or not assessable, respectively. † denotes that the
backbone is BNet.

Method Venue Structure ZSD P(%) R(%) M(%) Bc(%) Tk(%) Bu(%) Tn(%) C(%)

PIDNet (Sun et al., 2020) ACM MM’20 close % 67.1 % % % % % % %

% 63.3† % % % % % % %

Cross-PIDNet (Shi et al., 2022) T-IV’21 close % 74.7 % % % % % % %

% 72.1† % % % % % % %

MF-ID (Han et al., 2024b) T-ASE’24 close % 45.8 39.8 34.5 38.2 % % % %

MMID-bench (Han et al., 2024c) T-IV’24 close % 37.4 34.6 20.7 33.1 % % % %
OVIDNet (Ours) - open ! 28.6 0.0 27.8 36.5 32.9 45.4 13.6 47.0

Table 4: Zero-shot and Task-specific transfer quantitative
results of the proposed different strategies.

B DMG MDNM PQ(%) mIOU(%) mAP@.5(%) AccY(%) AccN(%) Acc(%)
! % % 14.03 28.34 27.58 18.72 36.19 29.36
! ! % 15.80 28.78 29.16 20.06 37.56 30.72
! % ! 15.33 29.40 28.56 21.01 38.64 31.75
! ! ! 16.22 29.37 28.98 24.43 38.16 32.79

Zero-shot and Task-specific transfer
evaluation results on proposed strate-
gies. We then test the zero-shot/task-
specific transfer performance of the pro-
posed strategies. Specifically, we train
our model on the COCO dataset and val-
idate it on the Cityscape datasets to ob-
tain the segmentation and detection performance in a zero-shot manner. Besides, we also test the
intrusion detection performance on the proposed Cityintrusion-OpenV datasets by a task-specific
transfer manner, as shown in Table 4. B denotes the baseline. We can observe that as different strate-
gies are added, multiple performances are improved, not only intrusion detection but also zero-shot
performance, e.g., PQ(%) and mIOU(%). Compared with the baseline, the intrusion performance
(Acc) can surpass it by 3.43%. In addition, the zero-shot performance can surpass it by 2.19% (PQ)
and 1.1% (mIOU), respectively. More detailed results can be found in Appendix C.1.

Generalization Verification in cross-domain tasks. We further test the performance of our OVID-
Net framework and strategies in cross-adverse weather tasks, e.g., Normal→Foggy, to verify gen-
eralization capabilities. Note that all performance results are given by the pre-trained (in Normal
weather) and inference (in adverse weather) manners, as shown in Figure 4. We can find that our
OVIDNet is effective even in adverse weather and exhibits promising intrusion performance. Under
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three different foggy coefficient setting, i.e., α = 0.005, α = 0.01, α = 0.02, our OVIDNet can sur-
pass the baseline model by 2.96%, 3.22%, and 3.45%, respectively. Besides, our strategies can also
improve the zero-shot performance under cross-domain tasks, e.g., compared with the baseline of
three different foggy coefficient settings, the PQ(%) in the Normal→Foggy tasks can surpass them
by 1.29%, 1.21%, and 1.12%, respectively. More details results can be found in Appendix C.2.

Figure 4: Generalization Verification in cross-domain tasks.

Visualization Comparisons. We also present some visualization comparison results to verify the
zero-shot performance and effectiveness of the proposed framework and methods, as shown in Fig-
ure 5. We can find that our framework can present promising visualization detection results, not only
detecting intrusion behaviors correctly but also giving correct Intrusion (‘Y’)/No-intrusion (‘N’) la-
bels, which proves the effectiveness of our framework and approach. Note that our OVIDNet can
improve the zero-shot segmentation performance of AoI; in this case, the AoI is the road. More
visualization comparison results are presented in Appendix C.3.

(a) Original Images (b) Ground Truth (c) Baseline (d) Ours

Figure 5: The visualization comparison results.

5.3 ABLATION EXPERIMENTS

Multi-Distributed Noise Mixing Strategy. We analyze the proposed multi-distributed noise mixing
strategy and conduct extra ablation experiments to verify its effectiveness. The detailed results
are shown in Table 5. We can find that when the α=0.5, β=0.1, γ=0.4, the intrusion detection
performance can reach the best, with a 31.75% intrusion accuracy. The main reason is that, in task-
specific transfer, the model focuses more on texture features and spatial perturbations. Besides, the
transfer task is performed during normal weather. Thus, the need for weather changes and light
perturbations is low. In this paper, we set the α, β, γ to 0.5, 0.1 and 0.4, respectively.

Table 5: The ablation experiments of the pro-
posed strategies. B denotes the baseline.

Ablation 1: Multi-Distributed Noise Mixing Strategy
Methods Metrics

B # U(α) # N (β) # L (γ) PQ IOUr(%) mAP(%) Acc(%)
! !(1) % % 14.03 74.1 27.6 29.36
! !(0.5) !(0.4) !(0.1) 14.37 70.1 32.1 30.28
! !(0.5) !(0.2) !(0.3) 14.78 68.8 25.8 30.48
! !(0.5) !(0.3) !(0.2) 14.53 78.5 25.9 31.03
! !(0.5) !(0.1) !(0.4) 15.33 74.6 28.6 31.75

Ablation 2: Dynamic Memory-Gated Module
Methods Metrics

B Memeroy units PQ IOUr(%) mAP(%) Acc(%)
! % 14.03 74.1 27.6 29.36
! !(M=30) 14.84 76.0 27.5 30.31
! !(M=40) 15.80 76.5 29.5 30.72
! !(M=50) 13.03 83.5 27.1 28.42

Dynamic Memory-Gated Module. We also ex-
plore the effect of different memory unit sizes on
intrusion detection performance, as shown in Ta-
ble 5. IOUr denotes the zero-shot segmentation re-
sults of the road. We can see that the best intru-
sion performance can be reached when M=40. The
main reason is that the larger memory can help cap-
ture richer history and global features, especially
in open-world intrusion detection. However, larger
memory units also introduce more irrelevant infor-
mation, making it difficult to focus on key memory
features. Conversely, fewer memory units can help
the model focus on features relevant to intrusion de-
tection, but if the memory units are too low, it will lead to a loss of diversity and complexity required
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for the intrusion task, affecting the understanding of complex intrusion scenarios. In this paper, we
set the memory units to 40.

5.4 MORE INSIGHTFUL AND INTERESTING EXPERIMENTS

Experiment 1: Why is the performance result of category ‘Rider’ is ‘0.0’ in the Table 3?

Figure 6: Some cases of recognizing ‘Rider (R)’ as ‘Per-
son (P)’. ★ denotes the detailed case locations.

To answer this question, 1) we first
investigate some of the latest open-
vocabulary works (Bianchi et al., 2024;
Ma et al., 2024). Some works denote
that the understanding of fine-grained
properties of objects and their parts is
important. From this view, we conduct
some experiments and provide the visu-
alization comparison, as shown in Fig-
ure 6. We can find that our model recognizes the category ‘Rider’ as the category ‘Person’. The
main reason is that these two categories have similar features. 2) Besides, in the training dataset,
the number of category ‘Person’ is much larger than the category ‘Rider,’ which leads to category
imbalance. Therefore, these two factors will make it difficult to recognize the fine-grained category
‘Rider’. In the future, we will explore more effective ways to compensate for these two limitations.

(a) Original images (b) 2 Text prompts: Person, Road (c) 3 Text prompts: Person, Car, Road (d) 9 Text prompts: Person, Rider, Car, 
Truck, Bus, Train, Motorcycle, Bicycle, Road
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Figure 7: The visualization demo results in real scenar-
ios. We directly utilize our framework to infer public static
scenario datasets without any retraining process. We give
three different text prompts customizable results, i.e., 2 text
prompts, 3 text prompts, and 9 text prompts, respectively.

Experiment 2: Real-scenario appli-
cation exploration. To verify the
high generality and universal applica-
bility of our framework, we also pro-
vide some visualization results un-
der different static scenarios, e.g.,
intelligent monitoring, and security.
Since static scenarios lack relevant
intrusion detection datasets and la-
bels, the specific quantitative evalua-
tion results cannot be measured and
given. However, inspired by some
super-resolution works (Gandikota &
Chandramouli, 2024; Korkmaz et al.,
2024), we can report some demo vi-
sualization results. Here, we directly
use our framework to infer public
static scene datasets without any re-
training process, e.g., the Shang-
haiTech Campus dataset (Luo et al.,
2017), and the UA-DETRAC (Wen et al., 2020). Note that for different scenarios and intrusion cate-
gories, the number of text prompts can be customized. In our paper, we report multiple visualization
results with different customizable text prompts . Besides, we use different domains, e.g., Normal,
Rainy, and Night, to evaluate the model’s generalization performance, as shown in Figure 7. We can
observe that our framework can detect and judge intrusion behavior, demonstrating the practicality
and effectiveness of the proposed framework.

6 CONCLUSION

In this paper, we propose a new and vital intrusion detection task, Open-Vocabulary Intrusion De-
tection (OVID). This is the first multi-modal attempt in the vision-based intrusion detection task. A
new benchmark, including a relative dataset, an efficient multi-modal framework, and some strong
baselines, is given for the specific task. Besides, two effective strategies are proposed to improve
the generalization and enhance the performance of intrusion detection task in open scenarios, i.e.,
the Multi-Distributed Noise Mixing and the Dynamic Memory-Gated module. Finally, rich exper-
iments and comparisons are done to demonstrate the effectiveness of the proposed framework and
strategies. In the future, we will further explore more useful methods to improve performance.
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APPENDIX OVERVIEW

Table of contents:

• § A: Cityintrusion-OpenV Dataset

§ A.1: Method and Statistics for Proposed Dataset

§ A.2: More Visualization Results

§ A.3: More Intrusion Dataset Comparisons

§ A.4: The Correspondence Between Full Name, Text Prompt, and Abbreviation

§ A.5: Framework Design Motivation

• § B: More Experiment Settings

• § C: More Results for OVID Task

§ C.1: Quantitative Results of Different Categories

§ C.2: More Results of Cross-domain Task

§ C.3: More Visualization Comparison Results

• § D: Limitation

A CITYINTRUSION-OPENV DATASET

In this subsection, we present additional information and details for the proposed Cityintrusion-
OpenV dataset, including data statistics, visualization results, intrusion Dataset Comparisons, and
the correspondence between full name, text prompt, abbreviation, and framework design motivation.

A.1 METHOD AND STATISTICS FOR PROPOSED DATASET

Automatic Generation Method. Inspired by promising intrusion detection works (Sun et al., 2020;
Shi et al., 2022; Han et al., 2024b), our Cityintrusion-OpenV dataset is built based on the Cityscape
dataset (Cordts et al., 2016a). The main reason is that the Cityscape datasets have segmentation and
detection labels for the same original image, which provides a prerequisite for our multiple intrusion
detection tasks. Additionally, following the relevant works (Han et al., 2024c), we also design an
automatic labeling program to generate Intrusion (‘Y’) and No-intrusion (‘N’) labels. Note that the
final intrusion detection overlapping pixel points are also set to 20 (Sun et al., 2020). The specific
processes are shown as follows.

· Step 1: We first clean the original Cityscape (Cordts et al., 2016b)/Foggy-Cityscape (Sakaridis
et al., 2018). After cleaning, we conduct frame alignment for these datasets. Note that a small
number of objects that we don’t care about or are incorrectly labeled will be removed in this process.

· Step 2: Based on the results in step 1, we can read the bounding box coordinates of the interested
intrusion objects from the Cityscape/Foggy-Cityscape datasets. Additionally, we also read the area-
of-interest (AoI) in the Cityscapes segmentation dataset (Cordts et al., 2016b).

· Step 3: For the obtained area-of-interest (AoI) in step 2, we binarize them with 0 and 1.

· Step 4: After step 3, the bounding box coordinates from step 2 are projected into the binarized
area-of-interest (AoI).

· Step 5: We calculate the overlapping pixel values between AoI and bounding box in step 4.

· Step 6: To get the final intrusion/no-intrusion labels: ‘N/Y, Class’, we compare overlapping pixel
values in step 5 with a setting threshold, where ‘N’ denotes Non-Intrusion, ‘Y’ denotes Intrusion,
and ‘Class’ denotes names of intrusion objects. Note that, following previous work Sun et al. (2020),
the threshold is set to 20.

· Step 7: To obtain and present our final intrusion detection dataset better, we blended the segmented
images containing the intrusion labels in step 6 with the original images in step 1.
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· Step 8: Finally, to ensure the quality and accuracy of the proposed datasets, a team of three students
are organized to manually inspect and verify the annotations.

Statistical Analysis. Then, we conduct a detailed statistical analysis, as shown in Table 6. We
provide details of the number of intrusion and non-intrusion cases for each category in the training
and validation sets of the dataset, along with the total average. We can observe that some intrusion
categories reach an average of 9.16 (car) and 6.16 (person). The total average of the whole dataset
can reach 18.03, surpassing previous promising intrusion detection datasets greatly. Rich labels can
meet the requirements and provide a data foundation for the proposed OVID task.

Table 6: The detailed statistics of proposed datasets. T and V denote the training and validation
datasets, respectively. † denotes the average of the sum of each category in the training and valida-
tion. ‡ denotes the total average in the whole dataset.

Categories Person Rider Car Truck Bus Train Motorcycle Bicycle
T|V T|V T|V T|V T|V T|V T|V T|V

Intrusion cases (‘Y’) 3567|716 698|226 14545|2493 246|52 219|67 88|9 270|55 1138|361
Non-Intrusion cases (‘N’) 14427|2703 1109|330 12610|2174 243|41 166|31 83|14 469|94 2591|814
Total cases 17994|3419 1807|556 27155|4667 489|93 385|98 171|23 739|149 3729|1175
Average (Per very image) 6.05|6.84 0.61|1.11 9.13|9.33 0.16|0.19 0.13|0.20 0.06|0.05 0.25|0.30 1.25|2.35
Average†(Per very image) 6.16 0.68 9.16 0.17 0.14 0.06 0.26 1.41
Total average‡ (Per very image) 18.03

A.2 MORE VISUALIZATION RESULTS

In order to better present our proposed dataset, we also provide more visualization results, as shown
in Figure 8. Different from the previous single category (President) (Sun et al., 2020; Shi et al.,
2022) and four categories (President, Motorcycle, Rider, Bicycle) (Han et al., 2024b;c), we can find
that our Cityintrusion-OpenV dataset contains multiple different intrusion categories, not only single
or four categories. All possible intruder categories can be considered in our dataset, e.g., Person,
Rider, Car, Truck, Bus, Train, Motorcycle, Bicycle. Our new dataset can provide the prerequisite
for the OVID task. Here, because of the labels, we utilize abbreviations instead of labels in order to
easily show our results, e.g., ‘N, P’ denotes the ‘No-Intrusion, Person’, Text prompt: Person. ‘Y, C’
denotes the ‘Intrusion, Car’, Text prompt: Car. ‘Y, Bu’ denotes the ‘Intrusion, Bus’, Text prompt:
Bus. The detailed correspondence between full name, text prompt, and abbreviation is shown in
Table 7.

(a) Original images (b) Segmentation-Label (c) Detection-Label (d) Ours(Intrusion＆class＆text label)

Figure 8: More visualization results of our Cityintrusion-OpenV. Unlike previous intrusion detection
datasets (Sun et al., 2020; Han et al., 2024b), our datasets encompass all common/possible intrusion
categories in Cityscape datasets, providing richer and varied labels that meet the requirements of the
proposed OVID task.

A.3 MORE INTRUSION DATASET COMPARISONS

In this subsection, we further compare our proposed datasets with other promising intrusion detec-
tion datasets and provide more comparison results to verify the superiority of our dataset, as shown
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(a) Original (CVPR’16)

＃Intrusion Categories: None

(b) PIDNet (ACM MM’20)

＃Intrusion Categories: 1

(c) MF-ID  (T-ASE’24)

＃Intrusion Categories: 4

(d) MMID  (T-IV’24)

＃Intrusion Categories: 4

(e) Ours (Cityintrusion-OpenV)
＃Intrusion Categories: 8

† ‡

Figure 9: The compression between our datasets with other promising intrusion detection datasets.
Unlike previous intrusion datasets (Sun et al., 2020; Han et al., 2024b), our datasets encompass a
broader range of potential intruders. Our datasets can be used to train/evaluate the performance of
the OVID task and validate the effectiveness of the proposed strategies.

in Figure 9. Compared to previous promising intrusion detection datasets (Sun et al., 2020; Han
et al., 2024b;c), our dataset exhibits much superior and richer labels. Besides, the proposed datasets
contain 8 intrusion categories, surpassing the previous works 1 or 4 categories.More importantly, our
Cityintrusion-OpenV dataset contains text labels, which compensate for the lack of relevant datasets
and meet the needs of the proposed OVID task.

A.4 THE CORRESPONDENCE BETWEEN FULL NAME, TEXT PROMPT, AND ABBREVIATION

To better help understand the different intrusion categories and the abbreviations in our paper, we
provide the detailed correspondence between the full name, the text prompt, and the abbreviation.
The detailed correspondence is shown in the Table 7, e.g., ‘Person’ (# Full name) → ‘Person’ (#
Text prompt) → ‘P’ (# Abbreviation), ‘Rider’ (# Full name) → ‘Rider’ (# Text prompt) → ‘R’ (#
Abbreviation), ‘Car’ (# Full name)→ ‘Car’ (# Text prompt)→ ‘C’ (# Abbreviation), ‘Truck’ (# Full
name)→ ‘Truck’ (# Text prompt)→ ‘Tk’ (# Abbreviation), ‘Bus’ (# Full name)→ ‘Bus’ (# Text
prompt)→ ‘Bu’ (# Abbreviation).

Table 7: The correspondence between the full name, text prompt, and abbreviation. Italic denotes
thing classes (AoI). All categories are customizable in different scenarios.

# No. # Full name # Text prompt # Abbreviation
# 1 ‘Person’ ‘Person’ ‘P’
# 2 ‘Rider’ ‘Rider’ ‘R’
# 3 ‘Car’ ‘Car’ ‘C’
# 4 ‘Truck’ ‘Truck’ ‘Tk’
# 5 ‘Bus’ ‘Bus’ ‘Bu’
# 6 ‘Train’ ‘Train’ ‘Tn’
# 7 ‘Motorcycle’ ‘Motorcycle’ ‘M’
# 8 ‘Bicycle’ ‘Bicycle’ ‘Bc’
# 9 ‘Road’ ‘Road’ ‘Ro’

# 10
...

...
...
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A.5 FRAMEWORK DESIGN MOTIVATION

In this subsection, We first explore two basic yet important questions as motivations for our ap-
proach. (1) Why do we conduct open vocabulary intrusion detection research? Our goal is to break
through the dependencies and limitations of pre-defined categories. Truly enable intrusion detection
in the open world. (2) How to achieve the specific OVID task? A simple idea is that we can leverage
a collaborative model with Open-vocabulary segmentation (OVS), e.g., SAM (Kirillov et al., 2023),
FastSAM (Zhao et al., 2023), EfficientSAM (Xiong et al., 2024), and Open-vocabulary detection
(OVD), e.g., DetClip (Yao et al., 2023), Grounding DINO (Liu et al., 2023), YOLO-world (Cheng
et al., 2024) to train/infer and get final Intrusion/No-intrusion labels. As shown in Table 8, we list
and compare some feasible schemes. Unfortunately, although the model of ‘OVD+OVS’ is a feasi-
ble solution, it is not suitable for intrusion detection. The main reason is that the training cost of the
End-to-End strategy combined with two LLVMs (Large Language Vision Models) is very expen-
sive. To alleviate this problem, we design a new efficient framework for the proposed OVID task,
namely OVIDNet. Our framework is established based on OpenSeeD (Zhang et al., 2023). Finally,
the OVIDNet is leveraged to collaborate to give the bounding box and mask image for the OVID
task, and the final intrusion labels (‘N/Y’) are given by the intrusion post-processing judgments. The
overall framework and pipeline of OVIDNet are illustrated below.

Table 8: The comparison of some feasible schemes for the proposed OVID task. OVD and OVS
denote the Open-vocabulary detection and segmentation models. Pre-trained TSM denotes the pre-
trained traditional segmentation models, e.g., DeepLabv3+ (Chen et al., 2018), PspNet (Zhao et al.,
2017). Retrain denotes whether the model needs to be retrained under different scenarios. We can
find that our scheme is End-to-End and has a low training cost.

Scheme OVD OVS Pre-trained TSM End-to-End Open-Vocabulary? Retrain Training Cost
Train Infer Train Infer

S1 ! ! ! ! % % ! % Very Large
S2 ! ! % % ! ! % ! Large
S3 ! ! % ! % % ! % Low

Ours ! ! ! ! % ! ! % Low

B MORE EXPERIMENT SETTINGS

In this section, we will introduce more implementation details and settings in the experiments. We
present more setting details for the experiment, as shown in Table 9. Due to the limitation of our
GPUs, we have to set the Image size to 800 and reduce the iterations to 15000, which inevitably
makes some of our results lower than those in the original model (image size: 1200×1200, max iter:
368750) (Zhang et al., 2023). To ensure fairness and verify the correctness of our method, we also
set CHECKPOINT PERIOD and EVAL PERIOD to 15000, respectively, for all experiments. Ad-
ditionally, we retrain the baseline and verify the method’s validity. Note that our OVIDNet frame-
work is built based on the OpenSeeD (Zhang et al., 2023). The OpenSeeD is a simple but efficient
framework for open-vocabulary segmentation and detection. Differently, we modify the original
framework to meet the requirements of the OVID task. We first add an effective intrusion detection
judgment module to obtain the capability for intrusion detection. Then, we propose two strategies
for improving generalization and intrusion performance in the open world and verify the effective-
ness on multiple dominant datasets and tasks. Therefore, to be fair, our setting mainly refers to
Openseed and is adapted to our own tasks. Our OVIDNet framework consists of a text encoder
(Clip (Radford et al., 2021)), image encoder (Tiny-swin-transformer (Liu et al., 2021)), decoder,
and intrusion detection post-processing module. Note that the final overlapping pixel threshold is
set to 20 (Sun et al., 2020).

C MORE RESULTS FOR OVID TASK

In this section, we will provide additional results to evaluate and test the feasibility and effectiveness
of our framework and strategies. We first report quantitative results of different categories in normal
transfer conditions and cross-domain conditions. Then, we present more visualization results. The
specific results are shown below.
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Table 9: The detailed illustration of the experiment setting.
# Name 1 Setting Category 1 Value # Name 2 Setting Category 2 Value

TOKENIZER

TEXT

CLIP WINDOW SIZE

BACKBONE

7
CONTEXT LENGTH 18 PATCH SIZE 4

WIDTH 512 EMBED DIM 96
HEADS 8 DEPTHS [ 2, 2, 6, 2]
LAYERS 12 NUM HEADS [ 3, 6, 12, 24 ]
# Name 3 Setting Category 3 Value # Name 4 Setting Category 4 Value

IGNORE VALUE

ENCODER

255 NHEADS

DECODER

8
LOSS WEIGHT 1.0 CLASS WEIGHT 4.0

CONVS DIM 256 MASK WEIGHT 5.0
MASK DIM 256 DICE WEIGHT 5.0

COMMON STRIDE 4 BOX WEIGHT 5.0
TRANSFORMER ENC LAYERS 6 GIOU WEIGHT 2.0

TOTAL NUM FEATURE LEVELS 4 HIDDEN DIM 256
NUM FEATURE LEVELS 3 NUM OBJECT QUERIES 300

C.1 QUANTITATIVE RESULTS OF DIFFERENT CATEGORIES

We first present additional results from various categories using the proposed strategies. Note that
we give two types of metrics, i.e., segmentation/detection metrics (IOU, AP, AP@.5) and intrusion
detection metrics (AccY, AccN, Acc), respectively. The former is obtained via a zero-shot manner,
the latter via a task-specific transfer manner. We conduct experiments in COCO, Cityscape, and
Cityintrusion-OpenV, as shown in Table 10. From Table 10, we can find that when the proposed
methodology is added, multiple metrics in multiple categories are improved to a certain extent.
Compared with the baseline model, our strategies can surpass it by 3.4% (IOU), 1.0% (AP), and
1.4% (AP@.5), respectively, which verifies the effectiveness of the proposed strategies.

Table 10: The more quantitative results of different intrusion categories. Task: COCO→Cityscape,
Cityintrusion-OpenV. We provide quantitative results for all possible intrusion categories to test
the effectiveness of the proposed strategies. Additionally, to comprehensively measure the results
across different categories, we report two distinct metrics, i.e., segmentation/detection metrics (IOU,
AP, AP@.5) and intrusion detection metrics (AccY, AccN, Acc), respectively. The bold is the best
result.

- Intrusion Categories, Task: COCO→Cityscape, Cityintrusion-OpenV

Strategies Segmentation and Detection Metrics

Baseline DMG MDNM
Person(%) Rider(%) Car(%) Truck(%) Bus(%) Train(%) Motorcycle(%) Bicycle(%) Avg(%)

IOU|AP|AP@.5 IOU|AP|AP@.5 IOU|AP|AP@.5 IOU|AP|AP@.5 IOU|AP|AP@.5 IOU|AP|AP@.5 IOU|AP|AP@.5 IOU|AP|AP@.5 IOU|AP|AP@.5

! % % 64.7|9.1|23.8 0.0|0.0|0.0 80.8|17.2|36.7 24.0|18.6|25.3 62.8|36.1|53.9 2.2|13.7|25.4 45.8|10.3|25.1 69.6|10.4|30.4 43.74|14.43|27.58

! % ! 67.2|10.6|26.1 0.0|0.0|0.0 82.5|17.1|38.7 36.0|19.1|29.4 47.8|32.4|52.8 4.1|17.7|31.8 50.9|8.2|21.3 68.5|8.8|28.4 44.63|14.24|28.56

! ! % 69.9|12.3|32.1 0.0|0.0|0.0 80.1|21.4|45.5 24.2|14.5|20.5 51.0|36.2|53.1 0.6|12.5|20.0 56.1|10.7|25.7 72.2| 11.5|36.4 44.26|14.89|29.16

! ! ! 66.5|11.0|28.6 0.0|0.0|0.0 86.5|22.8|47.0 37.4|22.1|32.9 60.2|33.3|45.4 0.0|9.6|13.6 58.6|11.9|27.8 72.5|12.2|36.5 47.71|15.36|28.97

Strategies Intrusion Detection Metrics

Baseline DMG MDNM
Person(%) Rider(%) Car(%) Truck(%) Bus(%) Train(%) Motorcycle(%) Bicycle(%) All Categories

AccY |AccN|Acc AccY|AccN|Acc AccY|AccN|Acc AccY|AccN|Acc AccY|AccN|Acc AccY|AccN|Acc AccY|AccN|Acc AccY|AccN|Acc AccY|AccN|Acc

! % % 12.43|46.39|39.28 0.00|0.00|0.00 22.74|29.48|25.88 30.77|7.32|20.43 31.34|35.48|32.65 0.00|0.00|0.00 14.55|21.28|18.79 12.19|38.70|30.55 18.72|36.19|29.36

! ! % 18.02|42.47|37.35 0.00|0.00|0.00 22.50|36.38|28.97 28.85|4.88|18.28 25.37|38.71|29.59 0.00|0.00|0.00 20.00|26.60|24.16 18.01|43.12|35.40 20.06|37.56|30.72

! % ! 21.51|39.99|36.12 0.00|0.00|0.00 22.70|42.87|32.10 21.15|14.63|18.28 35.82|32.26|34.69 11.11|7.14|8.70 12.73|23.40|19.46 20.22|42.26|35.49 21.01|38.64|31.75

! ! ! 19.55|41.10|36.59 0.00|0.00|0.00 28.12|40.16|33.73 32.69|7.32|21.51 32.84|29.03|31.63 0.00|0.00|0.00 25.45|15.96|19.46 21.61|43.61|36.85 24.43|38.16|32.79

C.2 MORE RESULTS OF CROSS-DOMAIN TASK

Furthermore, we present additional intrusion detection results for various intrusion categories across
different cross-domain tasks. In this experiment, we adopt three different foggy coefficients, i.e.,
α=0.005, α=0.01, and α=0.02. In these experiments, We conduct experiments in COCO, Foggy-
Cityscape, and Cityintrusion-OpenV, as shown in Table 11. We can observe that, in various cross-
domain tasks, our strategies enhance intrusion detection performance. In four different tasks, com-
pared with the original baseline model, our framework can improve them by 2.96%, 3.22%, and
3.45%, respectively. Furthermore, our proposed approach can effectively improve the performance
of intrusion detection for various categories. These performance improvements demonstrate the
effectiveness of our approach, as well as the ability of our framework to generalize.
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Table 11: The more quantitative results of different intrusion categories in the cross-domain task. We
further test the effectiveness of the proposed strategies with a task-specific transfer manner. Task:
COCO→Foggy-Cityscape, Cityintrusion-OpenV. Three foggy conditions are used to conduct
comprehensive experiments, i.e., α=0.005,α=0.01,α=0.02. The bold is the best result.

- Intrusion Categories, Task: COCO→Foggy-Cityscape, Cityintrusion-OpenV

Strategies α = 0.005

Baseline DMG MDNM
Person(%) Rider(%) Car(%) Truck(%) Bus(%) Train(%) Motorcycle(%) Bicycle(%) All Categories

AccY|AccN|Acc AccY|AccN|Acc AccY|AccN|Acc AccY|AccN|Acc AccY|AccN|Acc AccY|AccN|Acc AccY|AccN|Acc AccY|AccN|Acc AccY|AccN|Acc

! % % 14.11|45.14|38.64 0.00|0.00|0.00 25.43|24.38|24.94 28.85|4.88|18.28 31.34|29.03|30.61 0.00|0.00|0.00 9.09|20.21|16.11 10.25|37.10|28.85 20.43|33.58|28.44

! ! % 19.13|41.21|36.59 0.00|0.00|0.00 23.67|30.96|27.06 38.46|4.88|23.66 29.85|32.26|30.61 0.00|0.00|0.00 23.64|22.34|22.82 18.56|41.15|34.21 21.29|34.75|29.49

! % ! 20.39|38.18|34.45 0.00|0.00|0.00 24.07|38.68|30.88 26.92|12.20|20.43 31.34|29.03|30.61 0.00|7.14|4.35 14.55|27.66|22.82 20.22|40.66|34.38 21.66|36.20|30.52

! ! ! 20.81|39.55|35.62 0.00|0.00|0.00 28.28|35.05|31.43 32.69|7.32|21.51 38.81|25.81|34.69 0.00|0.00|0.00 27.27|19.15|22.15 22.44|42.26|36.17 24.96|35.54|31.40

Strategies α = 0.01

Baseline DMG MDNM
Person(%) Rider(%) Car(%) Truck(%) Bus(%) Train(%) Motorcycle(%) Bicycle(%) All Categories

AccY|AccN|Acc AccY|AccN|Acc AccY|AccN|Acc AccY|AccN|Acc AccY|AccN|Acc AccY|AccN|Acc AccY|AccN|Acc AccY|AccN|Acc AccY|AccN|Acc

! % % 14.53|41.66|35.98 0.00|0.00|0.00 26.11|20.84|23.66 30.77|4.88|19.35 29.85|19.35|26.53 0.00|0.00|0.00 14.55|20.21|18.12 13.30|36.12|29.11 21.29|30.64|26.98

! ! % 19.55|38.81|34.78 0.00|0.00|0.00 24.79|27.51|26.06 36.54|4.88|22.58 29.85|22.58|27.55 0.00|0.00|0.00 20.00|22.34|21.48 20.22|38.94|33.19 22.14|32.16|28.24

! % ! 21.09|36.81|33.52 0.00|0.00|0.00 25.31|33.53|29.14 28.85|7.32|19.35 35.82|29.03|33.67 11.11|7.14|8.70 18.18|27.66|24.16 22.99|39.07|34.13 23.00|33.56|29.43

! ! ! 20.95|37.81|34.28 0.00|0.00|0.00 30.00|30.50|30.23 28.85|7.32|19.35 29.85|25.81|28.57 0.00|0.00|0.00 25.45|20.21|22.15 23.55|40.17|35.06 25.94|32.93|30.20

Strategies α = 0.02

Baseline DMG MDNM
Person(%) Rider(%) Car(%) Truck(%) Bus(%) Train(%) Motorcycle(%) Bicycle(%) All Categories

AccY|AccN|Acc AccY|AccN|Acc AccY|AccN|Acc AccY|AccN|Acc AccY|AccN|Acc AccY|AccN|Acc AccY|AccN|Acc AccY|AccN|Acc AccY|AccN|Acc

! % % 14.53|37.22|32.47 0.00|0.00|0.00 26.96|14.86|21.32 30.77|2.44|18.28 28.36|12.90|23.47 0.00|0.00|0.00 20.00|20.21|20.13 15.24|30.96|26.13 22.04|25.88|24.38

! ! % 21.23|34.48|31.71 0.00|0.00|0.00 26.75|20.10|23.66 32.69|4.88|20.43 29.85|16.13|25.51 0.00|0.00|0.00 23.64|24.47|24.16 22.44|33.05|29.79 23.88|26.90|25.72

! % ! 23.60|33.07|31.09 0.00|0.00|0.00 27.96|26.36|27.21 30.77|2.44|18.28 35.82|19.35|30.61 11.11|7.14|8.70 16.36|20.21|18.79 27.42|33.54|31.66 25.51|28.50|27.33

! ! ! 21.79|33.59|31.12 0.00|0.00|0.00 32.25|23.83|28.33 28.85|4.88|18.28 32.84|16.13|27.55 0.00|0.00|0.00 25.45|17.02|20.13 25.48|34.52|31.74 27.72|27.90|27.83

C.3 MORE VISUALIZATION COMPARISON RESULTS

Finally, we also present more visualization comparison results to verify the effectiveness of the pro-
posed framework and strategies. We set the text prompt of stuff classes as Road and set the text
prompt of thing classes as‘Person’, ‘Rider’, ‘Car’, ‘Truck’, ‘Bus’, ‘Train’, ‘Motorcycle’, ‘Bicycle’,
as shown in Figure 10. From Figure 10, we can find that our framework can present promising visu-
alization detection results, not only detecting all intruders correctly but also giving correct Intrusion
(‘Y’)/No-intrusion (‘N’) labels, which proves the effectiveness of our approach.

(a) Original images (b) Ground Truth (c) Baseline (d) Ours

Figure 10: The visualization comprising results. Here, (a), (b), (c), and (d) denote Original images,
Ground truth, Baseline results, and Ours, respectively. Text prompt: Road (stuff classes), ‘Person’,
‘Rider’, ‘Car’, ‘Truck’, ‘Bus’, ‘Train’, ‘Motorcycle’, ‘Bicycle’, (thing classes). For thing classes,
the abbreviations are used instead of complete labels to easily show our results. The correspondence
between the abbreviation and full name can be referred to in the Table 7.
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D LIMITATION

In this paper, we introduce the Open-Vocabulary Intrusion Detection (OVID) project for the first
time, including a new task, an efficient framework, and a strong benchmark for vision-based in-
trusion detection. Additionally, we design corresponding strategies to enhance intrusion detection
performance in real-world scenarios and increase the practicality of the model. However, there are
still some limitations that need to be addressed in the future, e.g., enhance the ability to recognize
fine-grained categories and improve generalization performance in the real world.

E MORE VISUALIZATION EXPERIMENTS RESULTS

Figure 11: More Visualization experiments results.

F LLM USAGE DISCLOSURE

In the preparation of this paper, we used the large language model to assist with language refinement,
including improving and checking potential grammatical issues as well as enhancing clarity and
readability. The model was not used to generate scientific content, ideas, experiments, or analyses.
The authors take full responsibility for the accuracy and integrity of the paper’s content.
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