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Abstract

Compositional reinforcement learning is a promising approach for training poli-1

cies to perform complex long-horizon tasks. Typically, a high-level task is decom-2

posed into a sequence of subtasks and a separate policy is trained to perform each3

subtask. In this paper, we focus on the problem of training subtask policies in a4

way that they can be used to perform any task; here, a task is given by a sequence5

of subtasks. We aim to maximize the worst-case performance over all tasks as6

opposed to the average-case performance. We formulate the problem as a two7

agent zero-sum game in which the adversary picks the sequence of subtasks. We8

propose two RL algorithms to solve this game: one is an adaptation of existing9

multi-agent RL algorithms to our setting and the other is an asynchronous version10

which enables parallel training of subtask policies. We evaluate our approach on11

two multi-task environments with continuous states and actions and demonstrate12

that our algorithms outperform state-of-the-art baselines.13

1 Introduction14

Reinforcement learning (RL) has proven to be a promising strategy for solving complex control15

tasks such as walking [13], autonomous driving [17], and dexterous manipulation [3]. However, a16

key challenge facing the deployment of reinforcement learning in real-world tasks is its high sample17

complexity—to solve any new task requires a training a new policy designed to solve that task. One18

promising solution is compositional reinforcement learning, where individual options (or skills) are19

first trained to solve simple tasks; then, these options can be composed together to solve more20

complex tasks [25, 24, 17]. For example, if a driving robot learns how to make left and right turns21

and to drive in a straight line, it can then drive along any route composed of these primitives.22

A key challenge facing compositional reinforcement learning is the generalizability of the learned23

options. In particular, options trained under one distribution of tasks may no longer work well if used24

in a new task, since the distribution of initial states from which the options are used may shift. An25

alternate approach is to train the options separately to perform specific subtasks, but options trained26

this way might cause the system to reach states from which future subtasks are hard to perform. One27

can overcome this issue by handcrafting rewards to encourage avoiding such states [17], in which28

case they generalize well, but this approach relies heavily on human time and expertise.29

We propose a novel framework that addresses this challenges by formulating the option learning30

problem as an adversarial reinforcement learning problem. At a high level, the adversary chooses31

the task that minimizes the reward achieved by composing the available options. Thus, the goal is32

to learn a set of robust options that perform well across all potential tasks. Then, we provide two33

algorithms for solving this problem. The first adapts existing ideas for using reinforcement learning34

to solve Markov games to our setting. Then, the second shows how to leverage the compositional35
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Figure 1: F1/10th Environment. The entry and exit regions for the right and sharp right segments
are shown in green and blue respectively.

structure of our problem to learn options in parallel at each step of a value iteration procedure; in36

some cases, by enabling such parallelism, we can reduce the computational cost of learning.37

We validate our approach on two benchmarks: (i) a rooms environment where a point mass robot38

must navigate any given sequence of rooms, where the sequence is an arbitrary combination of39

straight, left, and right turns, and (ii) a simulated version of the F1/10th car, where a small racing car40

must navigate any racetrack composed of several different track segments. In both, our empirical41

results demonstrate that robust options are critical for performing well on a wide variety of tasks.42

In summary, our contributions are: (i) a game theoretic formulation of the compositional reinforce-43

ment learning problem, (ii) two algorithms for solving this problem, and (iii) an empirical evaluation44

demonstrating the effectiveness of our approach.45

Motivating example. Let us consider a small scale autonomous racing car shown in Figure 1 (a).46

We would like to train a controller that can be used to navigate the car through all tracks constructed47

using five kinds of segments; the possible segments are shown in Figure 1 (b) along with an example48

track. The state of the car is a vector (x, y, v, θ) where (x, y) is its position on the track relative to49

the current segment, v is its current speed and θ is the heading angle. An action is a pair (a, ω) ∈ R250

where a is the throttle input and ω is the steering angle. In this environment, completing each51

segment is considered a subtask and a task corresponds to completing a sequence of segments—52

e.g., straight→ right→ left→ sharp-right. Upon completion of a subtask, the car enters53

the next segment and a change-of-coordinates is applied to the car’s state which is now relative to the54

new segment. The goal here is to learn one option for each subtask such that the agent can perform55

any task using these options.56

If one trains the options independently with the only goal of reaching the end of each segment57

(e.g., using distance-based rewards), it might (and does) happen that the car reaches the end of a58

segment in a state that was not part of the initial states used to train the policy corresponding to the59

next subtask. Therefore, one should make sure that the initial state distribution used during training60

includes such states as well—either manually or using dataset aggregation [38]. Furthermore, it is61

possible that the car reaches a state in the exit region of a segment from which it is challenging to62

complete the next subtask—e.g., a state in which the car is close to and facing towards a wall. Our63

algorithm identifies during training that, in order to perform future subtasks, it is better to reach the64

end of a segment in a configuration where the car is facing straight relative to the next segment. As65

demonstrated in our experiments, this leads to robust options and improved sample efficiency.66

Related work. The options framework [41] is commonly used to model subtask policies as tem-67

porally extended actions. In hierarchical RL [32, 31, 22, 9, 5, 43], options are trained along with a68

high-level controller that chooses the sequence of options to execute in order to complete a specific69

high-level task. There is also work on discovering options—e.g., using intrinsic motivation [30],70

entropy maximization [10], semi-supervised RL [12], skill chaining [20], expectation maximiza-71

tion [8] and subgoal identification [40]. There has also been a lot of research on planning using72

learned options [1, 18, 37, 42, 21].73

There has been some work on RL for zero-shot generalization [44, 33, 39, 23, 4]; however, in prior74

work, the learning objective is to maximize average performance with respect to a fixed distribution75

over tasks as opposed to the worst-case. Some hierarchical RL algorithms have also been shown to76

enable few-shot generalization [18] to unseen tasks. Most closely related to our work is the work77
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on compositional RL in the multi-task setting [17] in which the subtask policies are trained using78

standard RL algorithms in a naive way without guarantees regarding worst-case performance.79

There has also been work on skill composition using transition policies [25]; this method assumes80

that the subtask policies are fixed and learns one transition policy per subtask which takes the system81

from an end state to a “favourable” initial state for the subtask. However, poorly trained subtask82

policies can lead to situations in which it is not possible to achieve such transitions. In contrast, our83

approach trains subtask policies which compose well without requiring additional transition policies.84

A recent paper [24] proposes a framework for training subtask policies with the aim of composing85

them to perform a complex long-horizon task. However, their approach assumes that the high-level86

task is fixed and the options are trained to maximize the performance with respect to a specific task.87

There has been a lot of research on multi-agent RL algorithms [29, 15, 16, 28, 35, 36, 2] including88

algorithms for two-agent zero-sum games [6, 45, 27]. In this paper, we utilize the specific structure89

of our game to obtain a simple algorithm that neither requires solving matrix games nor trains a90

separate policy for the adversary. Furthermore, we show that we can obtain an asynchronous RL91

algorithm which enables learning options in parallel.92

2 Problem Formulation93

A multi-task Markov decision process (MDP) is a tupleM = (S,A, P,Σ, R, F, T, γ, η, σ0), where94

S are the states, A are the actions, P (s′ | s, a) ∈ [0, 1] is the probability of transitioning from s to95

s′ on action a, η is the initial state distribution, and γ ∈ (0, 1) is the discount factor. Furthermore,96

Σ is a set of subtasks and for each subtask σ ∈ Σ, Rσ : S × A→ R is a reward function1, Fσ ⊆ S97

is a set of final states where the subtask is considered completed and Tσ : Fσ × S → [0, 1] is the98

jump probability function; upon reaching a state s in Fσ the system jumps to a new state s′ with99

probability Tσ(s′ | s). For the sake of clarity, we assume2 that Tσ(s′ | s) = 0 for any s′ with100

s′ ∈ Fσ′ for some σ′. Finally, σ0 ∈ Σ is the initial subtask which has to be completed first3. A101

multi-task MDP can be viewed as a discrete time variant of a hybrid automaton model [17].102

In the case of our motivating example, the set of subtasks is given by103

Σ = {left, right, straight, sharp-left, sharp-right}
with Fσ denoting the exit region of the segment corresponding to subtask σ. We use the jump104

transitions T to model the change-of-coordinates performed upon reaching an exit region. The105

reward function Rσ for a subtask σ is given by Rσ(s, a, s′) = −∥s′ − cσ∥22 +B ·1(s′ ∈ Fσ) where106

cσ is the center of the exit region and the subtask completion bonus B is a positive constant.107

A task τ is defined to be an infinite sequence4 of subtasks τ = σ0σ1 . . ., and T denotes the set of all
tasks. For any task τ ∈ T , τ [i] denotes the ith subtask σi in τ . In our setting, the task is chosen by
the environment nondeterministically. Given a task τ , a configuration of the environment is a pair
(s, i) ∈ S × Z≥0 with s /∈ Fτ [i] denoting that the system is in state s and the current subtask is τ [i].
The initial distribution over configurations ∆ : S × Z≥0 → [0, 1] is given by ∆(s, i) = ητ [0](s) if
i = 0 and 0 otherwise. The probability of transitioning from (s, i) to (s′, j) on an action a is

Pr((s′, j) | (s, i), a) =


∑
s′′∈Fτ[i]

P (s′′ | s, a)Tτ [i](s′ | s′′) if j = i+ 1

P (s′ | s, a) if j = i

0 otherwise.

Intuitively, the system transitions to the next subtask if the current subtask is completed and stays in
the current subtask otherwise. A (deterministic) policy is a function π : S → A, where a = π(s)
is the action to take in state s. Our goal is to learn one policy πσ for each subtask σ such that the
discounted reward over the worst-case task τ is maximized. Formally, given a set of policies Π =
{πσ | σ ∈ Σ} and a task τ , we can define a Markov chain over configurations with initial distribution
∆ and transition probabilities given by PΠ((s

′, j) | (s, i)) = Pr((s, j′) | (s, i), πτ [i](s)). We denote

1We can also have Rσ : S×A×S → R depending on the next state but we omit it for clarity of presentation.
2This assumption can be removed by adding a fictitious copy of Fσ to S for each σ ∈ Σ.
3When there is no fixed initial subtask, we can add a fictitious initial subtask.
4A finite sequence can be appended with an infinite sequence of a fictitious subtask with zero reward.
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by DΠ
τ the distribution over infinite sequences of configurations ρ = (s0, i0)(s1, i1) . . . generated

by τ and Π. Then, we define the objective function as

J(Π) = inf
τ∈T

Eρ∼DΠ
τ

[ ∞∑
t=0

γtRτ [it](st, πτ [it](st))
]
.

These definitions can be naturally extended to stochastic policies as well. In our motivating ex-108

ample, choosing a large enough completion bonus B guarantees the discounted reward to be109

higher for runs in which more subtasks are completed. Our aim is to compute a set of policies110

Π∗ ∈ argmaxΠ J(Π). Each subtask policy πσ defines an option [41] oσ = (πσ, Iσ, βσ) where111

Iσ = S \ Fσ and βσ(s) = 1(s ∈ Fσ). Here, the choice of which option to trigger is made by the112

environment rather than the agent.113

3 Reduction to Stagewise Markov Games114

The problem statement naturally leads to a game theoretic view in which the environment is
the adversary. We can formally reduce the problem to a two-agent zero-sum Markov game
G = (S̄, A1, A2, P̄ , R̄, γ̄, η̄) where S̄ = S × Σ is the set of states, A1 = A are the actions of
agent 1 (the agent learning the options) and A2 = Σ are the actions of agent 2 (the adversary). The
transition probability function P̄ : S̄ ×A1 ×A2 × S̄ → [0, 1] is given by

P̄ ((s′, σ′) | (s, σ), a1, a2) =


P (s′ | s, a1) if s /∈ Fσ & σ = σ′

Tσ(s
′ | s) if s ∈ Fσ & σ′ = a2

0 otherwise.

We observe that the states are partitioned into two sets S̄ = S1 ∪ S2 where S1 = {(s, σ) | s /∈ Fσ}115

is the set of states where agent 1 acts (causing a step inM) and S2 = {(s, σ) | s ∈ Fσ} is the set116

of states where agent 2 takes actions (causing a change of subtask); this makes G a stagewise game.117

The reward function R̄ : S̄×A1 → R is given by R̄((s, σ), a) = Rσ(s, a) if s /∈ Fσ and 0 otherwise.118

The discount factor depends on the state and is given by γ̄(s, σ) = γ if s /∈ Fσ and 1 otherwise; this119

is because a change of subtask does not invoke a step inM. The initial state distribution η̄ is given120

by η̄(s, σ) = η(s)1(σ = σ0). A run of the game is a sequence ρ̄ = s̄0a
1
0a

2
0s̄1a

1
1a

2
1 . . . where s̄t ∈ S̄121

and ait ∈ Ai.122

A (deterministic) policy for agent i is a function πi : S̄ → Ai. Given policies π1 and π2 for agents 1
and 2, respectively and a state s̄ ∈ S̄ we denote by DG

s̄ (π1, π2) the distribution over runs generated
by π1 and π2 starting at s̄. Then, the value of a state s̄ is defined by

V π1,π2(s̄) = Eρ̄∼DG
s̄ (π1,π2)

[ ∞∑
t=0

( t−1∏
k=0

γ̄(s̄k)
)
R̄(s̄t, a

1
t )
]
.

We are interested in computing a policy π∗
1 maximizing

JG(π1) = Es̄∼η̄[min
π2

V π1,π2(s̄)].

Given a policy π1 for agent 1, we can construct a policy πσ for any subtask σ given by πσ(s) =123

π1(s, σ); we denote by Π(π1) the set of subtask policies constructed this way. The following the-124

orem connects the objective of the game with our multi-task learning objective; all proofs are in125

Appendix A.126

Theorem 3.1. For any policy π1 for agent 1 in G, we have J(Π(π1)) ≥ JG(π1).127

Therefore, JG(π1) is a lower bound on the objective J(Π(π1)) which we seek to maximize. Now,128

let us define the optimal value of a state s̄ by V ∗(s̄) = maxπ1
minπ2

V π1,π2(s̄). The following129

theorem shows that it is possible to construct a policy π∗
1 that maximizes JG(π1) from the optimal130

value function V ∗.131

Theorem 3.2. For any policy π∗
1 such that for all (s, σ) ∈ S1,

π∗
1(s, σ) ∈ argmaxa∈A

{
R̄((s, σ), a) + γ ·

∑
s′∈S

P (s′ | s, a)V ∗(s′, σ)
}
,

we have that π∗
1 ∈ argmaxπ1 JG(π1).132
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Algorithm 1 Asynchronous value iteration algorithm for computing optimal subtask policies.
1: function ASYNCVALUEITERATION(M, V )
2: while stopping criterion is met do
3: for σ ∈ Σ do // in parallel
4: ComputeWσ(V )

5: V ← Fasync(V ) // using Equation 3

3.1 Value Iteration133

In this section, we briefly look at two value iteration algorithms to compute V ∗ which we later adapt134

in Section 4 to obtain learning algorithms. Let V = {V : S1 → R} denote the set of all value135

functions over S1. Given a value function V ∈ V we define its extension to all of S̄ using136

JV K(s, σ) =
{
minσ′∈Σ

∑
s′∈S Tσ(s

′ | s)V (s′, σ′) if s ∈ Fσ
V (s, σ) otherwise.

(1)

For a state s ∈ Fσ , JV K(s, σ) denotes the worst-case value (according to V ) with respect to the137

possible choices of next subtask σ′. Now, we consider the Bellman operator F : V → V defined by138

F(V )(s, σ) = max
a∈A

{
R̄((s, σ), a) + γ ·

∑
s′∈S

P (s′ | s, a)JV K(s′, σ)
}

(2)

for all (s, σ) ∈ S1. Let us denote by V ∗ ↓S1
the restriction of V ∗ to S1. The following lemma139

follows straightforwardly giving us our first value iteration procedure.140

Theorem 3.3. F is a contraction mapping with respect to the ℓ∞-norm on V and V ∗ ↓S1
is the141

unique fixed point of F with limn→∞ Fn(V ) = V ∗ ↓S1
for all V ∈ V .142

Next we consider an asynchronous value iteration procedure which allows us to parallelize com-143

puting subtask policies for different subtasks. Given a subtask σ and a value function V ∈ V , we144

define a subtask MDPMV
σ which behaves likeM until reaching a final state s ∈ Fσ after which it145

transitions to a dead state ⊥ achieving a reward of JV K(s, σ). Formally,MV
σ = (Sσ, A, Pσ, R

V
σ , γ)146

where Sσ = S ⊔ {⊥} with ⊥ being a special dead state, Pσ(s′ | s, a) = P (s′ | s, a) if ⊥ ̸= s /∈ Fσ147

and Pσ(s′ | s, a) = 1(s′ = ⊥) otherwise. The reward function is given by RVσ (s, a) = Rσ(s, a) if148

⊥ ≠ s /∈ Fσ , RVσ (s, a) = JV K(s, σ) if ⊥ ≠ s ∈ Fσ and is 0 otherwise. We denote byWσ(V ) the149

optimal value function of the MDPMV
σ . We then define the asynchronous value iteration operator150

Fasync : V → V using151

Fasync(V )(s, σ) =Wσ(V )(s). (3)

We can show that repeated application of Fasync leads to the optimal value function V ∗ of the G.152

Theorem 3.4. For any V ∈ V , limn→∞ Fnasync(V )→ V ∗ ↓S1
.153

Since each Wσ(V ) can be computed independently, we can parallelize the computation of Fasync

giving us the algorithm in Algorithm 1. We can also show that it is not necessary to computeWσ(V )
exactly. Let Vσ = {V̄ : Sσ → R} be the set of all value functions over Sσ . For a fixed V ∈ V , let
Fσ,V : Vσ → Vσ denote the usual Bellman operator for the MDPMV

σ given by

Fσ,V (V̄ )(s) = max
a∈A

{
RVσ (s, a) + γ ·

∑
s′∈Sσ

Pσ(s
′ | s, a)V̄ (s′)

}
for all V̄ ∈ Vσ and s ∈ Sσ . For any V ∈ V and σ ∈ Σ, we define a corresponding Vσ ∈ Vσ using
Vσ(s) = JV K(s, σ) if s ∈ S and Vσ(⊥) = 0. Then, for any integer m > 0 and V ∈ V , we can use
Fmσ,V (Vσ) as an approximation toWσ(V ). Let us define Fm : V → V using

Fm(V )(s, σ) = Fmσ,V (Vσ)(s).

Intuitively, Fm corresponds to performing m steps of value iteration in each subtask MDP MV
σ154

(which can be parallelized) starting at Vσ . The following theorem guarantees convergence when155

using Fm instead of Fasync.156

Theorem 3.5. For any V ∈ V and m > 0, limn→∞ Fnm(V )→ V ∗ ↓S1
.157
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Algorithm 2 Robust Option Soft Actor Critic.
Inputs: Learning rates αψ , αθ, entropy weight β and Polyak rate δ.

1: function ROSAC(αψ , αθ, β, δ)
2: Initialize parameters {ψσ}σ∈Σ, {ψtarg

σ }σ∈Σ and {θσ}σ∈Σ

3: Initialize replay buffer B
4: for each iteration do
5: for each episode do
6: s0 ∼ η
7: σ0 ← InitialSubtask
8: for each step t do
9: at ∼ πθσt

(· | st) and st+1 ∼ P (· | s, a)
10: B ← B ∪ {(st, at, st+1)}
11: if st+1 ∈ Fσt

then
12: st+1 ∼ Tσt(· | st+1)

13: σt+1 ← Greedy(ε, argminσ Ṽ (st+1, σ),Σ)
14: else
15: σt+1 ← σt
16: for each gradient step do
17: Sample batch B ∼ B
18: for σ ∈ Σ do
19: ψσ ← ψσ − αψ∇ψσLQ(ψσ, B)
20: θσ ← θσ − αθ∇θσLπ(θσ, B)
21: ψtarg

σ ← δψσ + (1− δ)ψtarg
σ

4 Learning Algorithms158

In this section, we present RL algorithms for solving the game G. We first consider the finite MDP159

setting for which we can obtain a modified Q-learning algorithm with a convergence guarantee. We160

then present two algorithms based on Soft Actor Critic (SAC) for the continuous state setting.161

4.1 Finite MDP162

Assuming finite states and actions, we can obtain a Q-learning variant for solving G which we call163

Robust Option Q-learning. We assume that jump transitions T are known to the learner; this is usu-164

ally the case since jump transitions are used to model subtask transitions and change-of-coordinates165

within the controller. However, we believe that the algorithm can be easily extended to the scenario166

where T is unknown.167

We maintain a function Q : S1 × A → R with Q(s, σ, a) denoting Q((s, σ), a). The corre-168

sponding value function VQ is defined using VQ(s, σ) = maxa∈AQ(s, σ, a) and is extended to169

all of S̄ as JVQK. Note that, given a Q-function, the extended value function JVQK can be com-170

puted exactly. Robust Option Q-learning is an iterative process—in each iteration t, it takes a step171

((s, σ), a1, a2, (s
′, σ)) in G with (s, σ) ∈ S1 and updates the Q-function using172

Qt+1(s, σ, a1)← (1− αt)Qt(s, σ, a1) + αt(R̄((s, σ), a1) + γJVQtK(s
′, σ)). (4)

where Qt is the Q-function in iteration t and JVQtK is the corresponding extended value function.173

Under standard assumptions on the learning rates αt, similar toQ-learning, we can show that Robust174

Option Q-learning converges to the optimal Q-function almost surely. Here, the optimal Q-function175

is defined by Q∗(s, σ, a) = R̄((s, σ), a) + γ
∑
s′∈S P (s

′ | s, a)V ∗(s′, σ) for all (s, σ) ∈ S1. Let176

αt(s, σ, a) denote the learning rate used in iteration t ifQt(s, σ, a) is updated and 0 otherwise. Then,177

we have the following theorem.178

Theorem 4.1. If
∑
t αt(s, σ, a) =∞ and

∑
t α

2
t (s, σ, a) <∞ for all (s, σ) ∈ S1 and a ∈ A, then179

limt→∞Qt = Q∗ with probability 1.180
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4.2 Continuous States and Actions181

In the case of continuous states and actions, we can adapt any Q-function based RL algorithm such182

as Deep Deterministic Policy Gradients (DDPG) [26] or Soft Actor Critic (SAC) [14] to our setting.183

Here we present an SAC based algorithm that we call Robust Option SAC (ROSAC) which is outlined184

in Algorithm 2. This algorithm, like SAC, adds an entropy bonus to the reward function to improve185

exploration.186

We maintain two Q-functions for each subtask σ, Qψσ : S → R parameterized by ψσ and a target
function Qψtarg

σ
parameterized by ψtarg

σ . We also maintain a stochastic subtask policy πθσ : S →
D(A) for each subtask σ where D(A) denotes the set of distributions over A. Given a step (s, a, s′)
inM and a subtask σ with s /∈ Fσ , we define the target value by

yσ(s, a, s
′) = Rσ(s, a) + γJV K(s′, σ)

where the value JV K(s′, σ) is estimated using Ṽ (s′, σ) = Qψtarg
σ

(s′, ã) − β log πθσ (ã | s′) with
ã ∼ πθσ (· | s′) if s′ /∈ Fσ . If s′ ∈ Fσ , we estimate JV K(s′, σ) using Ṽ (s′, σ) = minσ′∈Σ Ṽ (s′′, σ′)

where Ṽ (s′′, σ′) = Qψtarg

σ′
(s′′, ã) − β log πθσ′ (ã | s′′) with ã ∼ πθσ′ (· | s′′) and s′′ ∼ Tσ(· | s′).

Now, given a batch B = {(s, a, s′)} of steps inM we update ψσ using one step of gradient descent
corresponding to the loss

LQ(ψσ, B) =
1

|B|
∑

(s,a,s′)∈B

(Qψσ (s, a)− yσ(s, a, s′))2

and the subtask policy πθσ is updated using the loss

Lπ(θσ, B) = − 1

|B|
∑

(s,a,s′)∈B

Eã∼πθσ (·|s)
[
Qψσ (s, ã)− β log πθσ (ã | s)

]
.

The gradient ∇θσLπ(θσ, B) can be estimated using the reparametrization trick if πθσ (· | s) is a187

Gaussian distribution whose parameters are differentiable w.r.t. θσ . We use Polyak averaging to188

update the target Q-networks {Qψtarg
σ
| σ ∈ Σ}.189

Note that we do not train a separate policy for the adversary. During exploration, we use the ε-190

greedy strategy to select subtasks. We first estimate the “worst” subtask for a state s using σ̃ =191

argminσ Ṽ (s, σ) where Ṽ (s, σ) is estimated as before. Then the function Greedy(ε, σ̃,Σ) chooses192

σ̃ with probability 1− ε and picks a subtask uniformly at random from Σ with probability ε.193

Asynchronous ROSAC. We can also obtain an asynchronous version of the above algorithm which194

lets us train subtask policies in parallel. Asynchronous Robust Option SAC (AROSAC) is outlined in195

Algorithm 3. Here we use one replay buffer for each subtask. We maintain an initial state distribution196

η̃ over S to be used for training every subtask policy {πσ}σ∈Σ. η̃ is represented using a finite set of197

states D from which a state is sampled uniformly at random. The value function Ṽ : S × Σ → R198

is estimated as before. To be specific, in each iteration, an estimate of any value Ṽ (s, σ) is obtained199

on the fly using the Q-functions and the subtask policies from the previous iteration.200

The SAC subroutine runs the standard Soft Actor Critic algorithm for N iterations on the subtask201

MDPMṼ
σ (defined in Section 3)5 with initial state distribution η̃ (defaults to η if D = ∅). It returns202

the updated parameters along with states Xσ visited during exploration with Xσ ⊆ Fσ . The states203

in Xσ are used to update the initial state distribution for the next iteration following the Dataset204

Aggregation principle [38].205

5 Experiments206

We evaluate our algorithms ROSAC and AROSAC on two multi-task environments; a rooms environ-207

ment and an F1/10th racing car environment [11].208

5Note that it is possible to obtain samples from MṼ
σ as long can one can obtain samples from M and

membership in Fσ can be decided.
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Algorithm 3 Asynchronous Robust Option Soft Actor Critic.
Inputs: Learning rates α, entropy weight β, Polyak rate δ and number of SAC iterations N .

1: function AROSAC(α, β, δ, N )
2: Initialize parameters Ψ = {ψσ}σ∈Σ, Ψtarg = {ψtarg

σ }σ∈Σ and Θ = {θσ}σ∈Σ

3: Initialize replay buffers {Bσ}σ∈Σ and Initialize D = {}
4: for each iteration do
5: Ṽ ← OBTAINVALUEESTIMATOR(Ψ,Θ)
6: for σ ∈ Σ do // in parallel
7: ψσ, ψ

targ
σ , θσ, Xσ ← SAC(MṼ

σ , D, ψσ, ψ
targ
σ , θσ, α, β, δ,N)

8: for σ ∈ Σ do
9: for s ∈ Xσ do

10: s′ ∼ Tσ(· | s) and D ← D ∪ {s′}

Figure 2: Rooms environ-
ment

Rooms environment. We consider the environment shown in Fig-209

ure 2 which depicts a room with walls and exits. Initially the robot210

is placed in the green triangle. The L-shaped obstacles indicate walls211

within the room that the robot cannot cross. A state of the system is a212

position (x, y) ∈ R2 and an action is a pair (v, θ) where v is the speed213

and θ is the heading angle to follow during the next time-step. There214

are three exits: left (blue), right (yellow) and up (grey) reaching each215

of which is a subtask. Upon reaching an exit, the robot enters another216

identical room where the exit is identified (via change-of-coordinates)217

with the bottom entry region of the current room. A task is a sequence218

of directions—e.g., left → right → up → right indicating that219

the robot should reach the left exit followed by the right exit in the220

subsequent room and so on. Although the dynamics are simple, the221

obstacles make learning challenging in the adversarial setting.222

F1/10th environment. This is the environment in the motivating example. A publicly available223

simulator [11] of the F1/10th car is used for training and testing. The policies use the LiDAR224

measurements from the car as input (as opposed to the state) and we assume that the controller can225

detect the completion of each segment; as shown in prior work [17], one can train a separate neural226

network to predict subtask completion.227

Baselines. We compare our approach to three baselines. The baseline NAIVE trains one controller228

for each subtask with the only aim of completing the subtask, similar to [17], using a manually229

designed initial state distribution. DAGGER is a similar approach which, instead of using a manually230

designed initial state distribution for training, infers the initial state distribution using the Dataset231

Aggregation principle [38]. The MADDPG baseline solves the game G using the multi-agent RL232

algorithm proposed in [29] for solving concurrent Markov games with continuous states and actions.233

Evaluation. We evaluate the performance of these algorithms against two adversaries. One adver-234

sary is the random adversary which picks the next subtask uniformly at random from the set of all235

subtasks. The other adversary estimates the worst sequence of subtasks for a given set of options236

using Monte Carlo Tree Search (MCTS) [19]. The MCTS adversary is trained by assigning a reward237

of 1 if it selects a subtask which the corresponding policy is unable to complete within a fixed time238

budget and a reward of 0 otherwise. For the Rooms environment, we consider subtask sequences of239

length atmost 5 whereas for the F1/10th environment, we consider sequences of subtasks of length240

at most 20. We evaluate both the average number of subtasks completed as well as the probability241

of completing the set maximum number of subtasks.242

Results. The plots for the rooms environment are shown in Figure 3 and plots for the F1/10th243

environment are shown in Figure 4. We can observe that ROSAC is able outperform other approaches244

and learn robust options. In the rooms environment, AROSAC achieves similar performace albeit245

requiring more samples; however, it has the added benefit of being parallelizable. In the F1/10th246

environment, it performs similar to the other baselines. DAGGER and NAIVE baselines are unable to247

learn policies that can be used to perform long sequences of subtasks; this is mostly due to the fact248
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Figure 3: Plots for the Rooms environment. x-axis denoted the number of sample steps and y-axis
denoted the either the average number of subtasks completed or the probability of completing 5
subtasks. Results are averaged over 10 runs. Error bars indicate ± standard deviation.
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Figure 4: Plots for the F1/10th environment. x-axis denoted the number of sample steps and y-axis
denoted the either the average number of subtasks completed or the probability of completing 20
subtasks. Results are averaged over 5 runs. Error bars indicate ± standard deviation.

that they learn options that cause the system to reach states from which future subtasks are difficult249

to perform—e.g., in the rooms environment, the agent sometimes reaches the left half of the exits250

from where it is difficult to reach the right exit in the subsequent room. Although MADDPG uses the251

same reduction to two-player games as ROSAC, it ignores all the structure in the game and treats it as252

a generic Markov game. As a result, it learns a separate NN policy for each player which leads to the253

issue of unstable training, primarily due to the non-stationary nature of the environment observed254

by either agent. As shown in the plots, this leads to poor performance when applied to the problem255

of learning robust options.256

6 Conclusions257

We have proposed a framework for training robust options which can be used to perform arbitrary258

sequences of subtasks. In our framework, we first reduce the problem to a two-agent zero-sum259

stagewise Markov game which has a unique structure. We utilized this structure to design two al-260

gorithms, namely ROSAC and AROSAC, and demonstrated that they outperform existing approaches261

for training options with respect to multi-task performance. One potential limitation of our approach262

is that the set of subtasks is fixed and has to be provided by the user. An interesting direction for263

future work is to address this limitation by combining our approach with option discovery methods.264

Societal impacts. Our work seeks to improve reinforcement learning for complex long-horizon265

tasks. Any progress in this direction would enable robotics applications both with positive impact—266

e.g., flexible and general-purpose manufacturing robotics, robots for achieving agricultural tasks,267

and robots that can be used to perform household chores—and with negative or controversial268

impact—e.g., military applications. These issues are inherent in all work seeking to improve the269

abilities of robots.270
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