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Abstract

This work investigates whether time series of natural phenomena can be understood as
being generated by sequences of latent states which are ordered in systematic and regu-
lar ways. We focus on clinical time series and ask whether clinical measurements can be
interpreted as being generated by meaningful physiological states whose succession follows
systematic principles. Uncovering the underlying compositional structure will allow us to
create synthetic data to alleviate the notorious problem of sparse and low-resource data
settings in clinical time series forecasting, and deepen our understanding of clinical data.
We start by conceptualizing compositionality for time series as a property of the data gen-
eration process, and then study data-driven procedures that can reconstruct the elementary
states and composition rules of this process. We evaluate the success of this methods us-
ing two empirical tests originating from a domain adaptation perspective. Both tests infer
the similarity of the original time series distribution and the synthetic time series distri-
bution from the similarity of expected risk of time series forecasting models trained and
tested on original and synthesized data in specific ways. Our experimental results show
that the test set performance achieved by training on compositionally synthesized data is
comparable to training on original clinical time series data, and that evaluation of models
on compositionally synthesized test data shows similar results to evaluating on original test
data. In both experiments, performance based on compositionally synthesized data by far
surpasses that based on synthetic data that were created by randomization-based data aug-
mentation. An additional downstream evaluation of the prediction task of sequential organ
failure assessment (SOFA) scores shows significant performance gains when model training
is entirely based on compositionally synthesized data compared to training on original data,
with improvements increasing with the size of the synthesized training set.

1 Introduction

Compositionality describes the systematic capacity of a system to generate an unbounded number of valid
outputs based on novel combinations from a finite set of elementary components. This capacity is considered
one of the main pillars of the human ability to generalize to new tasks and situations (Lake et al., 2017).
Standard examples for compositionality in human and machine intelligence are natural language and vision,
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for example, the capacity to build an infinite number of sentences from a finite vocabulary, or the composition
of images from elementary concepts of color, position, and shape. Formal accounts of compositionality arose
independently in logic, natural language processing, and computer science, beginning in the 19th century (see
Partee (1984), Janssen (2012), or Szabó (2020) for historical overviews). The concept of compositionality
currently experiences a renaissance in machine learning under the label of compositional generalization —
the ability to systematically generalize to test data that are composed from known components seen in
novel combinations. The goal of this recent research strand is to understand and formalize the concept of
compositionality, and to inject a compositional inductive bias into state-of-the art generative models, aiming
at improved one-shot compositional generalization (Patel et al., 2022) from primitives seen during training
to unseen novel combinations at test time.

Our goal is to investigate whether the concept of compositionality can be applied to the less obvious domain
of time series, focusing on multivariate and sparse time series of clinical measurements of intensive care
patients collected in electronic health records. We start from an algebraic formalization of compositionality
as a property of the data generation process which crucially depends on a homomorphism that maps physi-
ological states to clinical observations preserving compositional structure. Compositionality of clinical time
series then means that the clinical assessment of a sequence of physiological states is a function of the clinical
assessments of its constituents and the way they are sequentially ordered. On the one hand, this interpreta-
tion motivates the question of meaningful physiological states and the systematics of their ordering. On the
other hand, it motivates a data-driven pipeline that deconstructs the data generation process to empirically
detect elementary states and composition rules. An algorithm that discovers elementary components and
composition rules will allow us to create synthetic data to alleviate the notorious problem of sparse and
low-resource data settings in clinical time series forecasting. Furthermore, we can gain a theoretical under-
standing of the compositional data generation process underlying time series data from a domain adaptation
perspective. The intuition is to infer that original time series data and compositionally synthesized data
have the same distribution if domain adaptation from synthesized to original data is successful.

The experimental part of this work is built on an empirical pipeline that uses representation learning, in
particular clustering of learned representations of time series subsequences (Ghaderi et al., 2023; Ma et al.,
2019), to operationalize a notion of latent classes representing meaningful physiological states, for example,
healthy or unhealthy states of certain organ systems. Mapping time series to symbolic representations makes
them amenable to compositional methods developed for natural language processing (NLP). Here we apply a
simple but entirely data-driven approach to inducing compositional structure from symbolic representations
of time series (Andreas, 2020). This algorithm implements the distributional principle (Firth, 1957) to
exchange subsequences that occur in the same context to yield other valid sequences.

The theoretical contribution of this work is to motivate empirically testable criteria for the compositionality
of the data generation process of time series in domain adaptation theory (Ben-David et al., 2006; 2010b;a;
Ben-David & Urner, 2014). We exploit the assumption that successful domain adaptation requires a small
distance between source distribution (in our case, the distribution underlying compositionally synthesized
data) and target distribution (in our case, original time series data), to infer a small distance between
the underlying distributions of synthesized and original data from empirically testing the success of domain
adaptation from synthetic to original data. Our first test evaluates compositionally synthesized time series by
analyzing their utility for the training of a time series forecasting (TSF) model. Our experiments demonstrate
comparable test set performance of models trained on compositionally synthetic data to models trained on
the original data for MIMIC-III (Johnson et al., 2016) and eICU (Pollard et al., 2018)) data sets. Our
second test compares the use of compositionally synthesized data against original time series data as test
data in TSF tasks. Our empirical results show that both test sets yield a similar test set performance for a
TSF model trained on original time series data. Furthermore, we find that compositionally synthesized data
is much closer to the original data than synthetic data created by a non-compositional data augmentation
algorithm (Yun et al., 2019).

In sum, the contributions1 of our work are as follows: We present an analysis based on symbolic repre-
sentations and compositional structure that allows an understanding of clinical time series as symbols that

1Code to reproduce the experiments described in this paper is available at https://github.com/StatNLP/tmlr_2025_
compositional_time_series
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are emitted by an ordered sequence of physiological states. The underlying algorithm allows us to create
synthetic training and test data that are on par with the original data in a real-world clinical time series
forecasting task and show increasing improvements in the size of synthesized data in downstream tasks. This
circumvents the notorious problem of sparse and low-resource data settings in clinical TSF. Furthermore,
we present empirically testable criteria for compositionality rooted in domain adaptation theory, allowing
broader claims on the compositionality of the data generation process underlying general time series data.

2 Related Work

Symbolic Compositional Structure in NLP. A connection of our work to NLP can be drawn by
viewing natural language sentences as discrete time series of symbols, and by considering the task of next
word prediction in language modeling as a TSF task. The central models developed in symbolic NLP —
the dominant paradigm in 20th century NLP — were all explicit symbolic generative processes allowing to
construct an infinite number of sentences from a finite alphabet (vocabulary) and a finite recursive device
(grammar)2. Since NLP research has long departed from the symbolic paradigm, the central question in
current research on compositional generalization in NLP is consequently an investigation of the compositional
skills of non-symbolic neural network architectures. One research strand on compositionality in non-symbolic
NLP focuses on the creation of benchmark datasets to evaluate the compositional generalization abilities of
neural networks (Lake & Baroni (2018); Keysers et al. (2020); Kim & Linzen (2020), inter alia). Most such
datasets are based on the NLP task of semantic parsing, where the components and composition rules are
obvious and can be clearly defined. Compositionality is then quantified by measuring accuracy on test sets
with a similar component distribution, but different compound distribution. Another research strand focuses
on directly injecting a compositional inductive bias into neural sequence models (Russin et al. (2020); Huang
et al. (2024); Sartran et al. (2022), inter alia). Our approach directly builds on work on compositional data
augmentation Andreas (2020); Akyürek et al. (2021); Qiu et al. (2022) that aims to provide a compositional
inductive bias to state-of-the-art sequence learning models by adding compositionally generated data to their
training sets.

Disentangled Representation Learning in Vision. The goal of disentangled representation learning in
vision is to separate informative factors such that a change in a single latent factor leads to a change in a single
factor in the learned representation (Bengio et al., 2013). The state-of-the-art models in this area are auto-
encoders that directly aim to reconstruct the generative factors of variation (Higgins et al. (2017); Montero
et al. (2021); Xu et al. (2022), inter alia). The generalization abilities of these models are usually tested
by the task of reconstructing compositionally generated test data that include combinations of generative
factors that were not seen during training. However, it has been shown that unsupervised disentangled
representation learning is impossible without inductive biases on both models and data (Locatello et al.,
2019), and that increased disentanglement does not increase generalization capabilities, especially if one
moves away from a simple artificial data set to real-world data (Schott et al., 2022; Montero et al., 2022).
Wiedemer et al. (2023) formalize compositionality as a property of the data generation process, assuming the
composition function, as well as the latent description of the observations to be known, effectively reducing
the learning task to a reconstruction of the component functions. In contrast to this work, we cannot
formalize compositional generalization as a direct reconstruction problem since neither latent factors nor the
composition function are known for time series. Instead, we indirectly test compositional generalization by
evaluating the utility of compositionally synthesized data as training and test data in real-world TSF tasks.

Domain Adaptation. Our work takes crucial inspiration from the work of Ben-David et al. (2006;
2010b;a); Ben-David & Urner (2014) to motivate empirically testable criteria for compositionality in do-
main adaptation theory. Starting from theoretical results that identify necessary and sufficent conditions for
a successful DA, we created two experimental setups that allow us to infer a small distance between syn-
thetic and original data based on the distance between expected risks estimates. Similar evaluation setups
of training and testing on original and synthetic data have been used by Esteban et al. (2017), however,

2Symbolic approaches dominated the NLP fields of syntax and semantics, starting with Chomsky (1957) and Montague
(1970), respectively, and are still relevant in formal language theory in computer science (starting with Chomsky (1959)).
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without a theoretical motivation. Furthermore, our work shows how to generate a synthetic data distribution
from an original sample with the properties of matching the original distribution on the level of elementary
components, but differing from it at the level of compounds. Our results can be seen as strong hints at the
potential of a formal study of compositional data synthesization, with the goal of a better understanding of
its generalization properties.

Data Augmentation. Data augmentation has grown to an important subfield of machine learning on its
own, with a substantial body of work already being devoted to data augmentation for time series (Yoon et al.,
2019; Pei et al., 2021; Wen et al., 2021). We would like to stress that the goal of our work is not to present
an optimal data augmentation method for time series, but to analyze time series from the perspective of
compositional data generation, and to use empirically testable criteria on compositional data synthesization
as a proof-of-concept for the validity of this perspective. Insights into the compositional nature of time series
can only be gained systematic ablation studies where the contribution of compositionality can be isolated,
removed and replaced by random sampling. This is what CutMix (Yun et al., 2019) provides in our case
— a randomized variant of our compositional data augmentation method. Mixed-based data augmentation
approaches have been successfully applied to various machine learning tasks (Cao et al., 2024), including the
area of (physiological) time series data (Guo et al., 2023; Yang & Desell, 2022). Our work provides empirical
evidence for an advantage of augmentation techniques that mimic a compositional data generation processes
over randomization-based data augmentation.

Symbolic Dynamics. Research on transforming real-valued time series into symbolic representations has
a long history (see, for example, Williams (2004) for an overview), where the central application is the
analysis of dynamical systems (Lind & Marcus, 1995). Since the number of possible symbol assignments
grows exponentially with the dimension of the time series, the traditional approach of partitioning the
multidimensional phase space spanned by the input variables of a time series into finitely many pieces and
then labeling each partition by a specific symbol is only feasible for very low dimensional time series. This
problem is overcome by representation learning approaches that first map time series into an embedding
space (whose dimensionality can be controlled), where clustering methods are then applied to partition the
space (Ma et al., 2019; Ghaderi et al., 2023). We employ the latter techniques to learn a symbolic vocabulary
that contains the elementary components of our compositional data synthesization process, and compare it
to randomized version of traditional symbolic dynamics.

Pattern Recognition in Time Series Analysis. Work on time series motifs aims at the detection of
elementary components of time series by identifying short segments that repeat themselves approximately
the same within one larger time series (Patel et al., 2002; Schäfer & Leser, 2022). This is orthogonal to
our problem of identifying elementary components as time series segments that appear in similar contexts
across different time series. Furthermore, detection of motifs in time series is mostly applied to waveform
data, e.g., quasi-continuous vital signals such as ECG recordings, whereas our framework is applied to vital
measurements where at most one datapoint is taken per hour.

3 Compositionality in Time Series

3.1 Compositional Data Generation

We conceptualize compositionality as a property of the data generating process, following an algebraic
formalization of compositionality (Montague, 1970; Partee, 1984; Szabó, 2020).
Definition 1. (Compositional data generation.) Let (Z, CZ) be an algebraic structure of latent states where
CZ is called the latent state composition function, and let (X , CX ) be an algebraic structure (of the same
type) of observations where CX is called the observation composition function. Furthermore, let φ : Z → X
be a homomorphism that maps latent states to observations. We call a data generating process f : Z → X
that satisfies

f(z1, . . . , zK) = φ(CZ(z1, . . . , zK)) = CX (φ(z1), . . . , φ(zk)) (1)

a compositional data generation process.
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Figure 1: Conceptualization of compositional data generation process for time series of clinical variables:
Physiological states are mapped to observations of clinical measurements which are composed into a full
time series. Healthy physiological states are realized by observations consisting of default measurements of
vital signals or lab measurements. Physiological states representing a failure of organ systems like heart
or lung are realized by observation vectors where the measurements of mean arterial pressure (MAP) or
oxygen saturation (sO2) are out of a range defined as healthy, or a systemic infection causing an elevated
procalcitonin (PCT) measurement. The clinical assessment of this example can be interpreted as a clinical
time series of a septic patient with multiple organ system failure, starting with healthy measurements, which
are followed by indicators of lung failure and cardiac failure, consequent to a indicators of a systemic infection.

The data generating process of clinical time series can be understood as compositional by the following
definition. Let latent states be physiological states of patients, CZ be the progression of a patient through
these states, observations be clinical measurements, and CX be the temporal regularities within time series.
Then Equation 1 can be interpreted as follows:

The clinical assessment of a sequence of physiological states is a function of the clinical
assessments of its constituents and the way they are sequentially ordered.

The right-hand side form of Equation 1 can be illustrated by the generative process shown in Figure 1.
This process starts from physiological states of patients, which emit observable components from the space
of clinical measurements, which are ordered over time into a full sequence of clinical measurements. The
left-hand side of Equation 1 motivates a deconstruction of this process into elementary representations of
latent states, which are composed to a sequence of latent states that is mapped to a sequence of observations.

This deconstruction process builds the basis of the experimental work presented in this paper and is illustrated
in Figure 2: Starting from input data of multivariate clinical time series, we extract a real-valued vector
representation of subsequences from the hidden states of a TSF model, which is then fed into a k-means
clustering algorithm (Lloyd, 1982) that allows us to assign a symbolic representation to time series based
on the cluster membership of its subsequences. These symbolic representations are the input for an entirely
data-driven compositional data augmentation algorithm (Andreas, 2020) that results in an implicit set of
rules allowing us to synthesize novel time series in a compositional manner. Each component of this pipeline
will be described in more detail below.
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Figure 2: Empirical deconstruction of multivariate time series for compositional data synthesization: First,
subsequences of time series are clustered and each cluster is assigned a symbolic label. Based on symbolic
representations of time series sub-sequences, compositional data augmentation algorithms can be applied to
synthesize full time series in a compositional manner.

3.2 A Domain Adaptation Perspective on Compositionality

Viewing the above sketched compositional data augmentation process from a domain adaptation (DA) per-
spective allows us to arrive at two empirically testable conditions for compositionality. These tests exploit
the fact that the training and test distribution of a model are not identical in DA scenarios. For both of
our empirical tests, one of these distributions will be synthetically created by a compositional algorithm,
and the other distribution will be the original distribution whose compositional status is unknown. The
compositionality of the data generation process underlying the original time series data can then be inferred
from successful DA from compositionally synthesized to original data.

Our first test is based on theoretical results established by Ben-David et al. (2006; 2010b;a), which provide
two jointly necessary and sufficient conditions for successful domain adaptation, one of which is a large enough
similarity between training and target distributions. We leverage these results to motivate an empirically
testable criterion based on the following rationale. We apply a learning algorithm to both the original
training data and compositionally synthesized training data and evaluate the trained models on the original
test data. If the estimated expected risks are identical, DA is considered successful and according to the
results established by Ben-David et al. (2006; 2010b;a), we can conclude that both distributions must be
identical. Thus, we can conclude that the original data generating process must be compositional.

Our second test is also grounded in the theory of DA and leverages a new result that extends an observation
by Ben-David & Urner (2014). Our Theorem 1 relates the proximity of the expected risks of a model on two
data distributions to the proximity of these distributions. We leverage this theorem to motivate a second
empirically testable criterion based on the following rationale. We evaluate a trained learner on both the
original test set and a compositionally synthesized test set, and estimate the ratio of the corresponding
expected risks. As established by Theorem 1, the magnitude of this ratio allows drawing a conclusion about
the proximity between the synthetic and original distributions. If this ratio is one, both distributions are
identical, and hence the original data generating process must be compositional.

In the following, we briefly summarize the theoretical concepts of DA theory, especially the necessary and
sufficient conditions for successful DA.

Let X be a domain, Y be a co-domain, and P and Q be distributions over X × Y. Furthermore, let PX and
QX denote the respective marginal distributions on X . Let H ⊆ YX be a hypothesis class of functions h,
and let ℓ (y, ŷ) be a loss function on the target labels y and the predicted labels ŷ = h(x). We can now define
the concepts of a domain adaptation learner (Definition 2), and a concept quantifying domain adaptation
learnability (Definition 3).
Definition 2. (Domain adaptation learner.) We call a learning algorithm A that receives training samples
from Q but whose expected risk is evaluated on P a (conservative) domain adaptation learner.
Definition 3. ((ϵ, δ)-learnability.) Let P and Q be distributions on X × Y with common support, H a
hypothesis class, and A be a domain adaptation learner. We say that A (ϵ, δ)-learns P from Q relative to H,
if for chosen ϵ, δ > 0 there exists an n ∈ N such that when provided a training sample T of size n obtained
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from Q, with probability of at least 1 − δ (over the sample space), the expected risk with respect to P of the
obtained classifier hT := A (T ) does not exceed the expected risk EP [H] := inf

h∈H
EP [ℓ(y, h(x))] of the best

classifier on P by more than ϵ:

PrT ∼Qn (EP [ℓ(y, hT (x))] − EP [H] ≤ ϵ) ≥ 1 − δ. (2)

Obviously DA works well if EP [ℓ(y, hT (x))] − EP [H] can be bounded by a small ϵ, with high probability
(small δ) for feasible sample sizes n. A further popular assumption in the context of DA is the covariate
shift assumption:
Definition 4. (Covariate shift.) Let P and Q be distributions on X × Y with common support. Then P
and Q satisfy the covariate shift assumption if the conditional distributions PY|X and QY|X are identical.

The covariate shift assumption is a rather weak requirement that only demands that the stochastic relation
between x and y be identical for Q and P. This assumption is only a necessary, but not a sufficient, condition
for a successful DA. This fact is exemplified by the following thought experiment. Let us assume that we
trained a model on Q, and that the difference between Q and P is such that QX places a lot of mass on
inputs that the learner predicts well, and less on inputs where the learner performs poorly. In addition,
assume that the situation is exactly the opposite for PX . Then the expected risk with respect to Q will be
small, but the expected risk with respect to P will be large. This thought experiment illustrates the need to
put a constraint on the difference between PX and QX . Since the seminal work of Ben-David et al. (2006),
it is common to express this difference in terms of the so-called A-distance:
Definition 5. (A-distance.) Let PX and QX be two distributions on X and A ⊆ 2X such that each set in
A is measurable with respect to both distributions. Then the A-distance between PX and QX is

dA (PX , QX ) := 2 sup
A′∈A

|PX (A′) − QX (A′)| (3)

It obviously is sufficient to consider only those domain subsets where the potential hypotheses predict different
outputs H∆H := {{x ∈ X | h(x) ̸= h′(x)} | h, h′ ∈ H}. Since we select a hypothesis that should perform well
with respect to P based solely on the information from Q, we need to assume that there exists a hypothesis
h∗ that performs well on both distributions. This hypothesis has been named the low-error joint predictor
by Ben-David et al. (2006):
Definition 6. (Low-error joint predictor.) We call a hypothesis h∗ a low-error joint predictor, if

EP [ℓ(y, h∗(x))] + EQ [ℓ(y, h∗(x))] ≈ EP [H] + EQ [H] (4)

were EP [H] := inf
h∈H

EP [ℓ(y, h(x))] and EQ [H] := inf
h∈H

EQ [ℓ(y, h(x))].

It has been shown by Ben-David et al. (2006; 2010b) that the combination of a small distance dH∆H (PX , QX )
and the existence of h∗ is necessary and sufficient for A to be a (ϵ, δ)-learner (making the covariate shift
assumption redundant if both of the former conditions hold).

For our first proposed test, we train a model once on the original training data to get an estimate of EP [H],
and also on compositionally synthesized training data to get an estimate for EP [ℓ(y, hT (x))]. Calculating the
difference between these estimates allows us to estimate an approximate magnitude for ϵ. If this magnitude is
small, DA was successful. This allows us to infer a small A-distance between the compositionally synthesized
and the original data distributions. Hence, we conclude that the original data generating process must be
compositional as well.

If h∗ does not exist, we can still test the similarity of P and Q under the covariate shift assumption based
on the expected risk ratio. The following theorem takes inspiration from Ben-David & Urner (2014) who
observed that a bounded ratio between PX and QX implies a bounded ratio of the expected risks calculated
with respect to P and Q for any learner. A proof is given in Appendix A.3.
Theorem 1. (Bounded expected risk and density.) Let P and Q be two absolutely continuous probability
distributions on X ×Y for which the covariate shift assumption holds such that fP(x, y) = f(y | x)fP(x) and
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fQ(x, y) = f(y | x)fQ(x) are the corresponding densities. Further let H be a hypotheses class of learners,
ℓ ≥ 0 be a loss function, and C, C ∈ R+. Then,

∀x ∈ X : CfQ(x) ≤ fP(x) ≤ CfQ(x) ⇐⇒ ∀h ∈ H : CEQ [ℓ (x, h(x))] ≤ EP [ℓ (x, h(x))] ≤ CEQ [ℓ (x, h(x))] .
(5)

Further C ≤ 1 and C ≥ 1.

Under the rather unproblematic assumption that EQ [ℓ (x, h(x))] > 0, and by defining fP (x)
fQ(x) = 1 for points

in X whose densities are zero, we obtain bounds on the ratios of densities and expected risks:

∀x ∈ X : C ≤ fP(x)
fQ(x) ≤ C ⇐⇒ ∀h ∈ H : C ≤ EP [ℓ (x, h(x))]

EQ [ℓ (x, h(x))] ≤ C. (6)

We utilize this relation to define a second empirically testable criterion. We evaluate a trained learner on
the original test set to estimate EP [ℓ (x, h(x))], and on the compositionally synthesized test set to estimate
EQ [ℓ (x, h(x))]. The ratio of these estimates is an estimate of the corresponding expected risk ratio. This
allows us to assess whether C and C are close to one, and by the above result, to infer whether fP(x, y) and
fQ(x, y) are close. If so, we conclude that the original data generating process is compositional as well.

4 Methods

4.1 Symbolic Dynamics

The empirical deconstruction process of multivariate time series shown in Figure 2 first needs to identify
elementary components that can in a second step be used to synthesize new time series in a composi-
tional manner. Since the composition technique used in the second step relies on discrete representations
of sub-segments of time series, we need to transform sub-sequences of real-valued vectors into symbolic
representations. The central concept in this context is the notion of a symbol space given in Definition 7.
Definition 7. (Symbol space.) Let (X , d) be a finite dimensional metric space with metric d and c1, . . . , ck ∈
X . Then the partition of X given by:

Si =
{

x ∈ X | ci = arg min
j=1,...,k

(d(x, cj))
}

(7)

for all i = 1, . . . , k is called the symbol space of X with symbols Si and centroids ci.

In order to transform a time series into a chain of symbols, we break an n-dimensional multivariate time
series of length T into consecutive non-overlapping blocks of length ∆ subject to T mod ∆ = 0. Next we
map these blocks to their corresponding symbol in the symbol space and arrange them in the same order
as the blocks. The domain of this mapping can be either the original input space Mn,∆, or the space
of the learned neural block representations. In the first case, a straightforward application of traditional
symbolic dynamics methods (Lind & Marcus, 1995; Williams, 2004) would require an alphabet size that
grows exponentially with the number of input dimensions. This is infeasible even for multivariate time series
of around 100 clinical variables. An approach to circumvent this problem is to randomly select a feasible
number of centroids in the input domain Mn,∆.

In the second case, we exploit the representations learned by a neural network and apply k-means3 clustering
to create a symbolic representation of the time series with a computational learning cost that is linear in the
embedding dimension. The learned representations consist of the hidden states of the encoder of the TSF
Transformer described in Section 5.1. This Transformer model was trained to predict three future hours
based on the current three hours on the training set, with hyperparameter settings as described in Appendix
A.1 (except the hidden size set to 50).
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training data

M A N B
She picks the suitcase up
M C N D
She puts the suitcase down
X A Y B
He picks the box up

augmentation X C Y D
He puts the box down

• Identify interchangeable fragments as (discontinuous) symbol sequences that appear in similar con-
texts (environments) in the training data, for example, A . . . B and C . . . D in context M . . . N .

• Find additional contexts in which interchangeable fragments appear, forming a template for substi-
tuting in another fragment, for example, context X . . . Y for fragment A . . . B.

• Augment the data with a synthesized training example by exchanging fragments in a template, for
example, substitute C . . . D for A . . . B in context X . . . Y .

Figure 3: Compositional data synthesization procedure for symbol sequences adapted from Andreas (2020).
Symbol sequences A . . . B, C . . . D, M . . . N , and X . . . Y are generic and can be discontinuous. An illustration
with natural language sentences if given in the respective second lines.

4.2 Data-Driven Compositional Data Synthesization

Andreas (2020) presented a linguistically motivated data-driven approach to induce compositional structure
in symbol sequences in NLP. This algorithm can be readily applied to induce compositional structure from
symbolic representations of time series. The key inspiration of the algorithm is the distributional structure
of language (Harris, 1954) according to which "You shall know a word by the company it keeps!" (Firth,
1957). This principle is grounded in the fact that words that are used and occur in the same contexts tend
to purport similar meanings. The method of Andreas (2020) exploits the distributional principle to generate
novel valid sequences by exchanging subsequences with similar meanings into new contexts.4 An illustrative
example of the distributional structure of language and how the method uses it is given in Figure 3.

In the following, we will present a formal account of the compositional data synthesization method illustrated
in Figure 3. We will introduce the notions of fragment, template, and environment of a sequence, and give a
formal definition of the synthesization process and provide pseudo-code for the algorithm used in our work
(see Algorithm 1 in Appendix A.4).
Definition 8. (Sequence.) A sequence of length k is a k-tuple whose elements are called symbols.
Definition 9. (Fragment.) Given a sequence s and a set of indices Ifrg ∈ 2{1,...,k}. A fragment is the tuple
of subsequences of s given by consecutive indices in Ifrg.
Definition 10. (Template.) Given a sequence s with length k and a pair of index sets Ifrg ∈ 2{1,...,k} and
Itpl := {1, . . . , k} \ Ifrg, a template is defined as the tuple whose symbols are identical to those of s for all the
indices of Itpl, and a slot symbol ⋆ for all indices in Ifrg where consecutive slot symbols are reduced to one.
Definition 11. (Environment.) Given a template t = (t1, . . . , tk) and a window size w. Let Ienv :={

i ∈ {1, . . . , k} | ⋆ ∈ (tmax(1,i−w), . . . , tmin(k,i+w))
}

. The corresponding subsequence of t given by Ienv is
called the environment of t (with respect to the window size w).

3We used the scikit-learn (Pedregosa et al., 2011) version of k-means clustering, implementing Lloyd’s standard algorithm
(Lloyd, 1982) by default.

4Note that this algorithm works on historical data and is but one possible approximation of the original data generation
process assumed to underlie (clinical) time series. We consider its purely data-driven nature and its impartiality towards the
underlying compositional process an advantage for the current exposition.
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Definition 12. (Insert). Given a template t = (t1, . . . , tk) and a fragment f = (f1, . . . , fm) where card(f) =
card (ti ∈ t | ti = ⋆), and let i1, . . . , im be the slot indices of t, then:

insert : (t1, . . . , tk) × (f1, . . . , fm) → (s1, . . . , sn)

(t1, . . . , tk) × (f1, . . . , fm) 7→ flatten

(si =
{

fj , i = ij

ti, ti ̸= ⋆

)k

i=1


combines t and f by replacing the slot symbols of t with the symbols of the corresponding subsequences of
f to a sequence s.
Definition 13. (Compositional data synthesization.) Let there be a fragment f and two non-identical
sequences sa and sc such that sa = insert(ta, f) and sc = insert(tc, f). Furthermore, let there be a sequence
sb = insert(tb, fb) such that fb ̸= f and environment(ta, w) = environment(tb, w). Then ssyn := insert(tc, fb)
is a compositionally created synthetic symbol sequence that is different to sa, sb and sc.

In order to translate a sequence s = insert(t, f) into a time series, we choose a time series whose symbolization
is identical to the sequence s. Because symbolization is index-preserving, we can directly map time series
sections to t and f by simply replacing their symbols with the time series blocks of the same index. To
compose a synthetic time series xsyn := insert(tc, fb) we obtain time series xb and xc with the corresponding
symbolizations sb and sc and desymbolize tc and fb accordingly.

5 Experiments

5.1 Data, Preprocessing, and Models

In our experiments, we focus on two clinical time series datasets: MIMIC-III (Johnson et al., 2016) and
eICU (Pollard et al., 2018). Both databases contain anonymized information from ICU patients, including
physiological measurements (e.g., heart rate, blood pressure), medications (e.g., dobutamine, epinephrine),
interventions (e.g., intubation), lab test results (e.g., blood cultures,) and clinical notes. We extracted
features that were frequently tracked during a patient’s stay, namely 131 features for MIMIC-III, and 98
for eICU (a complete list can be found in Appendix A.2). For each patient stay we extracted the first 48
hours, but only took stays into account that had at least one feature measured per hour. Furthermore, we
removed patients that did not stay long enough in the ICU. The remaining clinical variables were z-score
standardized, and the resulting datasets were partitioned into training, validation and test data (see Table
5 in Appendix A.2 for exact numbers). Notably, our data can be characterized as sparse and irregularly
sampled (Tipirneni & Reddy, 2022; Horn et al., 2020). This is because some features like heart rate or blood
pressure are recorded every 5 minutes, other features like those only available through blood sampling, are
available only every 24 hours. We store these sparse multivariate time series in a database of n quadruplets
S = {(fi, ti, vi, ni)}n

i=1, where fi ∈ F is a clinical variable identifier, ti ∈ R≥0 is a time index, vi ∈ R the
observed value of fi at ti, and ni the unique stay identifier. Following Staniek et al. (2024) who showed
an advantage for compressing long input time series into 24 hourly bins that record the most important
observations, we encode each quadruplet S into a dense representation x where every timestep is a vector of
feature values representing one hour. We construct this vector by choosing the first observed value during
the represented hour for each feature. If no value was observed, we impute zero which corresponds to the
mean value due to standardization of the data. Additionally, a mask indicating whether a value was imputed
is generated and appended to the vector. Based on this representation, we define the sparsity of a feature as
the relative frequency of imputations. For TSF, we use a Transformer model with an autoregressive decoder
that generates an output vector ŷt ∈ R|F | (where |F | is the number of features used). The predicted output
ŷt is a function of the history ŷ<t of predicted timesteps until time t, the encoded input x, and the model
parameters θ: ŷt = fθ(ŷ<t, x). To perform long-term TSF using the autoregressive setup, the outputs ŷt from
each time step t = 1, . . . , T are concatenated. We employ a standard Transformer architecture (Vaswani
et al., 2017) as our model of choice, the hyperparameters of which can be found in Appendix A.1. The
encoder takes as input the first 24 hours, the decoder then generates the next 24 hours. The complete model
is trained with masked mean squared error (MSE) (see Appendix A.5).
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Table 1: Estimated expected risk difference ϵ̂ between model trained on synthesized data and model trained
on original data, evaluated on original test data. Synthetic data are generated non-compositionally (CutMix)
or compositionally (CDS). Symbolization is obtained by clustering in input or neural embedding space.
Results are averages of models trained from three different random seeds, standard error (SE) in brackets.

Synthetic distribution Symbolization MIMIC-III eICU
ϵ̂ (SE) ϵ̂ (SE)

CutMix 0.753 (0.015) 0.911 (0.012)
CDS input 0.070 (0.015) 0.064 (0.012)
CDS embd 0.110 (0.019) 0.055 (0.015)

Table 2: Estimated ratio of expected risk on synthesized and original test data for model h∗ with best result
(MSE*) obtained by training on the original training data.

Synthetic distribution Symbolization MIMIC-III eICU
MSE* Ratio MSE* Ratio

CutMix 10.201 1.375 7.648 1.445
CDS input 7.398 0.997 5.279 0.998
CDS embd 7.230 0.974 5.086 0.961

To generate a synthetic dataset, we first need to assign symbols to the training data, as described in Section
4.1, by either choosing random centroids in the input space (input), or by applying k-means clustering to
the learned representations (embd), with a variable number of centroids (#Syms). In our experiments, the
number of symbols is varied between 40, 80, an 160, with best results on the validation set obtained for the
largest symbol size. Furthermore, each symbol represents a time series segment of 3 hours, which we found
to be a good compromise between very sparse 1-hour windows where over 90% of the measurements need
to be imputed, and coarse grained segments with a better descriptive power of temporal patterns. Last, we
apply the compositional data synthesization algorithm described in Section 4.2 to generate compositional
synthetic data versions, or use the CutMix algorithm (Yun et al., 2019) directly on the time series to produce
non-compositional synthetic data.

5.2 Experimental Results

5.2.1 Test 1: Utility of Synthesized Data for TSF Training

The first empirically testable criterion described in Section 3.2 infers the compositionality of the original
data generating process from the estimated expected risk difference ϵ̂ ≈ Eorig [ℓ(y, hT (x))] − Eorig [H], where
Eorig [ℓ(y, hT (x))] is estimated by training a TSF model on synthetic data and evaluate it on the original
test data, and Eorig [H] is estimated by training a TSF model on the original time series data and evaluate
it on the original test data. The synthetic data can be generated either non-compositional (CutMix) or
compositional (CDS) with symbolization obtained by clustering in input or neural embedding space. The
estimate of ϵ̂ and its standard error is obtained by training a linear mixed effects model (Demidenko, 2013;
Bates et al., 2015; Riezler & Hagmann, 2024) on the evaluation scores of models obtained from three different
random seeds for optimization, and another three random seeds for symbolization. The main result is given
in Table 1: It shows values of ϵ̂ that are close to zero for CDS training, and an order of magnitude larger for
training on randomization-based synthetic data, on both datasets of clinical time series.

5.2.2 Test 2: Utility of Synthesized Data as TSF Test Data

Table 2 presents the experimental results for the second empirically testable criterion established in Sec-
tion 3.2. This test is based on a model h∗ that is obtained by training on original time series data and
its evaluation on original and synthetic test data. The goal is to infer a uniform bound for the ratio
Esyn [ℓ (x, h∗(x))]/Eorig [ℓ (x, h∗(x))] of the synthetic and original data distribution based on estimates of the
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Table 3: Evaluation of downstream task of prediction of SOFA score on original test set for models trained
on different sizes of synthesized data. Results are reported for best performing models (MSE*) with 95%
confidence intervals for the estimation of the respective evaluation score on the test set in subscripts.

Training data Dataset size MIMIC-III eICU

original 1x 4.168[3.962,4.375] 2.518[2.388,2.647]

CDS-input 1x 4.066[3.854,4.278] 2.536[2.389,2.682]
5x 3.560[3.358,3.763] 2.397[2.254,2.539]
10x 3.332[3.148,3.515] 2.347[2.217,2.476]
20x 3.194[3.020,3.369] 2.322[2.189,2.454]

CutMix 20x 4.063[3.836,4.291] 2.583[2.443,2.723]

corresponding expected risks Esyn [ℓ (x, h∗(x))] and Eorig [ℓ (x, h∗(x))]. We see that the obtained ratios are
close to 1 for evaluations on original data and compositionally synthesized data, but not for test data synthe-
sized via the randomization-based CutMix method. This again supports our reasoning of compositionality
of the data generation process underlying the original time series data.

5.2.3 Evaluation on Downstream Task of SOFA Score Prediction

We performed an experiment where we evaluated training solely on synthesized data on the downstream
task of prediction of the sequential organ failure assessment (SOFA) score (Vincent et al., 1996). The SOFA
score is defined as the sum of subscores for six organ systems, each ranging from 0-4 and depending for their
part on thresholded fundamental clinical variables observed during a 24h window (see Appendix A.6). We
added a regression head to our dense encoder, and trained this model on automatically assigned SOFA scores
(ranging from 0 to 24). The evaluation was done by computing MSE of the predicted scores. Table 3 shows
the results of this downstream evaluation. Assessing statistical significance by non-overlapping confidence
intervals, we can attribute significant improvements for SOFA score prediction on MIMIC-III for models
trained on compositionally synthesized data (CDS-input) that are 5, 10, or 20 times larger than the original
training set. Similar, but smaller nominal improvements, are obtained by compositional data augmentation
on the larger eICU dataset. However, on neither dataset, prediction for models trained on randomized-based
data synthesization (CutMix) significantly improves over models trained on original data, despite the size of
the synthetic dataset being 20 times larger.

5.2.4 Further Experimental Evaluation

In Appendix A.7, we present an analysis of the distributional properties of compositionally created data.
We find that the Hellinger distance of distributions of original and compositionally synthesized data show
the desired properties for compositional data (Keysers et al., 2020): Closeness in unigram space, indicating
similar distributions of symbols, and larger distance in higher n-gram space, indicated by dissimilar distri-
butions of compounds. Furthermore, in Appendix A.8, we present a qualitative assessment of the symbolic
representations of clinical time series segments, showing that meaningful physiological states can be learned
by symbolic representation learning. Lastly, in Appendix A.9, we present a quantitative evaluation with
respect to the discriminative score, and a qualitative evaluation according to a PCA visualization, inspired
by works on GAN-based data synthesization (Yoon et al., 2019; Pei et al., 2021).

6 Conclusion

We presented an investigation of the question whether non-linguistic time series — here time series of clini-
cal measurements — also exhibit the intriguing property of compositionality of natural language sequences,
namely the characteristics of being generated by a process that combines elementary components following
a compositional rule system. If so, we could analyze clinical time series as a series of subsequences that are
emitted by an ordered sequence of physiological states, and create synthetic data for notoriously sparse and
low-resource data situations in clinical TSF. We showed that a method from NLP that is based entirely on
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distributional properties of data allows us to synthesize novel combinations of elementary time series subse-
quences with most interesting properties: Training and testing of TSF models on compositionally synthesized
time series yields a similar utility than training and testing on original time series data, allowing us to con-
clude that the data generation process underlying the original time series data can in fact be characterized
as compositional. Our experiments are based on applying a pipeline of data-driven symbolic representation
learning and compositional data augmentation to clinical time series data, and we find consistent improve-
ments over randomization-based data synthesization for TSF on two clinical time series datasets, and for the
downstream task of SOFA score prediction. We show that our empirical tests can be motivated in domain
adaptation theory, drawing on a possible inference about the distributions of the data generation process of
source and target data from the performance of training and testing models on these data. This theoretical
motivation allows us to make broader claims on the compositionality of time series data beyond clinical time
series, opening the doors to further research on compositional data augmentation and domain adaptation in
general time series modeling tasks.

A limitation of our work is the lack of an embedding into a specific clinical problem, based on problem-
specific clinical measurements, and an evidence-based clinical interpretation. This will be an important task
for future work.
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A Appendix

A.1 Hyperparameters

Table 4: Hyperparameter settings for training. Best settings chosen on development data are shown in bold
face.

Parameter MIMIC-III eICU
Embedding Size 128, 256, 512 256, 512, 1024
Hidden Size Encoder 128, 256, 512 256, 512, 1024
Hidden Size DMS Decoder 128, 256, 512 256, 512, 1024
Hidden Size IMS Decoder Output Dimensionality Output Dimensionality
# Encoder Layers 1, 2 1, 2, 3
# Decoder Layers 1, 2 1
Learning Rate 0.0005 0.0005
Finetune Learning Rate 0.0001 0.0001
Batch Size 32 32
Attention Heads Encoder 2, 4, 8 8
Attention Heads Decoder 1, 2, 4 1,2,4
Dropout 0.05, 0.1, 0.2 0.05
Epochs 100 600
Patience 6 6
Random Seed Unixtime variation Unixtime variation
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A.2 Data Statistics and Feature Lists

Table 5: Number of patient stays in clinical time series.

Data split MIMIC-III eICU
train 12,304 49,730
dev 3,169 12,433
test 3,803 3,008

Table 6: Feature list for MIMIC-III: Besides the following 131 dynamic variables, only age and gender were
extracted. The 15 variables marked with an asterisk are directly used for calculating the SOFA score.

ALP Epinephrine* LDH Packed RBC
ALT Famotidine Lactate Pantoprazole
AST Fentanyl Lactated Ringers Phosphate
Albumin FiO2* Levofloxacin Piggyback
Albumin 25% Fiber Lorazepam Piperacillin
Albumin 5% Free Water Lymphocytes Platelet Count*
Amiodarone Fresh Frozen Plasma Lymphocytes (Absolute) Potassium
Anion Gap Furosemide MBP Pre-admission Intake
BUN GCS_eye* MCH Pre-admission Output
Base Excess GCS_motor* MCHC Propofol
Basophils GCS_verbal* MCV RBC
Bicarbonate GT Flush Magnesium RDW
Bilirubin (Direct) Gastric Magnesium Sulfate (Bolus) RR
Bilirubin (Indirect) Gastric Meds Magnesium Sulphate Residual
Bilirubin (Total)* Glucose (Blood) Mechanically ventilated SBP*
CRR Glucose (Serum) Metoprolol SG Urine
Calcium Free Glucose (Whole Blood) Midazolam Sodium
Calcium Gluconate HR Milrinone Solution
Calcium Total Half Normal Saline Monocytes Sterile Water
Cefazolin Hct Morphine Sulfate Stool
Chest Tube Heparin Neosynephrine TPN
Chloride Hgb Neutrophils Temperature
Colloid Hydralazine Nitroglycerine Total CO2
Creatinine Blood* Hydromorphone Nitroprusside Ultrafiltrate
Creatinine Urine INR Norepinephrine* Urine*
D5W Insulin Humalog Normal Saline Vancomycin
DBP* Insulin NPH O2 Saturation Vasopressin
Dextrose Other Insulin Regular OR/PACU Crystalloid WBC
Dobutamine* Insulin largine PCO2 Weight
Dopamine* Intubated PO intake pH Blood
EBL Jackson-Pratt PO2* pH Urine
Emesis KCl PT
Eoisinophils KCl (Bolus) PTT
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Table 7: Feature list for eICU: Besides the following 98 dynamic variables, there are 17 static variables
covering age, gender, admission information, and ICU type. The 15 variables marked with an asterisk are
directly used for calculating the SOFA score. On the right column, there are 35 drug-related variables.
Some of them seem redundant due to different hospitals but can not be merged because of different or not
standardized concentrations.

ALP Lactate Amiodarone
ALT Lymphocytes Dobutamine dose
AST MBP Dobutamine ratio*
Albumin MCH Dopamine dose
Anion Gap MCHC Dopamine ratio*
BUN MCV Epinephrine dose
Base Deficit MPV Epinephrine ratio*
Base Excess Magnesium Fentanyl 1
Basophils Monocytes Fentanyl 2
Bedside Glucose Neutrophils Fentanyl 3
Bicarbonate O2 L/% Furosemide
Bilirubin (Direct) O2 Saturation Heparin 1
Bilirubin (Total)* PT Heparin 2
Bodyweight (kg) PTT Heparin 3
CO2 (Total) PaCO2 Heparin vol
Calcium PaO2* Insulin 1
Chloride Phosphate Insulin 2
Creatinine (Blood)* Platelets* Insulin 3
Creatinine (Urine) Potassium Midazolam 1
DBP* Protein (Total) Midazolam 2
Eoisinophils RBC Milrinone 1
EtCO2 RDW Milrinone 2
FiO2* RR Nitroglycerin 1
Fibrinogen SBP* Nitroglycerin 2
GCS eye* Sodium Nitroprusside
GCS motor* Stool Norepinephrine 1
GCS verbal* Temperature Norepinephrine 2
Glucose Troponin - I Norepinephrine ratio*
HR Urine* Pantoprazole
Hct WBC Propofol 1
Hgb pH Propofol 2
INR Propofol 3

Vasopressin 1
Vasopressin 2
Vasopressin 3
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A.3 Proof for Theorem 1

Theorem 1. (Bounded expected risk and density.) Let P and Q be two absolutely continuous probability
distributions on X ×Y for which the covariate shift assumption holds such that fP(x, y) = f(y | x)fP(x) and
fQ(x, y) = f(y | x)fQ(x) are the corresponding densities. Further let H be a hypotheses class of learners,
ℓ ≥ 0 be a loss function, and C, C ∈ R+. Then,

∀x ∈ X : CfQ(x) ≤ fP(x) ≤ CfQ(x) ⇐⇒ ∀h ∈ H : CEQ [ℓ (x, h(x))] ≤ EP [ℓ (x, h(x))] ≤ CEQ [ℓ (x, h(x))] .

Further C ≤ 1 and C ≥ 1.

Proof. To establish sufficiency, let us assume that ∀x ∈ X : CfQ(x) ≤ fP(x) ≤ CfQ(x). Then

∀(x, y) ∈ X × Y : C f(y | x)fQ(x)︸ ︷︷ ︸
=fQ(x,y)

≤ f(y | x)fP(x)︸ ︷︷ ︸
=fP (x,y)

≤ C f(y | x)fQ(x)︸ ︷︷ ︸
=fQ(x,y)

Because ℓ is non-negative for all h, we can conclude by the monotonicity and linearity of the integral that

∀h ∈ H : CEQ [ℓ (x, h(x))] ≤ EP [ℓ (x, h(x))] ≤ CEQ [ℓ (x, h(x))] .

To prove necessity, we first assume that ∀h ∈ H : CEQ [ℓ (x, h(x))] ≤ EP [ℓ (x, h(x))] holds. Let us assume
for the moment that ∀x ∈ X : CfQ(x) > fP(x). Repeating the argument made to establish sufficiency, the
momentary assumption made above implies that ∀h ∈ H : CEQ [ℓ (x, h(x))] > EP [ℓ (x, h(x))]. Obviously this
conclusion contradicts our first assumption. Therefore we have to conclude that ∀x ∈ X : CfQ(x) ≤ fP(x).
Repeating this argument for the second inequality finishes the proof.

To demonstrate that C ≤ 1, we recognize that CfQ(x) ≤ fP(x) =⇒ C
∫

fQ(x) ≤
∫

fP(x) which directly
establishes this fact. The same argument can be repeated to show that C ≥ 1.
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A.4 Compositional Data Synthesization Algorithm

Algorithm 1 Compositional data synthesization (CDS) algorithm.

frg_to_tpl = defaultdict(list)
tpl_to_frg = defaultdict(list)
env_to_tpl = defaultdict(list)
for seq in dataset:

#frg, tpl and env are index sets
for frg in frgs(seq):

tpl = template(seq, frg)
env = environment(tpl, window_size)
#fetch symbols
frg_s = get_syms(seq, frg, value_type='frg')
tpl_s = get_syms(seq, tpl, value_type='tpl')
env_s = get_syms(seq, env, value_type='env')
#append maps
frg_to_tpl[frg_s].append(tpl_s)
tpl_to_frg[tpl_s].append(frg_s)
env_to_tpl[env_s].append(tpl_s)

frg_list = list(frg_to_tpl)
while True:

shuffle(frg_list)
for frg in frg_list:

tpl_c_list = list(frg_to_tpl[frg])
shuffle(tpl_c_list)
for tpl_c in tpl_c_list:

#get all tpl for frg without tpl_c
tpl_a_list = [tpl for tpl in tpl_c_list if tpl != tpl_c]
shuffle(tpl_a_list)
for tpl_a in tpl_a_list:

#retrieve templates with same environment as tpl_a
for tpl_b in env_to_tpl[environment(tpl_a, window_size)]:

#retrieve all fragments for tpl_b
for frg_b in tpl_to_frg[tpl_b]:

if frg_b != frg:
ts_tpl_c, ts_frg_c = get_ts_segments(tpl_c, frg)
ts_tpl_b, ts_frg_b = get_ts_segments(tpl_b, frg_b)
yield insert(ts_tpl_c, ts_frg_b)
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A.5 Evaluation Metrics

Given N time series in our dataset, with a prediction window of T hours for TSF, the masked mean squared
error (MSE) over hourly prediction vectors ŷn

t is defined as follows:

MSE = 1
NT

N∑
n=1

T∑
t=1

||(yn
t − ŷn

t ) ⊙ mn
t ||22 (8)

where mn
t ∈ {0, 1}|F | is a mask indicating if the variables in yn

t were observed or not, and ⊙ is a component-
wise product. In our experiments, T is set to 24 hours.

For each synthetically generated dataset and for the original data, we train three differently seeded models.
In our experiments, we report the average MSE of the three training runs (MSE) and the corresponding
standard deviation (SD). In addition, we report the best performing model (MSE* ) and the 95% confidence
interval for the estimation of the evaluation score of MSE* on the test set. This is calculated from the sample
mean µ and standard deviation s of MSE* scores on a test set of size N as

KI.95 = µ − 1.96 s√
N

; µ + 1.96 s√
N

.
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A.6 SOFA Score Definition

The Sepsis-related Organ Failure Assessment (SOFA) is calculated by summing six subscores ranging from
0 to 4. In our setting, we had to recalculate MAP (mean arterial pressure) by SBP and DBP (systolic and
diastolic blood pressure), the Horowitz coefficient PaO2/FiO2 by PaO2 and FiO2, but ignored the kind of
mechanical ventilation. If no value for calculation in a SOFA subsystem was available, we took a value of 0.

Table 8: SOFA score (Vincent et al., 1996). Abbreviations: CNS = Central nervous system; GCS = Glasgow
Coma Scale; MV = mechanically ventilated including CPAP; MAP = mean arterial pressure, UO = Urine
output.

CNS Cardiovascular Respiratory Coagu-
lation

Liver Renal

Sc
or

e

GCS MAP
or vasopressors

PaO2/FiO2
(mmHg)

Platelets
(×103/µl)

Bilirubin
(mg/dl)

Creatinine
(mg/dl) or
UO

+0 15 MAP ≥ 70 mmHg ≥ 400 ≥ 150 < 1.2 < 1.2
+1 13–14 MAP < 70 mmHg < 400 < 150 1.2–1.9 1.2–1.9
+2 10–12 dopamine ≤ 5 µg/kg/min OR

dobutamine (any dose)
< 300 < 100 2.0–5.9 2.0–3.4

+3 6–9 dopamine > 5 µg/kg/min OR
epinephrine ≤ 0.1 µg/kg/min OR
norepinephrine ≤ 0.1 µg/kg/min

< 200 AND MV < 50 6.0–11.9 3.5–4.9 OR
< 500
ml/day

+4 < 6 dopamine > 15 µg/kg/min OR
epinephrine > 0.1 µg/kg/min OR
norepinephrine > 0.1 µg/kg/min

< 100 AND MV < 20 > 12.0 > 5.0 OR
< 200
ml/day
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A.7 Distributional Properties of Compositional Data in Symbolic Space

Table 9 shows the distributional properties of compositionally synthesized data by computing the pairwise
Hellinger distance between symbolic representations of original training data (Tr), original test data (Te),
and synthesized data (S). Given two discrete probability distributions P = (p1, . . . , pk) and Q = (q1, . . . , qk),
the Hellinger distance is computed by the Euclidean norm of the difference of the square root vectors:

H(P, Q) = 1√
2

||
√

P −
√

Q||2. (9)

Our experiments show that the distance between original train and original test distributions is an order
of magnitude smaller for unigrams than for bigrams or trigrams, and the same relations hold for the dis-
tributional distance between synthesized data and original test data. These distributional properties —
similar distributions between train and test data on the level of elementary components, here unigrams, and
different distributions on the level of compounds, here higher order n-grams — are desired for benchmark
data for compositional generalization (Keysers et al., 2020), and are recreated by our compositional data
synthesization method.

Table 9: Hellinger distance between distributions of symbolic representations of compositionally synthesized
data based on MIMIC-III time series. Symbolization was performed by a random assignment of centroids in
input space.

#Syms Unigram Bigram Trigram
H(Tr, Te) H(S, Te) H(S, Tr) H(Tr, Te) H(S, Te) H(S, Tr) H(Tr, Te) H(S, Te) H(S, Tr)

40 0.0908 0.0895 0.0764 0.1612 0.1436 0.3438 0.4007 0.2482 0.2482
80 0.0237 0.0692 0.0597 0.1488 0.1886 0.1180 0.5231 0.5401 0.2845
160 0.0348 0.0616 0.0435 0.2712 0.2820 0.1185 0.7271 0.7142 0.3445
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A.8 Qualitative Interpretation of Symbolic Time Series Representations

The goal of this qualitative evaluation is to investigate whether the learned clusters of subsequences of clinical
time series can be interpreted as meaningful physiological states. We created dataset versions of MIMIC-III
and eICU that are restricted to six features that are measured with high frequency (HR, SBP, DBP, MBP,
RR and O2 Saturation). Based on these low-sparsity features, we performed k-means clustering on 3-hour
blocks of time series subsequences, and assigned symbols to the clusters.

Figure 4 presents the results for k-means clustering of neural representations on MIMIC-III data, with k
set to 10. Cluster S0 is characterized by elevated heart rate values and can be interpreted as representing
the physiological state of tachycardia. Cluster S4 can he interpreted to represent the physiological state of
hypertension due to elevated systolic, diastolic, and mean blood pressure. Similar results are obtained by
computing clusters based on random centroids in the input domain of MIMIC-III. Figure 5 shows clusters
representing tachycardia (S7), hypertension (S0), and tachypnea (S8) due to elevated respiratory rate.

Figure 4: Physiological states learned by time series symbolization based on clustering of neural representa-
tions. For example, cluster S0 is characterized by elevated heart rate (HR), representing the physiological
state of tachycardia. Cluster S4 can he interpreted to represent the physiological state of hypertension due
to elevated systolic, diastolic, and mean blood pressure (SBP, DBP, MBP).
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Figure 5: Physiological states learned by time series symbolization based on clustering in input space.
Tachycardia is represented by cluster S7, showing elevated HR values. Hypertension is represented by
cluster S0, showing elevated BP values. Cluster S8 represents the physiological state of tachypnea due to
elevated respiratory rate (RR).
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A.9 Discriminative Score and PCA visualization

For a further quantitative evaluation of our data synthesization algorithm, we take inspiration from work
based on generative adversarial networks (GANs) (Yoon et al., 2019; Pei et al., 2021), and calculate a
discriminative score as |0.5 - accuracy| for the classification accuracy of distinguishing synthetic examples
from original examples. Similar to Yoon et al. (2019), we train an RNN and evaluate the trained classifiers
on a held-out testset. The discriminative score is averaged over 10 runs and can be seen in Table 10. Lower
discriminative scores are obtained for CDS variants compared to CutMix, indicating higher similarity of
original data to compositionally synthesized data than to data synthesized by CutMix.

Table 10: Discriminative scores of CutMix compared to our methods CDS embd and CDS input.

Model discriminative score
CutMix 0.384±0.004
CDS embd 0.301±0.007
CDS input 0.306±0.008
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Following Yoon et al. (2019), we furthermore present a qualitative evaluation where we perform PCA on the
dense representations of the original data and on each of the generated synthetic data. The visualizations are
shown in Figures 6 and 7. We see that CDS covers outlier regions of the original data better than CutMix.

Figure 6: PCA visualisation for MIMIC-III dataset. PCA is applied to the input portion of the dense
representation. CutMix covers the main region of the gold data, CDS embd and CDS input however seem
to capture the outlier region better.
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Figure 7: PCA visualisation on masked portions of dense representations for MIMIC-III dataset. Here, CDS
embed and CDS input both show the same distinct representation gap on the right side of the scatterplot.
This gap is blurred by CutMix.
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