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ABSTRACT

Electroencephalography (EEG) provides real-time insights into brain activity and
supports diverse applications in neuroscience. While EEG foundation models
(EFMs) have emerged to address the scalability issues of task-specific models,
current approaches still yield clinically uninterpretable and weakly discriminative
representations, inefficiently capture global dependencies, and neglect important
local neural events. We present CodeBrain, a two-stage EFM designed to fill this
gap. In the first stage, we introduce the TFDual-Tokenizer, which decouples het-
erogeneous temporal and frequency EEG signals into discrete tokens, quadratically
expanding the representation space to enhance discriminative power and offering
domain-specific representation-level interpretability by suggesting potential links to
neural events and spectral rhythms. In the second stage, we propose the multi-scale
EEGSSM architecture, which combines structured global convolution with sliding
window attention to efficiently capture both sparse long-range and local dependen-
cies, reflecting the brain’s small-world topology. Pretrained on the largest public
EEG corpus, CodeBrain achieves strong generalization across 8 downstream tasks
and 10 datasets under distribution shifts, supported by comprehensive ablations,
scaling-law analyses, and interpretability evaluations.

1 INTRODUCTION

Electroencephalography (EEG) captures brain activity via scalp electrodes (Niedermeyer & da Silva,
2005) and provides high temporal-resolution signals for neuroscience and cognitive research (da Silva,
2013). To enable automated analysis, researchers have developed various task-specific models for
applications such as sleep staging (Lee et al., 2025; Ma et al., 2025), emotion recognition (Jia et al.,
2020a; Liu et al., 2024a), motor imagery (Li et al., 2020; Jia et al., 2020b), and other applications
(Guerra et al., 2024; Hu et al., 2024). However, building separate models from scratch for each task
is resource-intensive and limits scalability, as shared knowledge across tasks cannot be effectively
leveraged. Moreover, variations in channel configurations and input lengths across EEG tasks further
hinder knowledge transfer. To tackle these issues, EEG foundation models (EFMs) are developed to
learn universal representations for diverse downstream tasks (Zhou et al., 2025).

Inspired by masked self-supervised pretraining in natural language processing (Van Den Oord et al.,
2017; Devlin et al., 2019), current EFMs commonly adopt patch-wise representation learning: EEG
signals are divided into patches, encoded into latent representations, and trained to reconstruct the
masked portions. While this approach offers flexibility across varying channel configurations and
input lengths by adjusting the patch number and arrangement, direct raw-signal reconstruction (Wang
et al., 2024a; 2025) remains challenging due to the inherent noise and variability of EEG. To mitigate
this, recent studies have introduced codebook-based tokenization (Jiang et al., 2024; Pradeepkumar
et al., 2025), which abstracts away low-level fluctuations and provides a more robust latent space.
Despite these advances, existing EFMs still face critical limitations, calling for new architectures.

Failing to Decouple Heterogeneous EEG for Domain-Specific Interpretability. Recent EFMs
adopt vector quantization for noise-robust representation (Jiang et al., 2024; Pradeepkumar et al.,
2025), following the VQ-VAE framework originally designed for images, where homogeneous visual
features make a single tokenizer sufficient (Van Den Oord et al., 2017; Mentzer et al., 2024). In
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Figure 1: Rationale and overview of CodeBrain beyond existing EFMs. (a) EEG signals are het-
erogeneous, as patches matched in one domain may diverge in the other. (b) We then propose a
decoupled tokenizer for domain-specific interpretable representations while expanding the represen-
tation space. (c-d) Inspired by the brain’s small-world topology, a multi-scale architecture further
captures inter-patch dependencies efficiently, while modeling overlooked intra-patch neural events.
(e) These designs deliver performance gains across 10 EEG datasets.

contrast, EEG exhibits heterogeneous structures: temporal and frequency components reflect distinct
aspects of brain activity (Miwakeichi et al., 2004). As illustrated in Fig. 1(a), signals matched in one
domain may diverge in the other. Therefore, a mixed tokenizer can conflate domain-specific patterns
(Liu et al., 2024b), weakening representation capacity and producing tokens difficult to align with
clinically interpretable neural events or spectral rhythms.

Struggling with Efficiently Modeling Global Brain Dependencies. EEG signals exhibit sparse
global dependencies and strong local correlations, reflecting the brain’s small-world topology (Bull-
more & Sporns, 2009; Bassett & Bullmore, 2006; He et al., 2009). Efficient modeling of such
structure requires capturing relationships in a scalable way. However, most EFMs (Yang et al., 2023;
Jiang et al., 2024; Wang et al., 2024a; 2025) adopt Transformer architectures with fully connected
self-attention (Vaswani et al., 2017). This over-connected design is misaligned with the brain’s sparse
structure and struggles to efficiently capture global dependencies due to its quadratic complexity with
sequence length (Tay et al., 2021; Hong et al., 2025; Tegon et al., 2025).

Neglecting Local Dependencies within EEG Patches. EEG signals exhibit rich local waveform
structures over short temporal windows, reflecting crucial transient neural events (e.g., sleep wave-
forms in Fig. 1(d)) (Tatum IV, 2021). However, most existing EFMs represent each EEG patch as a
single token and apply attention mechanisms only at the patch level (Wang et al., 2025; Jiang et al.,
2024), thereby ignoring important local dependencies within patches.

To address the above challenges, we propose CodeBrain, a novel EEG foundation model that integrates
a decoupled tokenizer for domain-specific representation-level interpretability with a brain-inspired
multi-scale architecture. CodeBrain is trained in two stages. In the first stage, we introduce the
TFDual-Tokenizer (Fig. 1(b)), which decouples temporal and frequency EEG components into
discrete tokens. In the second stage, we develop EEGSSM, a masked self-supervised framework
inspired by the brain’s small-world topology. EEGSSM adopts a structured global convolution
backbone, conceptually related to recent state-space sequence models (Smith et al., 2023; Li et al.,
2022; Gu et al., 2022a), for sparse and efficient global modeling with a sliding window attention
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(SWA) mechanism for capturing local neural events overlooked by prior studies(Fig. 1(c–d)). Our
detailed contributions are summarized as follows:

• Decoupled Tokenizer for Domain-Specific Representation-Level Interpretability. We propose
the TFDual-Tokenizer, which decouples temporal and frequency EEG components into discrete
tokens. This design quadratically expands the representation space, and qualitative analyzes suggest
that some tokens correspond to neural events and spectral rhythms. A contrastive objective is
further applied to the temporal branch to stabilize training. To the best of our knowledge, this is the
first tokenizer in EFMs to provide domain-specific representation-level interpretability.

• Brain Small-World Topology Inspired Multi-Scale Architecture. We design EEGSSM, a patch-
wise self-supervised framework for EEG. Guided by the brain’s small-world topology, it employs
structured global convolution to capture sparse long-range temporal dependencies and sliding
window attention to model local neural events. In addition, dynamic positional embeddings are
used to flexibly learn spatial channel correlations.

• Strong Generalization and Comprehensive Validation. Pretrained on the largest publicly avail-
able EEG corpus, TUEG (Obeid & Picone, 2016), CodeBrain achieves strong performance on
8 downstream tasks across 10 datasets (Fig. 1(e)) with distribution shifts in cohorts and channel
configurations. This suggests the model design plays a central role in generalization. Comprehen-
sive ablations, scaling-law analyses, together with visualization and quantitative analyses, further
confirm its robustness, scalability, and provide domain-specific representation-level interpretability.

2 METHODOLOGY

2.1 MODEL ARCHITECTURE

We introduce CodeBrain, a two-stage pretraining framework designed to learn interpretable and
universal EEG representations (Fig. 2). The model is motivated by complementary goals: 1) domain-
specific interpretability via decoupled tokenization of heterogeneous temporal and frequency
information, achieved by the proposed TFDual-Tokenizer, and 2) multi-scale modeling of EEG
sequences inspired by the brain’s small-world topology, addressed by the EEGSSM framework.
This design lets Stage 1 learn a tokenizer of patch-level codes, while Stage 2 leverages it for EEG
representations. We next provide a formal definition of the two stages to clarify their respective roles.

Stage 1: Decoupled Tokenization. Given a normalized EEG patch x ∈ RL, where L is the patch
length, our goal is to discretize x into temporal and frequency tokens, enabling domain-specific
representation learning. Specifically, let V t ∈ RK×D and V f ∈ RK×D denote the temporal and
frequency codebooks, where K is the vocabulary size and D is the embedding dimension of each
token. The tokenizer function is defined as: vt, vf = ftokenizer(x), vt, vf ∈ RD.

Stage 2: EEG Representation Learning. Given unlabeled EEG sequences X = {Xm}Nm=1, where
each Xm ∈ RC×f×T consists of C channels, sampling rate f , and T seconds. We divide each
sequence into n non-overlapping patches of t seconds, so each patch length is L = f · t. The goal is to
train an encoder fenc : RC×n×L → RC×n×D that produces latent representations Zm = fenc(Xm).

2.2 TFDUAL-TOKENIZER PRETRAINING

Our TFDual-Tokenizer includes a shared neural encoder, a dual tokenizer with separate codebooks,
and two decoders. The neural encoder extracts joint time-frequency embeddings from EEG patches,
which are then discretized into temporal and frequency tokens by the dual tokenizer. Each token
stream is reconstructed by a decoder to supervise codebook learning in its respective domain.

Neural Encoder For each patch xi ∈ RL, we apply the Discrete Fourier Transform (DFT) (Cooley
& Tukey, 1965) to obtain its frequency representation:

xi[k] = DFT (xi) (1)

where xi[k] denotes the k-th frequency component. xi[k] and the xi are fed into the TFConv
module, where they are processed in parallel through stacks of convolutional, batch normalization,
and ReLU layers. The temporal representation eti = TFConv(xi) and frequency representation
efi = TFConv(xi[k]) are concatenated to form a time-frequency embedding epi = Concat{eti, e

f
i }.
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Figure 2: Overview of the CodeBrain framework. Left: TFDual-Tokenizer learns to discretize EEG
signals into temporal and frequency tokens using two separate codebooks, by reconstructing both
the temporal waveforms and the frequency-domain magnitude and phase. Right: EEGSSM learns
representations by predicting the discrete tokens of masked patches generated by TFDual-Tokenizer.

To get patch representation ẽi, we then add a positional embedding epos and feed it into TF-Encoder:

ẽi = Encoder(epi + epos). (2)

We choose a Transformer encoder here since this stage is patch-to-token, where its ability to model
local contextual relations makes it well-suited for capturing patch-level patterns. To keep the tokenizer
channel-agnostic, epos is shared temporal embeddings without channel-specific identities.

Dual Tokenizer We use two separate tokenizers with distinct codebooks for the temporal and
frequency domains, denoted as vtj , vfj ∈ RD, where j = 1, . . . ,K. Given the patch representation
ẽi from the neural encoder, each tokenizer independently selects the nearest code from its codebook:

pti = argmin
j

∥ẽi − vtj∥2, pfi = argmin
j

∥ẽi − vfj∥2, (3)

where pti and pf denote the closest positions for the embeddings in the temporal and frequency
domain codebook. The effectiveness of the Dual Tokenizer is based on the following proposition:

Proposition 2.1 Decoupling temporal and frequency codebooks yields representations that are no
less effective than those from a joint codebook.

Proof. See Appendix D.

For this Proposition, we provide empirical validation in Sections 3.4, 3.5 and analysis of Dual
Tokenizer ’s interpretable structure in Appendix B.

Frequency Codebook Training To train the frequency codebook, we reconstruct amplitude and
phase from the code embeddings. For each EEG patch, we apply the DFT to obtain the frequency
representation: xi[k] = Re{xi[k]}+ j · Im{xi[k]} where Re{xi[k]} and Im{xi[k]} are the real part
and imaginary part respectively, then the amplitude and phase can be calculated as:

Ai =
√

Re(xi[k])2 + Im(xi[k])2, ϕi = arctan 2 (Im(xi[k]),Re(xi[k])) . (4)

We use z-score normalization to ensure stable training. The code embedding vf i, retrieved from the
frequency codebook, is passed through the F-Decoder, which consists of a Transformer encoder
followed by two linear layers:

yAi = Encoder(MLP (ẽi)), yPi = Encoder(MLP (ẽi)). (5)

where yAi and yPi are the predicted amplitude and phase, respectively. The frequency codebook’s
training objective is the mean squared error (MSE) loss:

Lf
i = ||yAi −Ai||22 + ||yPi − ϕi||22. (6)
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Temporal Codebook Training Direct reconstruction of temporal features might lead to non-
convergence (Jiang et al., 2024). To address this, we combine contrastive loss with reconstruction
loss to train a temporal codebook. Inspired by studies on physiological signals (Kiyasseh et al., 2021),
we assume temporal dependencies exist between EEG segments, especially within the same channel.
For an EEG segment Xm ∈ RC×n×L, we split it into two halves of length n/2. We use TF-Encoder
in Eq. (2) to obtain the representations of these two parts Xm1, Xm2 ∈ RC× 2

n×L separately:

ehmi = Encoder(Xmi), i ∈ {1, 2}. (7)

We encourage the latent representations of different parts within a single segment ehm1 and ehm2 to
be similar, while making those of the same part across different segments ehmi and ehsk as distinct as
possible, where Xs ∈ RC×n×L, s ̸= m, k ̸= i. SimCLR loss (Chen et al., 2020) is used for training:

LCL
m = − log

exp
(
sim(ehm1, e

h
m2)/τ

)
2N∑
k=1

⊮[k ̸=i] exp
(
sim(ehmi, e

h
sk)/τ

) , (8)

where sim(ehm1, e
h
m2) is the cosine similarity, τ > 0 is the temperature parameter, and ⊮[k ̸=i] is

an indicator function used to exclude itself. We introduce a T-Decoder to reconstruct raw signals
from the temporal code embedding ẽi, which consists of a Transformer encoder followed by a linear
projection. Let yt be the Transformer output from Eq. (2); the overall training objective is:

Lt
i = LCL + ||yti − xi||22, yti = Encoder(MLP (ẽi)). (9)

Finally, the training objective for the TFDual-Tokenizer can be defined as:

Ltokenizer =
∑

Xm∈X
LCL
m +

∑
Xm∈X

n∑
i=0

Lf
i + Lt

i + ∥sg(ẽi)− vtpti∥2 + ∥sg(ẽi)− vfpfi∥2︸ ︷︷ ︸
codebook loss

+ ∥ẽi − sg(vtpti)∥2 + ∥ẽi − sg(vfpfi)∥2︸ ︷︷ ︸
commitment loss

,
(10)

where sg(·) denotes stop-gradient to avoid updating encoder parameters.

2.3 EEGSSM PRETRAINING

In this stage, we introduce a novel convolutional structured state space model framework, called
EEGSSM, composed of multiple EEGSSM blocks. To adapt to unseen channels, we first learn
dynamic positional embeddings using a single depthwise 2D convolution with an asymmetric kernel,
following the ACPE design (Wang et al., 2025), enabling the model to learn relative inter-channel
structures and generalize across heterogeneous EEG channel layouts. The resulting features are
processed by EEGSSM blocks. Another 1D convolutional layer then maps the output back to the
token space for reconstructing the indices of masked tokens produced by the TFDual-Tokenizer.

EEGSSM Block Our EEGSSM block is composed of several blocks, which are integrated together
through a residual connection mechanism. An EEGSSM block consists of a Layer Normalization,
SGConv layer, SWA layer, and a gating component. Afterward, we feed the intermediate variables
into the SGConv layer to obtain a global receptive field through convolution SSM.

SGConv Layer. SGConv is a structured SSM model (see Appendix C) using convolution architecture,
and its convolution structure can be represented as a DFT formula:

y = F−1
N DkFNu,Dk = diag(KFN ), (11)

where FN denotes the DFT matrix of size N , and the convolution can be computed in O(N logN)
via FFT. As a type of convolutional SSM, SGConv improves the convolution kernel K in Eq. (22) by
introducing two features: sparse parameterization and kernel decay, making SGConv easier and more
efficient to compute compared to the traditional S4 kernel. Let L be the length of the input sequence.
The convolution kernel K of SGConv is composed of several sub-kernels. Assuming the size of the
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first sub-kernel is d, with parameters wi ∈ Rd×d, then the number of sub-kernels can be expressed as
N = log2(

L
d ) + 1. The convolution kernel K in Eq. (22) can thus be initialized as:

K =
1

Z
[k0, k1, ..., kN−1], ki = αiUpsample2max[i−1,0]d(wi), (12)

where α denotes the decay coefficient, usually chosen to be 0.5, inducing the decaying structure, and
Upsample(x) denotes upsample x to length l. We also introduce the normalization constant Z to
ensure that the convolution operation does not change the scale of the input.

Sliding Window Attention Layer. We included a sliding window attention (SWA) layer to capture
fine-grained local temporal dependencies. We apply a small fixed-length window, allowing the model
to directly access the content within the context of the window through an attention mechanism
by sliding it across the entire sequence, thereby addressing previous models’ neglect of intra-patch
temporal information. Furthermore, SWA maintains linear computational complexity to ensure
training speed remains largely unaffected.

Gate Mechanism. we use a gating mechanism to control the output of the block. We employ a gated
unit similar to Wavenet (Obeid & Picone, 2016), which can suppress useless or irrelevant features
and help stabilize training in deep networks. We concatenate the global features output ysg by the
SGConv layer with the local features output yswa by SWA and feed them into a gated unit:

z = tanh(Wf × Concat(ysg, yswa))⊙ σ(Wg × Concat(ysg, yswa)), (13)

y1 = Conv(z), y2 = Conv(z) (14)

where tanh(·) and σ(·) are tanh function and sigmoid function, ⊙ denotes an element-wise multipli-
cation operator, Wf and Wg are learnable convolution filters. y1 becomes the input to the next block,
while y2 will be aggregated to the output of SSM blocks through a skip connection.

Pre-Training Objective To help the EEGSSM model learn general EEG representations, we use
a Masked Autoencoder (MAE) for self-supervised pre-training. For a patched sample X = {xi |
i ∈ [1, 2, . . . , C]}, we randomly generate a mask M = {mi | i ∈ [1, 2, . . . , C]} from a Bernoulli
distribution of r proportion, where mi ∈ {0, 1}. We reconstruct the token indices of masked EEG
patches from the TFDual-Tokenizer by cross-entropy loss. Let yi denotes the output of the EEGSSM
block, the probability that the EEG signal matches the corresponding token vi in the codebooks:

p(vi|xi) = softmax(Conv1D(yi)). (15)

Suppose the size of the pre-training set is N , the final cross-entropy loss is:

Lp = −
N∑
j=0

C∑
n∈{mi=1}

p(vnj |xnj). (16)

3 EXPERIMENTS

3.1 DATASETS

Pre-Training. We pretrain CodeBrain on the TUH EEG Corpus (Obeid & Picone, 2016), the largest
publicly available EEG dataset to date. Data processing follows a standardized pipeline: recordings
shorter than 5 minutes are excluded, and the first and last minute of each segment is removed. We
retain 19 commonly used EEG channels (C3, C4, Cz, F3, F4, Fp1, Fp2, F7, F8, Fz, O1, O2, P3, P4,
Pz, T3, T4, T5, T6), selected based on the international 10–20 system for electrode placement (HH,
1958). We apply band-pass filtering (0.3–75 Hz), and notch filtering at 60 Hz to remove noise. The
data is resampled to 200 Hz and divided into 30-second non-overlapping segments. Segments with
absolute amplitudes over 100 µV are filtered out. To normalize the signals, each value is divided by
100. Each segment is split into 1-second windows, resulting in 570 EEG patches per sample. After
preprocessing, 1,109,545 samples (about 9,246 hours) are retained for pretraining.

Downstream Tasks. We evaluate CodeBrain on 8 downstream tasks across 10 public EEG datasets,
which span diverse applications and exhibit distribution shifts from the pretraining dataset, to assess
generalizability. Detailed dataset configurations are in Table 3.1. We perform cross-subject or cross-
session splits with strict separation between training, validation, and test sets. For FACED, we use 80
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subjects for training, 20 for validation, and the remaining 23 for testing. In SEED-V, each session
consists of 15 trials, which are evenly divided into training, validation, and test sets. ISRUC S3
consists of 10 subjects, for which we apply an 8:1:1 cross-subject split. MentalArithmetic consists
of 36 subjects, and we use a 7:1:1 cross-subject split. BCIC2020-T3 follows the official competition
protocol. In CHB-MIT, we use recordings from 19 subjects for training, and from 2 subjects each
for validation and testing. Additional dataset details are provided in the Appendix G.

Table 1: Summary of Downstream Tasks and Associated EEG Datasets.
Downstream Tasks Datasets #Channels Length #Samples Class

Emotion Recognition FACED (Chen et al., 2023) 32 10s 10,332 9-class
SEED-V (Liu et al., 2021) 62 1s 117,744 5-class

Sleep Staging ISRUC S1 (Khalighi et al., 2016) 6 30s 86,320 5-class
ISRUC S3 (Khalighi et al., 2016) 6 30s 8,500 5-class

Imagined Speech Classification BCIC 2020-T3 (Jeong et al., 2022) 64 3s 6,000 5-class
Mental Stress Detection Mental Arithmetic (Mumtaz, 2016) 20 5s 1,707 2-class
Seizure Detection CHB-MIT (Shoeb, 2009) 16 10s 326,993 2-class
Motor Imagery Classification SHU-MI (Goldberger et al., 2000) 32 4s 11,988 2-class
Event Type Classification TUEV (Obeid & Picone, 2016) 16 5s 112,491 6-class
Abnormal Detection TUAB (Obeid & Picone, 2016) 16 10s 409,455 2-class

3.2 EXPERIMENT SETTINGS

Experiment Setup. (1) Pretraining Setup. All experiments are conducted on NVIDIA 40GB A100
GPUs. The TFDual-Tokenizer is trained with temporal and frequency codebooks of 4096 codes (32
dimensions) for 20 epochs, using a batch size of 256 and a learning rate of 1e-4, across six A100
GPUs for approximately ten hours. An 8-layer EEGSSM backbone (15.17M) with a masking ratio of
0.5 is trained for 10 epochs, using a batch size of 256 on two A100 GPUs for about 24 hours.

(2) Finetuning Strategy. We evaluate the quality of the pretrained representations under full finetuning.
All downstream task datasets are resampled to 200 Hz to match the pretraining configuration. A
three-layer MLP is applied to aggregate channel information, compress the x-second sequence, and
map the representation to the target class, with activation and dropout between layers.

Baselines. We compare our model with a comprehensive set of baseline models that include widely
used task-specific models, as well as publicly available EFMs that have released pretrained weights.
Among the non-foundation baselines, EEGNet (Lawhern et al., 2018) and EEGConformer (Song
et al., 2022) represent compact architectures designed for efficient EEG decoding. ContraWR
(Yang et al., 2021) is a contrastive-learning–based small model, while ST-Transformer (Song et al.,
2021) provides a transformer backbone. These models serve as representative lightweight baselines
commonly adopted across EEG classification tasks.

For EEG foundation models with publicly available pretrained weights, we include five representative
methods that cover diverse pretraining paradigms. BENDR (Kostas et al., 2021) adopts a contrastive
learning framework. BIOT (Yang et al., 2023) uses patch-based continuous tokenization. LaBraM
introduces discrete neural tokens through vector quantization (Jiang et al., 2024). EEGPT (Wang
et al., 2024a) and CBraMod (Wang et al., 2025) rely on the masked reconstruction of raw EEG
signals.

Evaluation Metric. For multi-class classification, we report Cohen’s Kappa, Weighted F1 score,
and Balanced Accuracy, with Kappa based on validation performance for testing. For binary
classification, we use Area Under the ROC Curve (AUROC), Area Under the Precision-Recall Curve
(AUC-PR), and Balanced Accuracy, with AUROC based on validation performance for testing.
Balanced Accuracy is included to mitigate potential class imbalance effects. All experiments are
repeated with five random seeds, and we report the mean and standard deviation.

More details about hyperparameters, baselines, and evaluation metrics are provided in Appendix I, H.
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Table 2: Comparison results of different methods on downstream tasks.

Methods FACED (9-Class) SEED-V (5-Class)

Cohen’s Kappa Weighted F1 Balanced Acc Cohen’s Kappa Weighted F1 Balanced Acc

EEGNet 0.3342 ± 0.0251 0.4124 ± 0.0141 0.4090 ± 0.0122 0.1006 ± 0.0143 0.2749 ± 0.0098 0.2961 ± 0.0102
EEGConformer 0.3858 ± 0.0186 0.4514 ± 0.0107 0.4559 ± 0.0125 0.1772 ± 0.0174 0.3487 ± 0.0136 0.3537 ± 0.0112
ContraWR 0.4231 ± 0.0151 0.4887 ± 0.0078 0.4887 ± 0.0078 0.1905 ± 0.0188 0.3544 ± 0.0121 0.3546 ± 0.0105
ST-Transformer 0.4137 ± 0.0133 0.4795 ± 0.0096 0.4810 ± 0.0079 0.1083 ± 0.0121 0.2833 ± 0.0105 0.3052 ± 0.0072

BENDR 0.4716 ± 0.0095 0.5340 ± 0.0086 0.5320 ± 0.0083 0.0335 ± 0.0062 0.2026 ± 0.0330 0.2231 ± 0.0059
BIOT 0.4476 ± 0.0254 0.5136 ± 0.0112 0.5118 ± 0.0118 0.2261 ± 0.0262 0.3856 ± 0.0203 0.3837 ± 0.0187
LaBraM 0.4698 ± 0.0102 0.5288 ± 0.0188 0.5273 ± 0.0107 0.2386 ± 0.0209 0.3974 ± 0.0111 0.3976 ± 0.0138
EEGPT 0.4639 ± 0.0023 0.3924 ± 0.0017 0.4607 ± 0.0014 0.1323 ± 0.0062 0.3090 ± 0.0052 0.3061 ± 0.0044
CBraMod 0.5041 ± 0.0122 0.5618 ± 0.0093 0.5509 ± 0.0089 0.2569 ± 0.0143 0.4101 ± 0.0108 0.4091 ± 0.0097
CodeBrain 0.5406 ± 0.0084 0.5953 ±0.0113 0.5941 ± 0.0098 0.2735 ± 0.0032 0.4235 ± 0.0022 0.4137 ± 0.0023

Methods ISRUC S3 (5-Class) BCIC 2020-T3 (5-Class)

Cohen’s Kappa Weighted F1 Balanced Acc Cohen’s Kappa Weighted F1 Balanced Acc

EEGNet 0.7396 ± 0.0155 0.7407 ± 0.0184 0.7121 ± 0.0134 0.4413 ± 0.0102 0.3016 ± 0.0123 0.4413 ± 0.0096
EEGConformer 0.7482 ± 0.0164 0.7501 ± 0.0211 0.7212 ± 0.0181 0.4488 ± 0.0154 0.3133 ± 0.0183 0.4506 ± 0.0133
ContraWR 0.7493 ± 0.0150 0.7513 ± 0.0185 0.7226 ± 0.0164 0.4407 ± 0.0182 0.3078 ± 0.0218 0.4257 ± 0.0162
ST-Transformer 0.7388 ± 0.0195 0.7399 ± 0.0223 0.7116 ± 0.0197 0.4247 ± 0.0138 0.2941 ± 0.0159 0.4126 ± 0.0122

BENDR 0.5995 ± 0.0151 0.6789 ± 0.0142 0.6352 ± 0.0095 0.0607 ± 0.0093 0.2379 ± 0.0165 0.2485 ± 0.0075
BIOT 0.7168 ± 0.0119 0.7834 ± 0.0096 0.7598 ± 0.0109 0.3650 ± 0.0176 0.4917 ± 0.0079 0.4920 ± 0.0086
LaBraM 0.7194 ± 0.0162 0.7843 ± 0.0189 0.7617 ± 0.0122 0.3800 ± 0.0242 0.5054 ± 0.0205 0.5060 ± 0.0155
EEGPT 0.6160± 0.0856 0.6375 ± 0.0632 0.6650 ± 0.0311 0.0567 ± 0.0164 0.2441 ± 0.0105 0.2453 ± 0.0131
CBraMod 0.7407 ± 0.0251 0.8056 ± 0.0219 0.7844 ± 0.0126 0.4216 ± 0.0163 0.5383 ± 0.0096 0.5373 ± 0.0108
CodeBrain 0.7671 ± 0.0091 0.8202 ± 0.0071 0.7856 ± 0.0031 0.5127 ± 0.0065 0.6101 ± 0.0053 0.6101 ± 0.0052

Methods Mental Arithmetic (2-Class) CHB MIT (2-Class)

AUROC AUC-PR Balanced Acc AUROC AUC-PR Balanced Acc

EEGNet 0.7321 ± 0.0108 0.5763 ± 0.0102 0.6770 ± 0.0116 0.8048 ± 0.0136 0.1914 ± 0.0182 0.5658 ± 0.0106
EEGConformer 0.7424 ± 0.0128 0.5829 ± 0.0134 0.6805 ± 0.0123 0.8226 ± 0.0170 0.2209 ± 0.0215 0.5976 ± 0.0141
ContraWR 0.7332 ± 0.0082 0.5787 ± 0.0164 0.6631 ± 0.0097 0.8103 ± 0.0144 0.2279 ± 0.0183 0.6351 ± 0.0122
ST-Transformer 0.7132 ± 0.0174 0.5672 ± 0.0259 0.6631 ± 0.0173 0.8237 ± 0.0491 0.1422 ± 0.0094 0.5915 ± 0.0195

BENDR 0.6248 ± 0.0765 0.3661 ± 0.0672 0.5681 ± 0.0448 0.8632 ± 0.0526 0.3071 ± 0.1240 0.5609 ± 0.0432
BIOT 0.7536 ± 0.0144 0.6004 ± 0.0195 0.6875 ± 0.0186 0.8761 ± 0.0284 0.3277 ± 0.0460 0.7068 ± 0.0457
LaBraM 0.7721 ± 0.0093 0.5999 ± 0.0155 0.6909 ± 0.0125 0.8679 ± 0.0199 0.3287 ± 0.0402 0.7075 ± 0.0358
EEGPT 0.7162 ± 0.0171 0.5081 ± 0.0275 0.5597 ± 0.0171 0.8892 ± 0.0066 0.3073 ± 0.0641 0.5481 ± 0.0151
CBraMod 0.7905 ± 0.0073 0.6267 ± 0.0099 0.7256 ± 0.0132 0.8892 ± 0.0154 0.3689 ± 0.0382 0.7398 ± 0.0284
CodeBrain 0.8707 ± 0.0209 0.7177 ± 0.0421 0.7514 ± 0.0203 0.8961 ± 0.0174 0.4377 ± 0.0288 0.7273 ± 0.0240

3.3 COMPARISON WITH BASELINES

We ensure consistent data splits across all baselines. Results are reported on six representative
downstream datasets, with additional results provided in Appendix J. As shown in Table 2, CodeBrain
achieves consistent performance gains compared to baselines. For multi-class classification, it
achieves the largest gain of +0.0911 in Cohen’s Kappa (21.6%), +0.0718 in Weighted F1 score
(13.3%), +0.0728 in Balanced Acc (13.5%) on BCIC 2020-T3 over the strongest baseline (Wang
et al., 2025). For binary classification, it achieves the largest gain of +0.0802 in AUROC (10.1%),
+0.0910 in AUC-PR (14.5%) and +0.0258 in Balanced Acc (3.6%) on Mental Arithmetic over the
strongest baseline. These results demonstrate the superior generalizability of CodeBrain.

3.4 ABLATION STUDY

We conduct ablation studies on three datasets with the same five seeds as in the main experiments to
evaluate the key components of CodeBrain (Table 3.3). Below is the detailed analysis:

(1) Tokenizer configuration: we compare the proposed TFDual-Tokenizer (Dual) with variants using a
single domain codebook (Temporal or Frequency) or a shared codebook that jointly reconstructs both
domains (Mixed). Across all datasets, the Dual codebook consistently yields superior performance.
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Table 3: The results of ablation studies for tokenizer configurations and module components.
Dataset Codebook CL SWA SGConv Gate Cohen’s Kappa Weighted F1 Balanced Accuracy

FACED
9-Class

Dual ✓ ✓ ✓ ✓ 0.5406 ± 0.0084 0.5953 ± 0.0113 0.5941 ± 0.0098
Temporal ✓ ✓ ✓ ✓ 0.4618 ± 0.0072 0.5277 ± 0.0067 0.5217 ± 0.0056
Frequency ✓ ✓ ✓ ✓ 0.5006 ± 0.0224 0.5607 ± 0.0201 0.5580 ± 0.0187

Mixed ✓ ✓ ✓ ✓ 0.4676 ± 0.0061 0.5319 ± 0.0052 0.5281 ± 0.0049
Dual ✗ ✓ ✓ ✓ 0.5222 ± 0.0082 0.5811 ± 0.0084 0.5765 ± 0.0074
Dual ✓ ✗ ✓ ✓ 0.5192 ± 0.0092 0.5792 ± 0.0093 0.5736 ± 0.0075
Dual ✓ ✓ ✗ ✓ 0.1936 ± 0.1637 0.2627 ± 0.1824 0.2858 ± 0.1467
Dual ✓ ✓ ✓ ✗ 0.2578 ± 0.0340 0.3363 ± 0.0270 0.3431 ± 0.0316

SEED-V
5-Class

Dual ✓ ✓ ✓ ✓ 0.2735 ± 0.0032 0.4235 ± 0.0022 0.4137 ± 0.0023
Temporal ✓ ✓ ✓ ✓ 0.2633 ± 0.0116 0.4152 ± 0.0092 0.4068 ± 0.0074
Frequency ✓ ✓ ✓ ✓ 0.2665 ± 0.0208 0.4186 ± 0.0177 0.4098 ± 0.0147

Mixed ✓ ✓ ✓ ✓ 0.2708 ± 0.0047 0.4214 ± 0.0044 0.4124 ± 0.0032
Dual ✗ ✓ ✓ ✓ 0.2589 ± 0.0065 0.4129 ± 0.0056 0.4029 ± 0.0042
Dual ✓ ✗ ✓ ✓ 0.2561 ± 0.0051 0.4106 ± 0.0042 0.4019 ± 0.0034
Dual ✓ ✓ ✗ ✓ 0.2062 ± 0.0099 0.3707 ± 0.0075 0.3620 ± 0.0083
Dual ✓ ✓ ✓ ✗ 0.2212 ± 0.0076 0.3826 ± 0.0057 0.3757 ± 0.0052

ISRUC S3
5-Class

Dual ✓ ✓ ✓ ✓ 0.7671 ± 0.0091 0.8202 ± 0.0071 0.7856 ± 0.0031
Temporal ✓ ✓ ✓ ✓ 0.7314 ± 0.0210 0.7916 ± 0.0181 0.7565 ± 0.0244
Frequency ✓ ✓ ✓ ✓ 0.7390 ± 0.0601 0.7986 ± 0.0514 0.7728 ± 0.0361

Mixed ✓ ✓ ✓ ✓ 0.7400 ± 0.0217 0.7999 ± 0.0171 0.7673 ± 0.0157
Dual ✗ ✓ ✓ ✓ 0.7558 ± 0.0333 0.8130 ± 0.0264 0.7801 ± 0.0132
Dual ✓ ✗ ✓ ✓ 0.7359 ± 0.0324 0.7950 ± 0.0259 0.7621 ± 0.0311
Dual ✓ ✓ ✗ ✓ 0.6218 ± 0.0427 0.6956 ± 0.0279 0.6664 ± 0.0316
Dual ✓ ✓ ✓ ✗ 0.5478 ± 0.0302 0.6429 ± 0.0307 0.6258 ± 0.0448

(2) Contrastive learning (CL): We evaluate the impact of contrastive learning in TFDual-Tokenizer
pretraining. It leads to consistent gains, indicating a better capture of temporal patterns. Moreover,
the CL facilitates the convergence of the temporal codebook, with detailed analyzes provided in
Appendix F.

(3) Components of EEGSSM: Evaluating the SWA, SGConv, and Gate modules, which demonstrate
improvements in EEG representation learning. Including the SWA module consistently improves per-
formance, confirming its regularization effect in capturing local dependencies. The gating mechanism
also shows large impact, as it effectively stabilizes fine-tuning and prevents overfitting.

(4) Scaling Laws: Prior works (Wang et al., 2025; Jiang et al., 2024) explored scaling with 1-1000
hours of EEG data for pretraining. We extend to 1k-9k hours and 3M-150M models, ranging from a
3.86M 3-layer model with a hidden size of 128 to a 146.75M 12-layer model with hidden size of
384, enabling a systematic exploration of scaling laws across depth and width. As shown in Figure 3,
Kappa consistently improves with more data and parameters. These results confirm that larger models
yield consistent but diminishing returns. Detailed results and efficiency analysis are provided in
Appendix N. These findings indicate that the 8-layer (15.17M) model is a balanced choice between
performance and computational efficiency.

We further investigate several key design choices, including mask ratio, SWA window size, codebook
size, patch size, SGConv kernel parameters, and subband contributions in Appendix K. We report
robustness experiments in Appendix M and computational efficiency in Appendix L. We also provide
low-resource comparisons (Appendix O) and pretraining curves (Appendix E), showing stable VQ
convergence and efficient EEGSSM training.

Figure 3: Model and training data scaling laws of CodeBrain across three datasets on Cohen’s Kappa.
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3.5 VECTOR VISUALIZATION

To demonstrate how the TFDual-Tokenizer models heterogeneous EEG, we visualize its learned
temporal and frequency codes on the ISRUC S3 dataset by mapping individual code indices back to
their corresponding raw signals. As shown in Figure 4(a)(b), each domain-specific codebook captures
meaningful representation-level structures: temporal codes align with neural events (e.g., slow waves),
while frequency codes highlight spectral rhythms such as dominant delta activity, both of which are
informative for sleep staging. However, in many cases, neither domain alone is sufficient, and richer
structure emerges only from their composition, as in Figure 4(c)(d), where the same temporal code
can pair with different frequency codes, and vise versa, to yield complementary representations. This
decoupled design expands the representation space and enhances representation-level interpretability,
with additional meaningful tokens to neurophysiological features and quantitative analyzes provided
in Appendix B.

Figure 4: Decoupled time-frequency codes visualization on ISRUC S3 dataset.

4 CONCLUSION

In this paper, we present CodeBrain, an EEG foundation model that unifies interpretable tokenization
with a brain-inspired multi-scale architecture. The TFDual-Tokenizer decouples heterogeneous
EEG signals, expanding the representation space while suggesting domain-specific representation-
level interpretability, and the EEGSSM architecture integrates structured global convolution with
sliding-window attention to efficiently capture both long-range and local dependencies. Pretrained
on the large-scale TUEG corpus, CodeBrain demonstrates strong generalization across 8 tasks and
10 datasets under distribution shifts, with comprehensive ablations, scaling-law analyses confirming
robustness and scalability. These results establish CodeBrain as a strong foundation for neural
time-series representation learning.
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Hungry hungry hippos: Towards language modeling with state space models. arXiv preprint
arXiv:2212.14052, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Daniel Y Fu, Elliot L Epstein, Eric Nguyen, Armin W Thomas, Michael Zhang, Tri Dao, Atri Rudra,
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A RELATED WORK

EEG Foundation Models. Inspired by foundation models in vision and language (Wang et al.,
2023; Achiam et al., 2023), EEG research is shifting from task-specific models (Jia et al., 2020c; Wang
et al., 2024b; Chen et al., 2025b) (Zheng et al., 2023) to EFMs for learning expressive representations.
Current EFMs can be divided into two categories. 1) Contrastive learning-based (CL) (Chen et al.,
2025a): BENDER (Kostas et al., 2021) first showed the ability of CL for EEG representations. Then,
the Brant series (Zhang et al., 2023; Yuan et al., 2024; Zhang et al., 2024) enables joint representation
learning across physiological signals using CL. 2) Reconstruction-based: BIOT (Yang et al., 2023)
pioneers cross-modal pretraining for biosignals, including EEG. Subsequent models focus specifically
on EEG, learning representations by predicting masked discrete tokens (Jiang et al., 2024; 2025)
or reconstructing raw signals (Wang et al., 2024a; Mohammadi Foumani et al., 2024; Wang et al.,
2025). Most existing EFMs adopt Transformer architecture, which is suboptimal for EEG due to poor
handling of sparse dependencies, quadratic complexity, and ignoring local dependencies by treating
each patch as a token.

EEG Tokenization. Tokenization has been key in NLP for generating generalizable and inter-
pretable input representations (Sennrich et al., 2016; Kudo & Richardson, 2018). Inspired by this,
early EFMs used patch-based continuous tokenization (Yang et al., 2023; Yuan et al., 2024) to handle
EEG noise and variability, but without quantization, leading to unbounded and less interpretable
representations. LaBraM (Jiang et al., 2024) introduced vector quantization to learn discrete EEG
tokens, following the VQ-VAE design from vision tasks (Van Den Oord et al., 2017). However, this
direct transfer overlooks EEG’s heterogeneous structure, limiting representation capacity. Moreover,
the tokenizer of LaBraM is trained only on frequency-domain reconstruction due to convergence
issues with raw signals reconstruction. Later efforts (Pradeepkumar et al., 2025; Jiang et al., 2025)
(Zheng et al.) adopted a single codebook under a frequency-dominant pretraining paradigm, limiting
the representation space and interpretability.

State Space Model. Recent works have focused on enhancing classic State-Space Models (SSM)
to more efficiently model sequential data using deep learning. For example, Rangapuram et al. (2018)
used recurrent neural networks to learn parameters in SSM. However, the most significant progress
came from Gu et al. (2021) with the introduction of the structured state space model (S4), which
reduces the computational complexity of SSM in modeling long sequences using a special state
transition matrix (Gu et al., 2020). These low-rank and normal matrices enable SSM to compute
global convolution kernels efficiently through fast Fourier transform across the entire sequence.
Subsequently, some works have further improved the shortcomings of S4 in areas such as model
architecture (Smith et al., 2022) and convolution (Raghu et al., 2023), and have started applying
it to tasks such as natural language processing (Dao et al., 2022) and time series analysis (Zhou
et al., 2023). Recently, some works have also been applied to the EEG data, Tran et al. (Tran et al.,
2024) leveraging SSMs to detect dementia. They extract temporal information from EEG signals
through the Mamba architecture and combine it with frequency domain features to better manage
the complexity of multivariate EEG. In the work of Gui et al. (2024) Zheng et al. (2025), SSM has
also become the backbone network of the EEG foundation model. This further highlights the fast
reasoning speed and efficient memory usage of the SSM model when processing EEG signals.

B INTERPRETABILITY ANALYSES OF TFDUAL-TOKENIZER
REPRESENTATIONS

We conduct representation-level interpretability analyses of the decoupled TFDUAL-TOKENIZER.
As case studies, we visualize selected tokens alongside well-established physiological patterns, il-
lustrating that frequency codes reflect spectral rhythms and temporal codes align with characteristic
waveform events. These qualitative examples show that the tokenizer does not discretize signals
arbitrarily but organizes them into domain-relevant structures. We further complement these visual-
izations with a quantitative analysis of class-specific token usage across four datasets, demonstrating
that the learned codebooks induce structured representation patterns.
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B.1 EXPLORING FREQUENCY TOKEN PATTERNS IN RELATION TO SPECTRAL RHYTHMS

To illustrate the interpretable structure of the learned frequency tokens, we take sleep staging as an
example downstream dataset. We focus on N2 and N3 stages, since they are characterized by the
most distinctive spectral rhythms in clinical sleep scoring: spindle in the sigma band (11-16 Hz) for
N2, and slow wave in the delta band (0.5-4 Hz) for N3. Using token-activation statistics from the
ISRUC S3 test set, we select the most frequently activated class-specific frequency tokens.

As shown in Figure 5, frequency code No. 2298 tends to capture a sigma bump, with prominent peaks
localized in the spindle range. This is similar to N2 spindles (Berry et al., 2012). Quantitatively, this
code exhibited a clear sigma peak in approximately 15.4% of its assigned patches. Similarly, Figure 6
shows that frequency code No. 32 predominantly encodes delta dominance, a typical frequency
feature of N3 sleep. This code displayed clear delta dominance in about 18.3% of its assigned
segments. Taken together, these findings suggest that our frequency-branch tokenizer helps establish
a frequency vocabulary for EEG.

Figure 5: Frequency code capturing sigma bump, a typical spectral rhythm of N2 stage.

Figure 6: Frequency code capturing delta dominance, a typical spectral rhythm of N3 stage.
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B.2 EXPLORING TEMPORAL TOKEN PATTERNS IN RELATION TO NEURAL EVENTS

In addition to spectral rhythms, we applied the same token-activation–based selection procedure to
the temporal codes on ISRUC S3 to examine whether the tokenizer captures coherent and clinically
recognizable structures in the raw EEG waveforms. Figure 8 and Figure 7 show that certain codes
align with K-complexes and sleep spindles, the hallmark waveforms of N2 sleep. Quantitatively,
≈ 5.34% of the assigned patches contained K-complexes and ≈ 7.01% contained spindles. These
rates are consistent with clinical expectations (1–2 K-complexes and 2–5 spindles per minute in N2
Berry et al. (2012)) and, when considering the overall prevalence of N2 in five-class sleep staging,
still substantially exceed what would be expected from random token usage.

Figure 7: Temporal code capturing sleep spindle, a typical neural events of N2 stage.

Figure 8: Temporal code capturing K complex, a typical neural events of N2 stage.

Figure 9 shows that temporal code No. 1537 corresponds to slow waves, the defining feature of N3
sleep, occurring in ≈ 40.4% of its assigned patches. This exceeds the 20% per-epoch criterion for N3
scoring Berry et al. (2012) and, given the overall prevalence of N3, indicates that this token provides
a meaningful link to neural events.
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Figure 9: Temporal code capturing slow wave, a typical neural events of N3 stage.

Taken together, these observations suggest that the temporal branch of our tokenizer contributes
to establishing a vocabulary of neurophysiological events, complementing the frequency-domain
findings. While temporal waveforms are often noisier and harder to model than spectral rhythms (Jiang
et al., 2024), our decoupled design allows temporal tokens to emerge with meaningful associations
to critical neural events. This indicates that the temporal branch offers useful insights to clinically
relevant waveforms and demonstrates the effectiveness of our approach in capturing complementary
structure.

B.3 CLASS-SPECIFIC TOKEN RATIO ANALYSIS FOR TFDUAL-TOKENIZER

To further characterize the representation structure learned by the TFDUAL-TOKENIZER, we analyze
the distribution of token usage across classes on unseen downstream datasets. This analysis aims
to examine whether the decoupled tokenizer induces more structured and class-consistent token
activation patterns, which would support our motivation for separating temporal and frequency
domains at the representation level.

A token (code) is considered class-specific if it predominantly appears in samples of a single class.
Formally, for a given token c, let N (y)

c denote the number of times c appears in class y. The dominance
ratio is defined as:

Dominance(c) =
maxy N

(y)
c∑

y N
(y)
c

(17)

If Dominance(c)≥τ (we use τ = 1), the token is deemed class-specific. The class-specific ratio for a
codebook is then computed as:

Class-Specific Token Ratio =
# class-specific tokens

Total tokens in codebook
(18)

Figure 10 illustrates the proportion of class-specific tokens derived from three configurations: using
only the temporal codebook, only the frequency codebook, and a combination of both (TF-Decoupled).
We employ two independent codebooks to capture complementary information via the proposed
TFDUAL-TOKENIZER module.

Across all four datasets, including two for emotion recognition (FACED and SEED-V) and two
for sleep staging (ISRUC S3 and ISRUC S1), the decoupled codebook consistently achieves the
highest class-specific token ratios, reaching 54.7% on ISRUC S3 and 46.4% on FACED. These
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results confirm that decoupling temporal and frequency domain information significantly enhances
the model’s ability to capture structured representation.

Figure 10: Class-Specific Code Ratio Across Different Codebooks.

B.4 ADDITIONAL ABLATIONS ON CODEBOOK CONTRIBUTION

To further examine the role of the tokenizer in pretraining, we provide additional exploratory evidence
on how the the codebooks influence representation learning. These analyses extend the comparisons
in Table 3.3, where the decoupled design outperforms temporal-only, frequency-only, and mixed
codebooks. Specifically, we compare the following two ablations on the ISRUC S3 dataset:

• Raw-signal reconstruction. We remove the tokenizer entirely and train the EEGSSM
backbone directly to reconstruct raw waveforms, thereby eliminating the discretization step.

• Masked codebook. We identify the top 50% most frequently activated tokens across both
codebooks on ISRUC S3. During pretraining, whenever a segment is assigned one of these
tokens, we replace it with a placeholder, effectively masking half of the vocabulary and
preventing the model from relying on these high-activation codes.

Table 4 reports downstream performance on ISRUC S3 under these settings.

Table 4: Ablations of the codebook contribution on ISRUC S3.

Setting Cohen’s κ Weighted F1 Balanced Acc
TFDual tokenizer (ours) 0.7671 ± 0.0091 0.8202 ± 0.0071 0.7856 ± 0.0031
Raw-signal Reconstruction 0.7503 ± 0.0087 0.8014 ± 0.0079 0.7763 ± 0.0048
Masked Codebook 0.7426 ± 0.0102 0.7931 ± 0.0084 0.7690 ± 0.0063

These experiments do not suggest that specific interpretable codes directly determine task outcomes.
However, they provide supporting evidence that the decoupled tokenizer imparts useful structure
during pretraining, and that entirely removing or partially disabling the codebooks leads to consistently
degraded downstream performance. These observations reinforce the contribution of the tokenizer at
the representation level.

C STRUCTURE STATE SPACE MODEL

The state-space model is a classic model in control theory, and it represents the operational state of a
system using first-order differential equations (ODE). A continuous state-space model can be defined
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in the following form:
x′(t) = Ax(t) +Bu(t), y(t) = Cx′(t) +Du(t), (19)

where u(t) is a vector that represents the input of the system, while y(t) is a vector that represents the
output of the system. x(t) and its derivative x′(t) represent the latent states of the system, typically
in the form of an N-D vector. And A,B,C,D here are the state, input, output, and feedforward
matrices, defining the relationship between the input, output, and state vector. Following Gu et al.
(Gu et al., 2022b), D̄ is set equal to 0 since it can be replaced by the residual connection. Now,
Equation 20 resembles an architecture similar to RNN, allowing us to recurrently compute xk. Let
the initial state be xk−1 = 0, and we can unroll Eq 20 as follows:

yk = CAkBu0 + CAk−1Bu1 + ...+ CABuk−1 + CBuk (20)

y = Ku, K = (CB,CA1B, ..., CAkB). (21)
Therefore, SSM can be transformed from the form of a recurrent neural network to a convolutional
neural network. During training, the K can be considered as a 1-D globe convolution kernel, so
the y can be calculated via the ”long” convolution, allowing us to use the fast Fourier transform to
efficiently compute the SSM convolutional kernel K. However, directly computing the convolution
in Equation 21 can be very expensive for long sequences. We can use the Fast Fourier Transform to
accelerate it. The form of this convolution can be written as:

y = F−1
N DkFNu,Dk = diag(KFN ), (22)

where FN denotes the DFT matrix of size N . This FFT convolution has a computational complexity
of O(nlog(n)). Following (Li et al., 2022; Fu et al., 2023), we hope to parameterize K directly rather
than through {A,B,C} because we can eliminate complex parameterization and accelerate the entire
convolution.

While Eq. 22 shows that the SSM can be computed using FFT-based convolution, it is important to
formalize the complexity guarantee. We now state the following proposition.

Proposition 1. Let (A,B,C,D) denote the discretized state-space matrices of an S4 layer, with input
sequence u ∈ RN . The output y ∈ RN can be written as a linear convolution y = k ∗ u with kernel

k0 = D, kn = CAn−1B, n ≥ 1.

Using the convolution theorem and the FFT, this convolution can be computed in time Θ(N logN).

Proof. This proof follows the proof in Lemma C.2 of Gu et al. (2021):

Expanding the recurrence
xn+1 = Axn +Bun, yn = Cxn +Dun, (23)

yields

yn = Dun +

n−1∑
t=0

CAn−1−tB ut =

n∑
t=0

kn−t ut, (24)

where k0 = D and kn = CAn−1B. Thus y = k ∗ u.

Let FN denote the N -point DFT. By the convolution theorem,
FN (y) = FN (k)⊙FN (u), (25)

so that
y = F−1

N (FN (k)⊙FN (u)) . (26)
The cost of forward FFT, element-wise product, and inverse FFT is Θ(N logN).

The S4 parameterization ensures A admits a diagonal-plus-low-rank (DPLR) structure, so the kernel
takes the form

kn =

r∑
j=1

αj λ
n−1
j , r ≪ N. (27)

Each exponential sequence can be generated recursively in O(N), yielding all k0, . . . , kN−1 in linear
time.

Combining the above,
T (N) = Θ(N logN)︸ ︷︷ ︸

FFT convolution

+ O(N)︸ ︷︷ ︸
kernel generation

= Θ(N logN). (28)
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D THEORETICAL ANALYSIS OF DECOUPLED CODEBOOK TRAINING

Proposition 2.1. Let X = (Xt, Xf ) denote the temporal and frequency representations of an
EEG segment, assumed approximately independent. Consider an additive reconstruction distortion
d(x, x̂) = dt(xt, x̂t) + df (xf , x̂f ). Under a fixed total codebook size K = 2R, a product codebook
Ct × Cf with |Ct| = 2Rt and |Cf | = 2Rf , Rt +Rf = R, achieves a minimum expected distortion

D⋆
prod(R) = min

Rt+Rf=R

(
D⋆

t (Rt) +D⋆
f (Rf )

)
, (29)

which satisfies
D⋆

mix(R) ≥ D⋆
prod(R), (30)

where D⋆
mix(R) is the minimum distortion of a single mixed codebook Cmix ⊂ Rdt+df of size 2R.

Proof. The argument combines the separability of the rate–distortion (R–D) function for independent
sources under additive distortion and the high-rate quantization approximation to the Shannon R–D
limit.

Let X = (Xt, Xf ) with Xt ⊥ Xf , and distortion

d(x, x̂) = dt(xt, x̂t) + df (xf , x̂f ). (31)

Then the Shannon R–D function satisfies

R(D) = min
Dt+Df=D

(
Rt(Dt) +Rf (Df )

)
, (32)

where Rt(·) and Rf (·) are the marginal R–D functions for Xt and Xf . By convex duality, the optimal
test channel factorizes:

p(x̂t, x̂f | xt, xf ) = p(x̂t | xt) p(x̂f | xf ), (33)

and the optimal distortion allocation solves

min
Dt,Df

Rt(Dt) +Rf (Df ) s.t. Dt +Df = D, (34)

with KKT condition R′
t(D

⋆
t ) = R′

f (D
⋆
f ).

At rate Rt bits for Xt and Rf bits for Xf (with Rt+Rf = R), the minimal achievable distortions are
D⋆

t (Rt) and D⋆
f (Rf ). In the high-rate regime, practical vector quantizers approach these Shannon

limits, yielding
Dprod(Rt, Rf ) ≈ D⋆

t (Rt) +D⋆
f (Rf ). (35)

Optimizing over all feasible splits gives

D⋆
prod(R) = min

Rt+Rf=R

(
D⋆

t (Rt) +D⋆
f (Rf )

)
. (36)

Any mixed codebook Cmix ⊂ Rdt+df with |Cmix| = 2R cannot beat the Shannon R–D limit, so

D⋆
mix(R) ≥ D⋆(R). (37)

But from (34)– (35),

D⋆(R) = min
Rt+Rf=R

(
D⋆

t (Rt) +D⋆
f (Rf )

)
= D⋆

prod(R). (38)

Therefore,
D⋆

mix(R) ≥ D⋆
prod(R), (39)

Remark. We acknowledge that theoretically, Xt and Xf are coupled via the Fourier Transform.
However, within the context of Neural Vector Quantization, they behave as heterogeneous sources of
information. For example, topological features in waveforms (e.g., K-complexes) and frequency den-
sities in frequency (e.g., Alpha rhythms) impose orthogonal constraints on the codebook optimization
landscape. Therefore, the ”approximate independence” in Proposition 2.1 should be interpreted as
the functional independence of semantic distortions in the latent representation space, rather than the
statistical independence of the raw signals.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

E PRETRAINING RESULTS

Our model follows a two-stage pretraining framework. In the first stage, we train the TFDUAL-
TOKENIZER, which independently tokenizes EEG signals in both the temporal and frequency domains.
This tokenizer is optimized to reconstruct the original raw EEG signals, amplitude, and phase
components, thereby producing discrete code representations with structural interpretability. In the
second stage, we pretrain the EEGSSM encoder using a masked modeling objective: given the
original EEG signals as input, the model learns to predict the corresponding masked tokens generated
from the TFDUAL-TOKENIZER.

This section reports the pretraining results of both stages, including loss convergence, reconstruction
dynamics, and codebook utilization patterns.

E.1 TFDUAL-TOKENIZER PRETRAINING RESULTS

Total Training Loss The total pretraining loss curve of the TFDUAL-TOKENIZER is shown in
Figure 11. The model demonstrates a rapid initial decrease in loss during the first few epochs,
followed by a slower but consistent decline.

Figure 11: Pretraining Loss Curve of TFDUAL-TOKENIZER.

Reconstruction Loss. We report the pretraining reconstruction loss of the TFDUAL-TOKENIZER in
Figure 12. The temporal codebook is trained to reconstruct raw EEG signals in the time domain, while
the frequency codebook is trained to reconstruct the corresponding amplitude and phase components
in the frequency domain. All three loss curves exhibit a sharp initial decline, followed by a gradual
convergence, indicating stable optimization.

Figure 12: Pretraining Loss Curve of TFDUAL-TOKENIZER.

Unused Codes Analysis. During pretraining, we track the number of unused codes in both the
temporal and frequency codebooks of the TFDUAL-TOKENIZER, each with a size of 4096. As shown
in Figure 13, the frequency codebook demonstrates a rapid decrease in unused codes, while the
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temporal codebook shows a slower and more incremental reduction. A more detailed analysis of the
temporal-frequency complementarity is provided in Section B.3.

Figure 13: Unused code dynamics of the TFDUAL-TOKENIZER.

E.2 EEGSSSM PRETRAINING RESULTS

We plot the pretraining loss curve of EEGSSM in Figure 14. We select epoch 10 as the checkpoint
for downstream fine-tuning. We observe that the pretraining loss of EEGSSM decreases rapidly
from epoch 1 to 6 (9.04 → 6.39), then flattens gradually after epoch 10 (6.01 → 5.66). Using epoch
10 for fine-tuning is a balance between representation strength and generalization. Overtraining on
EEG, prone to noise and inter-subject variability, can reduce transferability. Epoch 10 serves as a
conservative yet effective checkpoint. This practice is consistent with trends in foundation models
from NLP (Devlin et al., 2019) and vision (Caron et al., 2021), where mid-training checkpoints often
lead to better downstream performance than final ones due to reduced overfitting to the pretext task.

Figure 14: Pretraining Loss Curve of EEGSSM.

F IMPROVING TEMPORAL CODEBOOK LEARNING VIA CONTRASTIVE LOSS

To improve the learning of the temporal codebook in our TFDUAL-TOKENIZER, we introduce a
contrastive loss as one of the objectives during pretraining. This design is motivated by observations
from prior work LaBraM (Jiang et al., 2024), where the authors report that reconstructing raw EEG
signals leads to unconvergence, and thus omit the temporal reconstruction objective entirely.

To better understand this limitation, we first implemented a baseline reconstruction of raw signals
within the LaBraM framework and observed that the training loss plateaued at a high value (between
0.128 and 0.131), showing no convergence over training epochs. To mitigate this, we introduce a TF-
Conv module before the Transformer encoder, designed to extract temporal-frequency representations
before tokenization. While this stabilizes training to some extent, we still observe significant issues
with code utilization and loss convergence. Therefore, we incorporate a lightweight contrastive loss,
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applied over temporal representations before quantization, to encourage the model to organize similar
input patterns closer in the latent space. As shown in Figure 15, this improves the optimization of the
reconstruction loss and reduces the number of unused temporal codes during training.

These results demonstrate that contrastive regularization acts as an effective prior for stabilizing
discrete token learning, particularly when reconstructing raw signals. It both improves convergence
and mitigates codebook collapse in the temporal branch of the tokenizer.

Figure 15: Effect of Contrastive Loss on Temporal Codebook Learning.

G DATASET DESCRIPTION

We evaluate the CODEBRAIN across eight diverse downstream tasks covering ten publicly available
EEG datasets. Notably, these datasets exhibit substantial variability in channel configurations
(ranging from 6 to 64), sequence lengths (from 1s to 30s), and task complexities (2-class to 9-class),
highlighting the versatility and robustness of CODEBRAIN across different EEG applications. The
following sections describe each dataset in detail, including its task objective and data split strategy.
A comprehensive analysis of each dataset is provided below.

Emotion Recognition. We conduct emotion recognition experiments on two widely used EEG
datasets: FACED (Chen et al., 2023) and SEED-V (Liu et al., 2021).
The FACED dataset (Finer-Grained Affective Computing EEG Dataset) is a large-scale EEG dataset
proposed by Chen et al. (Chen et al., 2023) for emotion recognition tasks. It consists of 32-channel
EEG recordings sampled at 250 Hz from 123 participants, each exposed to 28 video clips designed to
elicit nine distinct emotional states: amusement, inspiration, joy, tenderness, anger, fear, disgust,
sadness, and neutral. These cover both positive and negative affective categories. Each EEG trial
is 10 seconds long and is subsequently resampled to 200 Hz, resulting in a total of 10,332 clean
EEG segments. For fair comparison, we adopt the same subject-wise split as in (Wang et al., 2025):
subjects 1–80 are used for training, 81–100 for validation, and 101–123 for testing, ensuring no
subject overlap across splits and enabling evaluation of cross-subject generalization.
SEED-V (Liu et al., 2021) is an EEG dataset designed for emotion recognition, covering five
emotional categories: happy, sad, neutral, disgust, and fear. It consists of 62-channel EEG recordings
collected at 1000 Hz from 16 subjects, each participating in three sessions. Each session includes 15
trials, which are evenly divided into training, validation, and test sets (5 trials each). The EEG signals
are segmented into 1-second windows, yielding a total of 117,744 samples, and resampled to 200 Hz
for consistency. The dataset provides rich temporal structure and inter-subject variability, making it a
strong benchmark for evaluating generalization in emotion-related EEG modeling.

Sleep Staging. We use two datasets, ISRUC S1 and ISRUC S3 (Khalighi et al., 2016), for sleep
stage classification. Both datasets are annotated according to the American Academy of Sleep
Medicine (AASM) standard (Berry et al., 2012), with five sleep stages: Wake, NREM1 (N1), NREM
(N2), NREM (N3), and REM. Each EEG segment corresponds to a 30-second epoch.
ISRUC S1 includes EEG recordings from 100 subjects using six channels at a sampling rate of
200 Hz. We adopt a subject-wise split, with 80 subjects for training, 10 for validation, and 10 for
testing. As the transition rules between sleep stages carry important temporal patterns, we follow
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prior work (Wang et al., 2024a; 2025) and insert a Transformer layer on top of the projection head
during fine-tuning to better capture sequence-level dependencies. We set the input sequence length to
20, and discard segments that cannot be evenly divided. In total, 86,320 labeled samples are retained.
ISRUC S3 is a smaller dataset comprising recordings from 10 subjects, also sampled at 200 Hz with
six channels, totaling 8,500 labeled segments. We follow an 8:1:1 subject-wise split for training,
validation, and testing.

Imagined Speech Classification. The BCIC2020-T3 dataset (Jeong et al., 2022) was released
as part of the 2020 International Brain–Computer Interface Competition and focuses on imagined
speech decoding. It contains EEG recordings from 15 participants who were instructed to silently
imagine speaking five specific words or phrases, ”hello”, ”help me”, ”stop”, ”thank you”, and

”yes”. EEG signals were collected using 64 scalp channels at a sampling rate of 256 Hz and were
subsequently resampled to 200 Hz for preprocessing consistency. Each subject completed 80 trials
per class, resulting in a total of 6,000 trials. The dataset provides predefined training, validation, and
test splits, with 60, 10, and 10 trials per class, respectively, facilitating fair model evaluation like
existing baselines (Wang et al., 2025).

Mental Stress Detection. The Mental Arithmetic dataset (Mumtaz, 2016) supports the task of
mental stress detection using EEG signals. It contains recordings from 36 subjects under two distinct
cognitive conditions: resting and active engagement in mental arithmetic. EEG data labeled as “no
stress” correspond to resting periods prior to the task, while “stress” labels are assigned to recordings
during task performance. The signals were acquired using 20 electrodes placed according to the
international 10–20 system, with an original sampling rate of 500 Hz. For consistency, the signals are
resampled to 200 Hz and band-pass filtered between 0.5–45 Hz to suppress noise. Each recording is
segmented into 5-second windows, yielding a total of 1,707 samples. We adopt a subject-wise split
for fair evaluation with existing baselines (Wang et al., 2025): subjects 1–28 for training, 29–32 for
validation, and 33–36 for testing.

Seizure Detection. The CHB-MIT dataset (Shoeb, 2009) is a widely used benchmark for seizure
detection from EEG signals. It contains long-term EEG recordings from 23 patients diagnosed with
intractable epilepsy, collected at the Children’s Hospital Boston. The subjects underwent continuous
monitoring over several days, during which seizures were recorded following the tapering of anti-
epileptic medications. EEG signals were acquired using the international 10–20 system and originally
sampled at 256 Hz. In our setting, we adopt 16 channels commonly used in prior work (Yang
et al., 2023; Wang et al., 2025), resample all signals to 200 Hz, and segment them into 10-second
non-overlapping windows, yielding 326,993 labeled samples across seizure and non-seizure classes.
We follow a subject-wise split: subjects 1–19 for training, 20–21 for validation, and 22–23 for testing.
Notably, this dataset is highly imbalanced, with seizure events constituting only a small fraction of
the total samples, posing significant challenges for model training and evaluation.

Motor Imagery Classification. The SHU-MI dataset (Goldberger et al., 2000) is designed for
binary motor imagery classification, where participants are instructed to imagine movements of either
the left or right hand. EEG signals were recorded from 25 subjects using a 32-channel setup at an
original sampling rate of 250 Hz. To ensure consistency with the pre-training setting, all signals are
resampled to 200 Hz and segmented into 4-second non-overlapping windows, resulting in 11,988
labeled samples. A subject-wise split is applied for fair model evaluation like existing baselines
(Wang et al., 2025), with subjects 1–15 used for training, 16–20 for validation, and 21–25 for testing.
This dataset supports the development of BCI systems that decode motor intentions from brain
activity without actual movement.

Event Type Classification. The TUEV dataset (Obeid & Picone, 2016) is a clinically annotated
EEG corpus used for multi-class event type classification. It includes six event categories: spike
and sharp wave (SPSW), generalized periodic epileptiform discharges (GPED), periodic lateralized
epileptiform discharges (PLED), eye movements (EYEM), artifacts (ARTF), and background activity
(BCKG). EEG signals were originally recorded at 256 Hz using 23 channels. In line with prior work
(Wang et al., 2025), we preprocess the data by selecting 16 bipolar montage channels based on the
international 10–20 system. The signals are band-pass filtered between 0.3–75 Hz to suppress low-
and high-frequency noise, and a 60 Hz notch filter is applied to eliminate power line interference. All
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recordings are resampled to 200 Hz and segmented into 5-second windows, yielding 112,491 labeled
samples. We follow the official train-test split and further divide the training subjects into training
and validation sets in an 8:2 ratio, consistent with established benchmarks.

Abnormal Detection. The TUAB dataset (Obeid & Picone, 2016) is employed for binary abnormal
EEG detection, where each EEG recording is labeled as either normal or abnormal based on clinical
interpretation. Originally recorded at 256 Hz using 23 channels, the dataset provides large-scale
EEG recordings suitable for evaluating diagnostic models. To ensure fair comparison with prior
work (Wang et al., 2025), we follow a similar preprocessing protocol. Specifically, we select 16
bipolar montage channels following the international 10–20 system, apply band-pass filtering between
0.3–75 Hz to eliminate low- and high-frequency artifacts, and remove 60 Hz power line interference
using a notch filter. The EEG signals are then resampled to 200 Hz and segmented into 10-second
windows, resulting in 409,455 labeled samples. We follow the official train-test split and further
divide the training set into training and validation subsets using an 8:2 subject-wise ratio, consistent
with existing benchmarks.

H BASELINES AND METRICS DESCRIPTION

H.1 METRICS

To comprehensively evaluate our model, we compare it with a set of strong baselines commonly used
in EEG analysis. These baselines are evaluated using metrics tailored for class-imbalanced scenarios,
which are prevalent in EEG datasets. The metrics include:

• Balanced Accuracy, which averages the recall across all classes and is particularly suitable
for imbalanced multi-class classification tasks.

• AUROC and AUC-PR, which assess the performance of binary classifiers under different
thresholds. While AUROC measures the trade-off between sensitivity and specificity,
AUC-PR focuses on precision-recall trade-offs, especially informative under severe class
imbalance.

• Cohen’s Kappa, which quantifies inter-class agreement beyond chance and is employed as
the primary metric for multi-class classification.

• Weighted F1 Score, which combines precision and recall while adjusting for class support,
ensuring fair performance measurement across imbalanced datasets.

For model selection and comparison, AUROC is used as the main evaluation metric for binary
classification tasks, and Cohen’s Kappa is used for multi-class scenarios.

H.2 BASELINES

We compare our CODEBRAIN model against a comprehensive set of baseline models that include
widely used task-specific models, as well as publicly available EEG foundation models.

EEGNet (Lawhern et al., 2018): EEGNet is a compact convolutional neural network specifically
designed for EEG-based BCI tasks. It adopts depthwise-separable convolutions to disentangle
temporal filtering and spatial pattern learning, enabling efficient parameter usage while preserving
discriminative EEG features.

EEGConformer (Song et al., 2022): EEGConformer integrates convolutional front-ends with
Transformer blocks to jointly capture local temporal dynamics and longer-range dependencies.
Its convolution modules extract short-term EEG patterns, while the attention mechanism models
cross-channel and cross-time interactions.

ContraWR (Yang et al., 2021): ContraWR is a self-supervised representation learning framework
that uses contrastive learning with a weakly-supervised relational task. By contrasting EEG segments
from the same versus different contexts, the model learns invariant temporal representations without
relying on explicit labels.

ST-Transformer (Song et al., 2021): ST-Transformer applies Transformer attention to EEG by
factorizing spatial and temporal modeling. It processes EEG as a structured sequence across both
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dimensions, where attention layers capture inter-channel relationships as well as time-varying depen-
dencies.

We also compare CODEBRAIN against 5 publicly available EFMs that have released pre-trained
weights, covering a diverse set of pretraining strategies to evaluate the effectiveness of different
foundation model designs and pretraining paradigms under comparable settings.

BENDR (Kostas et al., 2021): We adopted BENDR (Bert-inspired Neural Data Representations) as
our baseline model, as introduced by Kostas et al. BENDR is a pioneering deep learning architecture
for Electroencephalography (EEG) data, leveraging transformers and a contrastive self-supervised
learning task. This approach enables the model to learn meaningful representations from vast amounts
of unlabeled EEG data.

BIOT (Yang et al., 2023): BIOT (Biosignal Transformer for Cross-data Learning in the Wild) is
a transformer-based architecture designed to handle cross-dataset EEG signal classification under
domain shifts. It leverages a domain-invariant attention mechanism and contrastive representation
learning to enhance generalization across different recording conditions and subject populations.

LaBraM(Jiang et al., 2024): LaBraM (Large Brain Model) proposes a scalable transformer-based
framework designed to learn generic EEG representations from large-scale brain signal datasets. By
pretraining on a diverse corpus of EEG recordings, the model captures rich temporal and spatial
features that transfer effectively to various downstream BCI tasks. The architecture incorporates
efficient self-attention mechanisms and task-specific adapters to support flexible fine-tuning.

EEGPT (Wang et al., 2024a): EEGPT employs a dual self-supervised learning strategy that combines
masked autoencoding with spatial-temporal representation alignment, enhancing feature quality by
focusing on high signal-to-noise ratio (SNR) representations rather than raw signals. The model’s hi-
erarchical architecture decouples spatial and temporal processing, improving computational efficiency
and adaptability to various brain-computer interface (BCI) applications.

CBraMod (Wang et al., 2025): CBraMod (Criss-Cross Brain Foundation Model) is a transformer-
based EEG foundation model that addresses the heterogeneous spatial and temporal dependencies
inherent in EEG signals. It introduces a criss-cross transformer architecture comprising parallel
spatial and temporal attention mechanisms, enabling separate yet simultaneous modeling of spatial
and temporal relationships.

I HYPERPARAMETER SETTING

We provide detailed hyperparameter configurations for the two-stage pretraining of our CODEBRAIN
model and the fine-tuning settings across ten downstream tasks.

I.1 PRETRAINING SETTINGS

The pretraining process consists of two stages:

1. Training the TFDUAL-TOKENIZER

2. Training the EEGSSM

The hyperparameters used in each stage are summarized in Table 5 and Table 6, respectively.

I.2 PARAMETERS OF EEGSSM

The model architecture parameters used in EEGSSM during pre-training are shown in Table 7.

I.3 FINE-TUNING SETTINGS ON DOWNSTREAM TASKS

The CODEBRAIN model is fine-tuned on ten downstream EEG classification tasks, each with task-
specific hyperparameters. Following the general strategy adopted by prior EFMs, we adopt a
lightweight three-layer MLP as the probe head for all downstream tasks and fine-tune the entire model
end-to-end. Table 8 lists the fine-tuning configurations including learning rate, weight decay, dropout
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Table 5: Hyperparameters for TFDUAL-TOKENIZER.
Hyperparameters Values
TFConv

Input channels {1, 8, 4}
Output channels {8, 4, 4}
Kernel size {(1, 15), (1, 3), (1, 3)}
Stride {(1, 8), (1, 1), (1, 1)}
Padding {(0, 7), (0, 1), (0, 1)}

Transformer encoder layers 12
Transformer decoder layers 3
Hidden size 200
MLP size 800
Attention head number 8
Temporal Codebook size 4096 × 32
Frequency Codebook size 4096 × 32
Codebook initialization Random init + L2 normalization

Batch size 256
Peak learning rate 1e-4
Minimal learning rate 1e-5
Learning rate scheduler Cosine
Optimizer AdamW
Adam β (0.9, 0.99)
Weight decay 1e-4
Warm-up steps 5
Total epochs 20
Data stride 200

Contrastive temperature (τ ) 0.5

Table 6: Hyperparameters of Pre-training.
Hyperparameters Values
Epochs 10
Batch size 256
Dropout 0.1
Optimizer Adam
Learning rate 1e-4
Adam β (0.9, 0.999)
Adam ϵ 1e-8
Weight decay 5e-3
Scheduler CosineAnnealingLR
Minimal learning rate 1e-5
Clipping gradient norm 5

rate, and batch size for each task. For sleep staging tasks, due to their strong temporal structure, we
follow prior work (Wang et al., 2024a; 2025) and insert an additional Transformer encoder on top of
the projection head to jointly model the sequence of 20 consecutive EEG segments. This enables the
model to capture inter-epoch transitions critical to sleep stage classification.

J ADDITIONAL EVALUATION ON OTHER BCI TASKS

We report the performance of CODEBRAIN on four additional EEG datasets not included in the main
text, covering diverse domains of sleep staging, motor imagery, event detection, and abnormality
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Table 7: Configuration of EEGSSM
Parameters Values
Input size 200
Hidden dimension 200
Output size 200
Number of layers 8
Max sequence length 570
SGConv state 64
SGConv bidirectional True
Layer normalization True
Sliding window attention length 1s

Table 8: Fine-tuning Hyperparameters for Downstream Tasks.
Dataset Learning Rate Weight Decay Dropout Batch Size
FACED 5e-5 5e-4 0.1 16
SEED-V 5e-5 1e-2 0.1 64
ISRUC S1 1e-4 1e-1 0.2 48
ISRUC S3 1e-4 1e-1 0.2 48
BCIC2020-T3 5e-5 5e-2 0.1 32
Mental Arithmetic 3e-5 1e-3 0.1 32
CHB-MIT 3e-5 1e-2 0.4 64
SHU-MI 5e-5 5e-3 0.3 64
TUEV 2e-5 5e-4 0.3 64
TUAB 1e-5 5e-5 0.4 512

classification in Tables 9 to 12. These allow us to assess the cross-domain generalization ability of
our pretrained model beyond the main text.

We note that both TUAB and TUEV originate from the TUH EEG corpus (Obeid & Picone, 2016),
which overlaps with our pretraining source (TUEG). To avoid overfitting to this distribution and
promote generalization, we stop pretraining at epoch 10 as discussed in Section E.2. While this may
limit gains on TUH datasets compared to previous EFM, such as CBraMod (trained for 40 epochs in
the same pretraining dataset) (Wang et al., 2025), CODEBRAIN still achieves superior or competitive
results.

ISRUC S1 As shown in Table 9, CODEBRAIN achieves state-of-the-art performance on ISRUC S1
in terms of Cohen’s Kappa (0.7476) and Weighted F1 (0.8020), slightly surpassing CBraMod (Wang
et al., 2025) by +0.34 and +0.09 points, respectively. Its Balanced Accuracy of 0.7835 is also
competitive, trailing the best result by only -0.30. These results highlight the model’s ability to
capture temporal dependencies and learn discriminative representations for 5-class sleep staging
under a cross-subject setting.

SHU-MI As shown in Table 10, CODEBRAIN achieves the best overall performance on SHU-MI
across all three metrics. It obtains an AUROC of 0.7124 and an AUC-PR of 0.7166, slightly improving
over the previous best by +1.36 and +0.27 points, respectively. For Balanced Accuracy, it reaches
0.6431 (+0.61), with notably lower variance. These results underscore its strong generalization to
motor imagery decoding under a cross-subject protocol.

TUEV As shown in Table 11, CODEBRAIN achieves the highest Cohen’s Kappa (0.6912, an
improvement of +0.0140 over the best baseline (Wang et al., 2025)) and Weighted F1 (0.8362) on
TUEV. Although its Balanced Accuracy is lower than CBraMod (Wang et al., 2025), we attribute this
to reduced sensitivity on the rare SPSW class. Since TUEV shares distributional overlap with our
pretraining source (TUEG), we stop pretraining at epoch 10 to prevent overfitting, unlike CBraMod’s
40-epoch training as discussed in subsection E.2. We also report LaBraM’s results based on its original
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Table 9: Performance Comparison on the ISURC S1 (5-Class) dataset.

Methods Cohen’s Kappa Weighted F1 Balanced Accuracy

EEGNet 0.7040 ± 0.0173 0.7513 ± 0.0124 0.7154 ± 0.0121
EEGConformer 0.7143 ± 0.0162 0.7634 ± 0.0151 0.7400 ± 0.0133
ContraWR 0.7178 ± 0.0156 0.7610 ± 0.0137 0.7402 ± 0.0126
ST-Transformer 0.7013 ± 0.0352 0.7681 ± 0.0175 0.7381 ± 0.0205

BENDRKostas et al. (2021) 0.6956 ± 0.0053 0.7569 ± 0.0049 0.7401 ± 0.0056
BIOTYang et al. (2023) 0.7192 ± 0.0231 0.7790 ± 0.0146 0.7527 ± 0.0121
LaBraMJiang et al. (2024) 0.7231 ± 0.0182 0.7810 ± 0.0133 0.7633 ± 0.0102
EEGPTWang et al. (2024a) 0.2223 ± 0.0227 0.3111 ± 0.0110 0.4012 ± 0.0177
CBraModWang et al. (2025) 0.7442 ± 0.0152 0.8011 ± 0.0099 0.7865 ± 0.0110
CodeBrain 0.7476 ± 0.0040 0.8020 ± 0.0018 0.7835 ± 0.0033

Table 10: Performance Comparison on the SHU-MI (2-Class) dataset.

Methods AUROC AUC-PR Balanced Accuracy

EEGNet 0.6283 ± 0.0152 0.6311 ± 0.0142 0.5889 ± 0.0177
EEGConformer 0.6351 ± 0.0101 0.6370 ± 0.0093 0.5900 ± 0.0107
ContraWR 0.6273 ± 0.0113 0.6315 ± 0.0105 0.5873 ± 0.0128
ST-Transformer 0.6431 ± 0.0111 0.6394 ± 0.0122 0.5992 ± 0.0206

BENDRKostas et al. (2021) 0.5863 ± 0.0280 0.5853 ± 0.0268 0.5573 ± 0.0227
BIOTYang et al. (2023) 0.6609 ± 0.0127 0.6770 ± 0.0119 0.6179 ± 0.0183
LaBraMJiang et al. (2024) 0.6604 ± 0.0091 0.6761 ± 0.0083 0.6166 ± 0.0192
EEGPTWang et al. (2024a) 0.6241 ± 0.0071 0.6266 ± 0.0133 0.5778 ± 0.0162
CBraModWang et al. (2025) 0.6988 ± 0.0068 0.7139 ± 0.0088 0.6370 ± 0.0151
CodeBrain 0.7124 ± 0.0050 0.7166 ± 0.0106 0.6431 ± 0.0066

23-channel setting (Jiang et al., 2024), while CODEBRAIN follows the 16-channel configuration used
in CBraMod. Similarly, EEGPT (Wang et al., 2024a) does not adopt a linear fine-tuning protocol but
applies two convolutional layers before entering the foundation model, followed by an MLP head.
While such architectural choices may enhance performance, we follow their respective fine-tuning
settings. In addition, following the experimental setup of CBraMod, we also report the results of
experiments conducted by removing all TUEV and TUAB samples from the TUEG dataset. It can
be seen that although our model’s performance slightly declined on TUEV, it still surpassed other
baselines. In such cases, CODEBRAIN still outperforming both LaBraM and EEGPT under their own
fine-tuning settings clearly demonstrates the robustness of our approach.

TUAB As shown in Table 12, CODEBRAIN achieves the highest Balanced Accuracy (0.8294) on
TUAB, slightly outperforming CBraMod (Wang et al., 2025). Similar to TUEV, TUAB is part of
the TUH EEG corpus family (Obeid & Picone, 2016) and thus closely aligned with our pretraining
source (TUEG). As discussed in subsection E.2, we adopt an early stopping strategy at epoch 10
to mitigate overfitting to this distribution, which may partly account for the slightly lower AUROC
and AUC-PR compared to CBraMod, trained for 40 epochs on the same dataset. While LaBraM
leverages a 23-channel montage (Jiang et al., 2024) and EEGPT (Wang et al., 2024a) employs two
convolutional layers before the foundation model, we retain their respective fine-tuning protocols for
comparison. In addition, the impact of duplicate data in the pre-training set on our model is smaller
on the TUAB dataset, and in some experiments it can even surpass situations without leaking. This
may be due to the larger size of the TUAB dataset. Despite these potentially stronger configurations,
CODEBRAIN still exceeds both models under their own settings, highlighting its strong and consistent
generalization.
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Table 11: Performance Comparison on the TUEV (6-Class) dataset.

Methods Cohen’s Kappa Weighted F1 Balanced Accuracy

EEGNet 0.3577 ± 0.0155 0.6539 ± 0.0120 0.3876 ± 0.0143
EEGConformer 0.3967 ± 0.0195 0.6983 ± 0.0152 0.4074 ± 0.0164
ContraWR 0.3912 ± 0.0237 0.6893 ± 0.0136 0.4384 ± 0.0349
ST-Transformer 0.3765 ± 0.0306 0.6823 ± 0.0190 0.3984 ± 0.0228

BENDRKostas et al. (2021) 0.4271 ± 0.0238 0.6755 ± 0.0216 0.4363 ± 0.0245
BIOTYang et al. (2023) 0.5273 ± 0.0249 0.7492 ± 0.0082 0.5281 ± 0.0225
LaBraMJiang et al. (2024) 0.6637 ± 0.0093 0.8312 ± 0.0052 0.6409 ± 0.0065
EEGPTWang et al. (2024a) 0.6351 ± 0.0134 0.8187 ± 0.0063 0.6232 ± 0.0114
CBraModWang et al. (2025) 0.6772 ± 0.0096 0.8342 ± 0.0064 0.6671 ± 0.0107

CodeBrain (Excluding) 0.6838 ± 0.0291 0.8293 ± 0.0163 0.6375 ± 0.0182
CodeBrain 0.6912 ± 0.0101 0.8362 ± 0.0048 0.6428 ± 0.0062

Table 12: Performance Comparison on the TUAB (2-Class) dataset.

Methods Balanced Accuracy AUC-PR AUROC

EEGNet 0.7642 ± 0.0036 0.8299 ± 0.0043 0.8412 ± 0.0031
EEGConformer 0.7758 ± 0.0049 0.8427 ± 0.0054 0.8445 ± 0.0038
ContraWR 0.7746 ± 0.0041 0.8421 ± 0.0104 0.8456 ± 0.0074
ST-Transformer 0.7966 ± 0.0023 0.8521 ± 0.0026 0.8707 ± 0.0019

BENDRKostas et al. (2021) 0.7714 ± 0.0248 0.8412 ± 0.0215 0.8426 ± 0.0237
BIOTYang et al. (2023) 0.7959 ± 0.0057 0.8792 ± 0.0023 0.8815 ± 0.0043
LaBraMJiang et al. (2024) 0.8140 ± 0.0019 0.8965 ± 0.0016 0.9022 ± 0.0009
EEGPTWang et al. (2024a) 0.8038 ± 0.0040 0.8891 ± 0.0018 0.8811 ± 0.0015
CBraModWang et al. (2025) 0.8289 ± 0.0022 0.9258 ± 0.0008 0.9227 ± 0.0011

CodeBrain (Excluding) 0.8288 ± 0.0064 0.9061 ± 0.0039 0.9012 ± 0.0020
CodeBrain 0.8294 ± 0.0013 0.9100 ± 0.0006 0.9030 ± 0.0009

K ABLATION ON DESIGN CHOICES

K.1 ABLATION ON MASK RATIO

We conduct an ablation study to investigate the effect of the mask ratio in the EEGSSM pretraining
framework. As shown in Tables 13–15 and Figure 16, downstream performance consistently exhibits
a U-shaped trend with respect to the masking ratio across all three datasets: FACED, SEED-V, and
ISRUC S3. Moderate masking (e.g., ratios around 0.4–0.6) leads to optimal performance, whereas
excessively low (e.g., 0.1) or high (e.g., 0.9) ratios degrade generalization.

To further illustrate this pattern, we visualize the training loss curves across different mask ratios in
Figure 17. Interestingly, higher mask ratios result in slower convergence and higher final training
loss, which is expected due to the increased difficulty of the reconstruction task. In contrast, lower
mask ratios lead to faster and smoother loss reduction, but do not necessarily yield better downstream
performance. This observation suggests a possible optimization-vs-generalization trade-off : easier
pretext tasks (low mask ratio) are more optimizable but may encourage the model to learn shortcut
solutions with limited generalizability, while overly difficult tasks (high mask ratio) may hinder
effective representation learning due to insufficient learning signal. Moderate masking strikes a
balance by being sufficiently challenging to promote abstraction, while still being learnable, thereby
facilitating better generalization across downstream tasks.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Table 13: Performance of CODEBRAIN on FACED Dataset under Different Mask Ratios.
Mask Ratio Cohen’s Kappa Weighted F1 Balanced Accuracy

0.1 0.5184 ± 0.0039 0.5746 ± 0.0158 0.5692 ± 0.0064
0.2 0.5239 ± 0.0036 0.5834 ± 0.0071 0.5821 ± 0.0040
0.3 0.5327 ± 0.0100 0.5859 ± 0.0036 0.5836 ± 0.0076
0.4 0.5391 ± 0.0045 0.5938 ± 0.0057 0.5904 ± 0.0058
0.5 0.5406 ± 0.0084 0.5953 ± 0.0113 0.5941 ± 0.0098
0.6 0.5295 ± 0.0075 0.5822 ± 0.0090 0.5793 ± 0.0112
0.7 0.5242 ± 0.0077 0.5800 ± 0.0065 0.5744 ± 0.0096
0.8 0.5157 ± 0.0065 0.5564 ± 0.0067 0.5528 ± 0.0040
0.9 0.5034 ± 0.0078 0.5457 ± 0.0084 0.5451 ± 0.0114

Table 14: Performance of CODEBRAIN on SEED-V Dataset under Different Mask Ratios.
Mask Ratio Cohen’s Kappa Weighted F1 Balanced Accuracy

0.1 0.2523 ± 0.0051 0.4081 ± 0.0030 0.3968 ± 0.0031
0.2 0.2633 ± 0.0033 0.4137 ± 0.0027 0.4071 ± 0.0035
0.3 0.2703 ± 0.0043 0.4200 ± 0.0048 0.4121 ± 0.0041
0.4 0.2734 ± 0.0042 0.4244 ± 0.0029 0.4142 ± 0.0055
0.5 0.2735 ± 0.0032 0.4235 ± 0.0022 0.4137 ± 0.0023
0.6 0.2699 ± 0.0041 0.4207 ± 0.0059 0.4106 ± 0.0048
0.7 0.2642 ± 0.0045 0.4158 ± 0.0033 0.4091 ± 0.0040
0.8 0.2603 ± 0.0031 0.4116 ± 0.0041 0.4009 ± 0.0025
0.9 0.2534 ± 0.0036 0.4085 ± 0.0024 0.3993 ± 0.0055

Table 15: Performance of CODEBRAIN on ISRUC S3 Dataset under Different Mask Ratios.
Mask Ratio Cohen’s Kappa Weighted F1 Balanced Accuracy

0.1 0.7252 ± 0.0069 0.7865 ± 0.0039 0.7686 ± 0.0072
0.2 0.7403 ± 0.0023 0.7982 ± 0.0026 0.7752 ± 0.0032
0.3 0.7501 ± 0.0057 0.8013 ± 0.0062 0.7766 ± 0.0020
0.4 0.7608 ± 0.0060 0.8168 ± 0.0078 0.7846 ± 0.0062
0.5 0.7671 ± 0.0091 0.8202 ± 0.0071 0.7856 ± 0.0031
0.6 0.7661 ± 0.0068 0.8219 ± 0.0052 0.7826 ± 0.0076
0.7 0.7577 ± 0.0068 0.8161 ± 0.0040 0.7782 ± 0.0061
0.8 0.7471 ± 0.0031 0.8090 ± 0.0041 0.7658 ± 0.0025
0.9 0.7504 ± 0.0078 0.8125 ± 0.0063 0.7668 ± 0.0065
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Figure 16: Performance Across Different Mask Ratios on FACED, SEED-V, and ISRUC S3.

Figure 17: EEGSSM Pre-Training Loss Curve for Different Mask Ratios.
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K.2 ABLATION ON SWA WINDOW SIZE

We conduct an ablation study to investigate the effect of the SWA window size in the EEGSSM
framework. The window size of SWA means the length of the segment observed by the attention
mechanism in the SWA mechanism. Usually, the window size of SWA is an odd number because the
model generally focuses not only on a single segment but also needs to observe features in adjacent
segments. Therefore, its size is usually 2n + 1, where n represents the length of SWA. As shown
in Figure 18 and Figure 19, SWA window size = 1 achieved the best performance on both datasets
among the 5 SWA window sizes. With the increase of the SWA window size, the SWA is close
to self-attention. Therefore, as the SWA window size increases, the model’s performance actually
improves because more data will be involved in the attention calculation. When the SWA window
size is 1, it is a special case where SWA only calculates for one second. This is equivalent to the
model performing attention mechanism calculations within one second. Overall, SWA can help the
model achieve a certain performance improvement.

Figure 18: Performance of different SWA window sizes on the FACED dataset.

Figure 19: Performance of different SWA window sizes on the SEED-V dataset.

K.3 ABLATION ON CODEBOOK SIZE

The size of the codebook is an important parameter; a codebook that is too large may lead to
unstable training, while a codebook size that is too small may result in mixed information. Ideally,
the codebook should maintain a small amount of unused codes but not be 0. We tested several
combinations of different time-domain and frequency-domain codebook sizes to observe their unused
codes during Tokenizer training.

Table 16 shows the unused temporal codes and unused frequency codes under different codebook size
combinations. When both the Temporal codebook size and Frequency codebook size are set to 2048,
the unused frequency code is 0, indicating that there are duplicate frequency codes in the current
codebook. When choosing a codebook size of 8192, the unused temporal codes reached 3401 and
the unused frequency codes reached 1260, indicating that a large number of codes in the completed
training codebook were not used. We ultimately selected 4096 for both. Although the frequency
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domain often yields richer representations, enlarging its codebook may increase reliance on it, so
we kept temporal and frequency codebooks equal. Considering capacity and utilization, 4096–4096
offers the best trade-off.

Table 16: Temporal and frequency codebook statistics
Temporal Codebook Size Frequency Codebook Size Unused Temporal Codes Unused Frequency Codes

2048 2048 12 0
2048 4096 116 0
4096 4096 225 165
4096 8192 321 931
8192 8192 3401 1260

K.4 ABLATION ON PATCH SIZE

The size of the patch window is also an important adjustable parameter, which affects temporal
resolutions and masking strategies. To explore the impact of patch window size on the model, we
used window sizes ranging from 0.5s to 5s for complete two-stage pre-training and full-parameter
fine-tuning. Note that for some datasets where the patch size is larger than the channel length, such as
SEED-V, we pad the portion exceeding the available data to match the patch size in this experiment.

Table 17 and Table 18 show the performance of our method with different patch sizes on the SEED-V
dataset and ISRUC 3 dataset. Notably, in SEED-V, patch lengths longer than 1s require heavy
padding, causing large performance drops; in ISRUC S3, the shortest 0.5s patches achieve the worst
performance, likely because they fragment key waveforms in sleep staging (e.g., Spindle ≥0.5s).
From these results, the 1s setting is supported by two key considerations:

Broad compatibility with downstream task. 1s is a divisor of most downstream sequence lengths
(1–30s), minimizing padding and ensuring transferability. For example, on the SEED-V dataset,
if the patch size chosen by the model is greater than 1s, some methods (such as padding) need to
be adopted to enable model training. These methods may usually impair the model’s performance
because they introduce additional noise or increase computational load. EEG datasets with durations
less than 1 second are relatively rare, as most datasets have at least 1 second of data. If the data does
not exactly match the whole seconds, the cost of processing such a dataset is also relatively small.
Prior EEG foundation models (e.g., LaBram (Jiang et al., 2024), CBraMod (Wang et al., 2025)) also
adopt 1s patches for this reason.

Semantic integrity. Choosing a 1s patch length preserves the natural structure of EEG waveforms and
prevents semantic fragmentation. Many physiologically meaningful EEG events have characteristic
durations: for example, K-complexes are typically around 1s, spindles last 0.5–2s, and event-related
potentials such as P300 occur in the range of 0.3–0.6s. If patches are shorter than these characteristic
scales, the temporal branch of the TFDual-Tokenizer may only capture partial fragments of these
waveforms, leading to loss of semantic context.

Table 17: Performance on SEED-V with different patch sizes
Patch Length Cohen’s Kappa Weighted F1 Balanced Accuracy

0.5s 0.2640±0.0035 0.4035±0.0025 0.3841±0.0025
1s 0.2735±0.0032 0.4235±0.0022 0.4137±0.0023
2s 0.1545±0.0046 0.3313±0.0036 0.3279±0.0049
5s 0.1557±0.0043 0.3340±0.0029 0.3271±0.0045

K.5 ABLATION ON SGCONV KERNEL PARAMETERS

To justify the choice of the SGConv decay coefficient, we conduct a sensitivity analysis on three
representative downstream datasets (FACED, SEED-V, ISRUC S3). The results are shown in Table 19
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Table 18: Performance on ISRUC 3 with different patch sizes
Patch Length Cohen’s Kappa Weighted F1 Balanced Accuracy

0.5s 0.7405±0.0102 0.7950±0.0097 0.7420±0.0081
1s 0.7671±0.0091 0.8202±0.0071 0.7856±0.0031
2s 0.7592±0.0079 0.8113±0.0081 0.7753±0.0087
5s 0.7601±0.0075 0.8096±0.0074 0.7791±0.0096

Table 19: Sensitivity analysis of the SGConv decay coefficient α across three downstream datasets.
SEED-V Cohen’s Kappa Weighted F1 Balanced Accuracy

α = 0.5 (default) 0.2735 ± 0.0032 0.4235 ± 0.0022 0.4137 ± 0.0023
α = 0.1 0.2629 ± 0.0017 0.4159 ± 0.0006 0.4044 ± 0.0017
α = 0.9 0.2318 ± 0.0074 0.3851 ± 0.0141 0.3819 ± 0.0046
α = 2.0 0.2332 ± 0.0077 0.3851 ± 0.0090 0.3809 ± 0.0069

FACED Cohen’s Kappa Weighted F1 Balanced Accuracy

α = 0.5 (default) 0.5406 ± 0.0084 0.5953 ± 0.0113 0.5941 ± 0.0090
α = 0.1 0.5295 ± 0.0080 0.5853 ± 0.0074 0.5839 ± 0.0069
α = 0.9 0.4681 ± 0.0069 0.5270 ± 0.0065 0.5314 ± 0.0050
α = 2.0 0.4782 ± 0.0037 0.5282 ± 0.0068 0.5360 ± 0.0035

ISRUC S3 Cohen’s Kappa Weighted F1 Balanced Accuracy

α = 0.5 (default) 0.7671 ± 0.0091 0.8202 ± 0.0071 0.7856 ± 0.0031
α = 0.1 0.7132 ± 0.0646 0.7834 ± 0.0523 0.7575 ± 0.0621
α = 0.9 0.6073 ± 0.0230 0.6966 ± 0.0176 0.6564 ± 0.0058
α = 2.0 0.5600 ± 0.0492 0.6572 ± 0.0430 0.6227 ± 0.0427

The decay parameter α controls how rapidly spatial kernel weights diminish with topological distance
and, therefore, plays a central role in balancing locality preservation and kernel sparsification.

Across all datasets, α = 0.5 consistently yields the highest performance. Larger values (e.g., α = 0.9)
moderately weaken spatial locality, while very small values (e.g., α = 0.1) oversparsify the kernel
and markedly reduce accuracy. Increasing α towards and beyond 1 (e.g., α = 2.0) weakens the decay
and assigns relatively larger weights to distant sub-kernels, which harms spatial locality and leads to
clear performance drops, especially on ISRUC S3. In addition, excessively large decay coefficients
may amplify gradients during backpropagation and introduce training instability. For these reasons,
we recommend α to ≤ 1 and adopt α = 0.5 as a stable and well-performing default.

K.6 ABLATION ON SUBBAND

To better understand the frequency dependencies encoded by CODEBRAIN, we conduct a systematic
subband ablation study by masking each of the five canonical EEG frequency ranges: δ (0.5–4
Hz), θ (4–8 Hz), α (8–13 Hz), β (13–30 Hz), and γ (¿30 Hz). Unlike random dropout, this setting
allows us to examine how the model allocates representational importance across physiologically
meaningful frequency components. Experiments are performed on both the emotion recognition
dataset (SEED-V) and the sleep-staging dataset (ISRUC S3), covering two distinct neurophysiological
tasks.

K.6.1 SEED-V (62 CHANNELS): SUBBAND CONTRIBUTIONS IN EMOTION RECOGNITION

Several key findings could be observed in this experiments:
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Table 20: Subband ablation results on the SEED-V dataset.
Removed Band Cohen’s Kappa Weighted F1 Balanced Accuracy

None 0.2735 ± 0.0032 0.4235 ± 0.0022 0.4137 ± 0.0023
δ 0.0297 ± 0.0027 0.2075 ± 0.0105 0.2201 ± 0.0004
θ 0.0142 ± 0.0050 0.1780 ± 0.0176 0.2098 ± 0.0039
α 0.0082 ± 0.0070 0.1306 ± 0.0536 0.2058 ± 0.0049
β 0.0442 ± 0.0120 0.2377 ± 0.0068 0.2360 ± 0.0095
γ 0.1372 ± 0.0081 0.3141 ± 0.0086 0.3092 ± 0.0044

• Dominance of low-frequency structure. Removing δ, θ, or α bands produces near-collapse
of performance, indicating that emotional states are primarily encoded in slow and mid-range
oscillations. This matches prior affective neuroscience findings showing that emotional
arousal and valence strongly modulate rhythms below 13 Hz.

• Residual robustness at higher frequencies. Ablating β and especially γ reduces per-
formance but does not catastrophically impair decoding. This suggests that CODEBRAIN
leverages high-frequency activity as complementary contextual cues rather than primary
discriminative features.

• Contrast with raw-signal models. Compared with prior end-to-end CNN/RNN models, the
degradation patterns reveal that our decoupled tokenizer and cross-scale encoder preserve
structured frequency dependencies rather than relying disproportionately on one frequency
range.

These observations highlight that the learned frequency representation is aligned with known emo-
tional knowledge while still maintaining robustness across a broad range of frequencies.

K.6.2 ISRUC S3 (6 CHANNELS): SUBBAND CONTRIBUTIONS IN SLEEP STAGING

Table 21: Subband ablation results on the ISRUC S3 dataset.
Removed Band Cohen’s Kappa Weighted F1 Balanced Accuracy

None 0.7671 ± 0.0091 0.8202 ± 0.0071 0.7856 ± 0.0031
δ 0.0225 ± 0.0391 0.1751 ± 0.0843 0.2043 ± 0.0237
θ 0.0728 ± 0.0557 0.1386 ± 0.0341 0.2812 ± 0.0749
α 0.1048 ± 0.0221 0.1762 ± 0.0186 0.3226 ± 0.0293
β 0.2131 ± 0.0660 0.2867 ± 0.1185 0.3835 ± 0.0446
γ 0.3618 ± 0.0012 0.4831 ± 0.0291 0.4764 ± 0.0082

Results on ISRUC S3 sleep staging dataset reveal a qualitatively different frequency profile from
SEED-V:

• Critical dependence on δ and θ. Removing slow-wave components almost eliminates
information, consistent with their central role in NREM transitions and slow oscillations
during deep sleep.

• Higher-frequency bands remain more robust. Masking β and γ still reduces performance
but to a lesser extent, reflecting the fact that spindle- or arousal-related faster bursts are less
dominant in the 6-channel ISRUC montage.

• Physiology-specific feature reliance. The frequency sensitivity patterns differ from SEED-
V, demonstrating that CODEBRAIN adapts its feature allocation depending on task demands
rather than relying on a fixed frequency prior.

The subband ablation results across two very different datasets show that CODEBRAIN could capture
frequency structure, leveraging low-frequency dynamics for both emotion and sleep tasks while
maintaining robustness to higher-band perturbations.
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L BACKBONE EFFICIENCY COMPARISON

To evaluate the computational efficiency of our proposed SGConv module, we conduct an ablation
study by replacing it with three common sequence modeling modules: CNN, LSTM, and Transformer
in EEGSSM block. We compare their model sizes, floating-point operations (FLOPs), and iteration
times, as shown in Figure 20. Specifically, the CNN variant uses a 3-layer depthwise separable
convolution block, while the LSTM and Transformer variants use a single layer of standard LSTM
and Transformer Encoder (implemented by Pytorch), respectively. In terms of parameter count,
SGConv contains 15.17M parameters, fewer than CNN (16.22M), LSTM (17.35M), and Transformer
(21.2M). For FLOPs, SGConv also achieves the lowest computational cost at 8.74G, compared to
Transformer’s 27.79G. Regarding iteration time, SGConv is slightly slower than Transformer and
CNN models in terms of training speed, but it outperforms the LSTM model. In summary, SGConv
effectively reduces the number of parameters while maintaining computational complexity, which
helps the model to be trained and inferred on smaller GPUs.

Figure 20: Computational Overhead of Using Different Backbones in the EEGSSM Module.

To further contextualize the computational efficiency of CODEBRAIN, we provide a comparison
against widely used EEG foundation-model baselines. Table 22 summarizes model parameters,
multiply–accumulate operations (MACs), and floating-point operations (FLOPs), offering stable
and hardware-agnostic metrics across architectures. Overall, CODEBRAIN achieves a favorable
balance between computational cost and representational capacity. Its FLOPs and MACs remain
substantially lower than large-scale models such as BENDR and EEGPT, while maintaining higher
parameter efficiency than CBraMod and LaBraM. Notably, CODEBRAIN occupies a middle ground
in model size—significantly smaller than EEGPT while offering richer representational power than
compact baselines like BIOT. This balanced compute–performance trade-off aligns with our design
goal of building an efficient yet high-capacity EEG foundation model suitable for both research and
deployment on modest hardware.

Table 22: Compute comparison between CODEBRAIN and representative EEG foundation-model
baselines.

Model MACs Params FLOPs
BENDR 12.51G 959.84M 25.02G
BIOT 0.255G 3.20M 0.510G
LaBraM 0.67G 6.02M 1.34G
CBraMod 0.64G 4.03M 1.29G
EEGPT 4.89G 25.24M 9.79G
CodeBrain 4.37G 15.17M 8.74G
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M MODEL ROBUSTNESS

M.1 RANDOM CHANNEL DROPOUT

In real-world scenarios, the collection of EEG often encounters situations where channels are missing,
especially when using machines from different manufacturers. To test the model’s performance on
datasets with missing channel data, we randomly mask some channels in the training data for full
parameter fine-tuning. We selected the FACED and SEED-V datasets for experiments because they
represent short-sequence and long-sequence cases respectively, and their numbers of channels are
relatively complete.

Figure 21: Performance after randomly masking different numbers of channels during the full
parameter fine-tuning stage.

We evaluate the performance of the CodeBrain model and CBraMod model in scenarios with missing
channels. We conducted three different experiments, randomly masking 12.5%, 25%, and 50% of the
channels in each experiment, respectively. Figure 21 shows results of the experiment. It can be seen
that our CodeBrain model outperforms the CBraMod model in all channel masking scenarios. On the
FACED dataset, our model’s performance after masking 25% of the channels is still close to that of
CBraMod without masking. The performance decline of the CBraMod model is also faster than that
of our model. This trend is even more pronounced on the SEED-V dataset. Through this experiment,
we can demonstrate that the channel robustness of CodeBrain is stronger than that of the CBraMod
model, retaining most of its performance even in cases of channel failure.

M.2 BRAIN-REGION CHANNEL DROPOUT

While random channel masking simulates incidental electrode failures, it does not capture the struc-
tured spatial organization of the EEG montage. To provide a neuroscientifically meaningful robustness
evaluation, we conduct region-based masking on both the high-density SEED-V dataset (62 channels)
and the minimal-montage ISRUC S3 dataset (6 channels). These experiments simulate clinically
relevant scenarios such as reference-electrode failures, lobe-specific dropout, and hemisphere-level
signal loss. We also compare CODEBRAIN with the strongest baseline, CBraMod.
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M.2.1 REGION-BASED ABLATIONS ON THE HIGH-DENSITY SEED-V DATASET (62
CHANNELS)

We design nine anatomically meaningful masking patterns, including (1) reference/hemisphere fail-
ures (midline-only, left-hemisphere masked, right-hemisphere masked), and (2) lobe-level dropout
over occipital, frontal, temporal, central, frontocentral, and parietal regions. The results are summa-
rized in Table 23.

Table 23: Region-masking results on the SEED-V dataset (62 channels).
Mask Setting Model Cohen’s Kappa Weighted F1 Balanced Accuracy
Baseline (no mask) CBraMod 0.2569 ± 0.0143 0.4101 ± 0.0108 0.4091 ± 0.0097

CodeBrain(Ours) 0.2735 ± 0.0032 0.4235 ± 0.0022 0.4137 ± 0.0023

Only midline CBraMod 0.0114 ± 0.0098 0.1740 ± 0.0121 0.2077 ± 0.0018
CodeBrain(Ours) 0.0201 ± 0.0098 0.1610 ± 0.0087 0.2169 ± 0.0067

Left hemisphere CBraMod 0.0672 ± 0.0260 0.2505 ± 0.0227 0.2541 ± 0.0226
CodeBrain(Ours) 0.0956 ± 0.0030 0.2779 ± 0.0051 0.2750 ± 0.0030

Right hemisphere CBraMod 0.0586 ± 0.0171 0.2500 ± 0.0214 0.2466 ± 0.0149
CodeBrain(Ours) 0.0678 ± 0.0195 0.2540 ± 0.0066 0.2569 ± 0.0166

Occipital CBraMod 0.1316 ± 0.0217 0.3066 ± 0.0167 0.3068 ± 0.0174
CodeBrain(Ours) 0.2258 ± 0.0067 0.3851 ± 0.0040 0.3818 ± 0.0090

Frontal CBraMod 0.0632 ± 0.0222 0.2486 ± 0.0177 0.2491 ± 0.0189
CodeBrain(Ours) 0.1255 ± 0.0090 0.3025 ± 0.0080 0.2976 ± 0.0046

Temporal CBraMod 0.1571 ± 0.0284 0.3309 ± 0.0222 0.3265 ± 0.0227
CodeBrain(Ours) 0.2311 ± 0.0008 0.3922 ± 0.0010 0.3824 ± 0.0004

Central CBraMod 0.1562 ± 0.0419 0.3305 ± 0.0336 0.3247 ± 0.0321
CodeBrain(Ours) 0.2410 ± 0.0078 0.3997 ± 0.0067 0.3894 ± 0.0055

Frontocentral CBraMod 0.1304 ± 0.0304 0.3077 ± 0.0263 0.3039 ± 0.0244
CodeBrain(Ours) 0.1254 ± 0.0090 0.3025 ± 0.0080 0.2976 ± 0.0047

Parietal CBraMod 0.1571 ± 0.0284 0.3309 ± 0.0222 0.3265 ± 0.0227
CodeBrain(Ours) 0.2311 ± 0.0008 0.3922 ± 0.0010 0.3824 ± 0.0004

Across nearly all masking conditions, CODEBRAIN maintains stronger performance than CBraMod,
particularly under lobe-level dropout (occipital, temporal, central), suggesting that its spatial-temporal
modeling is less reliant on any single anatomical region. The severe degradation under midline-only
signals further highlights the importance of distributed multi-lobe information in emotion-related
EEG.

M.2.2 REGION-BASED ABLATIONS ON THE MINIMAL-MONTAGE ISRUC S3 DATASET (6
CHANNELS)

To test robustness under extreme spatial sparsity, we perform structured region masking on the
6-channel A1/A2-referenced ISRUC S3 montage. We evaluate reference-electrode failures (masking
A1 or A2) and lobe-specific removal (frontal, central, occipital). Results are shown in Table 24.

Even under this sparse spatial setup, CODEBRAIN consistently maintains higher performance than
CBraMod across all mask types. This indicates that the learned representations are robust to structured
regional dropout and remain stable even when half or more channels are removed.

Across both high-density and minimal-montage datasets, region-based ablation demonstrates that
CODEBRAIN preserves strong predictive performance under structured channel dropout, highlighting
its spatial robustness and reliable modeling of cross-regional EEG dependencies.
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Table 24: Region-masking results on the ISRUC S3 dataset (6 channels).
Mask Setting Model Cohen’s Kappa Weighted F1 Balanced Accuracy
Baseline (no mask) CBraMod 0.7407 ± 0.0251 0.8056 ± 0.0219 0.7844 ± 0.0126

CodeBrain(Ours) 0.7671 ± 0.0091 0.8202 ± 0.0071 0.7856 ± 0.0031
Right hemisphere CBraMod 0.6616 ± 0.0263 0.7392 ± 0.0292 0.6706 ± 0.0212

CodeBrain(Ours) 0.7430 ± 0.0131 0.8047 ± 0.0086 0.7760 ± 0.0279

Left hemisphere CBraMod 0.6198 ± 0.1127 0.6964 ± 0.0958 0.6838 ± 0.0815
CodeBrain(Ours) 0.7318 ± 0.0252 0.7989 ± 0.0196 0.7819 ± 0.0133

Occipital CBraMod 0.7089 ± 0.0412 0.7598 ± 0.0321 0.7340 ± 0.0269
CodeBrain(Ours) 0.7447 ± 0.0226 0.8065 ± 0.0187 0.7824 ± 0.0080

Central CBraMod 0.6725 ± 0.0106 0.7526 ± 0.0074 0.6979 ± 0.0164
CodeBrain(Ours) 0.7479 ± 0.0253 0.8111 ± 0.0197 0.7790 ± 0.0155

Frontal CBraMod 0.7134 ± 0.0245 0.7796 ± 0.0184 0.7250 ± 0.0327
CodeBrain(Ours) 0.7295 ± 0.0531 0.7936 ± 0.0408 0.7825 ± 0.0282

M.3 NON-STATIONARY ROBUSTNESS

EEG signals are inherently non-stationary, with gradual fluctuations caused by electrode impedance
changes, autonomic modulation, motion artifacts, and slow drift in sensor baselines. To examine
how well the learned representations tolerate such structured temporal drift, we introduce a sim-
ple but effective perturbation: a linear baseline shift. This perturbation exaggerates slow-varying
non-stationarity beyond what naturally appears in the data, providing a controlled stress test of robust-
ness. We evaluate both SEED-V (emotion recognition) and ISRUC S3 (sleep staging), comparing
CODEBRAIN with the strongest baseline, CBraMod. Results are summarized in Table ??.

Table 25: Non-stationary Robustness under linear baseline shift on SEED-V and ISRUC S3.
SEED-V

Setting Model Cohen’s Kappa Weighted F1 Balanced Accuracy
Reference (no shift) CodeBrain 0.2735 ± 0.0032 0.4235 ± 0.0022 0.4137 ± 0.0023

CBraMod 0.2569 ± 0.0143 0.4101 ± 0.0108 0.4091 ± 0.0097

Linear baseline shift CodeBrain 0.2170 ± 0.0345 0.3799 ± 0.0276 0.3706 ± 0.0259
CBraMod 0.2027 ± 0.0147 0.3658 ± 0.0136 0.3628 ± 0.0111

ISRUC S3
Setting Model Cohen’s Kappa Weighted F1 Balanced Accuracy
Reference (no shift) CodeBrain 0.7671 ± 0.0091 0.8202 ± 0.0071 0.7856 ± 0.0031

CBraMod 0.7407 ± 0.0251 0.8056 ± 0.0219 0.7844 ± 0.0126

Linear baseline shift CodeBrain 0.4762 ± 0.0835 0.5914 ± 0.0668 0.5617 ± 0.0630
CBraMod 0.4242 ± 0.0068 0.5478 ± 0.0087 0.5268 ± 0.0085

This controlled non-stationarity stress test reveals several consistent patterns. Moderate linear drift
introduces clear performance degradation across both datasets, as expected for models trained under
largely stationary conditions. The effect is especially pronounced on ISRUC S3, where the limited
channel count amplifies the impact of baseline shifts. Despite this, CODEBRAIN retains a larger
proportion of its original performance than CBraMod, suggesting that its decoupled time–frequency
tokenizer and multi-scale encoder yield more stable representations under slow global waveform drift.
We also observe task-dependent differences in sensitivity: emotion recognition is disproportionately
affected in low-frequency components, whereas sleep staging exhibits a more uniform degradation
across metrics, reflecting the different spectral structures these tasks rely on. Overall, the results
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indicate that CODEBRAIN maintains stronger robustness to non-stationary perturbations, making it
suitable for real-world settings where gradual baseline drift and electrode instability are unavoidable.

N DETAILED RESULTS ON SCALING LAWS

We provide the detailed scaling law results for both data and model size across three representative
EEG datasets (FACED, SEED-V, and ISRUC S3), covering three evaluation metrics. For brevity,
only Cohen’s kappa scores are included in the main text, while full results are provided in this section.
Prior work (Wang et al., 2025; Jiang et al., 2024) has explored the effect of scaling EEG foundation
models using 1 to 1000 hours of pretraining data. We extend this analysis in two key dimensions:

1. Scaling the pretraining data volume from 1k up to 9k hours.
2. Investigating model scaling by varying the depth of the EEGSSM encoder from 3 layers

(3.86M parameters) to 24 layers (146.75M parameters) and the hidden size from 128 to 384.

N.1 SCALING LAWS WITH RESPECT TO TRAINING DATA VOLUME

We examine how the volume of pretraining data influences the downstream performance of CODE-
BRAIN. Specifically, we scale the pretraining duration from 1k to 9k hours and evaluate the resulting
models on three downstream datasets: FACED, SEED-V, and ISRUC S3. Detailed quantitative
results across three evaluation metrics (Cohen’s kappa, weighted F1 score, and balanced accuracy)
are presented in Tables 26, 27, and 28, respectively. As shown in Figure 22, increasing the amount
of pretraining data generally leads to consistent improvements across all datasets and metrics. On
FACED and ISRUC S3, performance gains are steady throughout the entire range up to 9k hours,
while on SEED-V, the trend is more modest and plateaus after 5k hours. These results highlight the
importance of large-scale data for representation learning in EEG and suggest that further scaling
may continue to yield performance benefits.

Table 26: Training Data Scaling Laws of CODEBRAIN on FACED Dataset.

Training Data Cohen’s Kappa Weighted F1 Balanced Accuracy

1000 Hours 0.5014 ± 0.0107 0.5462 ± 0.0146 0.5452 ± 0.0163
2000 Hours 0.5133 ± 0.0068 0.5540 ± 0.0120 0.5521 ± 0.0133
3000 Hours 0.5189 ± 0.0086 0.5688 ± 0.0104 0.5687 ± 0.0083
4000 Hours 0.5208 ± 0.0032 0.5741 ± 0.0041 0.5713 ± 0.0024
5000 Hours 0.5171 ± 0.0040 0.5692 ± 0.0131 0.5661 ± 0.0105
6000 Hours 0.5273 ± 0.0085 0.5803 ± 0.0064 0.5764 ± 0.0069
7000 Hours 0.5328 ± 0.0116 0.5854 ± 0.0082 0.5809 ± 0.0097
8000 Hours 0.5336 ± 0.0082 0.5875 ± 0.0071 0.5835 ± 0.0072
9000 Hours 0.5406 ± 0.0084 0.5953 ± 0.0113 0.5941 ± 0.0098

In addition, we visualize the pretraining optimization behavior across different data scales in Figure 23.
As expected, larger pretraining data consistently lead to lower training loss, indicating more effective
representation learning. Notably, the convergence curves become progressively smoother and more
stable as training data volume increases, suggesting improved optimization stability in large-scale
regimes. While smaller training data volumes (e.g., 1k–3k hours) show relatively high starting
loss and slower convergence, larger training data volumes (6k–9k hours) reach lower final losses
and exhibit diminishing returns, aligning with trends observed in downstream performance. These
findings provide further empirical support for the scalability of EEG foundation models and reinforce
the role of large data in enhancing both optimization and generalization.

N.2 SCALING LAWS WITH RESPECT TO MODEL SIZE

We further investigate how model parameters affect downstream performance by scaling the number
of layers in the EEGSSM encoder from 3 to 8, resulting in parameter counts ranging from 6.82M
to 15.17M. Detailed results across the FACED, SEED-V, and ISRUC S3 datasets are provided in
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Table 27: Training Data Scaling Laws of CODEBRAIN on SEED-V Dataset.

Training Data Cohen’s Kappa Weighted F1 Balanced Accuracy

1000 Hours 0.2584 ± 0.0044 0.3946 ± 0.0063 0.3799 ± 0.0096
2000 Hours 0.2648 ± 0.0062 0.4042 ± 0.0091 0.3961 ± 0.0084
3000 Hours 0.2689 ± 0.0055 0.4117 ± 0.0075 0.4028 ± 0.0082
4000 Hours 0.2672 ± 0.0043 0.4121 ± 0.0054 0.4022 ± 0.0049
5000 Hours 0.2678 ± 0.0069 0.4120 ± 0.0084 0.4026 ± 0.0067
6000 Hours 0.2669 ± 0.0031 0.4113 ± 0.0067 0.4030 ± 0.0102
7000 Hours 0.2686 ± 0.0043 0.4129 ± 0.0052 0.4027 ± 0.0048
8000 Hours 0.2703 ± 0.0049 0.4165 ± 0.0034 0.4094 ± 0.0054
9000 Hours 0.2735 ± 0.0032 0.4235 ± 0.0022 0.4137 ± 0.0023

Table 28: Training Data Scaling Laws of CODEBRAIN on the ISRUC S3 Dataset.

Training Data Cohen’s Kappa Weighted F1 Balanced Accuracy

1000 Hours 0.7340 ± 0.0187 0.7826 ± 0.0154 0.7505 ± 0.0192
2000 Hours 0.7347 ± 0.0051 0.7869 ± 0.0075 0.7524 ± 0.0032
3000 Hours 0.7540 ± 0.0106 0.8012 ± 0.0093 0.7694 ± 0.0089
4000 Hours 0.7590 ± 0.0042 0.8108 ± 0.0074 0.7753 ± 0.0065
5000 Hours 0.7610 ± 0.0058 0.8124 ± 0.0102 0.7794 ± 0.0086
6000 Hours 0.7681 ± 0.0125 0.8190 ± 0.0100 0.7856 ± 0.0089
7000 Hours 0.7648 ± 0.0079 0.8170 ± 0.0076 0.7845 ± 0.0076
8000 Hours 0.7668 ± 0.0121 0.8182 ± 0.0109 0.7851 ± 0.0116
9000 Hours 0.7671 ± 0.0091 0.8202 ± 0.0071 0.7856 ± 0.0031

Tables 29, 30, and 31, respectively. To visualize the trend more clearly, Figure 24 presents the
performance curves as model size increases. Across all three datasets and evaluation metrics, we
observe a consistent performance gain as the model size increases. The improvements are particularly
pronounced on the FACED and ISRUC S3 datasets, where all three metrics show steady growth
up to the largest model. In contrast, performance on SEED-V improves more modestly and begins
to plateau beyond 13.5M parameters. These results suggest that increasing model capacity can
enhance generalization ability, especially for datasets with richer structure or more complex temporal
dynamics, while also indicating that optimal scaling may be task-dependent.

Table 29: Model Size Scaling Laws of CODEBRAIN on the FACED Dataset.

Layer Hidden size Params Cohen’s Kappa Weighted F1 Balanced Accuracy

3 128 3.86M 0.4786±0.0131 0.5231±0.0164 0.5287±0.0207
3 200 6.82M 0.4818±0.0165 0.5362±0.0113 0.5317±0.0182
4 200 8.49M 0.4988±0.0082 0.5506±0.0091 0.5497±0.0084
5 200 10.16M 0.5096±0.0049 0.5686±0.0104 0.5642±0.0067
6 200 11.83M 0.5244±0.0113 0.5705±0.0085 0.5778±0.0095
7 200 13.50M 0.5314±0.0069 0.5872±0.0080 0.5846±0.0067
8 200 15.17M 0.5406±0.0084 0.5953±0.0113 0.5941±0.0098
12 256 33.15M 0.5478±0.0013 0.5912±0.0031 0.5901±0.0128
24 384 146.75M 0.5503±0.0120 0.5964±0.0178 0.5985±0.0233

To better understand the optimization behavior during pretraining, we plot the training loss curves
for different model sizes in Figure 25. As expected, larger models consistently achieve lower final
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Figure 22: Training Data Scaling Laws on FACED, SEED-V, and ISRUC S3.

Figure 23: EEGSSM Pre-Training Loss Curve for Different Training Data Volume.

training loss, indicating stronger capacity to fit the pretraining objective. The loss reduction is
particularly evident when increasing from 3 to 6 layers, while the gain starts to saturate beyond 7
layers. Even when increased to 24 layers, the reduction in pre-training loss brought by more than
100M parameters is not significant. This trend mirrors the downstream performance in Figure 24 and
Tables 29–31, suggesting that both optimization efficiency and generalization benefit from increased
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Table 30: Model Size Scaling Laws of CODEBRAIN on the SEED-V Dataset.

Layer Hidden size Params Cohen’s Kappa Weighted F1 Balanced Accuracy

3 128 3.86M 0.2576±0.0047 0.3969±0.0042 0.3896±0.0027
3 200 6.82M 0.2609±0.0078 0.4004±0.0112 0.3956±0.0098
4 200 8.49M 0.2638±0.0080 0.4108±0.0091 0.4030±0.0121
5 200 10.16M 0.2645±0.0102 0.4127±0.0158 0.4013±0.0084
6 200 11.83M 0.2663±0.0056 0.4202±0.0068 0.4079±0.0055
7 200 13.50M 0.2724±0.0057 0.4211±0.0060 0.4120±0.0086
8 200 15.17M 0.2735±0.0032 0.4235±0.0022 0.4137±0.0023
12 256 33.15M 0.2807±0.0029 0.4317±0.0036 0.4182±0.0028
24 384 146.75M 0.2831±0.0033 0.4342±0.0030 0.4216±0.0031

Table 31: Model Size Scaling Laws of CODEBRAIN on the ISRUC S3 Dataset.

Layer Hidden size Params(M) Cohen’s Kappa Weighted F1 Balanced Accuracy

3 128 3.86M 0.7434±0.0087 0.7813±0.0107 0.7493±0.0058
3 200 6.82M 0.7456±0.0083 0.7862±0.0104 0.7514±0.0084
4 200 8.49M 0.7486±0.0014 0.7942±0.0040 0.7604±0.0035
5 200 10.16M 0.7516±0.0025 0.7985±0.0056 0.7639±0.0079
6 200 11.83M 0.7570±0.0082 0.8064±0.0068 0.7734±0.0061
7 200 13.50M 0.7620±0.0045 0.8153±0.0091 0.7824±0.0100
8 200 15.17M 0.7671±0.0091 0.8202±0.0071 0.7856±0.0031
12 256 33.15M 0.7753±0.0113 0.8316±0.0074 0.7940±0.0061
24 384 146.75M 0.7791±0.0108 0.8352±0.0072 0.8008±0.0040

model size—though with diminishing returns as parameter count grows. These results reinforce
the scalability of EEGSSM and underscore the importance of balancing capacity with task-specific
requirements.

Our results demonstrate consistent improvements in downstream performance as both data volume
and model capacity increase, suggesting that EEG foundation models may continue to benefit from
further scaling, similar to trends observed in vision and language domains.

N.3 COMPUTATIONAL ANALYSIS ACROSS SCALES.

Complementing the scaling analyses on model size and data size presented in the previous subsections,
we further examine how computational cost scales with architectural capacity. This provides a detailed
breakdown of parameters, FLOPs, throughput, and GPU memory usage across all CodeBrain model
configurations, allowing a holistic view of the efficiency capacity.

Table 32 shows a smooth increase in parameters, FLOPs, and memory consumption as model depth
and hidden size grow. Notably, throughput decreases sub-linearly with scale, demonstrating that the
architecture maintains high computational efficiency even at larger capacities.

Lightweight variants (3-6 layers) offer high throughput (3.5-5 samples/s) and low memory usage
(< 8 GB), suitable for real-time or resource-constrained EEG applications. Mid-sized models (8-12
layers) provide an excellent balance between performance and efficiency, which aligns with where
the accuracy scaling curve begins to saturate. The largest configuration (24 layers, 146M parameters)
substantially increases capacity and FLOPs, corresponding to the upper regime of diminishing returns
observed in the model-size scaling law. We therefore select the 8-layer configuration as the main
model used in our experiments after balancing performance and efficiency.
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Figure 24: Model Size Scaling Laws on FACED, SEED-V, and ISRUC S3.

Table 32: Computational analysis across different model scales..
Layer Hidden Size Params FLOPs Throughput GPU Memory

3 128 3.96M 1.7G 4.90 4.87
3 200 6.82M 3.35G 4.62 5.63
4 200 8.49M 4.43G 3.77 6.48
5 200 10.16M 5.51G 3.67 7.33
6 200 11.83M 6.58G 3.52 8.10
7 200 13.50M 7.66G 2.94 8.95
8 200 15.17M 8.74G 2.78 9.79

12 256 34.38M 19.04G 1.84 15.41
24 384 146.75M 72.99G 1.47 38.43

Overall, these results show that CodeBrain follows predictable computational scaling behavior and
offers flexible operating points for various deployment budgets.
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Figure 25: EEGSSM Pre-Training Loss Curve for Different Model Size.
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O LOW-RESOURCE COMPARISON WITH EXISTING METHODS

Table 33: Comparison under data-limited settings on the FACED dataset (9-class).

Methods Cohen’s Kappa Weighted F1 Balanced Accuracy

Linear Probing
LaBraM (lp) 0.3026 ± 0.0121 0.3789 ± 0.0154 0.3812 ± 0.0148
CBraMod (lp) 0.3378 ± 0.0139 0.4123 ± 0.0117 0.4146 ± 0.0123
CodeBrain (lp) 0.3587 ± 0.0136 0.4311 ± 0.0109 0.4327 ± 0.0127

10% Few-Shot
LaBraM (10%) 0.1358 ± 0.0163 0.2247 ± 0.0196 0.2265 ± 0.0174
CBraMod (10%) 0.1632 ± 0.0156 0.2595 ± 0.0138 0.2604 ± 0.0148
CodeBrain (10%) 0.1716 ± 0.0101 0.2599 ± 0.0104 0.2654 ± 0.0093

30% Few-Shot
BIOT (30%) 0.2573 ± 0.0346 0.3501 ± 0.0341 0.3428 ± 0.0329
LaBraM (30%) 0.2672 ± 0.0371 0.3548 ± 0.0325 0.3513 ± 0.0315
CBraMod (30%) 0.3239 ± 0.0265 0.4056 ± 0.0256 0.4035 ± 0.0233
CodeBrain (30%) 0.3356 ± 0.0253 0.4114 ± 0.0225 0.4104 ± 0.0281

BIOT (full) 0.4476 ± 0.0254 0.5136 ± 0.0112 0.5118 ± 0.0118
LaBraM (full) 0.4698 ± 0.0102 0.5288 ± 0.0188 0.5273 ± 0.0107
CBraMod (full) 0.5041 ± 0.0122 0.5618 ± 0.0093 0.5509 ± 0.0089
CodeBrain (full) 0.5406 ± 0.0084 0.5953 ± 0.0113 0.5941 ± 0.0098

Table 34: Comparison under data-limited settings on the SEED-V dataset (5-class).

Methods Cohen’s Kappa Weighted F1 Balanced Accuracy

Linear Probing
LaBraM (lp) 0.1941 ± 0.0184 0.3457 ± 0.0135 0.3413 ± 0.0144
CBraMod (lp) 0.2239 ± 0.0053 0.3823 ± 0.0041 0.3791 ± 0.0050
CodeBrain (lp) 0.2302 ± 0.0166 0.3889 ± 0.0154 0.3829 ± 0.0136

10% Few-Shot
LaBraM (10%) 0.0302 ± 0.0065 0.2194 ± 0.0079 0.2228 ± 0.0091
CBraMod (10%) 0.0174 ± 0.0029 0.2071 ± 0.0125 0.2127 ± 0.0023
CodeBrain (10%) 0.1690 ± 0.0170 0.3410 ± 0.0133 0.3331 ± 0.0138

30% Few-Shot
BIOT (30%) 0.1775 ± 0.0425 0.3492 ± 0.0416 0.3505 ± 0.0375
LaBraM (30%) 0.2044 ± 0.0384 0.3700 ± 0.0321 0.3686 ± 0.0305
CBraMod (30%) 0.2291 ± 0.0246 0.3886 ± 0.0255 0.3877 ± 0.0236
CodeBrain (30%) 0.2376 ± 0.0284 0.3943 ± 0.0259 0.3902 ± 0.0271

BIOT (full) 0.2261 ± 0.0262 0.3856 ± 0.0203 0.3837 ± 0.0187
LaBraM (full) 0.2386 ± 0.0209 0.3974 ± 0.0111 0.3976 ± 0.0138
CBraMod (full) 0.2569 ± 0.0143 0.4101 ± 0.0108 0.4091 ± 0.0097
CodeBrain (full) 0.2735 ± 0.0032 0.4235 ± 0.0022 0.4137 ± 0.0023

To evaluate model performance under constrained conditions, we examine three transfer settings:
30% few-shot, 10% few-shot, and linear probing. The 30% and 10% settings reflect data-limited
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conditions, where only a small portion of labeled target data is available for adaptation. In contrast,
linear probing represents a compute-limited condition where the backbone is frozen, and only a
single linear layer is trained. Results for both the FACED (9-class) and SEED-V (5-class) datasets
are reported in Tables 33 and 34.

Across all three settings and both datasets, CodeBrain consistently achieves the best performance
among the evaluated methods, demonstrating stronger data efficiency and reliable transfer behavior
under limited supervision. We also observe that few-shot performance is generally lower than linear
probing, which is expected because full fine-tuning with very limited labeled data tends to be more
sensitive to overfitting and distribution shift, whereas linear probing offers a more stable evaluation
by freezing the backbone and relying only on the pretrained representations. This also confirms that
the pretrained representations learned by CodeBrain already contain meaningful structure. Full-data
results are also included for reference.

While CodeBrain remains superior to prior EFMs in all limited-data and compute-limited conditions,
all models exhibit notable performance drops compared to full fine-tuning, which is expected. EEG
signals inherently exhibit extremely low signal-to-noise ratios and substantial domain shift across
subjects, devices, montages, and recording setups. Under such conditions, a small number of labeled
samples is often insufficient to fully adapt pretrained representations to the target distribution, making
low-resource EEG transfer a challenging but important research problem. Systematic evaluations in
these settings (both few-shot and linear probing) therefore remain underexplored in the literature, and
our study provides an initial step toward addressing this gap.

P LIMITATIONS AND FUTURE WORK

Our work presents promising results but also highlights several limitations that offer directions for
future exploration.

First, the interpretability analyses in this paper focus on representation-level structure learned during
pretraining. As this paper centers on developing a foundation model, our focus is mainly placed on
understanding the representation space learned during pretraining. Future work may incorporate
decision-level interpretability during finetuning, for example by exploring sparse codebook selection,
task-guided gating mechanisms, or disentangling how temporal and frequency codes contribute to
class-specific predictions.

Second, our model and experiments focus on only scalp EEG data. Extending the proposed framework
to modalities with richer frequency content, such as intracranial EEG (iEEG), electrocorticogra-
phy (ECoG), or stereo-EEG (sEEG), offers an opportunity to study how the model behaves under
substantially different signal characteristics.

These directions offer promising directions toward building more general and more interpretable
brain foundation models that operate across signal modalities and provide both meaningful insights.

Q CODE ACCESS

The code has been made publicly available via an anonymous GitHub repository:
https://anonymous.4open.science/r/CodeBrain-D7E6

R USE OF LLM

In preparing this manuscript, we made use of large language models (LLMs) such as ChatGPT,
Gemini, and Deepseek for auxiliary writing support. Specifically, LLMs were employed in three
ways:

(i) Polishing the English writing style, including grammar correction and improving fluency;

(ii) Assisting with LaTeX formatting and typesetting to ensure consistent presentation of mathematical
equations, tables, and figures.
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All core technical content, theoretical results, and experimental findings were designed, implemented,
and validated by the authors. LLM usage was restricted to language refinement and formatting
assistance, without influencing the originality or validity of the scientific contributions.
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