Under review as a conference paper at ICLR 2026

CONCISE REASONING IN THE LENS OF LAGRANGIAN
OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Concise reasoning in large language models seeks to generate only essential inter-
mediate steps needed to arrive at a final answer, thereby alleviating issues of “over-
thinking”. Most proposed approaches hinge on carefully hand-crafted heuristics,
struggling to balance concision with performance, often failing to adapt across do-
mains and model scales. In this work, we address these challenges by introducing
a principled and pragmatic strategy, performance-aware length updating (PALU).
As a principled algorithm, PALU formulates concise reasoning as a constrained
optimization problem, minimizing response length subject to a performance con-
straint, and then applies Lagrangian optimization to convert it into a tractable
unconstrained problem. As a pragmatic solution, PALU streamlines complicated
update rules through three approximations: (i) estimating performance with off-
policy rollouts, (ii) truncating the Lagrange multiplier to two extremes, and (iii)
replacing gradient-based updates with quantile-driven length adjustments. PALU
reduces output length by 65% while improving accuracy by 15% when applied to
DEEPSEEK-DISTILL-QWEN-1.5B, averaged over five benchmarks, outperform-
ing a range of alternative methods. Furthermore, PALU is demonstrated to adapt
across both domain (logic, STEM and math) and model scale (1.5B, 7B, 14B)
entrenching the algorithm as a practical and effective concise reasoning approach.

1 INTRODUCTION

Reasoning, requiring large language models (LLMs) to work through intermediate steps before pro-
ducing a final answer, substantially improves performance on complex tasks such as mathemat-
ics (Jaech et al., [2024; |[Shao et al) 2024), programming (Lambert et al.| [2024)), and value align-
ment (Guo et al.| 2025). Yet this benefit is often accompanied by overthinking: redundant self-
reflection, backtracking, and validation (Chen et al.} 2024; |[Zhang et al., [2024} |Fatemi et al.| 2025)).
These limitations inflate inference costs and hampers user experience, motivating the need for con-
cise reasoning—the production of only the essential steps required to reach a correct answer.

Reinforcement learning (RL), with its proven success in incentivizing LLM reasoning ability (Guo
et al.| [2025; Jaech et al., [2024), emerges as a natural and mature avenue toward concise reasoning.
Existing RL-based concise reasoning solutions typically either (i) employ carefully shaped reward
functions to discourage overlong generations (Xiang et al.,|2025;Yeo et al.||2025; Chen et al., [2025))
or (ii) impose rigid length budgets that truncate overthinking trajectories (Hammoud et al., 2025}
Hou et al., 2025) during the training. These heuristic attempts, albeit promising, implicitly set a
target generation length for dataset queries globally or individually, and then penalize or discard the
generations with length exceeding this pre-defined value. Consequently, they often demand exten-
sive human effort to adapt across domains and model scales, and struggle to balance conciseness
with performance because of the sole conciseness objective. This raises a research question:

Can we achieve concise reasoning that (i) balances performance with conciseness, (ii) adapts across
domains and model sizes without re-tuning, and (iii) avoids increases in training compute?

In this work, we address this challenge by introducing performance-aware length update (PALU), an
algorithmic strategy that adaptively updates the LLMs token generation budget to achieve a state of
conciseness without sacrificing accuracy and to generalize across diverse domains and model scales.

Under review as a conference paper at ICLR 2026

As a principled strategy, PALU formulates concise reasoning as a constrained optimization prob-
lem: minimize rollout length while maintaining performance above a specified threshold. Because
constrained problems are difficult to solve directly, PALU adopts a Lagrangian formulation that con-
verts the constraint into an equivalent unconstrained objective. An associated Lagrange multiplier
then dynamically balances concision and performance, yielding PALU’s first key property: concise
reasoning without hand-tuned length heuristics while maintaining performance.

As a pragmatic solution, PALU replaces expensive min—max gradient updates for the Lagrangian
with three practical approximations.

(i) Off-policy performance check. Instead of collecting fresh rollouts to determine the Lagrange
multiplier update direction, PALU reuses last-epoch rollouts to estimate performance. This
avoids repeated model loading and new rollout computation, thereby preserving Efficiency.

(i) Regime-based optimization scheme. Rather than tuning the Lagrange multiplier via brittle,
slow ascent, PALU snaps the multiplier into two extremes implicitly. This simplification pre-
serves the essential sign behavior of A and ensures conciseness without compromising perfor-
mance, yielding Balance.

(iii) Quantile-driven budget update. Because gradients of the Lagrangian with respect to the length
budget are non-differentiable, PALU uses a quantile-based surrogate: it estimates the marginal
effect of reducing the budget by observing accuracy drops and sets the step size by a target
quantile of these drops. Grounded in these derivative-inspired statistics, the update scales
naturally across domains and model sizes without heuristic retuning, conferring Adaptivity,

PALU, when combined with GRPO (Shao et al., 2024), reduces generation length by 65% while
improving accuracy by 15% on DEEPSEEK-R 1-DISTILL-QWEN-1.5B, averaged across five bench-
mark tasks, outperforming alternative methods. Compared with methods that rely on heuristic length
budgets or length-aware rewards, both of which require sensitive tuning across domains and model
sizes, PALU achieves superior conciseness across multiple domains (logic, STEM, mathematics)
and scales effectively from 1.5B to 14B parameters. By uniting conciseness with performance, and
exhibiting strong adaptivity across domains and scales, PALU demonstrates the effectiveness of a
principled yet pragmatic solution for concise reasoning.

2 PRELIMINARIES

Group Relative Policy Optimization (GRPO (Shao et al.l 2024)) simplifies PPO (Schulman et al.,
2017) for LLM finetuning by replacing the heavy value model with a per-prompt, group-relative
normalization of the reward. Specifically, given a question—answer pair (¢, a) drawn from dataset
D, a group of G rollouts (responses) {0; }$; is sampled, and their advantages are computed as:

r(0i,a) — mean({r(o;, a)}7,)

std({r(0;, a) }Z,) ’
where the reward signal r is provided by some rule-based reward functions. To stabilize training,
GRPO adopts the clipped surrogate objective from PPO (Schulman et al., 2017):

min {Ti,t(e)Ai (0i7 a)v Chp (Ti,t(e)v 1- €low 1 + 6high) }7 (2)

where 7; +(0) is the per-token probability ratio between policy mg and the behavior policy g

Ai(oi, a) =

(D

old :
rio(8) = 0Lt | €0nct) 3
7r9\,1d(0i,t ‘ q,0i,<t)
This yields the GRPO objective (we eliminate the KL-divergence constraint (Yu et al., 2025)):

Jorpo(70) = E(g,0)uD, {0116~ (la,L)
[oi]

@

1 1 ,) _)

el > ol > min {Ti,t(a) Ai(0i; a), clip(r;,1(0), 1 — €low; 1 + €nigh) Ai(0i, a)} N C))
i=1 'l t=1

where L denotes the length budget for generation, such that decoding proceeds token by token and
is forcibly terminated once the number of generated tokens reaches L.

Under review as a conference paper at ICLR 2026

3 RELATED WORK

Concise reasoning in LLMs is an emerging research direction aimed at mitigating the overthinking
phenomenon (Han et al.| 2024; Ma et al., 2025). Existing solutions can be broadly categorized into
three paradigms: (i) training-free methods, including guided prompting (Xu et al., [2025), modular
workflow pipelines (She et al.|[2025)), decoding manipulation (Muennighoff et al.|[2025), and latent-
space reasoning (Hao et al., [2024)); (i) SFT- and DPO-based methods, including reasoning path
filtering (Munkhbat et al.| [2025)), reasoning with latent tokens (Su et al., 2025), and preference
optimization (Team et al.,[2025a); and (iii) RL-based methods, to which our approach belongs.

Table 1: An overview of RL-based concise reasoning methods.

Modification Penalty function Representatives

Reward function 7 = r(0,a) — f(len(o)) Kimi 1.5 RL (Team et al.|2025a); Overlong punishment (Yu et al.|[2025)
Reward function 7 = r(0,a) — f(len(0),diff(¢)) L1 (Aggarwal & Welleck![2025),

Reward function 7 = r(0,a) — f(len(o) — target) Ol-pruner (Luo et al.||2025b); ShorterBetter (Yi et al.}|2025)
Length budget L = f(stage) Thinkprune (Hou et al.|[2025)
Length budget L = f(diff(q)) GFPO (Shrivastava et al.|[2025)

Reward-function-based approaches typically introduce length-aware penalties during RL training.
Team et al.| (2025a); | Xiang et al.| (2025); |Arora & Zanette| (2025);|Yeo et al.[(2025); Song & Zheng
(2025) subtract a penalty term proportional to response length from reward signals. Others (Xiang
et al.| 2025} Shen et al., |2025; |L1 et al.| [2025) refine this idea by incorporating both response length
and question difficulty. A further refinement discounts the reward according to the deviation between
the generated and the target length (Luo et al.,[2025b; Y1 et al.} 2025} [Team et al.l 2025b). However,
aggregating such heterogeneous reward components prior to normalization can distort the length
penalty (Chen et al.| [2025). Moreover, these methods face a fundamental limitation in adaptivity:
their reward shapes require extensive trial-and-error tuning across data domains and model scales.

Length-budgeting methods, by contrast, regulate the rollout through setting hard length budgets.
This approach would stop the decoding when the number of generated tokens reaches this value.
One line of work (Hou et al., [2025; [Hammoud et al., 2025) progressively reduces the global length
budget, whereas another (Shrivastava et al.| 2025 filters trajectories after generation, retaining only
those shorter than a length threshold. A limitation of these approaches is that the budget is typically
set heuristically, often neglecting the risk of performance degradation. Our method instead allocates
the budget in a principled manner, explicitly balancing conciseness with performance. For a more
comprehensive survey on concise reasoning methods, please refer to Zhu & Li| (2025)).

4 PROPOSED METHOD: PALU

4.1 FORMULATION AND INTUITION

Unlike heuristic approaches, we formulate concise reasoning into a constrained optimization prob-
lem. Let L denote the per-question length budget, r a (rule-based) reward evaluating the responses
from a reasoning model 7g , and C' € [0, 1] a global performance threshold. The objective is to min-
imize L while ensuring performance meets or exceeds C' for question-answer pairs {(q, a)} drawn
from dataset D:
in L st 6,L > 5

guin Los R(O,L,q) > C, ©)
with R(0, L, q) denoting the expected reward obtained by model 7g, when generating a set of re-
sponse o for query ¢ under a length budget L:

R(07 La Q) = Eo~7r9(- | q,L) [R(O, a’)} . (6)

Directly solving Eq. (5) directly can be difficult. Fortunately, Lagrangian optimization enables a
conversion of the original problem to the following min—max objective:

Jin s £(0,L.0) = L +)\(C - R(@,L,q)), (7)

Under review as a conference paper at ICLR 2026

where) is the dual variable penalizing constraint violation. Assuming differentiability, the solution
of the original constrained optimization can be approximated by applying first-order stochastic up-
dates with learning rates 1y, ng, and 7, (for the dual variable, model parameters, and length budget,
respectively), together with implicit projections onto A > 0 and L > 0:

XA+ (C— R0, L,9)), (8)
0 FOJFU&)\VGR(&L,Q), (9)
L <—L—nL(1—/\-VLR(0,L,q)). (10)

These updates admit a natural interpretation. When the performance constraint is satisfied, A re-
mains small and the corresponding length budget L is reduced. Empirically, longer responses tend
to correlate with higher reward, so VR > 0. Conversely, when performance falls below C, A
increases, expanding L and prioritizing updates to 6 to restore performance. Beside the explicit
balance between performance and conciseness, the update rule for length budget L, Eq. (I0), offers
a principled way to achieve the concise reasoning, without heuristics on the target generation length.

4.2 PRACTICAL ALGORITHM

Guided by the min—max formulation and the first-order update rules, we introduce performance-
aware length update (PALU), a pragmatic and principled algorithm for training concise reasoning
models. PALU simplifies the complicated updates rules by three components: (i) an off-policy pass-
rate estimate, (ii) a regime-based optimization scheme that toggles the optimization focus, and (iii)
a quantile-based surrogate for the derivative term V LR(G, L, q).

Off-policy performance estimation (Eq. (8)) Updating the length budget L and model param-
eters O requires estimating the performance R. Computing this quantity on-policy would demand
repeatedly reloading the latest parameters, which is computationally costly. Instead, we approximate
it with the previous round’s evaluation:

R(ev L, q) ~ R(001d7 Lo, Q) = EONﬂ'gold(' | '¢,Low) [T(Oa a)} . (11)

This off-policy reuse provides a conservative estimate of the true pass rate. While such approxi-
mations are often unstable in reinforcement learning with randomly initialized policies, LLM fine-
tuning differs because performance typically improves monotonically thanks to pretraining. Thus,
this conservative bias is acceptable, and even desirable, because it naturally underestimates model
performance and emphasizes more on policy improvement (Eq. (9), i.e., the case of large \).

Regime-based optimization (Eq. and Eq. (I0)) In the Lagrangian view, X\ reweights the
emphasis between conciseness and performance. When the performance constraint is satisfied (C' —
R < 0), residuals integrate to a small A, so the update prioritizes reducing the length budget. In
this case, (1 —A-VLR(O,L, q)) > 0. Conversely, when the constraint is violated (C — R > 0), a
sequence of positive residuals drives A upward, shifting the emphasis toward recovering performance
by enlarging L and updating the model 7.

While this continuous adjustment is elegant in theory, it depends critically on carefully tuned learn-
ing rates and a long integration horizon. Both impractical for LLM post-training. PALU therefore
discards the need for a continuously evolving A and instead approximates only its sign behavior with
a two-regime controller:

L+« L—al ifR(6,Lq)>C

12
L <+ Lpax otherwise ’ 12)

Optimization regime = {

where a2 > 0 is a new term we will explain later. This simplification turns the Lagrange multiplier
into an implicit “bang—bang” controller with two regimes: one regime pushes toward conciseness,
the other safeguards performance by resetting to the maximum Ly,,x When the constraint is violated.

Under review as a conference paper at ICLR 2026

Algorithm 1 Performance-Aware Length Update (PALU) with GRPO
Input: initial model 7y, dataset D, bound L., performance threshold C'
1: for epoch in range(N) do

2: for each mini-batch D, C D do

3: if first epoch then

4: Initialize the length budget for all questions: L = L ax
5: else

6: Reuse the last round pass rate, e.g., Eq. @)

7: Update L for each ¢ € Dy, using rule Eq. (12))

8: end if

9: Collect responses o with parameter 8 and per sample budget L
10: Update 6 with GRPO as per Eq.
11: end for
12: end for

13: Output: concise reasoning model g

Quantile-driven budget update (Eq.) To set the per-question reduction step oz(Tq) used by

the regime controller (Eq.), we use Eq. as an interpretive guide. The term VR(6, L, q)
captures the sensitivity of performance to the length budget. Because R is a non-differentiable,
rule-based reward, we approximate this sensitivity via the difference between two nearby operating
points in the distribution of correct response lengths. Let

Q') := Quantile, ({len(oi)}il | 0 ~ 7o, (-, Low); r(0,a) = 1) (13)
and define the quantile gap
al? = Q% - Q% . (14)
If L is near Qg‘_%, typical when the performance threshold C' is high, reducing L by a? lowers the
success rate by approximately 7. Hence,
R(6,L,q) — R(6,L — oz(Tq),q) T

) O

VLR(0,L,q) ~ (15)

Substituting into Eq. (I0) yields the budget update:

L=L—n,-AL AL= (1—)\-VLR(0,L,q)) ~ (1—»?@) xal?. (16

Qr

Accordingly, our regime update uses L < L — a(Tq) when R(0,L,q) > C, with a(Tq) as the gap

between the longest correct response and its (1 —7)-quantile length, capturing how dispersed correct
responses are. In simple terms, when correct responses cluster tightly in length (small «;), updates
proceed cautiously; when they exhibit a wider tail, the adjustment is correspondingly more aggres-
sive. The resulting update embodies a direct, data-driven proxy for inverse sensitivity (the derivative
term in Eq. (I0)), capturing the essence of Lagrangian optimization within a pragmatic rule.

Summary PALU circumvents the instability and cost of the full Lagrangian multiplier method
while retaining its principled grounding, by combining off-policy performance check, the regime-
based controller, and the quantile-driven update step. This design offers three key advantages:

(i) Efficiency, no additional computations are required to estimate the performance,
(ii) Balance, the two-regime controller reconciles conciseness and performance,
(iii) Adaptivity, the quantile-based step scales naturally across domains and model scales.

Algorithm [T] presents the pseudocode of PALU, instantiated with the GRPO performance objec-
tive (Shao et al.,[2024), where the update rule in Eq.(9) is replaced by maximizing Eq.(4)

The implicit assumption PALU works best when correct responses exhibit non-trivial dispersion
in length. When lengths concentrate tightly (e.g., when «y 1 is small for all questions), the regime
update in Eq. (I2) shrinks accordingly, yielding conservative (slower) reductions in L while pre-
serving performance. Empirically, we rarely observe such concentration in reasoning models (see
Figure[I)), though we acknowledge it as a potential limitation.

Under review as a conference paper at ICLR 2026

5 EXPERIMENT

We begin by validating the generation-length assumption underlying PALU and then benchmark its
performance and conciseness against a broad suite of baselines (Section [5.2). Finally, we provide
our analysis on a systematic evaluation across multiple domains, model scales, and hyperparameter
settings. The training recipe and detailed results are provided in Appendix.

5.1 GENERATION LENGTH ASSUMPTION

PALU is predicated on the assumption that 11000
correct responses exhibit a broad distribution 10000
of lengths for given questions. If not and the 9000
distribution were narrow, updates to the bud- 2 sooo T
get L would either converge slowly or induce % 7000
unstable oscillations between overly reducing % 6000 | ED
the generation length and restoring accuracy. 5000 E_q
. . 4000 e e
To evaluate this key assumption, we prompt 2000 1z e e
open-source reasoning models, measuring
the response lengths deemed correct (Fig- RLDistil Qwen 7 148 B

ure [I). Results on more prompts, together
with extended analyses for the QWEN3 and
DEEPSEEK-R1 families, are reported in Fig-
ure 5] in Appendix. The observed distribu-
tion in Figure [[|reveal marked variability: the
longest correct responses are two to three times longer than the shortest. This broad spread sup-
ports PALU’s premise and indicates that the length budget L can be progressively reduced without
inducing oscillatory behavior during the optimization.

Figure 1: Token-length distribution of correct roll-
outs from the DEEPSEEK-R 1-DISTILL-QWEN se-
ries of reasoning models. Box plots indicate the
range between the 25th and 75th percentiles.

5.2 COMPARISON WITH EXISTING SOLUTIONS

Setup We finetune DEEPSEEK-R1-DISTILL-QWEN-1.5B (Guo et al.,|2025) on a subset of DEEP-
SCALER (Luo et al.;2025b). Specifically, we use 12k mathematical problem—answer pairs from the
GURU’s DEEPSCALER partition, which filters out too easy or too hard samples (Cheng et al.,[2025).
Configuration. We implement PALU on top of VERL (Sheng et al.l |2024), with the hyperparam-
eter step size g 5 for (rapid) length reduction and performance threshold C' = 0.8. Training is
performed for 6400 gradient update steps with batch size 32 (roughly 1100 H200 GPU hours). We
apply the PALU strategy from an initial generation budget of 16k tokens (Line 4 in Algorithm [T)
and update it based on Eq. (12). Metrics. We report Pass@1 and the output length (in tokens)
on: MATH-500 (Hendrycks et al., 2021), AIME 2024, AMC 2023, MINERVA, and OLYMPIAD-
BENCH (He et al.| 2024). Besides, we employ the Accuracy-Efficiency (AE) Score (Luo et al.
2025a), a composite metric balancing length reduction against accuracy preservation, for overall
comparison. Results are averaged over 32 rollouts for AIME 2024 and 10 for the others.

Comparison (Table We consider two families of concise reasoning methods (models). (i)
SFT/DPO-based models: Kimi k1.5 SFT, Kimi k1.5 DPO (Team et al., 2025a)), and TokenSkip (Xia
et al.l[2025). (ii) RL-based methods: reward-function-based methods that add a length-aware penalty
to the reward/advantage function such as CosFN (Yeo et al 2025), Kimi k1.5 RL (Team et al.,
2025a), DIET (Chen et al., 2025), ShorterBetter (Yi et al.l 2025), L1-Max (Aggarwal & Welleckl,
2025), and ALP (Xiang et al., |2025); stage-based length budgeting methods that progress shrink
the rollout budget, for example, ThinkPrune (Hou et al., 2025)); and multi-stage RL pipelines, e.g.,
AutoThink (Tu et al., 2025]).

PALU achieves superiority in both conciseness and accuracy. Across five mathematics and science
tasks, PALU reduces the macro-average response length from 10,280 to 3,537 tokens, a 65% re-
duction. Meanwhile, it surpasses other RL-based methods in terms of accuracy. Crucially, this is
attained without relying on intricate reward shaping, multi-stage training, or explicit switching be-
tween reasoning and non-reasoning modes. The advantage of PALU underscores the effectiveness
of its Lagrangian optimization objective that enforces both conciseness and performance.

Under review as a conference paper at ICLR 2026

Table 2: Performance and conciseness comparison of different concise reasoning methods with
DEEPSEEK-R1-DISTILL-QWEN-1.5B as the base model and DEEPSCALER as the training dataset.
P@1: average pass@1 accuracy (%); Tok: average response length in tokens. AE Score: accuracy-
efficiency score for balancing length reduction and accuracy preservation (Luo et al., 2025a)).

MATH 500 AIME 2024 AMC 2023 Olympiad Minerva-Math Macro Average
Model & Methods ymp i AE Score
P@1 Tok P@I1 Tok P@1 Tok P@1 Tok P@l Tok P@l1 Tok
R1-DISTILL-QWEN-1.5B 82.1 5534 285 16590 62.7 10615 435 11587 26.0 7076 48.6 10280 0.0
SFT- & DPO-Based
Kimi 1.5 SFT (Team et al.||2025a) 68.5 6761 22.0 17400 60.4 9323 394 10036 23.6 2804 427 —121% 9865 —1.00% -0.499
Kimi 1.5 DPO (Team et al.}2025a) 833 4464 31.7 13389 63.0 8678 445 9604 269 6070 499 12.70% 8441 —17.9% 0.289
TokenSkip (Xia et al.}[2025) 64.1 1120 6.8 2231 373 1401 258 2061 20.7 1674 309 —36.4% 1697 —83.5% -1.173
RL-Based
AutoThink-Stagel (Tu et al.[[2025} 82.1 2473 335 12716 660 5440 456 7328 27.0 5372 50.8 6666 —35.2% 0.565
AutoThink-Stage2 (Tu et al.[2025} 852 3702 31.8 12117 66.6 7415 464 8030 272 5481 514 % 7295 —20.0% 0.484
AutoThink-Stage3 (Tu et al.[[2025} 85.1 1897 419 9033 719 4696 49.0 5005 30.5 3834 557 +14.6% 4893 —52.4% 1.111
ALP (Xiang et al.|[2025)} 80.5 1435 379 8084 76.5 3513 47.6 4670 245 2197 534 +9.87% 3979 —61.2% 0.951
CosFn (Yeo et al.|2025) 75.6 2735 275 12492 61.1 6970 429 8307 27.1 3485 46.8 —350% 6798 —33.9% 0.249
DIET (Chen et al.|[2025) 83.0 3061 31.8 10578 65.4 6425 437 6917 269 3505 50.2 +3.30% 6097 —40.7% 0.547
Kimi 1.5 RL (Team et al.|2025a) 66.3 1552 18.8 9109 44.7 3808 285 4774 16.7 1009 35.0 —27.9% 4050 —60.6% -0.871
L1-Max (Aggarwal & Welleck!2025) 83.5 3337 21.7 4093 66.3 3350 45.6 2698 252 2595 485 —o0.28% 3215 —68.8% 0.451
O1-Pruner (Luo et al.}[2025a} 79.1 2531 250 8961 62.5 5010 39.0 5242 237 2400 459 5.0 4829 —s53.0% 0.193
ShorterBetter (Yi et al.|[2025) 62.9 626 229 4617 65.0 2311 348 2674 19.8 827 41.1 —155% 2211 -78.5% -0.038
ThinkPrune-4k (Hou et al.}[2025) 83.0 2745 295 8557 71.7 4241 452 5505 26.5 3341 512 5317 4877 —52.6% 0.677
PALU (ours) 853 1502 40.0 7132 81.8 3174 495 3958 242 1922 56.2 +15.6% 3537 —65.6% 1.139
0.504 -0.98-0.82 0.26 0.33 0.12 0.35 0.43 0.42 0.85 0.90 0.66 0.88 0.96 0.86 =3 PALU (Ours)
rie - [ShorterBetter
< Base model
[
X
0.45 4 t14 8
<
>
] 5z
5 0.404 ri2e 2
g 23
< c 0
o
0.35 ro®
[
f=
\ / [
V---¥---y lg ©
0.307 q_l\nhﬂ—n_&_
0 1920 3840 5760 7680 0 800 1600 2400 3200
Gradient update step Generation length

Figure 2: Left: Performance-conciseness evolution of PALU. The evaluation dataset is AIME24.
We encode their Spearman’s correlations with red (negative) and green (positive) regions. Right:
Distribution of generation lengths under PALU and ShorterBetter (Yi et al., 2025).

PALU reduces both easy and hard redundancies (Figure[2} left). We monitor the joint evolution of
evaluation accuracy (left axis) and generation length (right axis) throughout training, with Spearman
correlations between the two encoded by color (window size 4). In the initial phase (red-shaded,
negative correlation), accuracy rises as length falls, showing that PALU eliminates redundant tokens
without harming performance. As training progresses, the correlation turns positive (green-shaded),
revealing a genuine trade-off: further compression now risks eroding accuracy. This marks the
harder redundancies, where conciseness and performance are in tension. PALU responds adaptively,
retaining moderately longer responses when beneficial while continuing to shorten those that can be
solved concisely. Consequently, the overall generation length continues to decline (solid curves),
even under trade-off pressure. These dynamics demonstrate that PALU not only captures the low-
hanging fruit of trivial redundancy removal but also sustains balanced improvements in the more
challenging regime where performance and conciseness must be carefully reconciled.

PALU retains moderate-length responses when beneficial (Figure [2} right). We then present the
distributions of generation length from PALU and ShorterBetter (Yi et al., 2025) on the five tasks
in Figure[2] ShorterBetter, as a reward-based method that penalizes long outputs, produces a sharp
peak at very short lengths (less than 320 tokens) and very few responses in the middle range around
800 tokens, suggesting it often cuts too aggressively. In contrast, PALU spreads its density more
evenly, keeping many responses in the moderate range while still limiting very long outputs. This
pattern reflects PALU’s strength: it avoids excessive shortening while still trimming unnecessary
length, which helps preserve accuracy.

Under review as a conference paper at ICLR 2026

0.54

~—— PALU (Ours)

Math (1.5B), from 12742 tokens

—— Overlong punishment

Logic (1.5B), from 15365 tokens

—— Stage-based budgeting

STEM (1.5B), from 6426 tokens

2 0 3 0354 ° o
0.359 2 2
0.534 ” o 7 Py o ° L
s o 0304 @ © o
052 o ° 4 0301 % N . "
L] o % o
9 0 0.25- U 0.251 "
© 0.51 /] P o [
= & o
=1 o]
S o 0.20 o % 0.204] o
£ 0504 o 2 . y,
o o °
| 4 - 0.15 o 0.15
0.49 - o .
% /% 1 2 LN
048] @B2 ° 0101 & 0.10
% e
'] 0.054 &=)
0 1 2 3 4 5 0 2 4 6 -2 -1 0 1
Math (7B), from 9283 tokens Logic (7B), from 5729 tokens STEM (7B), from 6054 tokens
0.760 4 ° ° > 0709 o
0 & 0.954) o »
6 o % 0654 S)
0.755 4 e 4 o g % o 2 22
o 7o z 0.901 ‘e 0.60 1 v v
0.750 o ° 4 'y o) %
> ’ 0.85 1 o ©
[9) “ %o 4 0.55 4 P
8 0.7451 8, ©
2 . 0.801 w 0.50 p
< o0.740{ © e, vy % 4
o o 0.754 0.45
P
07351 02 , 0.701 o 0.401 1
’ 5
]l 6
07304 & 06s] @ 0.35 °
0 1 2 3 4 0 1 2 3 4 -2 -1 0 1 2 3
Math (14B), from 8620 tokens Logic (14B), from 4186 tokens STEM (14B), from 6461 tokens
0.8150 1 s 2 » P n
% 4 2 4
08125] o o 0.98 S J 0.71 ¢
o o o
081007 4, .52 096 oy A 0.70 o
4 o . 6, % e
] 1 o
2 0.8075 0.9 Ja 0.69 o
o w “ P b
5 0.8050 4 o 0.92 %0 o
g o 0.68 g
< 080251 ¢ e 0.90 1 Y ¢ a0 o
0.80001 P 0671 P %
' 0.88 " @ %
%
0.79751 © o 0.66 [o
0.86 4 -
1 S
0.79501 © © 0.654 e
0 1 2 3 4 0.0 0.5 1.0 15 2.0 2.5 -1 0 1 2 3

Length reduction on responses (thousands of tokens)

Figure 3: Conciseness-performance evolution of DEEPSEEK-R1-DISTILL-QWEN-1.5B trained
with different concise reasoning methods. The training dataset covers three-domain questions: math,
logic and STEM. Results are plotted with time weight exponential moving average smoothing.

5.3 SCALING TO MULTI-DOMAIN TASKS AND LARGE MODELS

Multi-domain and multi-scale comparison (Figure 3) To examine PALU’s adaptivity on do-
mains and model scales, we conduct comparison using a series of DEEPSEEK-R1-DISTILL-QWEN
models with parameters 1.5B, 7B, and 14B, with the training data covering math, logic and STEM
from the GURU(Cheng et al.,|2025)) dataset. We in this part limit the training data to 5, 120 samples
(2k math, 2k STEM and 1k logic) and train the model for only 10 epochs. For evaluation, we use
another 768 questions spanning math, logic, and STEM, and report both accuracy (pass@1 over
10 rollouts) and generation length reductions (in thousands of tokens) on test partitions. For com-
parison, we employ (i) stage-based budgeting from |Hou et al.| (2025) with gradually reducing the
generation-length budget from 16k to 8k over five stages; and (ii) soft overlong punishment strategy
introduced by DAPO (Yu et al.,|2025)), with an additional penalty for responses with length exceed-
ing a predefined maximum of 8k. These approaches serve as representatives of length-budget-based
and reward-function-based methods.

PALU adapts across data domains and model scales. All three methods improve accuracy on the
in-distribution test sets. Yet, their impact on conciseness diverges. The multi-domain scenario.
Consider the 1.5B model (first row of Figure 3). Stage-based budgeting and overlong punishment
shorten responses for math and logic tasks, with evaluation curves showing clear progress to the
right-hand side (i.e., gains in length reduction). Yet in STEM, these heuristics fail. Their reliance on
a fixed target length (8k in our implementation) leaves little space for further reduction, as the base
model already generates shorter responses (~ 6.5k tokens), well below the assumed optimum. The
multi-scale scenario. Initial generation length varies substantially across model sizes, especially

Under review as a conference paper at ICLR 2026

for math and logic tasks (as indicated in subtitles for the left column of Figure [3). This variation
poses a fundamental challenge for heuristic methods: because they require an explicit length target,
each new model scale demands repeated trial-and-error sweeps to locate a workable setting. PALU.
Rather than imposing heuristic length targets, PALU dynamically adjusts its budget under a joint
conciseness-performance objective. This principled formulation, grounded in Lagrangian dynam-
ics, adapts seamlessly to varying initial length distributions and performance-length trade-offs. As
a result, PALU achieves consistent improvements across domains and model sizes. In short, heuris-
tic approaches work in narrow cases but break down when domain or model characteristics shift.
PALU avoids this brittleness by treating concise reasoning as a performance-constrained optimiza-
tion problem, delivering robust conciseness and accuracy gains across diverse settings.

5.4 ABLATION

Step size in PALU (Figure[d) Instead of as-
signing a heuristic value, PALU derives its step
size from the Lagrangian formulation. This
provides a principled yet efficient budgeting
mechanism:

;o {La(ﬂ) ifR>C

r 5500
r 5000

) L 4500
Liax otherwise

- 4000
Here, a? measures the gap between the longest

correct response and the 1 — 7-quantile length
for question g. 7 directly determines the step
size for updating L and can be treated as a tun- i i i i i i i
able hyperparameter. To examine its sensitiv- 0 250 500 750 1000 1250 1500

. Gradient update step

ity and guide practitioners, we conduct an abla-

tion study across different step sizes. Using the Figure 4: Ablation on the step size ..
multi-domain dataset (math, logic, and STEM),

we run PALU with update steps ag.1, g2, and o 5. We evaluate the model on the MATH 500
benchmark and report the accuracy and generation length during training. As shown in Figure[d] a
larger step (o 5) accelerates length reduction but slightly compromises accuracy, whereas smaller
steps stabilize performance but provide weaker pressure for conciseness.

MATH 500 length (token)

r 3500

MATH 500 accuracy (pass@1 %)

6 LIMITATIONS AND CONCLUSION

Limitation PALU assumes that overthinking LLMs have a broad distribution of response lengths.
While we empirically verified this property in our experiments, we acknowledge an extreme case
where the model always generates responses of identical length. In such a scenario, even reducing
the length budget by a single token could cause accuracy to collapse from 1.0 to 0.0, rendering
PALU ineffective. Another limitation is that we do not claim PALU’s concise reasoning behavior
will generalize to out-of-distribution domains. We view such generalization as stemming primarily
from the diversity of training data and the RL component, rather than from PALU itself.

Conclusion Although these limitations define the scope of our study, they do not detract from our
central contribution: a principled and pragmatic solution for concise reasoning. Although trimming
overly long responses seems intuitive, achieving this without compromising accuracy and while re-
taining adaptivity across domains and model scales calls for a principled formulation. PALU elevates
the intuition into theory by casting the task as a constrained optimization and resolving it through the
Lagrangian framework. This shift from intuitive observation to principled methodology constitutes
PALU’s broader contribution to the community. Technically, it affords two advantages. First, PALU
automatically balances conciseness and performance without ad-hoc heuristics, reducing generation
length by 65% while improving accuracy by 15% across five benchmark tasks. Second, it provides a
principled update rule for the length budget, enabling robust adaptation across domains (math, logic,
STEM) and model scales (1.5B, 7B, and 14B parameters).

Under review as a conference paper at ICLR 2026

REFERENCES

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning. arXiv preprint arXiv:2503.04697, 2025.

Daman Arora and Andrea Zanette. Training language models to reason efficiently. arXiv preprint
arXiv:2502.04463, 2025.

Weize Chen, Jiarui Yuan, Tailin Jin, Ning Ding, Huimin Chen, Zhiyuan Liu, and Maosong Sun.
The overthinker’s diet: Cutting token calories with difficulty-aware training. arXiv preprint
arXiv:2505.19217, 2025.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking
of ol-like llms. arXiv preprint arXiv:2412.21187, 2024.

Zhoujun Cheng, Shibo Hao, Tianyang Liu, Fan Zhou, Yutao Xie, Feng Yao, Yuexin Bian, Yonghao
Zhuang, Nilabjo Dey, Yuheng Zha, et al. Revisiting reinforcement learning for 1lm reasoning
from a cross-domain perspective. arXiv preprint arXiv:2506.14965, 2025.

Mehdi Fatemi, Banafsheh Rafiee, Mingjie Tang, and Kartik Talamadupula. Concise reasoning via
reinforcement learning. arXiv preprint arXiv:2504.05185, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Hasan Abed Al Kader Hammoud, Kumail Alhamoud, Abed Hammoud, Elie Bou-Zeid, Marzyeh
Ghassemi, and Bernard Ghanem. Train long, think short: Curriculum learning for efficient rea-
soning. arXiv preprint arXiv:2508.08940, 2025.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-
budget-aware 1lm reasoning. arXiv preprint arXiv:2412.18547, 2024.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. arXiv preprint
arXiv:2504.01296, 2025.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv
preprint arXiv:2412.16720, 2024.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers
in open language model post-training. arXiv preprint arXiv:2411.15124,2024.

Zheng Li, Qingxiu Dong, Jingyuan Ma, Di Zhang, and Zhifang Sui. Selfbudgeter: Adaptive token
allocation for efficient 1lm reasoning. arXiv preprint arXiv:2505.11274, 2025.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. Ol-pruner: Length-harmonizing fine-tuning for ol-like reasoning pruning.
arXiv preprint arXiv:2501.12570, 2025a.

10

Under review as a conference paper at ICLR 2026

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Tianjun Zhang, Li Erran Li, et al. Deepscaler: Surpassing ol-preview with a 1.5 b
model by scaling rl. Notion Blog, 2025b.

Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve: Length-
compressible chain-of-thought tuning. arXiv preprint arXiv:2502.09601, 2025.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin Yang, Yujin Kim, and Se-Young Yun. Self-
training elicits concise reasoning in large language models. arXiv preprint arXiv:2502.20122,
2025.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Jianshu She, Zhuohao Li, Zhemin Huang, Qi Li, Peiran Xu, Haonan Li, and Qirong Ho. Hawkeye:
Efficient reasoning with model collaboration. arXiv preprint arXiv:2504.00424, 2025.

Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wenjing Zhang, Jiangze Yan, Ning Wang, Kai
Wang, Zhaoxiang Liu, and Shiguo Lian. Dast: Difficulty-adaptive slow-thinking for large reason-
ing models. arXiv preprint arXiv:2503.04472, 2025.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Vaishnavi Shrivastava, Ahmed Awadallah, Vidhisha Balachandran, Shivam Garg, Harkirat Behl,
and Dimitris Papailiopoulos. Sample more to think less: Group filtered policy optimization for
concise reasoning. arXiv preprint arXiv:2508.09726, 2025.

Mingyang Song and Mao Zheng. Walk before you run! concise llm reasoning via reinforcement
learning. arXiv preprint arXiv:2505.21178, 2025.

DiJia Su, Hanlin Zhu, Yingchen Xu, Jiantao Jiao, Yuandong Tian, and Qinqing Zheng. Token
assorted: Mixing latent and text tokens for improved language model reasoning. arXiv preprint
arXiv:2502.03275, 2025.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
1lms. arXiv preprint arXiv:2501.12599, 2025a.

Prime Intellect Team, Sami Jaghouar, Justus Mattern, Jack Min Ong, Jannik Straube, Manveer
Basra, Aaron Pazdera, Kushal Thaman, Matthew Di Ferrante, Felix Gabriel, et al. Intellect-2:
A reasoning model trained through globally decentralized reinforcement learning. arXiv preprint
arXiv:2505.07291, 2025b.

Songjun Tu, Jiahao Lin, Qichao Zhang, Xiangyu Tian, Linjing Li, Xiangyuan Lan, and Dongbin
Zhao. Learning when to think: Shaping adaptive reasoning in r1-style models via multi-stage rl.
arXiv preprint arXiv:2505.10832, 2025.

Heming Xia, Chak Tou Leong, Wenjie Wang, Yongqi Li, and Wenjie Li. Tokenskip: Controllable
chain-of-thought compression in llms. arXiv preprint arXiv:2502.12067, 2025.

Violet Xiang, Chase Blagden, Rafael Rafailov, Nathan Lile, Sang Truong, Chelsea Finn, and Nick
Haber. Just enough thinking: Efficient reasoning with adaptive length penalties reinforcement
learning. arXiv preprint arXiv:2506.05256, 2025.

11

Under review as a conference paper at ICLR 2026

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing
less. arXiv preprint arXiv:2502.18600, 2025.

Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long chain-
of-thought reasoning in llms. arXiv preprint arXiv:2502.03373, 2025.

Jingyang Yi, Jiazheng Wang, and Sida Li. Shorterbetter: Guiding reasoning models to find optimal
inference length for efficient reasoning. arXiv preprint arXiv:2504.21370, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Qingjie Zhang, Di Wang, Haoting Qian, Yiming Li, Tianwei Zhang, Minlie Huang, Ke Xu, Hewu
Li, Yan Liu, and Han Qiu. Understanding the dark side of llms’ intrinsic self-correction. arXiv
preprint arXiv:2412.14959, 2024.

Jason Zhu and Hongyu Li. Towards concise and adaptive thinking in large reasoning models: A
survey. arXiv preprint arXiv:2507.09662, 2025.

12

Under review as a conference paper at ICLR 2026

A CONFIGURATIONS FOR TRAINING AND EVALUATION

Training recipe We integrate our PALU strategy to the VeRL implementation of GRPO and fine-
tune DEEPSEEK-R1-DISTILL-QWEN-1.5B, 7B, and 14B models using the following recipe:

Table 3: Training recipe for finetuning DEEPSEEK-R 1-DISTILL-QWEN-1.5B, 7B, and 14B.

Parameter Value
Learning rate le—6
Rollout batch size (prompts) 512
Gradient update batch size (prompts) 32
KL-divergence coefficient 0.0
Max response length 16k
Loss aggregation mode token-loss
Clip ratio low 0.2
Clip ratio high 0.28
Number of rollouts per sample 8
*Length update step size (Table Figure i Qg5
*Length update step size (Figure | Qp.2
*Performance threshold C 0.8

Training datasets For training, we employ two types of datasets:

* 12k mathematics question-answer pairs for the run in Table [2, Figure 2, and Table [6]
(benchmarking comparison and its in-depth analysis). This dataset is a slice from the
GURU’s DEEPSCALER partition. We train DEEPSEEK-R1-DISTILL-QWEN-1.5B for 20
epochs on it. This dataset is used to compare performance.

* 5k multi-domain questions for the comparisons in Figure [3] and the ablation in Figure
We randomly select (i) 2k math samples from the DEEPSCALER partition, (ii) 2k STEM
samples from the STEM-web partition and (iii) 1k logic questions from the logic ordering
puzzle partition of the GURU collection. We train DEEPSEEK-R1-DISTILL-QWEN-1.5B,
7B, and 14B for 10 epochs for the multi-domain comparison and the ablation study. This
dataset is used to analyze training dynamics.

Compute resources We conduct our experiments on H200 GPUs clusters. Results in Table [2) are
from DEEPSEEK-R1-DISTILL-QWEN-1.5B trained on 12k DEEPSCALER questions, which takes
2 nodes (16 GPUs) for 1100 GPU hours. Results in Figure [3| are from DEEPSEEK-R1-DISTILL-
QWEN-1.5B, 7B, and 14B models trained on Sk multi-domain questions, which takes 2 nodes, 4
nodes and 8 nodes for roughly 300, 700, and 2300 GPU hours.

Evaluation protocol We follow the standard decoding protocol used in concise reasoning research
as listed in Table] For the rollout numbers, we collect 32 responses and report their statistics for
the small dataset (AIME24) and 10 responses for others.

Table 4: Decoding parameters.

Parameter Value
Temperature 0.6
Top_p 0.95
Top_k -

Max response length 32k

Table 5: Number of Rollouts for reporting the averaged performance and generation length.

Dataset partition Number of rollouts (for evaluation)
AIME 24 32
Others (MATH 500, AMC 23, etc.) 10

13

Under review as a conference paper at ICLR 2026

Table 6: Detailed Accuracy-Efficiency (AE) Score comparison.

Methods/Model MATH 500 AIME24 AMC23 Olympiad MinervaMath Marco Average T
R1-Distill-Qwen-1.5B 0.000 0.000 0.000 0.000 0.000 0.000
Kimi 1.5 SFT -1.050 -1.189 -0.062 -0.337 0.142 -0.499
Kimi 1.5 DPO 0.237 0.530 0.197 0.240 0.246 0.290
TokenSkip -0.299 -2.941 -1.158 -1.212 -0.256 -1.173
AutoThink-Stagel 0.553 0.760 0.645 0.512 0.356 0.565
AutoThink-Stage2 0.444 0.617 0.488 0.507 0.364 0.484
AutoThink-Stage3 0.767 1.866 0.998 0.947 0.977 1.111
ALP 0.643 1.502 1.329 0.880 0.401 0.951
CosFn 0.110 0.072 0.216 0.214 0.634 0.249
DIET 0.480 0.710 0.524 0.417 0.609 0.548
Kimi 1.5 RL -0.243 -1.251 -0.794 -1.136 -0.931 -0.871
L1-Max 0.448 -0.440 0.857 0912 0.479 0.451
O1-Pruner 0.360 -0.154 0.512 0.030 0.219 0.193
ShorterBetter -0.282 -0.261 0.892 -0.231 -0.309 -0.038
ThinkPrune 0.536 0.589 1.031 0.642 0.585 0.677
PALU (ours) 0.846 1.781 1.615 1.072 0.382 1.139

Accuracy-Efficiency (AE) Score (in Table To evaluate whether a model improves inference
efficiency, in other words, producing shorter responses without sacrificing accuracy, we adopt the
Accuracy-Efficiency (AE) Score, introduced by |Luo et al.| (2025a). This metric combines the length
reduction in response length and the accuracy improvement into a single number. It is formally
defined as
{(p - ALength + i - |[AAcc|, if AAcc >0
AE Score = ,
¢ - ALength — 0 - |[AAcc|, if AAcc <0

where the terms are defined as follows:

¢ Length reduction ratio:

Length,,.. — Length
Length

model

Alength =

base

A positive ALength indicates the evaluated model produces shorter outputs than the base
model.

* Accuracy change ratio:

ACCmodel - Accbase
AAcc = .

ACCbase
| AAcc| measures the relative magnitude of accuracy gain or drop against the base model.

Positive AE Scores reflect desirable improvements: generating shorter outputs while maintaining or
improving accuracy. Negative AE Scores arise when accuracy degradation outweighs the benefit of
shorter responses. We follow |[Luo et al.|(2025a) and adopt the same hyperparameters:

* =1 (weight on length reduction),

* =3 (bonus for accuracy gains),

* § =5 (penalty for accuracy drops).
The asymmetric weighting (# > 1) ensures that accuracy drops are penalized more heavily than ac-

curacy gains are rewarded, aligning with the practical preference to avoid performance degradation
even when outputs become shorter.

We provide the detailed comparison of AE Score in Table [6] for reference.

14

Under review as a conference paper at ICLR 2026

B SoME EMPIRICAL EVIDENCE

Pass rate: 1.00 Pass rate: 1.00
Models 17500 | T
DeepSeek-R1-Qwen-1.5B 15000 10000 q
DeepSeek-R1-Qwen-7B
B DeepSeek-R1-Qwen-14B @ 12500 2 5000 ‘\
Bl DeepSeek-R1-Qwen-32B 9 9 l
Qwen3-4B 2 10000 [T T IS 6000
#* b #
Qwen3-88 7500 |11 ry B
BN Qwen3-14B] T i
——— : . - 4000
en3-32B 5000 [. = e
B DeepSeek-R1-0528 & ﬁ ;@
2500 2000
Pass rate: 1.00 Pass rate: 1.00 Pass rate: 1.00
14000
30000
8000 12000
25000 ‘
10000
2 20000 8 000 o LI
£ 15000 e ‘ e ‘
#* #* #*
000 | | 6000 -
10000 [Ts
B 4000 o
5000 L i L
2000 | 1L 2000 |+
Pass rate: 1.00 Pass rate: 1.00 Pass rate: 1.00
T . .
15000 i 000
T l ;
6000 o
12500 | | - hl
2 l T) - - b3
< 10000 ‘ T g [T -
e [| T L - i =
* o] [T T TRy
. | | R |
so00 | L) 1+ 4 i 3000 T |
Lot T . 1
Pass rate: 1.00 Pass rate: 1.00 Pass rate: 1.00
12000 14000]
. 10000
12000 i
10000 I
o « 10000 "2 8000
€ 8000 g ! g
'i_,‘ T "é 8000 l f_é T y
* 6000 'L - * 6000 . #6000 } Mo o t
i i 4000 | T fé q i
4000 Tty d T rl] o e 4000 L l 2
L 2000 |72 T R 3 gl Y
Pass rate: 1.00 Pass rate: 0.94 Pass rate: 0.88
] 17500
25000 i 30000
o} - X 15000
5 25000 { { F
2 20000 _ - |G L T 2 12500 -
£] T o+ 4 . 1 £ 20000 - T el . g | |7
" 15000 i LA T Loe el R ¥ 10000 E_j gy T
* HEg L # 15000 L m E #* _ e
10000 ETﬂ r e % 10000 | =~ 1 l 4 7500 ‘ T 32
- - i L CH OB &
: 5000 |+ =3 S EE
5000 L 5000 F
Pass rate: 0.62 Pass rate: 0.19 Pass rate: 0.06
35000 T 20000
30000 30000 i 17500
a T " 25000 3 @ 15000
o - 9] i 19
fg‘ 20000 fé 20000 l § 12500
#*] * 15000 = 10000 T]
ey T
10000 !¢ . T i 18 .
;%I l—. T T sl 10000 ::] ¥ E:[C‘) ? 7500 -
R N 5000 | L y <k A -
5000

Figure 5: Overthinking LLMs exhibit broad variation in the length of (correct) generations
(Figure [T). Token-length distributions of correct responses from open-source reasoning LLMs
(DEEPSEEK-R1-DISTILL-QWEN, QWEN3, and DEEPSEEK-R1-0528) on randomly selected 18
questions from the GURU dataset. Box plots show the interquartile range (25th—75th percentiles).

15

Under review as a conference paper at ICLR 2026

810

811

812

813 0.40 A
814
815
816
817
818
819 0.30 A
820 0.28 - 5
821 AMC 23
822
823
824
825
826
827
828
829
830

831 0.86 .
832
0.85 1
833
834 0.84
835
0.83 1
836

Evolution of accuracy vs generation length: AIME 24

—
o

—
IS

AN
o N
Length (k tokens)

e

r10

Accuracy
Length (k tokens)

MATH 500

v

Accuracy
w =
Length (k tokens)

N

837 0.82 1
838
839 0.265
840 0.260
841
842
843
844
845 0.240
846 T
847 Olympiad
848 0.50 1
849
850
851
852
853
854

855 0 1920 3840 5760 7680
. Gradient update step, . .
856 Figure 6: PALU reduces both easy and hard redundancies (Figure[2). Performance—conciseness

857 evolution during PALU’s training. We encode the Spearman correlation between performance and
858 generation length using red (negative) and green (positive) colors. In the early phase, the two are
859 negatively correlated: accuracy rises while length decreases. As training progresses, the correlation
860 becomes positive, indicating further shortening begins to limit accuracy. Nevertheless, PALU con-
861 tinues to reduce generation length even in this harder regime, as shown by the overall solid curves.

862
863

Minerva Math

o ~

Accuracy
o o
N N
v w
o w
&

L J
~
Length (k tokens)

0.245 1

w

N

0.49
5. 0.48 1
]

£ 047+

o
£ 0.46 1

Length (k tokens)

0.45 -

0.44 A

16

Under review as a conference paper at ICLR 2026

AIME 24 (1.5B) Math (1.5B) Logic (1.5B) STEM (1.5B)

w
¥)

N
i

Tokens (thousands)
© ;

o

Base PALU Base PALU Base PALU Base PALU

Figure 7: Different question domains exhibit distinct generation length distributions. We plot
the length distributions of responses from the base model (DEEPSEEK-R 1-DISTILL-QWEN-1.5B)
and the model finetuned with PALU (on math data, sepecifically, the 12k DEEPSCALER subset).
Scatter points show raw lengths, while boxplots indicate the interquartile range (25th—75th per-
centiles). The base model produces shorter responses on STEM-domain questions but much longer
ones on AIME 24 questions.

Tokens (thousands)
= N w
o S N

[

'IT'?; L el

Figure 8: Different model scales exhibit distinct generation length distributions. We plot the
response length distributions of models from the DEEPSEEK-R 1-DISTILL-QWEN series with pa-
rameter 1.5B, 7B, 14B and 32B. Scatter points show raw lengths, while boxplots indicate the in-
terquartile range (25th—75th percentiles). The evaluation dataset is AIME 2024.

17

Under review as a conference paper at ICLR 2026

C GENERATION EXAMPLES

Question 1: Which one is greater, 8.11 or 8.9?

DeepSeek-R1-Distill-Qwen-1.5B:

PALU:

First, I need to compare the whole number parts of both numbers. Both 8.11 and 8.9 have
the same whole number part, which is 8. Since the whole numbers are equal, I'll move
on to comparing the decimal parts. Looking at 8.11, the decimal part is 0.11, while the
decimal part of 8.9 is 0.9. To make the comparison easier, I can rewrite 0.9 as 0.90. Now,
comparing 0.11 and 0.90, it’s clear that 0.90 is larger. Therefore, 8.9 is greater than 8.11.
Solution:

To determine which number is larger between 8.11 and 8.9, follow these steps:

1. Compare the Whole Numbers: - Both numbers have the same whole number part: 8.

2. Compare the Decimal Parts: - Convert 8.9 to have two decimal places: 8.90. - Now,
compare 0.11 (from 8.11) and 0.90 (from 8.90).

3. Determine Which Decimal is Larger: - 0.90 is greater than 0.11.

4. Conclusion: - Since 0.90 > 0.11, 8.90 is greater than 8.11.

Therefore, 8.9 is larger than 8.11.

To determine which number is larger between 8.11 and 8.9, I’ll compare their decimal
places. Both numbers have the same whole number part, which is 8. Next, I'll look at the
tenths place. In 8.11, the tenths digit is 1, while in 8.9, it’s 9. Since 9 is greater than I, 8.9
is larger than 8.11.

To determine which number is larger between 8.11 and 8.9:

1. Compare the Whole Number Part: - Both numbers have the same whole number part,
which is 8.

2. Compare the Tenths Place: - 8.11 has a tenths digit of 1. - 8.9 has a tenths digit of 9.
Since 9 is greater than 1, 8.9 is larger than 8.11.

18

Under review as a conference paper at ICLR 2026

Question 2: What is the first prime number after two hundred?

DeepSeek-R1-Distill-Qwen-1.5B:

PALU:

To determine the first prime number after 200, I’ll start by checking each number sequen-
tially to see if it’s prime. I'll begin with 201 and check if it’s divisible by any prime numbers
less than its square root. The square root of 201 is approximately 14.17, so I only need to
check divisibility by primes up to 13. Next, I'll check 202. Since it’s even, it’s divisible by
2, so it’s not prime. Then, 203: I'll check if it’s divisible by 7, 11, and 13. 203 divided by 7
is 29, so it’s not prime. After that, 204 is even, so it’s divisible by 2. 205 ends with a 5, so
it’s divisible by 5. 206 is even, so it’s divisible by 2. 207: Adding the digits gives 9, which
is divisible by 3, so 207 is not prime. 208 is even, so it’s divisible by 2. 209: Checking
divisibility by 11, since 209 divided by 11 is 19, it’s not prime. Finally, 210 is even, so it’s
divisible by 2. 211: Checking divisibility by primes up to 14, it doesn’t divide evenly by 2,
3, 5,7, 11, or 13. Therefore, 211 is the next prime number after 200.

To find the first prime number after 200, follow these steps:

1. Understand What a Prime Number Is: - A prime number is a natural number greater
than 1 that has no positive divisors other than 1 and itself.

2. Start Checking Numbers After 200: - Begin with the number 201 and check each subse-
quent number to see if it’s prime.

3. Check Divisibility: - 201: - 201 /3 = 67 - Since 201 is divisible by 3, it’s not prime. -
202: - It’s even, so divisible by 2. - Not prime. - 203: - Check divisibility by primes up to
sqrt203 = 14.25. - 203 /7 = 29, so it’s not prime. - 204: - It’s even. - Not prime. - 205:
- Ends with 5, divisible by 5. - Not prime. - 206: - It’s even. - Not prime. - 207: - Sum
of digits is 9, divisible by 3. - Not prime. - 208: - It’s even. - Not prime. - 209: - Check
divisibility by primes up to sqrt209 = 14.45. - 209/ 11 = 19, so it’s not prime. - 210: - It’s
even. - Not prime. - 211: - Check divisibility by primes up to sqrt211 = 14.52. - 211 is not
divisible by 2, 3, 5, 7, 11, or 13. - Conclusion: 211 is a prime number.

4. Final Answer: The first prime number after 200 is:

To determine the first prime number after two hundred, I'll start checking each number
sequentially from 201 onwards.201 is divisible by 3, so it’s not prime.202 is even, thus not
prime.203 is divisible by 7, so it’s not prime.204 is even, not prime.205 ends with a 5, so
it’s divisible by 5, not prime.206 is even, not prime.207 is divisible by 3, not prime.208
is even, not prime.209 is divisible by 11, so it’s not prime.210 is even, not prime.211 is a
prime number because it isn’t divisible by any number other than 1 and itself. Therefore,
the first prime number after two hundred is 211.

The first prime number after 200 is .

19

Under review as a conference paper at ICLR 2026

1026 Question 3 (the first AIME 2025 problem): Find the sum of all integer bases b > 9 for which

1027 17, is a divisor of 97;.
1028
1029 L.
1020 DeepSeek-R1-Distill-Qwen-1.5B:
1031 . . .
Okay, so I have this problem where I need to find the sum of all integer bases b > 9 for
1032 which 17y is a divisor of 97,. Hmm, let me think about how to approach this. First, 1
1033 know that numbers in base b can be converted to decimal (base 10) by expanding each
1034 digit multiplied by powers of b . So, 17Ty should be equalto 1 x b+ 7+ 1, which is b+ 7.
1035 Similarly, 97, would be 9 x b+ 7zl , so that’s 9b + 7. The problem says that 17, divides
1036 97p . In decimal terms, this means that b + 7 is a divisor of 9b + 7 . So, mathematically, we
. i oo 96T o : » PR
1037 can write this as: 7%= Is an integer Let me denote this fraction as k, where k is an integer.

1038 So, k = % To find k, I can perform polynomial division or rearrange the equation. Let
me try rearranging it: Multiply both sides by b+ 7 : 9b + 7 = k(b + 7) Expanding the

1059 right side: 9b + 7 = kb+ Tk Now, let’s bring all terms to one side: 90+ 7 — kb—Tk =0
1040 Factor out b from the terms that contain it: b(9 — k) + (7 — 7k) = 0 Let me solve for b :
1041 b(9—Fk)=Tk—"T80,b= 79";]: Simplify numerator: 7(k — 1) So, b = 7(.(;“:;). Since b
1042 must be an integer greater than 9, the right side must evaluate to an integer. Also, b > 9
1043 , so we need to find integer values of k such that b is an integer greater than 9. Let me
1044 denotem =k -1, sok=m+ 1. Substitute back into the equation: b = % = ;—’fn
1045 So now, b = ;—’"m. Since b must be a positive integer greater than 9, both numerator
1046 and denominator must be integers, and 8 — m must divide Tm. So, 8 — m divides Tm
1047 Let me write this as: 8 — m | Tm Which implies that 8 — m divides Tm . Since
8 — m is a divisor, let me denote d = 8 — m . Then, d divides Tm, which is 7(8 — d)
048 . So, d | 7(8 — d) Which is: d | 56 — 7d. Therefore, d | 56 — 7d + 7d (since d |
1049 7d, so adding it doesn’t change divisibility). Simplifying: d | 56 So, d is a positive integer
1050 divisor of 56. Since d = 8 —m, and m is an integer (because k is an integer, som = k — 1
1051 is also an integer), we can find possible values of d.Let me list all positive divisors of 56:1,
1052 2,4,7,8 14, 28, 56.50, d € {1,2,4,7,8,14, 28, 56 }.But remember that d = 8 — m, and
m = k — 1. Also, since k is positive (as it’s a divisor in 9b + 7 = k(b + 7)), m must be
1053 positive or zero, but since d = 8 — m, and d is positive, we have 8 — m > 0, so m < 8.
1054 Therefore, m can be 0, 1, 2, 3, 4, 5, 6, or 7.S0, let’s find corresponding d for each m:1.
1055 m=0d=8-0=82.m=1d=8-1=73 m=2:d=8—-2=064. m = 3:
1056 d=8—-3=55 m=4:d=8—-4=46. m =5:d=8—-5=237. m = 6
1057 d=8—-6=28 m =7:d =8 — T = 1But wait, earlier we concluded that d must be a
1058 positive divisor of 56, which is the case here since all... (exceed 32k)
1059
1060 PALU:
1061
1062 Okay, so I need to find the sum of all integer bases b > 9 where 17 base b divides 97 base
b. Hmm, let me break this down.First, let’s convert both numbers from base b to decimal 17
1063 base b is equal to 1 x b + 7. Similarly, 97 base b is 9 x b + 7.S0 we need 17, divides
1064 97p. Translating to decimal:1 = b + 7 divides 9 * b + 7.So the condition is (b + T) divides
1065 (90 + 7).So let’s express this as (9b + 7) divided by (b + T) must be an integer.Let me
1066 compute the division:Divide 9b + 7 by b 4 7.Using polynomial division:Divide 9b + 7 by
1067 b + 7.S0 9b divided by b is 9. Multiply (b + 7) by 9: 9b + 63.Subtract this from 9b + 7:
(9b+7) — (9b + 63) = 7 — 63 = —56.S0 the division gives 9 with a remainder of -
1068 56.Therefore, (9b + 7) = 9 * (b + 7) — 56.S0 for (b + 7) to divide 9b + 7, (b + T) must
1069 divide the remainder, which is -56.But since divisibility is concerned with absolute value, so
1070 (b+7) divides 56.S0 b+-7 is a positive divisor of 56.Given that b > 9, so b+7 > 16.S0 b+7
1071 is a divisor of 56 greater than 16.Let’s list the divisors of 56:1,2,4,7, 8,14, 28, 56.Which
1072 of these are greater than 16? 28 and 56.So possible b + 7 = 28 or 56.Therefore b = 21
1073 or 49.50 the bases are 21 and 49.Sum is 21 + 49 = 70.Hence the answer is 70.**Final
J07a Answer**The sum of all such bases is .
1075 To find the sum of all integer bases b > 9 for which 17y is a divisor of 97y, we convert
these numbers from base b to decimal: 17, =1-b+T7=b+7-97, =9 -b+ 7. We need
1076 b+ 7 to divide 9b + 7. Using polynomial division, we find that the remainder when 9b + 7
1077 is divided by b + 7 is -56. Thus, b + 7 must be a divisor of 56.Given b > 9, we find the
1078 divisors of 56 greater than 16: 28 and 56. Therefore, b+ 7 = 28 or b + 7 = 56, giving
1079 b = 21 or b = 49.The sum of these bases is 21 4+ 49 = 70.Thus, the sum of all such bases

is | 70

20

Under review as a conference paper at ICLR 2026

D THE USE OF LARGE LANGUAGE MODELS

An LLM was used to refine writing for clarity and readability but did not contribute to research
design, experiment, or analysis. All intellectual work was independently conducted by the authors,
and any suggestions from the LLM were critically evaluated before use. The authors bear full
responsibility for the research, and the LLM is not listed as a contributor or author.

21

	Introduction
	Preliminaries
	Related Work
	Proposed Method: PALU
	Formulation and Intuition
	Practical Algorithm

	Experiment
	Generation Length Assumption
	Comparison with Existing Solutions
	Scaling to Multi-Domain Tasks and Large Models
	Ablation

	Limitations and Conclusion
	Configurations for training and evaluation
	Some Empirical Evidence
	Generation examples
	The Use of Large Language Models

