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ABSTRACT

Concise reasoning in large language models seeks to generate only essential inter-
mediate steps needed to arrive at a final answer, thereby alleviating issues of “over-
thinking”. Most proposed approaches hinge on carefully hand-crafted heuristics,
struggling to balance concision with performance, often failing to adapt across do-
mains and model scales. In this work, we address these challenges by introducing
a principled and pragmatic strategy, performance-aware length updating (PALU).
As a principled algorithm, PALU formulates concise reasoning as a constrained
optimization problem, minimizing response length subject to a performance con-
straint, and then applies Lagrangian optimization to convert it into a tractable
unconstrained problem. As a pragmatic solution, PALU streamlines complicated
update rules through three approximations: (i) estimating performance with off-
policy rollouts, (ii) truncating the Lagrange multiplier to two extremes, and (iii)
replacing gradient-based updates with quantile-driven length adjustments. PALU
reduces output length by 64% while improving accuracy by 16% when applied to
DEEPSEEK-DISTILL-QWEN-1.5B, averaged over six benchmarks, outperform-
ing a range of alternative methods. Furthermore, PALU is demonstrated to adapt
across both domain (logic, STEM and math) and model scale (1.5B, 7B, 14B)
entrenching the algorithm as a practical and effective concise reasoning approach.

1 INTRODUCTION

Reasoning, requiring large language models (LLMs) to work through intermediate steps before pro-
ducing a final answer, substantially improves performance on complex tasks such as mathemat-
ics (Jaech et al., [2024; |[Shao et al) 2024), programming (Lambert et al.| [2024)), and value align-
ment (Guo et al.| 2025). Yet this benefit is often accompanied by overthinking: redundant self-
reflection, backtracking, and validation (Chen et al.} 2024; |[Zhang et al., [2024} |Fatemi et al.| 2025)).
These limitations inflate inference costs and hampers user experience, motivating the need for con-
cise reasoning—the production of only the essential steps required to reach a correct answer.

Reinforcement learning (RL), with its proven success in incentivizing LLM reasoning ability (Guo
et al.| [2025; Jaech et al., [2024), emerges as a natural and mature avenue toward concise reasoning.
Existing RL-based concise reasoning solutions typically either (i) employ carefully shaped reward
functions to discourage overlong generations (Xiang et al.,|2025;Yeo et al.||2025; Chen et al., [2025))
or (ii) impose rigid length budgets that truncate overthinking trajectories (Hammoud et al., 2025}
Hou et al., 2025) during the training. These heuristic attempts, albeit promising, implicitly set a
target generation length for dataset queries globally or individually, and then penalize or discard the
generations with length exceeding this pre-defined value. Consequently, they often demand exten-
sive human effort to adapt across domains and model scales, and struggle to balance conciseness
with performance because of the sole conciseness objective. This raises a research question:

Can we achieve concise reasoning that (i) balances performance with conciseness, (ii) adapts across
domains and model sizes without re-tuning, and (iii) avoids increases in training compute?

In this work, we address this challenge by introducing performance-aware length update (PALU), an
algorithmic strategy that adaptively updates the LLMs token generation budget to achieve a state of
conciseness without sacrificing accuracy and to generalize across diverse domains and model scales.
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As a principled strategy, PALU formulates concise reasoning as a constrained optimization prob-
lem: minimize rollout length while maintaining performance above a specified threshold. Because
constrained problems are difficult to solve directly, PALU adopts a Lagrangian formulation that con-
verts the constraint into an equivalent unconstrained objective. An associated Lagrange multiplier
then dynamically balances concision and performance, yielding PALU’s first key property: concise
reasoning without hand-tuned length heuristics while maintaining performance.

As a pragmatic solution, PALU replaces expensive min—max gradient updates for the Lagrangian
with three practical approximations.

(i) Off-policy performance check. Instead of collecting fresh rollouts to determine the Lagrange
multiplier update direction, PALU reuses last-epoch rollouts to estimate performance. This
avoids repeated model loading and new rollout computation, thereby preserving Efficiency.

(i) Regime-based optimization scheme. Rather than tuning the Lagrange multiplier via brittle,
slow ascent, PALU snaps the multiplier into two extremes implicitly. This simplification pre-
serves the essential sign behavior of A and ensures conciseness without compromising perfor-
mance, yielding Balance.

(iii) Quantile-driven budget update. Because gradients of the Lagrangian with respect to the length
budget are non-differentiable, PALU uses a quantile-based surrogate: it estimates the marginal
effect of reducing the budget by observing accuracy drops and sets the step size by a target
quantile of these drops. Grounded in these derivative-inspired statistics, the update scales
naturally across domains and model sizes without heuristic retuning, conferring Adaptivity,

PALU, when combined with GRPO (Shao et al., 2024), reduces generation length by 64% while
improving accuracy by 16% on DEEPSEEK-R1-DISTILL-QWEN-1.5B, averaged across six bench-
mark tasks, outperforming alternative methods. Compared with methods that rely on heuristic length
budgets or length-aware rewards, both of which require sensitive tuning across domains and model
sizes, PALU achieves superior conciseness across multiple domains (logic, STEM, mathematics)
and scales effectively from 1.5B to 14B parameters. By uniting conciseness with performance, and
exhibiting strong adaptivity across domains and scales, PALU demonstrates the effectiveness of a
principled yet pragmatic solution for concise reasoning.

2 PRELIMINARIES

Group Relative Policy Optimization (GRPO (Shao et al.l 2024)) simplifies PPO (Schulman et al.,
2017) for LLM finetuning by replacing the heavy value model with a per-prompt, group-relative
normalization of the reward. Specifically, given a question—answer pair (¢, a) drawn from dataset
D, a group of G rollouts (responses) {0; }$ ; is sampled, and their advantages are computed as:

r(0i,a) — mean({r(o;, a)}7,)

std({r(0;, a) }Z,) ’
where the reward signal r is provided by some rule-based reward functions. To stabilize training,
GRPO adopts the clipped surrogate objective from PPO (Schulman et al., 2017):

min {Ti,t(e)Ai (0i7 a)v Chp (Ti,t(e)v 1- €low 1 + 6high) }7 (2)

where 7; +(0) is the per-token probability ratio between policy mg and the behavior policy g
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This yields the GRPO objective (we eliminate the KL-divergence constraint (Yu et al., 2025)):
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where L denotes the length budget for generation, such that decoding proceeds token by token and
is forcibly terminated once the number of generated tokens reaches L.
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3 RELATED WORK

Concise reasoning in LLMs is an emerging research direction aimed at mitigating the overthinking
phenomenon (Han et al.| 2024; Ma et al., 2025). Existing solutions can be broadly categorized into
three paradigms: (i) training-free methods, including guided prompting (Xu et al.l 2025b), modular
workflow pipelines (She et al.|[2025)), decoding manipulation (Muennighoff et al.|[2025), and latent-
space reasoning (Hao et al., [2024)); (i) SFT- and DPO-based methods, including reasoning path
filtering (Munkhbat et al.| [2025)), reasoning with latent tokens (Su et al., 2025), and preference
optimization (Team et al.,[2025a); and (iii) RL-based methods, to which our approach belongs.

Table 1: An overview of RL-based concise reasoning methods.

Modification Penalty function Representatives

Reward function 7 = r(0,a) — f(len(o)) Kimi 1.5 RL (Team et al.|2025a); Overlong punishment (Yu et al.|[2025)
Reward function 7 = r(0,a) — f(len(0),diff(¢)) L1 (Aggarwal & Welleck![2025),

Reward function 7 = r(0,a) — f(len(o) — target) Ol-pruner (Luo et al.||2025b); ShorterBetter (Yi et al.}|2025)
Length budget L = f(stage) Thinkprune (Hou et al.|[2025)
Length budget L = f(diff(q)) GFPO (Shrivastava et al.|[2025)

Reward-function-based approaches typically introduce length-aware penalties during RL training.
Team et al.| (2025a); | Xiang et al.| (2025); |Arora & Zanette| (2025);|Yeo et al.[(2025); Song & Zheng
(2025) subtract a penalty term proportional to response length from reward signals. Others (Xiang
et al.| 2025} Shen et al., |2025; |L1 et al.| [2025) refine this idea by incorporating both response length
and question difficulty. A further refinement discounts the reward according to the deviation between
the generated and the target length (Luo et al.,[2025b; Y1 et al.} 2025} [Team et al.l 2025b). However,
aggregating such heterogeneous reward components prior to normalization can distort the length
penalty (Chen et al.| [2025). Moreover, these methods face a fundamental limitation in adaptivity:
their reward shapes require extensive trial-and-error tuning across data domains and model scales.

Length-budgeting methods, by contrast, regulate the rollout through setting hard length budgets.
This approach would stop the decoding when the number of generated tokens reaches this value.
One line of work (Hou et al., [2025; [Hammoud et al., 2025) progressively reduces the global length
budget, whereas another (Shrivastava et al.| 2025 filters trajectories after generation, retaining only
those shorter than a length threshold. A limitation of these approaches is that the budget is typically
set heuristically, often neglecting the risk of performance degradation. Our method instead allocates
the budget in a principled manner, explicitly balancing conciseness with performance. For a more
comprehensive survey on concise reasoning methods, please refer to Zhu & Li| (2025)).

4 PROPOSED METHOD: PALU

4.1 FORMULATION AND INTUITION

Unlike heuristic approaches, we formulate concise reasoning into a constrained optimization prob-
lem. Let L denote the per-question length budget, r a (rule-based) reward evaluating the responses
from a reasoning model 7g , and C' € [0, 1] a global performance threshold. The objective is to min-
imize L while ensuring performance meets or exceeds C' for question-answer pairs {(q, a)} drawn
from dataset D:
in L st 6,L > 5

guin Los R(O,L,q) > C, ©)
with R(0, L, q) denoting the expected reward obtained by model 7g, when generating a set of re-
sponse o for query ¢ under a length budget L:

R(07 La Q) = Eo~7r9(- | q,L) [R(O, a’)} . (6)

Directly solving Eq. (5) can be difficult. Fortunately, Lagrangian optimization enables a conversion
of the original problem to the following min—-max objective:

Jin s £(0,L.0) = L + )\(C - R(@,L,q)), (7)
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where ) is the dual variable penalizing constraint violation. Assuming differentiability, the solution
of the original constrained optimization can be approximated by applying first-order stochastic up-
dates with learning rates 1y, ng, and 7, (for the dual variable, model parameters, and length budget,
respectively), together with implicit projections onto A > 0 and L > 0:

XA+ (C— R0, L,9)), (8)
0 FOJFU&)\VGR(&L,Q), (9)
L <—L—nL(1—/\-VLR(0,L,q)). (10)

These updates admit a natural interpretation. When the performance constraint is satisfied, A re-
mains small and the corresponding length budget L is reduced. Empirically, longer responses tend
to correlate with higher reward, so VR > 0. Conversely, when performance falls below C, A
increases, expanding L and prioritizing updates to 6 to restore performance. Beside the explicit
balance between performance and conciseness, the update rule for length budget L, Eq. (I0), offers
a principled way to achieve the concise reasoning, without heuristics on the target generation length.

4.2 PRACTICAL ALGORITHM

Guided by the min—max formulation and the first-order update rules, we introduce performance-
aware length update (PALU), a pragmatic and principled algorithm for training concise reasoning
models. PALU simplifies the complicated updates rules by three components: (i) an off-policy pass-
rate estimate, (ii) a regime-based optimization scheme that toggles the optimization focus, and (iii)
a quantile-based surrogate for the derivative term V LR(G, L, q).

Off-policy performance estimation (Eq. (8)) Updating the length budget L and model param-
eters O requires estimating the performance R. Computing this quantity on-policy would demand
repeatedly reloading the latest parameters, which is computationally costly. Instead, we approximate
it with the previous round’s evaluation:

R(ev L, q) ~ R(001d7 Lo, Q) = EONﬂ'gold(' | '¢,Low) [T(Oa a)} . (11)

This off-policy reuse provides a conservative estimate of the true pass rate. While such approxi-
mations are often unstable in reinforcement learning with randomly initialized policies, LLM fine-
tuning differs because performance typically improves monotonically thanks to pretraining. Thus,
this conservative bias is acceptable, and even desirable, because it naturally underestimates model
performance and emphasizes more on policy improvement (Eq. (9), i.e., the case of large \).

Regime-based optimization (Eq. and Eq. (I0)) In the Lagrangian view, X\ reweights the
emphasis between conciseness and performance. When the performance constraint is satisfied (C' —
R < 0), residuals integrate to a small A, so the update prioritizes reducing the length budget. In
this case, (1 —A-VLR(O,L, q)) > 0. Conversely, when the constraint is violated (C — R > 0), a
sequence of positive residuals drives A upward, shifting the emphasis toward recovering performance
by enlarging L and updating the model 7.

While this continuous adjustment is elegant in theory, it depends critically on carefully tuned learn-
ing rates and a long integration horizon. Both impractical for LLM post-training. PALU therefore
discards the need for a continuously evolving A and instead approximates only its sign behavior with
a two-regime controller:

L+« L—al ifR(6,Lq)>C

12
L <+ Lpax otherwise ’ 12)

Optimization regime = {

where a2 > 0 is a new term we will explain later. This simplification turns the Lagrange multiplier
into an implicit “bang—bang” controller with two regimes: one regime pushes toward conciseness,
the other safeguards performance by resetting to the maximum Ly,,x When the constraint is violated.
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Algorithm 1 Performance-Aware Length Update (PALU) with GRPO
Input: initial model 7y, dataset D, bound L., performance threshold C'
1: for epoch in range(N) do

2: for each mini-batch D, C D do

3: if first epoch then

4: Initialize the length budget for all questions: L = L ax
5: else

6: Reuse the last round pass rate, e.g., Eq. @)

7: Update L for each ¢ € Dy, using rule Eq. (12))

8: end if

9: Collect responses o with parameter 8 and per sample budget L
10: Update 6 with GRPO as per Eq.
11: end for
12: end for

13: Output: concise reasoning model g

Quantile-driven budget update (Eq. ) To set the per-question reduction step oz(Tq) used by

the regime controller (Eq. ), we use Eq. as an interpretive guide. The term VR(6, L, q)
captures the sensitivity of performance to the length budget. Because R is a non-differentiable,
rule-based reward, we approximate this sensitivity via the difference between two nearby operating
points in the distribution of correct response lengths. Let

Q') := Quantile, ({len(oi)}il | 0 ~ 7o, (-, Low); r(0,a) = 1) (13)
and define the quantile gap
al? = Q% - Q% . (14)
If L is near Qg‘_%, typical when the performance threshold C' is high, reducing L by a? lowers the
success rate by approximately 7. Hence,
R(6,L,q) — R(6,L — oz(Tq),q) T

) O

VLR(0,L,q) ~ (15)

Substituting into Eq. (I0) yields the budget update:

L=L—n,-AL AL= (1—)\-VLR(0,L,q)) ~ (1—»?@) xal?. (16

Qr

Accordingly, our regime update uses L < L — a(Tq) when R(0,L,q) > C, with a(Tq) as the gap

between the longest correct response and its (1 —7)-quantile length, capturing how dispersed correct
responses are. In simple terms, when correct responses cluster tightly in length (small «;), updates
proceed cautiously; when they exhibit a wider tail, the adjustment is correspondingly more aggres-
sive. The resulting update embodies a direct, data-driven proxy for inverse sensitivity (the derivative
term in Eq. (I0)), capturing the essence of Lagrangian optimization within a pragmatic rule.

Summary PALU circumvents the instability and cost of the full Lagrangian multiplier method
while retaining its principled grounding, by combining off-policy performance check, the regime-
based controller, and the quantile-driven update step. This design offers three key advantages:

(i) Efficiency, no additional computations are required to estimate the performance,
(ii) Balance, the two-regime controller reconciles conciseness and performance,
(iii) Adaptivity, the quantile-based step scales naturally across domains and model scales.

Algorithm [T] presents the pseudocode of PALU, instantiated with the GRPO performance objec-
tive (Shao et al.,[2024), where the update rule in Eq.(9) is replaced by maximizing Eq.(4)

The implicit assumption PALU works best when correct responses exhibit non-trivial dispersion
in length. When lengths concentrate tightly (e.g., when «y 1 is small for all questions), the regime
update in Eq. (I2) shrinks accordingly, yielding conservative (slower) reductions in L while pre-
serving performance. Empirically, we rarely observe such concentration in reasoning models (see
Figure[I)), though we acknowledge it as a potential limitation.
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Table 2: Performance and conciseness comparison of different concise reasoning methods with
DEEPSEEK-R1-DISTILL-QWEN-1.5B as the base model and DEEPSCALER as the training dataset.
P@1: average pass@1 accuracy (%); Tok: average response length in tokens. AE Score: accuracy-
efficiency score for balancing length reduction and accuracy preservation (Luo et al., 2025a)).

MATH 500  AIME 2024 AIME 2025 AMC 2023 Olympiad Minerva-Math Macro Average

Model & Methods AE Score 1
pP@l Tok P@1 Tok P@1 Tok P@1 Tok P@1 Tok P@1 Tok P@l Tok
R1-DISTILL-QWEN-1.5B 82.1 5534 285 16590 223 16381 62.7 10615 435 11587 26.0 7076 442 11297 0.0
SFT- & DPO-Based
Kimi 1.5 SFT (Team et al.||2025a} 68.5 6761 22.0 17400 - - 604 9323 394 10036 23.6 2804 42.7 9865 -0.499
Kimi 1.5 DPO (Team et al.{2025a} 833 4464 31.7 13389 - - 630 8678 445 9604 269 6070 49.9 8441 0.289
TokenSkip (Xia et al.|[2025 64.1 1120 6.8 2231 - - 313 1401 258 2061 20.7 1674 30.9 1697 -1.173
RL-Based
CosFn (Yeo et al.{2025} 75.6 2735 275 12492 - - 6Ll 6970 429 8307 27.1 3485 46.8 6798 0.249
DIET (Chen et al.}[2025] 83.0 3061 31.8 10578 - - 654 6425 437 6917 269 3505 50.2 6097 0.547
Kimi 1.5 RL (Team et al.[[2025a] 66.3 1552 18.8 9109 - - 447 3808 285 4774 167 1009 35.0 4050 -0.871
Ol-Pruner (Luo et al.{2025a} 79.1 2531 250 896l - - 625 5010 39.0 5242 237 2400 45.9 4829 0.193
AutoThink-Stagel (Tu et al. 2025} 82.1 2473 335 12716 229 10028 66.0 5440 456 7328 27.0 5372 46.2 +153% 0.552
AutoThink-Stage2 (Tu et al.; 2025} 852 3702 31.8 12117 256 11557 66.6 7415 464 8030 27.2 5481  47.1 +6.68% 0.521
AutoThink-Stage3 (Tu et al.; 2025} 85.1 1897 419 9033 254 8968 719 4696 49.0 5005 30.5 3834 50.6 +11.6% 1.077
ALP (Xiang et al.[2025] 80.5 1435 379 8084 262 8556 76.5 3513 476 4670 245 2197 489 +10.6% 0.958
L1-Max (Aggarwal & Welleck2025) 83.5 3337 21.7 4093 25.1 3792 66.3 3350 45.6 2698 25.2 2595  44.6 +0.50% 0.551
ShorterBetter (Yi et al.;2025] 629 626 229 4617 21.0 4454 650 2311 348 2674 198 827 377 -14.6% 0.030
ThinkPrune-4k (Hou et al.;2025] 83.0 2745 295 8557 22.6 7952 71.7 4241 452 5505 26.5 3341 464 +5.05% 0.659
PALU (ours) 853 1502 400 7132 288 6869 818 3174 495 3958 242 1922 51.6 +168% 4093 —63.8% 1.185

5 EXPERIMENT

5.1 GENERATION LENGTH ASSUMPTION

PALU is predicated on the assumption that 11000

correct responses exhibit a broad distribution 10000

of lengths for given questions. If not, and the 9000

distribution were narrow, updates to the budget ~ § 8°°°

L would converge slowly. To evaluate thiskey & 7% ‘

assumption, we prompt open-source reason- ¥ 6000 | 1

ing models, measuring the response lengths 5000 E—q

deemed correct for a sample prompt (Fig- 4000 e 'I:_‘

ure [T). Results on more prompts, together 3000

with extended analyses for the QWEN3 and RLDistil-Qwen  * s s

DEEPSEEK-R1 families, are reported in Fig-
ure [6] in Appendix. The observed distribu-
tion in Figure [I] reveals marked variability:
the longest correct responses are two to three
times longer than the shortest. This broad
spread supports PALU’s premise and indicates that the length budget L can be progressively re-
duced once the performance threshold is satisfied.

Figure 1: Token-length distribution of correct roll-
outs from the DEEPSEEK-R 1-DISTILL-QWEN se-
ries of reasoning models. Box plots indicate the
range between the 25th and 75th percentiles.

5.2 COMPARISON WITH EXISTING SOLUTIONS

Model and training data. We finetune DEEPSEEK-R 1-DISTILL-QWEN-1.5B (Guo et al., [2025])
and PHI-4-MINI-REASONING (Xu et al., 2025a) on a curated 12k math problems from GURU’s
DEEPSCALER partition, removing overly easy or difficult samples (Cheng et al., |2025; [Luo et al.,
2025b). Implementation. We implement PALU on top of VERL (Sheng et al., [2024), with the hy-
perparameter step size oy 5 for (rapid) length reduction and performance threshold C' = 0.8. Train-
ing is performed for 6400 gradient update steps (roughly 1100 H200 GPU hours) for DEEPSEEK-
RI1-DISTILL-QWEN-1.5B and 3200 steps (850 H200 GPU hours) for PHI-4-MINI-REASONING.
We apply PALU from an initial generation budget of 16k tokens (Line 4 in Algorithm[I)) and up-
date it based on Eq. (I2). Evaluation Protocol. During the evaluation, the generation budget is
set to 32k. We report Pass@1 and the output length on: MATH-500 (Hendrycks et al., [2021)),
AIME 24,AIME 25, AMC 2023, MINERVA, and OLYMPIADBENCH (He et al., 2024)). Besides,
we employ the Accuracy-Efficiency (AE) Score (Luo et al.l [2025a)), a composite metric balancing
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Table 3: Performance and conciseness comparison on PHI-4-MINI-REASONING.

MATH 500  AIME 2024 AIME 2025 AMC 2023 Olympiad  Minerva-Math Macro Average

Model & Methods AE Score
P@l Tok P@l1 Tok P@l Tok P@l1 Tok P@l Tok P@l Tok P@I Tok
PHI-4-MINI-REASONING 89.9 3997 456 13354 31.7 13733 845 7451 19.7 5164 335 5894  50.8 8265 0.0
Overlong punishment (Yu et al.[[2025)  88.1 2795 28.5 3824 223 4019 79.7 5524 435 6065 30.0 4954  48.6 4539 -0.15
ThinkPrune-4k (Hou et al.}[2025) 88.9 2819 355 6163 292 5941 825 4764 422 5135 313 2677 51.6 4583 -0.01
PALU (Ours) 89.3 1929 453 7423 307 7152 84.6 3241 498 3900 343 2056 55.7 4283 0.27
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Figure 2: Left: Performance-conciseness evolution of PALU. The evaluation dataset is AIME24.
We encode their Spearman’s correlations with red (negative) and green (positive) regions. Right:
Distribution of generation lengths under PALU and ShorterBetter (Yi et al., 2025).

length reduction against accuracy preservation, for overall comparison. We report results averaged
over 32 rollouts for AIME 24, AIME 25, and 10 for others, following (Chen et al.|(2025)).

Comparison results on DEEPSEEK-R1-DISTILL-QWEN-1.5B (Table 2) We consider two
families of baselines. (i) SFT/DPO-based models: Kimi k1.5 SFT, Kimi k1.5 DPO (Team et al.
2025a), and TokenSkip (Xia et al., 2025). (ii) RL-based methods: reward-function-based meth-
ods such as CosFN (Yeo et al.| 2025), Kimi k1.5 RL (Team et al.l 2025a), DIET (Chen et al.,
2025)), ShorterBetter (Yi et al.,2025)), L1-Max (Aggarwal & Welleck} [2025)), and ALP (Xiang et al.,
2023)); stage-based length budgeting methods that progress shrink the rollout budget, for example,
ThinkPrune (Hou et al.,[2025); and multi-stage RL pipelines, e.g., AutoThink (Tu et al.| [2025).

PALU achieves superiority in both conciseness and accuracy (Table[2). Across six math and science
tasks, PALU reduces the macro-average response length from 11,297 to 4093 tokens, a 63% reduc-
tion. Meanwhile, it surpasses other RL-based methods in terms of accuracy. The consistent gains in
accuracy and conciseness highlight the effectiveness of the Lagrangian optimization objective.

PALU reduces both easy and hard redundancies (Figure [2] left). We monitor the joint evolution
of evaluation accuracy and generation length throughout training, with Spearman correlations be-
tween the two encoded by color (window size 4). In the initial phase (red-shaded), accuracy rises
as length falls, showing that PALU eliminates redundant tokens without harming performance. As
training progresses, the correlation turns positive (green-shaded), revealing a genuine trade-off: fur-
ther compression now risks eroding accuracy. This marks the harder redundancies. PALU responds
adaptively, retaining moderately longer responses when beneficial while continuing to shorten those
that can be solved concisely. Consequently, the overall generation length continues to decline (solid
curves), even under trade-off pressure. These dynamics demonstrate that PALU not only captures
the low-hanging fruit of trivial redundancy removal but also sustains balanced improvements in the
more challenging regime where performance and conciseness must be carefully reconciled.

PALU retains moderate-length responses when beneficial (Figure [2| right). We then present the
generation length distributions of PALU and ShorterBetter (Yi et al.l |2025) on evaluations tasks in
Figure[2] ShorterBetter, as a reward-based method, produces a sharp peak at very short lengths (less
than 320 tokens) and very few responses in the middle range around 800 tokens, suggesting it often
cuts too aggressively. In contrast, PALU spreads its density more evenly, keeping many responses in
the moderate range while still limiting very long outputs. This pattern reflects PALU’s strength: it
avoids excessive shortening while still trimming unnecessary length, which helps preserve accuracy.
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Figure 3: Conciseness-performance evolution of DEEPSEEK-R1-DISTILL-QWEN-1.5B trained
with different concise reasoning methods. The training dataset covers three-domain questions: math,
logic and STEM. Results are plotted with time weight exponential moving average smoothing.

Comparison results on PHI-4-MINI-REASONING (Table[3) To assess the generality of PALU
across model architectures, we further evaluate it on PHI-4-MINI-REASONING. Owing to the
computational cost, we include two representative baselines: ThinkPrune-4k, and overlong-
punishment (Yu et al.}[2025)), which penalizes responses exceeding 4k tokens. All models are trained
with a context length of 8k, and the results are summarized in Table [3] PALU attains comparable
accuracy to the base model while maintaining a shorter generation length, in contrast to alternative
methods that sacrifice accuracy for brevity. This superior balance between accuracy and conciseness
on PHI-4-MINT-REASONING confirms PALU’s robust and architecture-agnostic effectiveness.

5.3 SCALING TO MULTI-DOMAIN TASKS AND LARGE MODELS

Multi-domain and multi-scale comparison (Figure 3) To examine PALU’s adaptivity on do-
mains and model scales, we conduct comparison using a series of DEEPSEEK-R1-DISTILL-QWEN
models with parameters 1.5B, 7B, and 14B, with the training data covering math, logic and STEM
from the GURU(Cheng et al |2025) dataset. We limit the training data to 5, 120 samples (2k math,
2k STEM and 1k logic) and train the model for only 10 epochs. For evaluation, we use another 768
questions spanning math, logic, and STEM, and report both accuracy (pass@1 over 10 rollouts) and
generation length reductions (in thousands of tokens) on test partitions. For comparison, we em-
ploy (i) stage-based budgeting from Hou et al.|(2025) with gradually reducing the generation-length
budget from 16k to 8k over five stages; and (ii) soft overlong punishment strategy introduced by
DAPO (Yu et al} [2025), with a penalty for responses with length exceeding 8k. These approaches
serve as representatives of length-budget-based and reward-function-based methods.
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Figure 4: Ablation study on the step size o (left, middle) and the performance threshold C' (right).

PALU adapts across data domains and model scales (Figure 3). All three methods improve accu-
racy on the in-distribution test sets. Yet, their impact on conciseness diverges. The multi-domain
scenario. Consider the 1.5B model (first row of Figure[3)). Stage-based budgeting and overlong pun-
ishment shorten responses for math and logic tasks, with evaluation curves showing clear progress
to the right-hand side (i.e., gains in length reduction). Yet in STEM, these heuristics fail. Their
reliance on a fixed target length (8k in our implementation) leaves little space for further reduction,
as the base model already generates shorter responses (~ 6.5k tokens), well below the assumed
optimum. The multi-scale scenario. Initial generation length varies substantially across model
sizes, especially for math and logic tasks (as indicated in subtitles for the left column of Figure [3).
This variation poses a fundamental challenge for heuristic methods: because they require an explicit
length target, each new model scale demands repeated trial-and-error sweeps to locate a workable
setting. PALU. Rather than imposing heuristic length targets, PALU dynamically adjusts its bud-
get under a joint conciseness-performance objective. This principled formulation, grounded in La-
grangian dynamics, adapts seamlessly to varying initial length distributions and performance-length
trade-offs. As a result, PALU achieves consistent improvements across domains and model sizes. In
short, heuristic approaches work in narrow cases but break down when domain or model character-
istics shift. PALU avoids this brittleness by treating concise reasoning as a performance-constrained
optimization problem, delivering robust conciseness and accuracy gains across diverse settings.

5.4 ABLATION AND COMPUTATIONAL OVERHEAD ANALYSIS

PALU draws inspirations from the Lagrangian formulation for minimizing the length budget for
rollouts. This provides a principled yet efficient budgeting mechanism involving two hyperparame-
ters: (1) a step size o, and (2) a performance threshold C"

. L-o\ ifR>C

Lonax otherwise
Step size in PALU (FigureE|, left) o measures the gap between the longest correct response and
the (1 — 7)-quantile length for the question ¢. 7 directly determines the step size for updating L.
To examine its sensitivity and guide practitioners, we conduct an ablation study across different 7
values with fixed performance threshold C' = 0.8. Using the multi-domain dataset (math, logic,
and STEM), we run PALU with update steps .1, ®g.2, and g 5. We evaluate the model on the
MATH 500 benchmark and report the accuracy and generation length during the training process.
As shown in FigureEL left, a larger step (avg.5) accelerates length reduction but slightly compromises
accuracy, whereas smaller steps stabilize performance but provide weaker pressure for conciseness.

Replacing o, with heuristic values (Figure @, middle) The Lagrangian-based formulation in
PALU provides a principled mechanism for adjusting the length budget. To highlight its advantage,
we replace the step size a., with fixed values, setting AL € {2048,4096}. In this setup, once the
model meets the performance threshold (e.g., C' = 0.8), the length budget is reduced by a fixed
amount; otherwise, it is reset to the maximum budget (16k). The comparison results in the middle
panel of Figure]show that PALU’s adaptive step size allows the model to shorten outputs smoothly
and stably, while the heuristic fixed-step variants struggle to balance conciseness and performance.
This confirms the importance of PALU’s principled update rule for stable optimization.
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Performance threshold in PALU (Figure[d} right) The threshold C serves as a constraint bound-
ary between samples that should receive more or less generation budget and thus balances accuracy
and conciseness. We validate this intuition by sweeping C' € {0.6,0.8, 1.0} and reporting results
on the MATH-500 task in the right panel of Figure[d] A high threshold e.g., C' = 1.0, drives the
optimization toward performance recovery, preserving accuracy at the cost of longer outputs, while
a lower threshold, C' = 0.6, yields the most compact generations with a modest drop in accuracy.
The intermediate setting, C' = 0.8, achieves the balance between the two objectives.

Computational overhead analysis (Figure [5)
On the memory side, PALU introduces three ar-
rays and one scalar to record: (1) pass rates from
the previous epoch, (2) the interested length quan-
tiles of correct responses in the previous epoch, (3)
length budgets for each prompt, and (4) a global
performance threshold. This requires about 144
KB for a dataset of 12 thousand of prompts. On
the computation side, PALU assigns each prompt
a generation length (budget) that progressively — pAWw
drives towards concise reasoning traces compared 2001 —— GRPO (w/o PALU)
to the GRPO baseline. Besides, since the length : : : , ,
budget is assigned before conducting the rollouts, 0 1000 2000 3000 4000

it is therefore to sort the prompts by their budget Gradient update step

to form balanced batches. Together, these two fac-  Figure 5: Rollout time comparison (training).
tors reduce idle time and computation during inference, thereby improving overall efficiency by
approximately 9.2% compared to the GRPO implementation, as shown in Figure 5]
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6 LIMITATIONS AND CONCLUSION

Limitation PALU assumes that overthinking LLMs have a broad distribution of response lengths.
While we empirically verified this property in our experiments, we acknowledge an extreme case
where the model always generates responses of identical length. In such a scenario, even reducing
the length budget by a single token could cause accuracy to collapse from 1.0 to 0.0, rendering
PALU ineffective. Another limitation is that we do not claim PALU’s concise reasoning behavior
will generalize to out-of-distribution domains. We view such generalization as stemming primarily
from the diversity of training data and the RL component, rather than from PALU itself.

Conclusion Although these limitations define the scope of our study, they do not detract from our
central contribution: a principled and pragmatic solution for concise reasoning. Although trimming
overly long responses seems intuitive, achieving this without compromising accuracy and while re-
taining adaptivity across domains and model scales calls for a principled formulation. PALU elevates
the intuition into theory by casting the task as a constrained optimization and resolving it through the
Lagrangian framework. This shift from intuitive observation to principled methodology constitutes
PALU’s broader contribution to the community. Technically, it affords two advantages. First, PALU
automatically balances conciseness and performance without ad-hoc heuristics, reducing generation
length by 64% while improving accuracy by 16% across six benchmark tasks. Second, it provides a
principled update rule for the length budget, enabling robust adaptation across domains (math, logic,
STEM) and model scales (1.5B, 7B, and 14B parameters).
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A CONFIGURATIONS FOR TRAINING AND EVALUATION

Training recipe We integrate our PALU strategy to the VeRL implementation of GRPO and fine-
tune DEEPSEEK-R1-DISTILL-QWEN-1.5B, 7B, and 14B models using the following recipe:

Table 4: Training recipe for finetuning DEEPSEEK-R 1-DISTILL-QWEN-1.5B, 7B, and 14B.

Parameter Value
Learning rate le—6
Rollout batch size (prompts) 512
Gradient update batch size (prompts) 32
KL-divergence coefficient 0.0
Max response length 16k
Loss aggregation mode token-loss
Clip ratio low 0.2
Clip ratio high 0.28
Number of rollouts per sample 8
*Length update step size (Table Figure i Qg5
*Length update step size (Figure | Qp.2
*Performance threshold C 0.8

Training datasets For training, we employ two types of datasets:

* 12k mathematics question-answer pairs for the run in Table [2} Figure 2, and Table
(benchmarking comparison and its in-depth analysis). This dataset is a slice from the
GURU’s DEEPSCALER partition. We train DEEPSEEK-R1-DISTILL-QWEN-1.5B for 20
epochs on it. This dataset is used to compare performance.

* 5k multi-domain questions for the comparisons in Figure 3| Figure @ and Figure 5] We
randomly select (i) 2k math samples from the DEEPSCALER partition, (ii) 2k STEM sam-
ples from the STEM-web partition and (iii) 1k logic questions from the logic ordering
puzzle partition of the GURU collection. We train DEEPSEEK-R1-DISTILL-QWEN-1.5B,
7B, and 14B for 10 epochs for the multi-domain comparison and the ablation study. This
dataset is used to analyze training dynamics.

Compute resources We conduct our experiments on H200 GPUs clusters. Results in Table [2) are
from DEEPSEEK-R1-DISTILL-QWEN-1.5B trained on 12k DEEPSCALER questions, which takes
2 nodes (16 GPUs) for 1100 GPU hours. Results in Figure [3| are from DEEPSEEK-R1-DISTILL-
QWEN-1.5B, 7B, and 14B models trained on Sk multi-domain questions, which takes 2 nodes, 4
nodes and 8 nodes for roughly 300, 700, and 2300 GPU hours.

Evaluation protocol We follow the standard decoding protocol used in concise reasoning research
as listed in Table 5] For the rollout numbers, we collect 32 responses and report their statistics for
the small dataset (AIME24) and 10 responses for others.

Table 5: Decoding parameters.

Parameter Value
Temperature 0.6
Top_p 0.95
Top_k -

Max response length 32k

Table 6: Number of Rollouts for reporting the averaged performance and generation length.

Dataset partition Number of rollouts (for evaluation)
AIME 24 32
Others (MATH 500, AMC 23, etc.) 10

14
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Table 7: Detailed Accuracy-Efficiency (AE) Score comparison.

Methods/Model MATH 500 AIME24 AIME 2025 AMC23 Olympiad MinervaMath Marco Average T
R1-Distill-Qwen-1.5B 0.000 0.000 0.000 0.000 0.000 0.000 0.00
Kimi 1.5 SFT -1.050 -1.189 - -0.062 -0.337 0.142 -0.499
Kimi 1.5 DPO 0.237 0.530 - 0.197 0.240 0.246 0.290
TokenSkip -0.299 -2.941 - -1.158 -1.212 -0.256 -1.173
CosFn 0.110 0.072 - 0.216 0.214 0.634 0.249
DIET 0.480 0.710 - 0.524 0.417 0.609 0.548
Kimi 1.5 RL -0.243 -1.251 - -0.794 -1.136 -0.931 -0.871
O1-Pruner 0.360 -0.154 - 0.512 0.030 0.219 0.193
GRPO 0.102 1.124 0.923 1.136 0.590 -0.496 0.563
AutoThink-Stagel 0.553 0.760 0.470 0.645 0.512 0.356 0.552
AutoThink-Stage2 0.444 0.617 0.740 0.488 0.507 0.364 0.521
AutoThink-Stage3 0.767 1.866 0.870 0.998 0.947 0.977 1.077
ALP 0.643 1.502 1.000 1.329 0.880 0.401 0.958
L1-Max 0.448 -0.440 1.150 0.857 0.912 0.479 0.551
ShorterBetter -0.282 -0.261 0.440 0.892 -0.231 -0.309 0.030
ThinkPrune 0.536 0.589 0.550 1.031 0.642 0.585 0.659
PALU (ours) 0.846 1.781 1.460 1.615 1.072 0.382 1.185

Accuracy-Efficiency (AE) Score (in Table[2) To evaluate whether a model improves inference
efficiency, in other words, producing shorter responses without sacrificing accuracy, we adopt the
Accuracy-Efficiency (AE) Score, introduced by |[Luo et al.| (2025a). This metric combines the length
reduction in response length and the accuracy improvement into a single number. It is formally
defined as

¢ - ALength + 7 - |[AAcc|, if AAcc >0

AE Score = )
¢ - ALength — 0 - |[AAcc|, if AAcc <0

where the terms are defined as follows:

* Length reduction ratio:

Length,,.. — Length

Lengthbase

model

ALength =

A positive ALength indicates the evaluated model produces shorter outputs than the base
model.

¢ Accuracy change ratio:

AAcc — Accmodel - Accbase )

Accbase
| AAcc| measures the relative magnitude of accuracy gain or drop against the base model.

Positive AE Scores reflect desirable improvements: generating shorter outputs while maintaining or
improving accuracy. Negative AE Scores arise when accuracy degradation outweighs the benefit of
shorter responses. We follow |[Luo et al.| (2025a)) and adopt the same hyperparameters:

* ¢ =1 (weight on length reduction),

° = (bonus for accuracy gains),

* §# =5 (penalty for accuracy drops).
The asymmetric weighting (6 > 1) ensures that accuracy drops are penalized more heavily than ac-

curacy gains are rewarded, aligning with the practical preference to avoid performance degradation
even when outputs become shorter.

We provide the detailed comparison of AE Score in Table[7] for reference.
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Figure 6: Overthinking LLMs exhibit broad variation in the length of (correct) generations
(Figure [T). Token-length distributions of correct responses from open-source reasoning LLMs
(DEEPSEEK-R1-DISTILL-QWEN, QWEN3, and DEEPSEEK-R1-0528) on randomly selected 18
questions from the GURU dataset. Box plots show the interquartile range (25th—75th percentiles).
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Figure 7: PALU reduces both easy and hard redundancies (Figure[2). Performance—conciseness
evolution during PALU’s training. We encode the Spearman correlation between performance and
generation length using red (negative) and green (positive) colors. In the early phase, the two are
913 ; ) : ; . :
negatively correlated: accuracy rises while length decreases. As training progresses, the correlation
o1a becomes positive, indicating further shortening begins to limit accuracy. Nevertheless, PALU con-

915 tinues to reduce generation length even in this harder regime, as shown by the overall solid curves.
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Figure 8: Different question domains exhibit distinct generation length distributions. We plot
the length distributions of responses from the base model (DEEPSEEK-R1-DISTILL-QWEN-1.5B)
and the model finetuned with PALU (on math data, sepecifically, the 12k DEEPSCALER subset).
Scatter points show raw lengths, while boxplots indicate the interquartile range (25th—75th per-
centiles). The base model produces shorter responses on STEM-domain questions but much longer
ones on AIME 24 questions.
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Figure 10: Evolution of length budget (orange) and on-policy pass rate (blue) during training.
The model is DEEPSEEK-R1-DISTILL-QWEN-1.5B, trained on a 12k-sample dataset. The right
panel zooms in on the final training epoch for better visualization. Throughout training, the on-
policy pass rate shows a steady upward trend. In the last epoch, among the 24 generation batches,
five exhibit a reduced length budget, while the rest maintain the maximum 16k-token budget.
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C GENERATION EXAMPLES

Question 1: Which one is greater, 8.11 or 8.9?

DeepSeek-R1-Distill-Qwen-1.5B:

PALU:

First, I need to compare the whole number parts of both numbers. Both 8.11 and 8.9 have
the same whole number part, which is 8. Since the whole numbers are equal, I'll move
on to comparing the decimal parts. Looking at 8.11, the decimal part is 0.11, while the
decimal part of 8.9 is 0.9. To make the comparison easier, I can rewrite 0.9 as 0.90. Now,
comparing 0.11 and 0.90, it’s clear that 0.90 is larger. Therefore, 8.9 is greater than 8.11.
Solution:

To determine which number is larger between 8.11 and 8.9, follow these steps:

1. Compare the Whole Numbers: - Both numbers have the same whole number part: 8.

2. Compare the Decimal Parts: - Convert 8.9 to have two decimal places: 8.90. - Now,
compare 0.11 (from 8.11) and 0.90 (from 8.90).

3. Determine Which Decimal is Larger: - 0.90 is greater than 0.11.

4. Conclusion: - Since 0.90 > 0.11, 8.90 is greater than 8.11.

Therefore, 8.9 is larger than 8.11.

To determine which number is larger between 8.11 and 8.9, I’ll compare their decimal
places. Both numbers have the same whole number part, which is 8. Next, I'll look at the
tenths place. In 8.11, the tenths digit is 1, while in 8.9, it’s 9. Since 9 is greater than I, 8.9
is larger than 8.11.

To determine which number is larger between 8.11 and 8.9:

1. Compare the Whole Number Part: - Both numbers have the same whole number part,
which is 8.

2. Compare the Tenths Place: - 8.11 has a tenths digit of 1. - 8.9 has a tenths digit of 9.
Since 9 is greater than 1, 8.9 is larger than 8.11.
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Question 2: What is the first prime number after two hundred?

DeepSeek-R1-Distill-Qwen-1.5B:

PALU:

To determine the first prime number after 200, I’ll start by checking each number sequen-
tially to see if it’s prime. I'll begin with 201 and check if it’s divisible by any prime numbers
less than its square root. The square root of 201 is approximately 14.17, so I only need to
check divisibility by primes up to 13. Next, I'll check 202. Since it’s even, it’s divisible by
2, so it’s not prime. Then, 203: I'll check if it’s divisible by 7, 11, and 13. 203 divided by 7
is 29, so it’s not prime. After that, 204 is even, so it’s divisible by 2. 205 ends with a 5, so
it’s divisible by 5. 206 is even, so it’s divisible by 2. 207: Adding the digits gives 9, which
is divisible by 3, so 207 is not prime. 208 is even, so it’s divisible by 2. 209: Checking
divisibility by 11, since 209 divided by 11 is 19, it’s not prime. Finally, 210 is even, so it’s
divisible by 2. 211: Checking divisibility by primes up to 14, it doesn’t divide evenly by 2,
3, 5,7, 11, or 13. Therefore, 211 is the next prime number after 200.

To find the first prime number after 200, follow these steps:

1. Understand What a Prime Number Is: - A prime number is a natural number greater
than 1 that has no positive divisors other than 1 and itself.

2. Start Checking Numbers After 200: - Begin with the number 201 and check each subse-
quent number to see if it’s prime.

3. Check Divisibility: - 201: - 201 /3 = 67 - Since 201 is divisible by 3, it’s not prime. -
202: - It’s even, so divisible by 2. - Not prime. - 203: - Check divisibility by primes up to
sqrt203 = 14.25. - 203 /7 = 29, so it’s not prime. - 204: - It’s even. - Not prime. - 205:
- Ends with 5, divisible by 5. - Not prime. - 206: - It’s even. - Not prime. - 207: - Sum
of digits is 9, divisible by 3. - Not prime. - 208: - It’s even. - Not prime. - 209: - Check
divisibility by primes up to sqrt209 = 14.45. - 209/ 11 = 19, so it’s not prime. - 210: - It’s
even. - Not prime. - 211: - Check divisibility by primes up to sqrt211 = 14.52. - 211 is not
divisible by 2, 3, 5, 7, 11, or 13. - Conclusion: 211 is a prime number.

4. Final Answer: The first prime number after 200 is:

To determine the first prime number after two hundred, I'll start checking each number
sequentially from 201 onwards.201 is divisible by 3, so it’s not prime.202 is even, thus not
prime.203 is divisible by 7, so it’s not prime.204 is even, not prime.205 ends with a 5, so
it’s divisible by 5, not prime.206 is even, not prime.207 is divisible by 3, not prime.208
is even, not prime.209 is divisible by 11, so it’s not prime.210 is even, not prime.211 is a
prime number because it isn’t divisible by any number other than 1 and itself. Therefore,
the first prime number after two hundred is 211.

The first prime number after 200 is .
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080 Question 3 (the first AIME 2025 problem): Find the sum of all integer bases b > 9 for which

1081 17, is a divisor of 97;.
1082
1083 L.
10aa  DeepSeek-R1-Distill-Qwen-1.5B:
1085 . . .
Okay, so I have this problem where I need to find the sum of all integer bases b > 9 for
1086 which 17y is a divisor of 97,. Hmm, let me think about how to approach this. First, 1
1087 know that numbers in base b can be converted to decimal (base 10) by expanding each
1088 digit multiplied by powers of b . So, 17Ty should be equalto 1 x b+ 7+ 1, which is b+ 7.
1089 Similarly, 97, would be 9 x b+ 7zl , so that’s 9b + 7. The problem says that 17, divides
97p . In decimal terms, this means that b + 7 is a divisor of 9b + 7 . So, mathematically, we
1090 . . obt ) . . . .
1091 can write this as: 7%= Is an integer Let me denote this fraction as k, where k is an integer.

1092 So, k = % To find k, I can perform polynomial division or rearrange the equation. Let
me try rearranging it: Multiply both sides by b+ 7 : 9b + 7 = k(b + 7) Expanding the

1098 right side: 9b + 7 = kb+ Tk Now, let’s bring all terms to one side: 90+ 7 — kb—Tk =0
1094 Factor out b from the terms that contain it: b(9 — k) + (7 — 7k) = 0 Let me solve for b :
1095 b(9—Fk)=Tk—"T80,b= 79";]: Simplify numerator: 7(k — 1) So, b = 7(.(;“:;). Since b
1096 must be an integer greater than 9, the right side must evaluate to an integer. Also, b > 9
1097 , so we need to find integer values of k such that b is an integer greater than 9. Let me
1098 denote m =k -1, sok=m+ 1. Substitute back into the equation: b = % =
1099 So now, b = ;—’"m. Since b must be a positive integer greater than 9, both numerator
1100 and denominator must be integers, and 8 — m must divide Tm. So, 8 — m divides Tm
1101 Let me write this as: 8 — m | Tm Which implies that 8 — m divides Tm . Since
8 — m is a divisor, let me denote d = 8 — m . Then, d divides Tm, which is 7(8 — d)
oz . So, d | 7(8 — d) Which is: d | 56 — 7d. Therefore, d | 56 — 7d + 7d (since d |
1103 7d, so adding it doesn’t change divisibility). Simplifying: d | 56 So, d is a positive integer
1104 divisor of 56. Since d = 8 —m, and m is an integer (because k is an integer, som = k — 1
1105 is also an integer), we can find possible values of d.Let me list all positive divisors of 56:1,
1106 2,4,7,8 14, 28, 56.50, d € {1,2,4,7,8,14, 28, 56 }.But remember that d = 8 — m, and
m = k — 1. Also, since k is positive (as it’s a divisor in 9b + 7 = k(b + 7)), m must be
1107 positive or zero, but since d = 8 — m, and d is positive, we have 8 — m > 0, so m < 8.
1108 Therefore, m can be 0, 1, 2, 3, 4, 5, 6, or 7.S0, let’s find corresponding d for each m:1.
1109 m=0d=8-0=82.m=1d=8-1=73 m=2:d=8—-2=064. m = 3:
1110 d=8-3=585 m=4d=8-4=46. m=5:d=8—-5=37. m = 6:
1114 d=8—-6=28 m =7:d =8 — T = 1But wait, earlier we concluded that d must be a
1112 positive divisor of 56, which is the case here since all... (exceed 32k )
1113
1114 PALU:
1115
1116 Okay, so I need to find the sum of all integer bases b > 9 where 17 base b divides 97 base
b. Hmm, let me break this down.First, let’s convert both numbers from base b to decimal 17
117 base b is equal to 1 x b + 7. Similarly, 97 base b is 9 x b + 7.S0 we need 17, divides
1118 97p. Translating to decimal:1 = b + 7 divides 9 * b + 7.So the condition is (b + T) divides
1119 (90 + 7).So let’s express this as (9b + 7) divided by (b + T) must be an integer.Let me
1120 compute the division:Divide 9b + 7 by b 4 7.Using polynomial division:Divide 9b + 7 by
1121 b + 7.S0 9b divided by b is 9. Multiply (b + 7) by 9: 9b + 63.Subtract this from 9b + 7:
(9b+7) — (9b + 63) = 7 — 63 = —56.S0 the division gives 9 with a remainder of -
e 56.Therefore, (9b + 7) = 9 * (b + 7) — 56.S0 for (b + 7) to divide 9b + 7, (b + T) must
1123 divide the remainder, which is -56.But since divisibility is concerned with absolute value, so
1124 (b+7) divides 56.S0 b+-7 is a positive divisor of 56.Given that b > 9, so b+7 > 16.S0 b+7
1125 is a divisor of 56 greater than 16.Let’s list the divisors of 56:1,2,4,7, 8,14, 28, 56.Which
1126 of these are greater than 16? 28 and 56.So possible b + 7 = 28 or 56.Therefore b = 21
1197 or 49.50 the bases are 21 and 49.Sum is 21 + 49 = 70.Hence the answer is 70.**Final
Jion Answer**The sum of all such bases is .
1129 To find the sum of all integer bases b > 9 for which 17y is a divisor of 97y, we convert
these numbers from base b to decimal: 17, =1-b+T7=b+7-97, =9 -b+ 7. We need
1130 b+ 7 to divide 9b + 7. Using polynomial division, we find that the remainder when 9b + 7
1131 is divided by b + 7 is -56. Thus, b + 7 must be a divisor of 56.Given b > 9, we find the
1132 divisors of 56 greater than 16: 28 and 56. Therefore, b+ 7 = 28 or b + 7 = 56, giving
1133 b = 21 or b = 49.The sum of these bases is 21 4+ 49 = 70.Thus, the sum of all such bases

is | 70
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D THE USE OF LARGE LANGUAGE MODELS

An LLM was used to refine writing for clarity and readability but did not contribute to research
design, experiment, or analysis. All intellectual work was independently conducted by the authors,
and any suggestions from the LLM were critically evaluated before use. The authors bear full
responsibility for the research, and the LLM is not listed as a contributor or author.
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