CONCISE REASONING IN THE LENS OF LAGRANGIAN OPTIMIZATION

Anonymous authors
Paper under double-blind review

000

001

003 004

006

008 009

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027

028

031

033

034

037

040

041

042

043

044

046

047

048

051

052

ABSTRACT

Concise reasoning in large language models seeks to generate only essential intermediate steps needed to arrive at a final answer, thereby alleviating issues of "overthinking". Most proposed approaches hinge on carefully hand-crafted heuristics, struggling to balance concision with performance, often failing to adapt across domains and model scales. In this work, we address these challenges by introducing a principled and pragmatic strategy, performance-aware length updating (PALU). As a principled algorithm, PALU formulates concise reasoning as a constrained optimization problem, minimizing response length subject to a performance constraint, and then applies Lagrangian optimization to convert it into a tractable unconstrained problem. As a pragmatic solution, PALU streamlines complicated update rules through three approximations: (i) estimating performance with offpolicy rollouts, (ii) truncating the Lagrange multiplier to two extremes, and (iii) replacing gradient-based updates with quantile-driven length adjustments. PALU reduces output length by 65% while improving accuracy by 15% when applied to DEEPSEEK-DISTILL-QWEN-1.5B, averaged over five benchmarks, outperforming a range of alternative methods. Furthermore, PALU is demonstrated to adapt across both domain (logic, STEM and math) and model scale (1.5B, 7B, 14B) entrenching the algorithm as a practical and effective concise reasoning approach.

1 Introduction

Reasoning, requiring large language models (LLMs) to work through intermediate steps before producing a final answer, substantially improves performance on complex tasks such as mathematics (Jaech et al., 2024; Shao et al., 2024), programming (Lambert et al., 2024), and value alignment (Guo et al., 2025). Yet this benefit is often accompanied by overthinking: redundant self-reflection, backtracking, and validation (Chen et al., 2024; Zhang et al., 2024; Fatemi et al., 2025). These limitations inflate inference costs and hampers user experience, motivating the need for *concise reasoning*—the production of only the essential steps required to reach a correct answer.

Reinforcement learning (RL), with its proven success in incentivizing LLM reasoning ability (Guo et al., 2025; Jaech et al., 2024), emerges as a natural and mature avenue toward concise reasoning. Existing RL-based concise reasoning solutions typically either (i) employ carefully shaped reward functions to discourage overlong generations (Xiang et al., 2025; Yeo et al., 2025; Chen et al., 2025) or (ii) impose rigid length budgets that truncate overthinking trajectories (Hammoud et al., 2025; Hou et al., 2025) during the training. These heuristic attempts, albeit promising, implicitly set a target generation length for dataset queries globally or individually, and then penalize or discard the generations with length exceeding this pre-defined value. Consequently, they often demand extensive human effort to adapt across domains and model scales, and struggle to balance conciseness with performance because of the sole conciseness objective. This raises a research question:

Can we achieve concise reasoning that (i) balances performance with conciseness, (ii) adapts across domains and model sizes without re-tuning, and (iii) avoids increases in training compute?

In this work, we address this challenge by introducing performance-aware length update (PALU), an algorithmic strategy that adaptively updates the LLMs token generation budget to achieve a state of conciseness without sacrificing accuracy and to generalize across diverse domains and model scales.

As a principled strategy, PALU formulates concise reasoning as a constrained optimization problem: minimize rollout length while maintaining performance above a specified threshold. Because constrained problems are difficult to solve directly, PALU adopts a *Lagrangian* formulation that converts the constraint into an equivalent unconstrained objective. An associated *Lagrange* multiplier then dynamically balances concision and performance, yielding PALU's first key property: concise reasoning without hand-tuned length heuristics while maintaining performance.

As a pragmatic solution, PALU replaces expensive min-max gradient updates for the *Lagrangian* with three practical approximations.

- (i) Off-policy performance check. Instead of collecting fresh rollouts to determine the *Lagrange* multiplier update direction, PALU reuses last-epoch rollouts to estimate performance. This avoids repeated model loading and new rollout computation, thereby preserving *Efficiency*.
- (ii) Regime-based optimization scheme. Rather than tuning the *Lagrange* multiplier via brittle, slow ascent, PALU snaps the multiplier into two extremes implicitly. This simplification preserves the essential sign behavior of λ and ensures conciseness without compromising performance, yielding *Balance*.
- (iii) Quantile-driven budget update. Because gradients of the Lagrangian with respect to the length budget are non-differentiable, PALU uses a quantile-based surrogate: it estimates the marginal effect of reducing the budget by observing accuracy drops and sets the step size by a target quantile of these drops. Grounded in these derivative-inspired statistics, the update scales naturally across domains and model sizes without heuristic retuning, conferring Adaptivity,

PALU, when combined with GRPO (Shao et al., 2024), reduces generation length by 65% while improving accuracy by 15% on DEEPSEEK-R1-DISTILL-QWEN-1.5B, averaged across five benchmark tasks, outperforming alternative methods. Compared with methods that rely on heuristic length budgets or length-aware rewards, both of which require sensitive tuning across domains and model sizes, PALU achieves superior conciseness across multiple domains (logic, STEM, mathematics) and scales effectively from 1.5B to 14B parameters. By uniting conciseness with performance, and exhibiting strong adaptivity across domains and scales, PALU demonstrates the effectiveness of a principled yet pragmatic solution for concise reasoning.

2 Preliminaries

Group Relative Policy Optimization (GRPO (Shao et al., 2024)) simplifies PPO (Schulman et al., 2017) for LLM finetuning by replacing the heavy value model with a per-prompt, group-relative normalization of the reward. Specifically, given a question-answer pair (q,a) drawn from dataset \mathcal{D} , a group of G rollouts (responses) $\{o_i\}_{i=1}^G$ is sampled, and their advantages are computed as:

$$\hat{A}_i(o_i, a) = \frac{r(o_i, a) - \text{mean}(\{r(o_i, a)\}_{i=1}^G)}{\text{std}(\{r(o_i, a)\}_{i=1}^G)},\tag{1}$$

where the reward signal r is provided by some rule-based reward functions. To stabilize training, GRPO adopts the clipped surrogate objective from PPO (Schulman et al., 2017):

$$\min \left\{ r_{i,t}(\boldsymbol{\theta}) \hat{A}_i(o_i, a), \operatorname{clip} \left(r_{i,t}(\boldsymbol{\theta}), 1 - \epsilon_{\text{low}}, 1 + \epsilon_{\text{high}} \right) \right\}, \tag{2}$$

where $r_{i,t}(\theta)$ is the per-token probability ratio between policy π_{θ} and the behavior policy $\pi_{\theta_{\text{old}}}$.

$$r_{i,t}(\boldsymbol{\theta}) = \frac{\pi_{\boldsymbol{\theta}}(o_{i,t} \mid q, o_{i, < t})}{\pi_{\boldsymbol{\theta}_{\text{old}}}(o_{i,t} \mid q, o_{i, < t})}.$$
(3)

This yields the GRPO objective (we eliminate the KL-divergence constraint (Yu et al., 2025)):

$$J_{\text{GRPO}}(\pi_{\boldsymbol{\theta}}) = \mathbb{E}_{(q,a) \sim \mathcal{D}, \{o_i\}_{i=1}^G \sim \pi_{\boldsymbol{\theta}_{\text{old}}}(\cdot | q, L)}$$

$$\left[\frac{1}{G} \sum_{i=1}^G \frac{1}{|o_i|} \sum_{t=1}^{|o_i|} \min \left\{ r_{i,t}(\boldsymbol{\theta}) \, \hat{A}_i(o_i, a), \, \text{clip}(r_{i,t}(\boldsymbol{\theta}), 1 - \epsilon_{\text{low}}, 1 + \epsilon_{\text{high}}) \, \hat{A}_i(o_i, a) \right\} \right], \tag{4}$$

where L denotes the length budget for generation, such that decoding proceeds token by token and is forcibly terminated once the number of generated tokens reaches L.

3 RELATED WORK

Concise reasoning in LLMs is an emerging research direction aimed at mitigating the overthinking phenomenon (Han et al., 2024; Ma et al., 2025). Existing solutions can be broadly categorized into three paradigms: (i) training-free methods, including guided prompting (Xu et al., 2025), modular workflow pipelines (She et al., 2025), decoding manipulation (Muennighoff et al., 2025), and latent-space reasoning (Hao et al., 2024); (ii) SFT- and DPO-based methods, including reasoning path filtering (Munkhbat et al., 2025), reasoning with latent tokens (Su et al., 2025), and preference optimization (Team et al., 2025a); and (iii) RL-based methods, to which our approach belongs.

Table 1: An overview of RL-based concise reasoning methods.

Modification	Penalty function	Representatives
Reward function	$r = r(o, a) - f(\operatorname{len}(o))$	Kimi 1.5 RL (Team et al., 2025a); Overlong punishment (Yu et al., 2025)
Reward function	r = r(o, a) - f(len(o), diff(q))	L1 (Aggarwal & Welleck, 2025),
Reward function	r = r(o, a) - f(len(o) - target)	O1-pruner (Luo et al., 2025b); ShorterBetter (Yi et al., 2025)
Length budget	L = f(stage)	Thinkprune (Hou et al., 2025)
Length budget	$L = f(\operatorname{diff}(q))$	GFPO (Shrivastava et al., 2025)

Reward-function-based approaches typically introduce length-aware penalties during RL training. Team et al. (2025a); Xiang et al. (2025); Arora & Zanette (2025); Yeo et al. (2025); Song & Zheng (2025) subtract a penalty term proportional to response length from reward signals. Others (Xiang et al., 2025; Shen et al., 2025; Li et al., 2025) refine this idea by incorporating both response length and question difficulty. A further refinement discounts the reward according to the deviation between the generated and the target length (Luo et al., 2025b; Yi et al., 2025; Team et al., 2025b). However, aggregating such heterogeneous reward components prior to normalization can distort the length penalty (Chen et al., 2025). Moreover, these methods face a fundamental limitation in adaptivity: their reward shapes require extensive trial-and-error tuning across data domains and model scales.

Length-budgeting methods, by contrast, regulate the rollout through setting hard length budgets. This approach would stop the decoding when the number of generated tokens reaches this value. One line of work (Hou et al., 2025; Hammoud et al., 2025) progressively reduces the global length budget, whereas another (Shrivastava et al., 2025) filters trajectories after generation, retaining only those shorter than a length threshold. A limitation of these approaches is that the budget is typically set heuristically, often neglecting the risk of performance degradation. Our method instead allocates the budget in a principled manner, explicitly balancing conciseness with performance. For a more comprehensive survey on concise reasoning methods, please refer to Zhu & Li (2025).

4 Proposed Method: PALU

4.1 FORMULATION AND INTUITION

Unlike heuristic approaches, we formulate concise reasoning into a constrained optimization problem. Let L denote the per-question length budget, r a (rule-based) reward evaluating the responses from a reasoning model π_{θ} , and $C \in [0,1]$ a global performance threshold. The objective is to minimize L while ensuring performance meets or exceeds C for question-answer pairs $\{(q,a)\}$ drawn from dataset \mathcal{D} :

$$\min_{\boldsymbol{\theta}, L > 0} L \quad \text{s.t.} \quad R(\boldsymbol{\theta}, L, q) \ge C, \tag{5}$$

with $R(\theta, L, q)$ denoting the expected reward obtained by model π_{θ} , when generating a set of response o for query q under a length budget L:

$$R(\boldsymbol{\theta}, L, q) = \mathbb{E}_{\boldsymbol{o} \sim \pi_{\boldsymbol{\theta}}(\cdot \mid q, L)} [R(\boldsymbol{o}, a)]. \tag{6}$$

Directly solving Eq. (5) directly can be difficult. Fortunately, *Lagrangian* optimization enables a conversion of the original problem to the following min–max objective:

$$\min_{\boldsymbol{\theta}, L>0} \max_{\lambda \geq 0} \mathcal{L}(\boldsymbol{\theta}, L, \lambda) = L + \lambda \Big(C - R(\boldsymbol{\theta}, L, q) \Big), \tag{7}$$

where λ is the dual variable penalizing constraint violation. Assuming differentiability, the solution of the original constrained optimization can be approximated by applying first-order stochastic updates with learning rates η_{λ} , η_{θ} , and η_{L} (for the dual variable, model parameters, and length budget, respectively), together with implicit projections onto $\lambda \geq 0$ and L > 0:

$$\lambda \leftarrow \lambda + \eta_{\lambda} \Big(C - R(\boldsymbol{\theta}, L, q) \Big),$$
 (8)

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \eta_{\boldsymbol{\theta}} \cdot \lambda \cdot \nabla_{\boldsymbol{\theta}} R(\boldsymbol{\theta}, L, q),$$
 (9)

$$L \leftarrow L - \eta_L \Big(1 - \lambda \cdot \nabla_L R(\boldsymbol{\theta}, L, q) \Big).$$
 (10)

These updates admit a natural interpretation. When the performance constraint is satisfied, λ remains small and the corresponding length budget L is reduced. Empirically, longer responses tend to correlate with higher reward, so $\nabla_L R \geq 0$. Conversely, when performance falls below C, λ increases, expanding L and prioritizing updates to θ to restore performance. Beside the explicit balance between performance and conciseness, the update rule for length budget L, Eq. (10), offers a principled way to achieve the concise reasoning, without heuristics on the target generation length.

4.2 PRACTICAL ALGORITHM

Guided by the min–max formulation and the first-order update rules, we introduce performance-aware length update (PALU), a pragmatic and principled algorithm for training concise reasoning models. PALU simplifies the complicated updates rules by three components: (i) an off-policy pass-rate estimate, (ii) a regime-based optimization scheme that toggles the optimization focus, and (iii) a quantile-based surrogate for the derivative term $\nabla_L R(\theta, L, q)$.

Off-policy performance estimation (Eq. (8)) Updating the length budget L and model parameters θ requires estimating the performance R. Computing this quantity on-policy would demand repeatedly reloading the latest parameters, which is computationally costly. Instead, we approximate it with the previous round's evaluation:

$$R(\boldsymbol{\theta}, L, q) \approx R(\boldsymbol{\theta}_{\text{old}}, L_{\text{old}}, q) = \mathbb{E}_{o \sim \pi_{\boldsymbol{\theta}_{\text{old}}}(\cdot \mid q, L_{\text{old}})}[r(o, a)]. \tag{11}$$

This off-policy reuse provides a conservative estimate of the true pass rate. While such approximations are often unstable in reinforcement learning with randomly initialized policies, LLM fine-tuning differs because performance typically improves monotonically thanks to pretraining. Thus, this conservative bias is acceptable, and even desirable, because it naturally underestimates model performance and emphasizes more on policy improvement (Eq. (9), *i.e.*, the case of large λ).

Regime-based optimization (Eq. (8) and Eq. (10)) In the Lagrangian view, λ reweights the emphasis between conciseness and performance. When the performance constraint is satisfied $(C-R \leq 0)$, residuals integrate to a small λ , so the update prioritizes reducing the length budget. In this case, $(1-\lambda\cdot\nabla_L R(\theta,L,q))>0$. Conversely, when the constraint is violated (C-R>0), a sequence of positive residuals drives λ upward, shifting the emphasis toward recovering performance by enlarging L and updating the model π_{θ} .

While this continuous adjustment is elegant in theory, it depends critically on carefully tuned learning rates and a long integration horizon. Both impractical for LLM post-training. PALU therefore discards the need for a continuously evolving λ and instead approximates only its sign behavior with a two-regime controller:

Optimization regime =
$$\begin{cases} L \leftarrow L - \alpha_{\tau}^{q} & \text{if } R(\theta, L, q) \ge C \\ L \leftarrow L_{\text{max}} & \text{otherwise} \end{cases}, \tag{12}$$

where $\alpha_{\tau}^q>0$ is a new term we will explain later. This simplification turns the Lagrange multiplier into an implicit "bang–bang" controller with two regimes: one regime pushes toward conciseness, the other safeguards performance by resetting to the maximum $L_{\rm max}$ when the constraint is violated.

Algorithm 1 Performance-Aware Length Update (PALU) with GRPO

```
217
          Input: initial model \pi_{\theta}, dataset \mathcal{D}, bound L_{\max}, performance threshold C
218
           1: for epoch in range(N) do
219
                   for each mini-batch \mathcal{D}_b \subset \mathcal{D} do
           2:
220
           3:
                       if first epoch then
221
           4:
                            Initialize the length budget for all questions: L = L_{\text{max}}
222
           5:
                       else
223
           6:
                            Reuse the last round pass rate, e.g., Eq. (11)
224
           7:
                            Update L for each q \in \mathcal{D}_b using rule Eq. (12)
           8:
225
           9:
                       Collect responses o with parameter \theta and per sample budget L
226
          10:
                       Update \theta with GRPO as per Eq. (4)
227
          11:
228
          12: end for
229
          13: Output: concise reasoning model \pi_{\theta}
230
```

Quantile-driven budget update (Eq. (10)) To set the per-question reduction step $\alpha_{\tau}^{(q)}$ used by the regime controller (Eq. (12)), we use Eq. (10) as an interpretive guide. The term $\nabla_L R(\theta, L, q)$ captures the sensitivity of performance to the length budget. Because R is a non-differentiable, rule-based reward, we approximate this sensitivity via the difference between two nearby operating points in the distribution of correct response lengths. Let

$$Q_{\tau}^{(q)} := \operatorname{Quantile}_{\tau} \left(\{ \operatorname{len}(o_i) \}_{i=1}^{G} \mid o \sim \pi_{\boldsymbol{\theta}_{\text{old}}}(\cdot | q, L_{\text{old}}); \ r(o, a) = 1 \right)$$
 (13)

and define the quantile gap

216

231 232

233

234

235

236

237

238

239

240 241

242

243

244

245 246

247

248 249

250

251

252

253

254

255 256

257

258 259

260

261

262 263

264

265 266

267

268

269

$$\alpha_{\tau}^{(q)} := Q_{1.0}^{(q)} - Q_{1.0-\tau}^{(q)}. \tag{14}$$

If L is near $Q_{1,0}^{(q)}$, typical when the performance threshold C is high, reducing L by α_{τ}^{q} lowers the success rate by approximately τ . Hence,

$$\nabla_L R \big(\boldsymbol{\theta}, L, q \big) \approx \frac{R(\boldsymbol{\theta}, L, q) - R(\boldsymbol{\theta}, L - \alpha_{\tau}^{(q)}, q)}{\alpha_{\tau}^{(q)}} = \frac{\tau}{\alpha_{\tau}^{(q)}},$$
 (15) Substituting into Eq. (10) yields the budget update:

$$L = L - \eta_L \cdot \Delta L, \quad \Delta L = \left(1 - \lambda \cdot \nabla_L R(\boldsymbol{\theta}, L, q)\right) \approx \left(1 - \lambda \cdot \frac{\tau}{\alpha_{\tau}^{(q)}}\right) \propto \alpha_{\tau}^{(q)}.$$
 (16)

Accordingly, our regime update uses $L \leftarrow L - \alpha_{\tau}^{(q)}$ when $R(\theta, L, q) \geq C$, with $\alpha_{\tau}^{(q)}$ as the gap between the longest correct response and its $(1-\tau)$ -quantile length, capturing how dispersed correct responses are. In simple terms, when correct responses cluster tightly in length (small α_{τ}), updates proceed cautiously; when they exhibit a wider tail, the adjustment is correspondingly more aggressive. The resulting update embodies a direct, data-driven proxy for inverse sensitivity (the derivative term in Eq. (10)), capturing the essence of Lagrangian optimization within a pragmatic rule.

Summary PALU circumvents the instability and cost of the full *Lagrangian* multiplier method while retaining its principled grounding, by combining off-policy performance check, the regimebased controller, and the quantile-driven update step. This design offers three key advantages:

- (i) Efficiency, no additional computations are required to estimate the performance,
- (ii) Balance, the two-regime controller reconciles conciseness and performance,
- (iii) Adaptivity, the quantile-based step scales naturally across domains and model scales.

Algorithm 1 presents the pseudocode of PALU, instantiated with the GRPO performance objective (Shao et al., 2024), where the update rule in Eq.(9) is replaced by maximizing Eq.(4)

The implicit assumption PALU works best when correct responses exhibit non-trivial dispersion in length. When lengths concentrate tightly (e.g., when $\alpha_{0,1}$ is small for all questions), the regime update in Eq. (12) shrinks accordingly, yielding conservative (slower) reductions in L while preserving performance. Empirically, we rarely observe such concentration in reasoning models (see Figure 1), though we acknowledge it as a potential limitation.

5 EXPERIMENT

We begin by validating the generation-length assumption underlying PALU and then benchmark its performance and conciseness against a broad suite of baselines (Section 5.2). Finally, we provide our analysis on a systematic evaluation across multiple domains, model scales, and hyperparameter settings. The training recipe and detailed results are provided in Appendix.

5.1 GENERATION LENGTH ASSUMPTION

PALU is predicated on the assumption that correct responses exhibit a broad distribution of lengths for given questions. If not and the distribution were narrow, updates to the budget L would either converge slowly or induce unstable oscillations between overly reducing the generation length and restoring accuracy.

To evaluate this key assumption, we prompt open-source reasoning models, measuring the response lengths deemed correct (Figure 1). Results on more prompts, together with extended analyses for the QWEN3 and DEEPSEEK-R1 families, are reported in Figure 5 in Appendix. The observed distribution in Figure 1 reveal marked variability: the

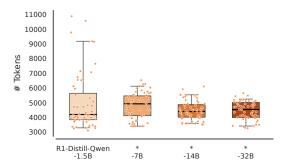


Figure 1: Token-length distribution of correct rollouts from the DEEPSEEK-R1-DISTILL-QWEN series of reasoning models. Box plots indicate the range between the 25th and 75th percentiles.

longest correct responses are two to three times longer than the shortest. This broad spread supports PALU's premise and indicates that the length budget L can be progressively reduced without inducing oscillatory behavior during the optimization.

5.2 Comparison with Existing Solutions

Setup We finetune DEEPSEEK-R1-DISTILL-QWEN-1.5B (Guo et al., 2025) on a subset of DEEPSCALER (Luo et al., 2025b). Specifically, we use 12k mathematical problem—answer pairs from the GURU's DEEPSCALER partition, which filters out too easy or too hard samples (Cheng et al., 2025). Configuration. We implement PALU on top of VERL (Sheng et al., 2024), with the hyperparameter step size $\alpha_{0.5}$ for (rapid) length reduction and performance threshold C=0.8. Training is performed for 6400 gradient update steps with batch size 32 (roughly 1100 H200 GPU hours). We apply the PALU strategy from an initial generation budget of 16k tokens (Line 4 in Algorithm 1) and update it based on Eq. (12). Metrics. We report Pass@1 and the output length (in tokens) on: MATH-500 (Hendrycks et al., 2021), AIME 2024, AMC 2023, MINERVA, and OLYMPIADBENCH (He et al., 2024). Besides, we employ the Accuracy-Efficiency (AE) Score (Luo et al., 2025a), a composite metric balancing length reduction against accuracy preservation, for overall comparison. Results are averaged over 32 rollouts for AIME 2024 and 10 for the others.

Comparison (Table 2) We consider two families of concise reasoning methods (models). (i) SFT/DPO-based models: Kimi k1.5 SFT, Kimi k1.5 DPO (Team et al., 2025a), and TokenSkip (Xia et al., 2025). (ii) RL-based methods: reward-function-based methods that add a length-aware penalty to the reward/advantage function such as CosFN (Yeo et al., 2025), Kimi k1.5 RL (Team et al., 2025a), DIET (Chen et al., 2025), ShorterBetter (Yi et al., 2025), L1-Max (Aggarwal & Welleck, 2025), and ALP (Xiang et al., 2025); stage-based length budgeting methods that progress shrink the rollout budget, for example, ThinkPrune (Hou et al., 2025); and multi-stage RL pipelines, e.g., AutoThink (Tu et al., 2025).

PALU achieves superiority in both conciseness and accuracy. Across five mathematics and science tasks, PALU reduces the macro-average response length from 10,280 to 3,537 tokens, a 65% reduction. Meanwhile, it surpasses other RL-based methods in terms of accuracy. Crucially, this is attained without relying on intricate reward shaping, multi-stage training, or explicit switching between reasoning and non-reasoning modes. The advantage of PALU underscores the effectiveness of its Lagrangian optimization objective that enforces both conciseness and performance.

Table 2: Performance and conciseness comparison of different concise reasoning methods with DEEPSEEK-R1-DISTILL-QWEN-1.5B as the base model and DEEPSCALER as the training dataset. **P@1**: average pass@1 accuracy (%); **Tok**: average response length in tokens. **AE Score**: accuracy-efficiency score for balancing length reduction and accuracy preservation (Luo et al., 2025a).

Model & Methods	MATH 500		AIME 2024		AMC 2023		Olympiad		Minerva-Math		Macro Average		AE Score ↑
	P@1	Tok	P@1	Tok	P@1	Tok	P@1	Tok	P@1	Tok	P@1	Tok	
R1-DISTILL-QWEN-1.5B	82.1	5534	28.5	16590	62.7	10615	43.5	11587	26.0	7076	48.6	10280	0.0
SFT- & DPO-Based													
Kimi 1.5 SFT (Team et al., 2025a)	68.5	6761	22.0	17400	60.4	9323	39.4	10036	23.6	2804	42.7 -12.1%	9865 -4.00%	-0.499
Kimi 1.5 DPO (Team et al., 2025a)	83.3	4464	31.7	13389	63.0	8678	44.5	9604	26.9	6070	49.9 +2.70%	8441 -17.9%	0.289
TokenSkip (Xia et al., 2025)	64.1	1120	6.8	2231	37.3	1401	25.8	2061	20.7	1674	30.9 -36.4%	$1697\ -83.5\%$	-1.173
RL-Based													
AutoThink-Stage1 (Tu et al., 2025)	82.1	2473	33.5	12716	66.0	5440	45.6	7328	27.0	5372	50.8 +4.53%	6666 -35.2%	0.565
AutoThink-Stage2 (Tu et al., 2025)	85.2	3702	31.8	12117	66.6	7415	46.4	8030	27.2	5481	51.4 +5.76%	7295 -29.0%	0.484
AutoThink-Stage3 (Tu et al., 2025)	85.1	1897	41.9	9033	71.9	4696	49.0	5005	30.5	3834	55.7 +14.6%	4893 -52.4%	1.111
ALP (Xiang et al., 2025)	80.5	1435	37.9	8084	76.5	3513	47.6	4670	24.5	2197	53.4 +9.87%	3979 -61.2%	0.951
CosFn (Yeo et al., 2025)	75.6	2735	27.5	12492	61.1	6970	42.9	8307	27.1	3485	46.8 -3.50%	6798 -33.9%	0.249
DIET (Chen et al., 2025)	83.0	3061	31.8	10578	65.4	6425	43.7	6917	26.9	3505	50.2 +3.30%	6097 -40.7%	0.547
Kimi 1.5 RL (Team et al., 2025a)	66.3	1552	18.8	9109	44.7	3808	28.5	4774	16.7	1009	35.0 -27.9%	4050 -60.6%	-0.871
L1-Max (Aggarwal & Welleck, 2025)	83.5	3337	21.7	4093	66.3	3350	45.6	2698	25.2	2595	$48.5\ -0.28\%$	3215 -68.8%	0.451
O1-Pruner (Luo et al., 2025a)	79.1	2531	25.0	8961	62.5	5010	39.0	5242	23.7	2400	45.9 -5.40%	4829 -53.0%	0.193
ShorterBetter (Yi et al., 2025)	62.9	626	22.9	4617	65.0	2311	34.8	2674	19.8	827	41.1 -15.5%	2211 -78.5%	-0.038
ThinkPrune-4k (Hou et al., 2025)	83.0	2745	29.5	8557	71.7	4241	45.2	5505	26.5	3341	51.2 +5.31%	4877 -52.6%	0.677
PALU (ours)	85.3	1502	40.0	7132	81.8	3174	49.5	3958	24.2	1922	56.2 +15.6%	3537 -65.6%	1.139

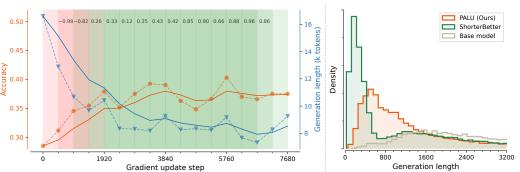


Figure 2: *Left:* Performance-conciseness evolution of PALU. The evaluation dataset is AIME24. We encode their *Spearman's* correlations with red (negative) and green (positive) regions. *Right:* Distribution of generation lengths under PALU and ShorterBetter (Yi et al., 2025).

PALU reduces both easy and hard redundancies (Figure 2, left). We monitor the joint evolution of evaluation accuracy (left axis) and generation length (right axis) throughout training, with Spearman correlations between the two encoded by color (window size 4). In the initial phase (red-shaded, negative correlation), accuracy rises as length falls, showing that PALU eliminates redundant tokens without harming performance. As training progresses, the correlation turns positive (green-shaded), revealing a genuine trade-off: further compression now risks eroding accuracy. This marks the harder redundancies, where conciseness and performance are in tension. PALU responds adaptively, retaining moderately longer responses when beneficial while continuing to shorten those that can be solved concisely. Consequently, the overall generation length continues to decline (solid curves), even under trade-off pressure. These dynamics demonstrate that PALU not only captures the low-hanging fruit of trivial redundancy removal but also sustains balanced improvements in the more challenging regime where performance and conciseness must be carefully reconciled.

PALU retains moderate-length responses when beneficial (Figure 2, right). We then present the distributions of generation length from PALU and ShorterBetter (Yi et al., 2025) on the five tasks in Figure 2. ShorterBetter, as a reward-based method that penalizes long outputs, produces a sharp peak at very short lengths (less than 320 tokens) and very few responses in the middle range around 800 tokens, suggesting it often cuts too aggressively. In contrast, PALU spreads its density more evenly, keeping many responses in the moderate range while still limiting very long outputs. This pattern reflects PALU's strength: it avoids excessive shortening while still trimming unnecessary length, which helps preserve accuracy.

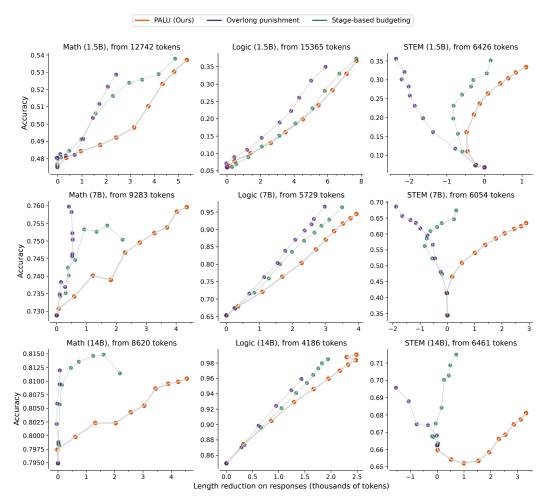


Figure 3: Conciseness-performance evolution of DEEPSEEK-R1-DISTILL-QWEN-1.5B trained with different concise reasoning methods. The training dataset covers three-domain questions: math, logic and STEM. Results are plotted with time weight exponential moving average smoothing.

5.3 SCALING TO MULTI-DOMAIN TASKS AND LARGE MODELS

Multi-domain and multi-scale comparison (Figure 3) To examine PALU's adaptivity on domains and model scales, we conduct comparison using a series of DEEPSEEK-R1-DISTILL-QWEN models with parameters 1.5B, 7B, and 14B, with the training data covering math, logic and STEM from the GURU(Cheng et al., 2025) dataset. We in this part limit the training data to 5, 120 samples (2k math, 2k STEM and 1k logic) and train the model for only 10 epochs. For evaluation, we use another 768 questions spanning math, logic, and STEM, and report both accuracy (pass@1 over 10 rollouts) and generation length reductions (in thousands of tokens) on test partitions. For comparison, we employ (i) stage-based budgeting from Hou et al. (2025) with gradually reducing the generation-length budget from 16k to 8k over five stages; and (ii) soft overlong punishment strategy introduced by DAPO (Yu et al., 2025), with an additional penalty for responses with length exceeding a predefined maximum of 8k. These approaches serve as representatives of length-budget-based and reward-function-based methods.

PALU adapts across data domains and model scales. All three methods improve accuracy on the in-distribution test sets. Yet, their impact on conciseness diverges. The multi-domain scenario. Consider the 1.5B model (first row of Figure 3). Stage-based budgeting and overlong punishment shorten responses for math and logic tasks, with evaluation curves showing clear progress to the right-hand side (i.e., gains in length reduction). Yet in STEM, these heuristics fail. Their reliance on a fixed target length (8k in our implementation) leaves little space for further reduction, as the base model already generates shorter responses (~ 6.5 k tokens), well below the assumed optimum. The multi-scale scenario. Initial generation length varies substantially across model sizes, especially

for math and logic tasks (as indicated in subtitles for the left column of Figure 3). This variation poses a fundamental challenge for heuristic methods: because they require an explicit length target, each new model scale demands repeated trial-and-error sweeps to locate a workable setting. **PALU**. Rather than imposing heuristic length targets, PALU dynamically adjusts its budget under a joint conciseness-performance objective. This principled formulation, grounded in *Lagrangian* dynamics, adapts seamlessly to varying initial length distributions and performance-length trade-offs. As a result, PALU achieves consistent improvements across domains and model sizes. In short, heuristic approaches work in narrow cases but break down when domain or model characteristics shift. PALU avoids this brittleness by treating concise reasoning as a performance-constrained optimization problem, delivering robust conciseness and accuracy gains across diverse settings.

5.4 ABLATION

 Step size in PALU (Figure 4) Instead of assigning a heuristic value, PALU derives its step size from the *Lagrangian* formulation. This provides a principled yet efficient budgeting mechanism:

$$L \; = \; \begin{cases} L - \alpha_{\tau}^{(q)} & \text{if } R \geq C \\ L_{\max} & \text{otherwise} \end{cases}.$$

Here, α_{τ}^q measures the gap between the longest correct response and the $1-\tau$ -quantile length for question q. τ directly determines the step size for updating L and can be treated as a tunable hyperparameter. To examine its sensitivity and guide practitioners, we conduct an ablation study across different step sizes. Using the multi-domain dataset (math, logic, and STEM),

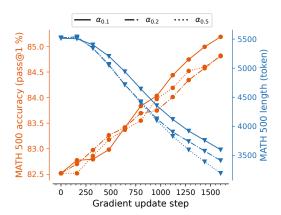


Figure 4: Ablation on the step size α_{τ} .

we run PALU with update steps $\alpha_{0.1}$, $\alpha_{0.2}$, and $\alpha_{0.5}$. We evaluate the model on the MATH 500 benchmark and report the accuracy and generation length during training. As shown in Figure 4, a larger step ($\alpha_{0.5}$) accelerates length reduction but slightly compromises accuracy, whereas smaller steps stabilize performance but provide weaker pressure for conciseness.

6 LIMITATIONS AND CONCLUSION

Limitation PALU assumes that overthinking LLMs have a broad distribution of response lengths. While we empirically verified this property in our experiments, we acknowledge an extreme case where the model always generates responses of identical length. In such a scenario, even reducing the length budget by a single token could cause accuracy to collapse from 1.0 to 0.0, rendering PALU ineffective. Another limitation is that we do not claim PALU's concise reasoning behavior will generalize to out-of-distribution domains. We view such generalization as stemming primarily from the diversity of training data and the RL component, rather than from PALU itself.

Conclusion Although these limitations define the scope of our study, they do not detract from our central contribution: a principled and pragmatic solution for concise reasoning. Although trimming overly long responses seems intuitive, achieving this without compromising accuracy and while retaining adaptivity across domains and model scales calls for a principled formulation. PALU elevates the intuition into theory by casting the task as a constrained optimization and resolving it through the *Lagrangian* framework. This shift from intuitive observation to principled methodology constitutes PALU's broader contribution to the community. Technically, it affords two advantages. First, PALU automatically balances conciseness and performance without ad-hoc heuristics, reducing generation length by 65% while improving accuracy by 15% across five benchmark tasks. Second, it provides a principled update rule for the length budget, enabling robust adaptation across domains (math, logic, STEM) and model scales (1.5B, 7B, and 14B parameters).

REFERENCES

- Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with reinforcement learning. *arXiv* preprint arXiv:2503.04697, 2025.
- Daman Arora and Andrea Zanette. Training language models to reason efficiently. *arXiv preprint arXiv:2502.04463*, 2025.
 - Weize Chen, Jiarui Yuan, Tailin Jin, Ning Ding, Huimin Chen, Zhiyuan Liu, and Maosong Sun. The overthinker's diet: Cutting token calories with difficulty-aware training. *arXiv* preprint *arXiv*:2505.19217, 2025.
 - Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu, Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking of o1-like llms. *arXiv preprint arXiv:2412.21187*, 2024.
 - Zhoujun Cheng, Shibo Hao, Tianyang Liu, Fan Zhou, Yutao Xie, Feng Yao, Yuexin Bian, Yonghao Zhuang, Nilabjo Dey, Yuheng Zha, et al. Revisiting reinforcement learning for llm reasoning from a cross-domain perspective. *arXiv preprint arXiv:2506.14965*, 2025.
 - Mehdi Fatemi, Banafsheh Rafiee, Mingjie Tang, and Kartik Talamadupula. Concise reasoning via reinforcement learning. *arXiv preprint arXiv:2504.05185*, 2025.
 - Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
 - Hasan Abed Al Kader Hammoud, Kumail Alhamoud, Abed Hammoud, Elie Bou-Zeid, Marzyeh Ghassemi, and Bernard Ghanem. Train long, think short: Curriculum learning for efficient reasoning. arXiv preprint arXiv:2508.08940, 2025.
 - Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-budget-aware llm reasoning. *arXiv preprint arXiv:2412.18547*, 2024.
 - Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong Tian. Training large language models to reason in a continuous latent space. *arXiv preprint arXiv:2412.06769*, 2024.
 - Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for promoting agi with olympiad-level bilingual multimodal scientific problems. *arXiv preprint arXiv:2402.14008*, 2024.
 - Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv* preprint arXiv:2103.03874, 2021.
 - Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang. Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. *arXiv* preprint *arXiv*:2504.01296, 2025.
 - Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv* preprint arXiv:2412.16720, 2024.
- Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers in open language model post-training. *arXiv preprint arXiv:2411.15124*, 2024.
- Zheng Li, Qingxiu Dong, Jingyuan Ma, Di Zhang, and Zhifang Sui. Selfbudgeter: Adaptive token allocation for efficient llm reasoning. *arXiv preprint arXiv:2505.11274*, 2025.
 - Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao, and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning. *arXiv* preprint arXiv:2501.12570, 2025a.

- Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y Tang, Manan Roongta, Colin Cai,
 Jeffrey Luo, Tianjun Zhang, Li Erran Li, et al. Deepscaler: Surpassing o1-preview with a 1.5 b
 model by scaling rl. *Notion Blog*, 2025b.
 - Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve: Length-compressible chain-of-thought tuning. *arXiv preprint arXiv:2502.09601*, 2025.
 - Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time scaling. *arXiv preprint arXiv:2501.19393*, 2025.
 - Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin Yang, Yujin Kim, and Se-Young Yun. Self-training elicits concise reasoning in large language models. *arXiv preprint arXiv:2502.20122*, 2025.
 - John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
 - Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.
 - Jianshu She, Zhuohao Li, Zhemin Huang, Qi Li, Peiran Xu, Haonan Li, and Qirong Ho. Hawkeye: Efficient reasoning with model collaboration. *arXiv preprint arXiv:2504.00424*, 2025.
 - Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wenjing Zhang, Jiangze Yan, Ning Wang, Kai Wang, Zhaoxiang Liu, and Shiguo Lian. Dast: Difficulty-adaptive slow-thinking for large reasoning models. *arXiv preprint arXiv:2503.04472*, 2025.
 - Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv* preprint *arXiv*: 2409.19256, 2024.
 - Vaishnavi Shrivastava, Ahmed Awadallah, Vidhisha Balachandran, Shivam Garg, Harkirat Behl, and Dimitris Papailiopoulos. Sample more to think less: Group filtered policy optimization for concise reasoning. *arXiv preprint arXiv:2508.09726*, 2025.
 - Mingyang Song and Mao Zheng. Walk before you run! concise llm reasoning via reinforcement learning. arXiv preprint arXiv:2505.21178, 2025.
 - DiJia Su, Hanlin Zhu, Yingchen Xu, Jiantao Jiao, Yuandong Tian, and Qinqing Zheng. Token assorted: Mixing latent and text tokens for improved language model reasoning. *arXiv* preprint *arXiv*:2502.03275, 2025.
 - Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with llms. *arXiv preprint arXiv:2501.12599*, 2025a.
 - Prime Intellect Team, Sami Jaghouar, Justus Mattern, Jack Min Ong, Jannik Straube, Manveer Basra, Aaron Pazdera, Kushal Thaman, Matthew Di Ferrante, Felix Gabriel, et al. Intellect-2: A reasoning model trained through globally decentralized reinforcement learning. *arXiv* preprint *arXiv*:2505.07291, 2025b.
 - Songjun Tu, Jiahao Lin, Qichao Zhang, Xiangyu Tian, Linjing Li, Xiangyuan Lan, and Dongbin Zhao. Learning when to think: Shaping adaptive reasoning in r1-style models via multi-stage rl. arXiv preprint arXiv:2505.10832, 2025.
 - Heming Xia, Chak Tou Leong, Wenjie Wang, Yongqi Li, and Wenjie Li. Tokenskip: Controllable chain-of-thought compression in llms. *arXiv preprint arXiv:2502.12067*, 2025.
 - Violet Xiang, Chase Blagden, Rafael Rafailov, Nathan Lile, Sang Truong, Chelsea Finn, and Nick Haber. Just enough thinking: Efficient reasoning with adaptive length penalties reinforcement learning. *arXiv preprint arXiv:2506.05256*, 2025.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing less. arXiv preprint arXiv:2502.18600, 2025. Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long chain-of-thought reasoning in llms. arXiv preprint arXiv:2502.03373, 2025. Jingyang Yi, Jiazheng Wang, and Sida Li. Shorterbetter: Guiding reasoning models to find optimal inference length for efficient reasoning. arXiv preprint arXiv:2504.21370, 2025. Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at scale. arXiv preprint arXiv:2503.14476, 2025. Qingjie Zhang, Di Wang, Haoting Qian, Yiming Li, Tianwei Zhang, Minlie Huang, Ke Xu, Hewu Li, Yan Liu, and Han Qiu. Understanding the dark side of llms' intrinsic self-correction. arXiv preprint arXiv:2412.14959, 2024. Jason Zhu and Hongyu Li. Towards concise and adaptive thinking in large reasoning models: A survey. *arXiv preprint arXiv:2507.09662*, 2025.

A CONFIGURATIONS FOR TRAINING AND EVALUATION

Training recipe We integrate our PALU strategy to the VeRL implementation of GRPO and finetune DEEPSEEK-R1-DISTILL-QWEN-1.5B, 7B, and 14B models using the following recipe:

Table 3: Training recipe for finetuning DEEPSEEK-R1-DISTILL-QWEN-1.5B, 7B, and 14B.

Parameter	Value
Learning rate	1e - 6
Rollout batch size (prompts)	512
Gradient update batch size (prompts)	32
KL-divergence coefficient	0.0
Max response length	16k
Loss aggregation mode	token-loss
Clip ratio low	0.2
Clip ratio high	0.28
Number of rollouts per sample	8
*Length update step size (Table 2, Figure 2)	$\alpha_{0.5}$
*Length update step size (Figure 3)	$\alpha_{0.2}$
*Performance threshold C	0.8

Training datasets For training, we employ two types of datasets:

- 12k mathematics question-answer pairs for the run in **Table 2**, **Figure 2**, **and Table 6** (benchmarking comparison and its in-depth analysis). This dataset is a slice from the GURU'S DEEPSCALER partition. We train DEEPSEEK-R1-DISTILL-QWEN-1.5B for 20 epochs on it. This dataset is used to compare performance.
- 5k multi-domain questions for the comparisons in **Figure 3** and the ablation in **Figure 4**. We randomly select (i) 2k math samples from the DEEPSCALER partition, (ii) 2k STEM samples from the STEM-web partition and (iii) 1k logic questions from the logic ordering puzzle partition of the GURU collection. We train DEEPSEEK-R1-DISTILL-QWEN-1.5B, 7B, and 14B for 10 epochs for the multi-domain comparison and the ablation study. This dataset is used to analyze training dynamics.

Compute resources We conduct our experiments on H200 GPUs clusters. Results in Table 2 are from DEEPSEEK-R1-DISTILL-QWEN-1.5B trained on 12k DEEPSCALER questions, which takes 2 nodes (16 GPUs) for 1100 GPU hours. Results in Figure 3 are from DEEPSEEK-R1-DISTILL-QWEN-1.5B, 7B, and 14B models trained on 5k multi-domain questions, which takes 2 nodes, 4 nodes and 8 nodes for roughly 300, 700, and 2300 GPU hours.

Evaluation protocol We follow the standard decoding protocol used in concise reasoning research as listed in Table 4. For the rollout numbers, we collect 32 responses and report their statistics for the small dataset (AIME24) and 10 responses for others.

Table 4: Decoding parameters.

Parameter	Value				
Temperature	0.6				
Top_p	0.95				
Top_k	-				
Max response length	32k				

Table 5: Number of Rollouts for reporting the averaged performance and generation length.

Dataset partition	Number of rollouts (for evaluation)
AIME 24	32
Others (MATH 500, AMC 23, etc.)	10

Table 6: Detailed Accuracy-Efficiency (AE) Score comparison.

Methods/Model	MATH 500	AIME24	AMC23	Olympiad	MinervaMath	Marco Average ↑
R1-Distill-Qwen-1.5B	0.000	0.000	0.000	0.000	0.000	0.000
Kimi 1.5 SFT	-1.050	-1.189	-0.062	-0.337	0.142	-0.499
Kimi 1.5 DPO	0.237	0.530	0.197	0.240	0.246	0.290
TokenSkip	-0.299	-2.941	-1.158	-1.212	-0.256	-1.173
AutoThink-Stage1	0.553	0.760	0.645	0.512	0.356	0.565
AutoThink-Stage2	0.444	0.617	0.488	0.507	0.364	0.484
AutoThink-Stage3	0.767	1.866	0.998	0.947	0.977	1.111
ALP	0.643	1.502	1.329	0.880	0.401	0.951
CosFn	0.110	0.072	0.216	0.214	0.634	0.249
DIET	0.480	0.710	0.524	0.417	0.609	0.548
Kimi 1.5 RL	-0.243	-1.251	-0.794	-1.136	-0.931	-0.871
L1-Max	0.448	-0.440	0.857	0.912	0.479	0.451
O1-Pruner	0.360	-0.154	0.512	0.030	0.219	0.193
ShorterBetter	-0.282	-0.261	0.892	-0.231	-0.309	-0.038
ThinkPrune	0.536	0.589	1.031	0.642	0.585	0.677
PALU (ours)	0.846	1.781	1.615	1.072	0.382	1.139

Accuracy-Efficiency (AE) Score (in Table 2) To evaluate whether a model improves inference efficiency, in other words, producing shorter responses without sacrificing accuracy, we adopt the Accuracy-Efficiency (AE) Score, introduced by Luo et al. (2025a). This metric combines the length reduction in response length and the accuracy improvement into a single number. It is formally defined as

$$\text{AE Score} = \begin{cases} \varphi \cdot \Delta \text{Length} + \eta \cdot |\Delta \text{Acc}|, & \text{if } \Delta \text{Acc} \geq 0 \\ \varphi \cdot \Delta \text{Length} - \theta \cdot |\Delta \text{Acc}|, & \text{if } \Delta \text{Acc} < 0 \end{cases},$$

where the terms are defined as follows:

Length reduction ratio:

$$\Delta Length = \frac{Length_{base} - Length_{model}}{Length_{base}}.$$

A positive Δ Length indicates the evaluated model produces shorter outputs than the base model.

Accuracy change ratio:

$$\Delta Acc = \frac{Acc_{model} - Acc_{base}}{Acc_{base}}. \label{eq:delta-condition}$$

 $|\Delta Acc|$ measures the relative magnitude of accuracy gain or drop against the base model.

Positive AE Scores reflect desirable improvements: generating shorter outputs while maintaining or improving accuracy. Negative AE Scores arise when accuracy degradation outweighs the benefit of shorter responses. We follow Luo et al. (2025a) and adopt the same hyperparameters:

- $\varphi = 1$ (weight on length reduction),
- $\eta = 3$ (bonus for accuracy gains),
- $\theta = 5$ (penalty for accuracy drops).

The asymmetric weighting $(\theta > \eta)$ ensures that accuracy drops are penalized more heavily than accuracy gains are rewarded, aligning with the practical preference to avoid performance degradation even when outputs become shorter.

We provide the detailed comparison of AE Score in Table 6 for reference.

B SOME EMPIRICAL EVIDENCE

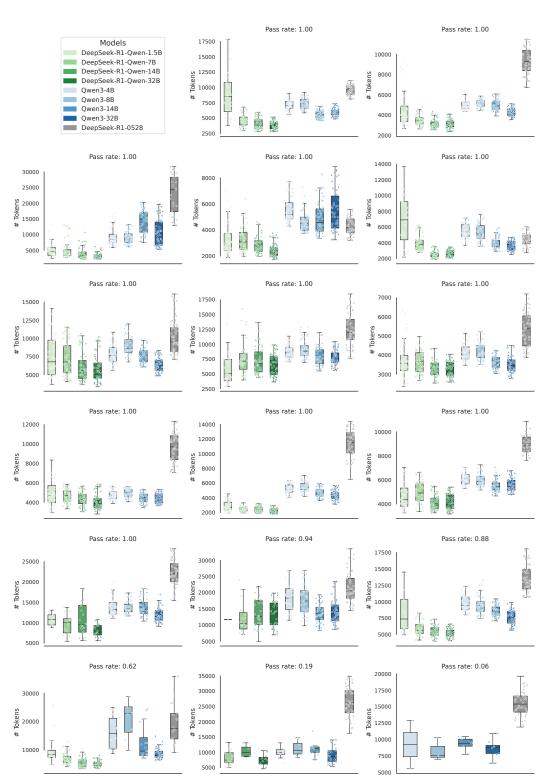


Figure 5: Overthinking LLMs exhibit broad variation in the length of (correct) generations (Figure 1). Token-length distributions of correct responses from open-source reasoning LLMs (DEEPSEEK-R1-DISTILL-QWEN, QWEN3, and DEEPSEEK-R1-0528) on randomly selected 18 questions from the GURU dataset. Box plots show the interquartile range (25th–75th percentiles).

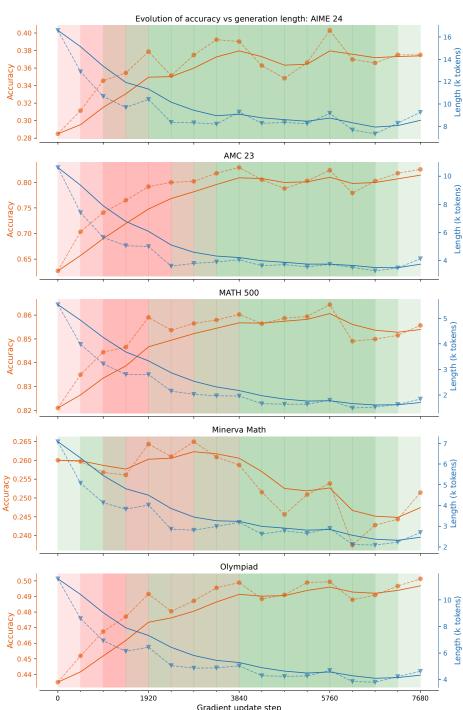


Figure 6: **PALU reduces both easy and hard redundancies** (**Figure 2**). Performance–conciseness evolution during PALU's training. We encode the *Spearman* correlation between performance and generation length using red (negative) and green (positive) colors. In the early phase, the two are negatively correlated: accuracy rises while length decreases. As training progresses, the correlation becomes positive, indicating further shortening begins to limit accuracy. Nevertheless, PALU continues to reduce generation length even in this harder regime, as shown by the overall solid curves.

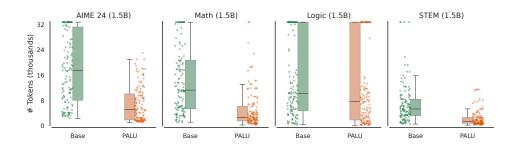


Figure 7: **Different question domains exhibit distinct generation length distributions.** We plot the length distributions of responses from the base model (DEEPSEEK-R1-DISTILL-QWEN-1.5B) and the model finetuned with PALU (on math data, sepecifically, the 12k DEEPSCALER subset). Scatter points show raw lengths, while boxplots indicate the interquartile range (25th–75th percentiles). The base model produces shorter responses on STEM-domain questions but much longer ones on AIME 24 questions.

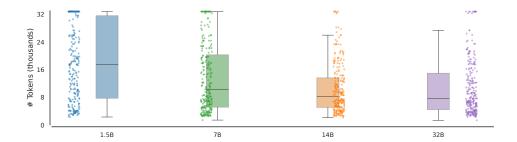


Figure 8: **Different model scales exhibit distinct generation length distributions.** We plot the response length distributions of models from the DEEPSEEK-R1-DISTILL-QWEN series with parameter 1.5B, 7B, 14B and 32B. Scatter points show raw lengths, while boxplots indicate the interquartile range (25th–75th percentiles). The evaluation dataset is AIME 2024.

C GENERATION EXAMPLES

Question 1: Which one is greater, 8.11 or 8.9?

DeepSeek-R1-Distill-Qwen-1.5B:

First, I need to compare the whole number parts of both numbers. Both 8.11 and 8.9 have the same whole number part, which is 8. Since the whole numbers are equal, I'll move on to comparing the decimal parts. Looking at 8.11, the decimal part is 0.11, while the decimal part of 8.9 is 0.9. To make the comparison easier, I can rewrite 0.9 as 0.90. Now, comparing 0.11 and 0.90, it's clear that 0.90 is larger. Therefore, 8.9 is greater than 8.11. Solution:

To determine which number is larger between 8.11 and 8.9, follow these steps:

- 1. Compare the Whole Numbers: Both numbers have the same whole number part: 8.
- 2. Compare the Decimal Parts: Convert 8.9 to have two decimal places: 8.90. Now, compare 0.11 (from 8.11) and 0.90 (from 8.90).
- 3. Determine Which Decimal is Larger: 0.90 is greater than 0.11.
- 4. Conclusion: Since 0.90 > 0.11, 8.90 is greater than 8.11.

Therefore, 8.9 is larger than 8.11.

8.9

PALU:

To determine which number is larger between 8.11 and 8.9, I'll compare their decimal places. Both numbers have the same whole number part, which is 8. Next, I'll look at the tenths place. In 8.11, the tenths digit is 1, while in 8.9, it's 9. Since 9 is greater than 1, 8.9 is larger than 8.11.

To determine which number is larger between 8.11 and 8.9:

- 1. Compare the Whole Number Part: Both numbers have the same whole number part, which is 8.
- 2. Compare the Tenths Place: 8.11 has a tenths digit of 1. 8.9 has a tenths digit of 9. Since 9 is greater than 1, 8.9 is larger than 8.11.

8.9

Question 2: What is the first prime number after two hundred?

DeepSeek-R1-Distill-Qwen-1.5B:

 To determine the first prime number after 200, I'll start by checking each number sequentially to see if it's prime. I'll begin with 201 and check if it's divisible by any prime numbers less than its square root. The square root of 201 is approximately 14.17, so I only need to check divisibility by primes up to 13. Next, I'll check 202. Since it's even, it's divisible by 2, so it's not prime. Then, 203: I'll check if it's divisible by 7, 11, and 13. 203 divided by 7 is 29, so it's not prime. After that, 204 is even, so it's divisible by 2. 205 ends with a 5, so it's divisible by 5. 206 is even, so it's divisible by 2. 207: Adding the digits gives 9, which is divisible by 3, so 207 is not prime. 208 is even, so it's divisible by 2. 209: Checking divisibility by 11, since 209 divided by 11 is 19, it's not prime. Finally, 210 is even, so it's divisible by 2. 211: Checking divisibility by primes up to 14, it doesn't divide evenly by 2, 3, 5, 7, 11, or 13. Therefore, 211 is the next prime number after 200.

To find the first prime number after 200, follow these steps:

- 1. Understand What a Prime Number Is: A prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself.
- 2. Start Checking Numbers After 200: Begin with the number 201 and check each subsequent number to see if it's prime.
- 3. Check Divisibility: 201: 201 / 3 = 67 Since 201 is divisible by 3, it's not prime. 202: It's even, so divisible by 2. Not prime. 203: Check divisibility by primes up to sqrt203 = 14.25. 203 / 7 = 29, so it's not prime. 204: It's even. Not prime. 205: Ends with 5, divisible by 5. Not prime. 206: It's even. Not prime. 207: Sum of digits is 9, divisible by 3. Not prime. 208: It's even. Not prime. 209: Check divisibility by primes up to sqrt209 = 14.45. 209 / 11 = 19, so it's not prime. 210: It's even. Not prime. 211: Check divisibility by primes up to sqrt211 = 14.52. 211 is not divisible by 2, 3, 5, 7, 11, or 13. Conclusion: 211 is a prime number.
- 4. Final Answer: The first prime number after 200 is: 211

PALU:

To determine the first prime number after two hundred, I'll start checking each number sequentially from 201 onwards.201 is divisible by 3, so it's not prime.202 is even, thus not prime.203 is divisible by 7, so it's not prime.204 is even, not prime.205 ends with a 5, so it's divisible by 5, not prime.206 is even, not prime.207 is divisible by 3, not prime.208 is even, not prime.209 is divisible by 11, so it's not prime.210 is even, not prime.211 is a prime number because it isn't divisible by any number other than 1 and itself. Therefore, the first prime number after two hundred is 211.

The first prime number after 200 is 211

Question 3 (the first AIME 2025 problem): Find the sum of all integer bases b>9 for which 17_b is a divisor of 97_b .

DeepSeek-R1-Distill-Qwen-1.5B:

1026

1027

1028 1029

1030 1031

1032

1033

1034

1035

1039

1041 1042

1043

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1056

1058

1061

1062

1064

1065

1067

1068

1069

1070

1071

1075

1077

1078

1079

Okay, so I have this problem where I need to find the sum of all integer bases b > 9 for which 17_b is a divisor of 97_b . Hmm, let me think about how to approach this. First, I know that numbers in base b can be converted to decimal (base 10) by expanding each digit multiplied by powers of b. So, 17_b should be equal to 1*b+7*1, which is b+7. Similarly, 97_b would be 9*b+7x1, so that's 9b+7. The problem says that 17_b divides 97_b . In decimal terms, this means that b+7 is a divisor of 9b+7. So, mathematically, we can write this as: $\frac{9b+7}{b+7}$ is an integer Let me denote this fraction as k, where k is an integer. So, $k = \frac{9b+7}{b+7}$ To find k, I can perform polynomial division or rearrange the equation. Let me try rearranging it: Multiply both sides by b + 7: 9b + 7 = k(b + 7) Expanding the right side: 9b + 7 = kb + 7k Now, let's bring all terms to one side: 9b + 7 - kb - 7k = 0Factor out b from the terms that contain it: b(9-k) + (7-7k) = 0 Let me solve for b: b(9-k) = 7k - 7 So, $b = \frac{7k-7}{9-k}$ Simplify numerator: 7(k-1) So, $b = \frac{7(k-1)}{9-k}$. Since $b = \frac{7k-7}{9-k}$ must be an integer greater than 9, the right side must evaluate to an integer. Also, b > 9, so we need to find integer values of k such that b is an integer greater than 9. Let me denote m = k - l, so k = m + l. Substitute back into the equation: $b = \frac{7m}{9 - (m + 1)} = \frac{7m}{8 - m}$ So now, $b = \frac{7m}{8-m}$. Since b must be a positive integer greater than 9, both numerator and denominator must be integers, and 8-m must divide 7m. So, 8-m divides 7mLet me write this as: $8-m \mid 7m$ Which implies that 8-m divides 7m. Since 8-m is a divisor, let me denote d=8-m. Then, d divides 7m, which is 7(8-d)So, $d \mid 7(8-d)$ Which is: $d \mid 56-7d$. Therefore, $d \mid 56-7d+7d$ (since $d \mid 66-7d+7d$) 7d, so adding it doesn't change divisibility). Simplifying: d | 56 So, d is a positive integer divisor of 56. Since d=8-m, and m is an integer (because k is an integer, so m=k-1is also an integer), we can find possible values of d.Let me list all positive divisors of 56:1, 2, 4, 7, 8, 14, 28, 56. So, $d \in \{1, 2, 4, 7, 8, 14, 28, 56\}$. But remember that d = 8 - m, and m=k-1. Also, since k is positive (as it's a divisor in 9b+7=k(b+7)), m must be positive or zero, but since d = 8 - m, and d is positive, we have 8 - m > 0, so m < 8. Therefore, m can be 0, 1, 2, 3, 4, 5, 6, or 7.So, let's find corresponding d for each m:1. m = 0: d = 8 - 0 = 82. m = 1: d = 8 - 1 = 73. m = 2: d = 8 - 2 = 64. m = 3: d = 8 - 3 = 55. m = 4: d = 8 - 4 = 46. m = 5: d = 8 - 5 = 37. m = 6: d=8-6=28. m=7: d=8-7=1But wait, earlier we concluded that d must be a positive divisor of 56, which is the case here since all... (exceed 32k)

PALU:

Okay, so I need to find the sum of all integer bases b>9 where 17 base b divides 97 base b. Hmm, let me break this down. First, let's convert both numbers from base b to decimal. 17 base b is equal to 1*b+7. Similarly, 97 base b is 9*b+7. So we need 17_b divides 97_b . Translating to decimal: 1*b+7 divides 9*b+7. So the condition is (b+7) divides (9b+7). So let's express this as (9b+7) divided by (b+7) must be an integer. Let me compute the division: Divide 9b+7 by b+7. Using polynomial division: Divide 9b+7 by b+7. So 9b divided by b is b+7. Which b+7 is b+7 by b+7. So b+7 is a positive division gives b+7 in divide b+7 in the remainder, which is b+7 is a positive divisor of b+7 in the divisor of b+7 in the divisor of b+7 is a positive divisor of b+7 in the divisor of

To find the sum of all integer bases b>9 for which 17_b is a divisor of 97_b , we convert these numbers from base b to decimal: $17_b=1\cdot b+7=b+7\cdot 97_b=9\cdot b+7$. We need b+7 to divide 9b+7. Using polynomial division, we find that the remainder when 9b+7 is divided by b+7 is -56. Thus, b+7 must be a divisor of 56. Given b>9, we find the divisors of 56 greater than 16: 28 and 56. Therefore, b+7=28 or b+7=56, giving b=21 or b=49. The sum of these bases is 21+49=70. Thus, the sum of all such bases is $\boxed{70}$.

D THE USE OF LARGE LANGUAGE MODELS

An LLM was used to refine writing for clarity and readability but did not contribute to research design, experiment, or analysis. All intellectual work was independently conducted by the authors, and any suggestions from the LLM were critically evaluated before use. The authors bear full responsibility for the research, and the LLM is not listed as a contributor or author.