

000 CONCISE REASONING IN THE LENS OF LAGRANGIAN 001 LAGRANGIAN 002 OPTIMIZATION

003
004
005 **Anonymous authors**
006 Paper under double-blind review

007 008 ABSTRACT

009
010
011 Concise reasoning in large language models seeks to generate only essential inter-
012 mediate steps needed to arrive at a final answer, thereby alleviating issues of “over-
013 thinking”. Most proposed approaches hinge on carefully hand-crafted heuristics,
014 struggling to balance concision with performance, often failing to adapt across do-
015 mains and model scales. In this work, we address these challenges by introducing
016 a principled and pragmatic strategy, performance-aware length updating (PALU).
017 As a principled algorithm, PALU formulates concise reasoning as a constrained
018 optimization problem, minimizing response length subject to a performance con-
019 straint, and then applies *Lagrangian* optimization to convert it into a tractable
020 unconstrained problem. As a pragmatic solution, PALU streamlines complicated
021 update rules through three approximations: *(i)* estimating performance with off-
022 policy rollouts, *(ii)* truncating the *Lagrange* multiplier to two extremes, and *(iii)*
023 replacing gradient-based updates with quantile-driven length adjustments. PALU
024 reduces output length by 64% while improving accuracy by 16% when applied to
025 DEEPSEEK-DISTILL-QWEN-1.5B, averaged over six benchmarks, outperform-
026 ing a range of alternative methods. Furthermore, PALU is demonstrated to adapt
027 across both domain (logic, STEM and math) and model scale (1.5B, 7B, 14B)
028 entrenching the algorithm as a practical and effective concise reasoning approach.

029 030 1 INTRODUCTION

031 Reasoning, requiring large language models (LLMs) to work through intermediate steps before pro-
032 ducing a final answer, substantially improves performance on complex tasks such as mathemat-
033 ics (Jaech et al., 2024; Shao et al., 2024), programming (Lambert et al., 2024), and value align-
034 ment (Guo et al., 2025). Yet this benefit is often accompanied by overthinking: redundant self-
035 reflection, backtracking, and validation (Chen et al., 2024; Zhang et al., 2024; Fatemi et al., 2025).
036 These limitations inflate inference costs and hampers user experience, motivating the need for *con-
037 cise reasoning*—the production of only the essential steps required to reach a correct answer.

038 Reinforcement learning (RL), with its proven success in incentivizing LLM reasoning ability (Guo
039 et al., 2025; Jaech et al., 2024), emerges as a natural and mature avenue toward concise reasoning.
040 Existing RL-based concise reasoning solutions typically either *(i)* employ carefully shaped reward
041 functions to discourage overlong generations (Xiang et al., 2025; Yeo et al., 2025; Chen et al., 2025)
042 or *(ii)* impose rigid length budgets that truncate overthinking trajectories (Hammoud et al., 2025;
043 Hou et al., 2025) during the training. These heuristic attempts, albeit promising, implicitly set a
044 target generation length for dataset queries globally or individually, and then penalize or discard the
045 generations with length exceeding this pre-defined value. Consequently, they often demand exten-
046 sive human effort to adapt across domains and model scales, and struggle to balance conciseness
047 with performance because of the sole conciseness objective. This raises a research question:

048
049 *Can we achieve concise reasoning that *(i)* balances performance with conciseness, *(ii)* adapts across*
050 *domains and model sizes without re-tuning, and *(iii)* avoids increases in training compute?*

051
052 In this work, we address this challenge by introducing performance-aware length update (PALU), an
053 algorithmic strategy that adaptively updates the LLMs token generation budget to achieve a state of
054 conciseness without sacrificing accuracy and to generalize across diverse domains and model scales.

054 As a principled strategy, PALU formulates concise reasoning as a constrained optimization problem: minimize rollout length while maintaining performance above a specified threshold. Because
 055 constrained problems are difficult to solve directly, PALU adopts a *Lagrangian* formulation that
 056 converts the constraint into an equivalent unconstrained objective. An associated *Lagrange* multiplier
 057 then dynamically balances concision and performance, yielding PALU’s first key property: concise
 058 reasoning without hand-tuned length heuristics while maintaining performance.
 059

060 As a pragmatic solution, PALU replaces expensive min–max gradient updates for the *Lagrangian*
 061 with three practical approximations.
 062

- 063 (i) Off-policy performance check. Instead of collecting fresh rollouts to determine the *Lagrange*
 064 multiplier update direction, PALU reuses last-epoch rollouts to estimate performance. This
 065 avoids repeated model loading and new rollout computation, thereby preserving *Efficiency*.
- 066 (ii) Regime-based optimization scheme. Rather than tuning the *Lagrange* multiplier via brittle,
 067 slow ascent, PALU snaps the multiplier into two extremes implicitly. This simplification pre-
 068 serves the essential sign behavior of λ and ensures conciseness without compromising perfor-
 069 mance, yielding *Balance*.
- 070 (iii) Quantile-driven budget update. Because gradients of the *Lagrangian* with respect to the length
 071 budget are non-differentiable, PALU uses a quantile-based surrogate: it estimates the marginal
 072 effect of reducing the budget by observing accuracy drops and sets the step size by a target
 073 quantile of these drops. Grounded in these derivative-inspired statistics, the update scales
 074 naturally across domains and model sizes without heuristic retuning, conferring *Adaptivity*,

075 PALU, when combined with GRPO (Shao et al., 2024), reduces generation length by 64% while
 076 improving accuracy by 16% on DEEPSEEK-R1-DISTILL-QWEN-1.5B, averaged across six bench-
 077 mark tasks, outperforming alternative methods. Compared with methods that rely on heuristic length
 078 budgets or length-aware rewards, both of which require sensitive tuning across domains and model
 079 sizes, PALU achieves superior conciseness across multiple domains (logic, STEM, mathematics)
 080 and scales effectively from 1.5B to 14B parameters. By uniting conciseness with performance, and
 081 exhibiting strong adaptivity across domains and scales, PALU demonstrates the effectiveness of a
 082 principled yet pragmatic solution for concise reasoning.

083 2 PRELIMINARIES

086 Group Relative Policy Optimization (GRPO (Shao et al., 2024)) simplifies PPO (Schulman et al.,
 087 2017) for LLM finetuning by replacing the heavy value model with a per-prompt, group-relative
 088 normalization of the reward. Specifically, given a question–answer pair (q, a) drawn from dataset
 089 \mathcal{D} , a group of G rollouts (responses) $\{o_i\}_{i=1}^G$ is sampled, and their advantages are computed as:

$$090 \hat{A}_i(o_i, a) = \frac{r(o_i, a) - \text{mean}(\{r(o_i, a)\}_{i=1}^G)}{\text{std}(\{r(o_i, a)\}_{i=1}^G)}, \quad (1)$$

092 where the reward signal r is provided by some rule-based reward functions. To stabilize training,
 093 GRPO adopts the clipped surrogate objective from PPO (Schulman et al., 2017):
 094

$$095 \min \left\{ r_{i,t}(\boldsymbol{\theta}) \hat{A}_i(o_i, a), \text{clip} \left(r_{i,t}(\boldsymbol{\theta}), 1 - \epsilon_{\text{low}}, 1 + \epsilon_{\text{high}} \right) \right\}, \quad (2)$$

097 where $r_{i,t}(\boldsymbol{\theta})$ is the per-token probability ratio between policy $\pi_{\boldsymbol{\theta}}$ and the behavior policy $\pi_{\boldsymbol{\theta}_{\text{old}}}$:

$$098 r_{i,t}(\boldsymbol{\theta}) = \frac{\pi_{\boldsymbol{\theta}}(o_{i,t} | q, o_{i,<t})}{\pi_{\boldsymbol{\theta}_{\text{old}}}(o_{i,t} | q, o_{i,<t})}. \quad (3)$$

100 This yields the GRPO objective (we eliminate the KL-divergence constraint (Yu et al., 2025)):

$$102 J_{\text{GRPO}}(\pi_{\boldsymbol{\theta}}) = \mathbb{E}_{(q, a) \sim \mathcal{D}, \{o_i\}_{i=1}^G \sim \pi_{\boldsymbol{\theta}_{\text{old}}}(\cdot | q, L)} \left[\frac{1}{G} \sum_{i=1}^G \frac{1}{|o_i|} \sum_{t=1}^{|o_i|} \min \left\{ r_{i,t}(\boldsymbol{\theta}) \hat{A}_i(o_i, a), \text{clip}(r_{i,t}(\boldsymbol{\theta}), 1 - \epsilon_{\text{low}}, 1 + \epsilon_{\text{high}}) \hat{A}_i(o_i, a) \right\} \right], \quad (4)$$

107 where L denotes the length budget for generation, such that decoding proceeds token by token and
 108 is forcibly terminated once the number of generated tokens reaches L .

108 **3 RELATED WORK**

110 Concise reasoning in LLMs is an emerging research direction aimed at mitigating the overthinking
 111 phenomenon (Han et al., 2024; Ma et al., 2025). Existing solutions can be broadly categorized into
 112 three paradigms: *(i)* training-free methods, including guided prompting (Xu et al., 2025b), modular
 113 workflow pipelines (She et al., 2025), decoding manipulation (Muennighoff et al., 2025), and latent-
 114 space reasoning (Hao et al., 2024); *(ii)* SFT- and DPO-based methods, including reasoning path
 115 filtering (Munkhbat et al., 2025), reasoning with latent tokens (Su et al., 2025), and preference
 116 optimization (Team et al., 2025a); and *(iii)* RL-based methods, to which our approach belongs.

117 **Table 1: An overview of RL-based concise reasoning methods.**

Modification	Penalty function	Representatives
Reward function	$r = r(o, a) - f(\text{len}(o))$	Kimi 1.5 RL (Team et al., 2025a); Overlong punishment (Yu et al., 2025)
Reward function	$r = r(o, a) - f(\text{len}(o), \text{diff}(q))$	L1 (Aggarwal & Welleck, 2025),
Reward function	$r = r(o, a) - f(\text{len}(o) - \text{target})$	O1-pruner (Luo et al., 2025b); ShorterBetter (Yi et al., 2025)
Length budget	$L = f(\text{stage})$	Thinkprune (Hou et al., 2025)
Length budget	$L = f(\text{diff}(q))$	GFPO (Shrivastava et al., 2025)

126 Reward-function-based approaches typically introduce length-aware penalties during RL training.
 127 Team et al. (2025a); Xiang et al. (2025); Arora & Zanette (2025); Yeo et al. (2025); Song & Zheng
 128 (2025) subtract a penalty term proportional to response length from reward signals. Others (Xiang
 129 et al., 2025; Shen et al., 2025; Li et al., 2025) refine this idea by incorporating both response length
 130 and question difficulty. A further refinement discounts the reward according to the deviation between
 131 the generated and the target length (Luo et al., 2025b; Yi et al., 2025; Team et al., 2025b). However,
 132 aggregating such heterogeneous reward components prior to normalization can distort the length
 133 penalty (Chen et al., 2025). Moreover, these methods face a fundamental limitation in adaptivity:
 134 their reward shapes require extensive trial-and-error tuning across data domains and model scales.

135 Length-budgeting methods, by contrast, regulate the rollout through setting hard length budgets.
 136 This approach would stop the decoding when the number of generated tokens reaches this value.
 137 One line of work (Hou et al., 2025; Hammoud et al., 2025) progressively reduces the global length
 138 budget, whereas another (Shrivastava et al., 2025) filters trajectories after generation, retaining only
 139 those shorter than a length threshold. A limitation of these approaches is that the budget is typically
 140 set heuristically, often neglecting the risk of performance degradation. Our method instead allocates
 141 the budget in a principled manner, explicitly balancing conciseness with performance. For a more
 142 comprehensive survey on concise reasoning methods, please refer to Zhu & Li (2025).

143 **4 PROPOSED METHOD: PALU**

144 **4.1 FORMULATION AND INTUITION**

145 Unlike heuristic approaches, we formulate concise reasoning into a constrained optimization prob-
 146 lem. Let L denote the per-question length budget, r a (rule-based) reward evaluating the responses
 147 from a reasoning model π_{θ} , and $C \in [0, 1]$ a global performance threshold. The objective is to min-
 148 imize L while ensuring performance meets or exceeds C for question-answer pairs $\{(q, a)\}$ drawn
 149 from dataset \mathcal{D} :

$$\min_{\theta, L > 0} L \quad \text{s.t.} \quad R(\theta, L, q) \geq C, \quad (5)$$

150 with $R(\theta, L, q)$ denoting the expected reward obtained by model π_{θ} , when generating a set of re-
 151 sponse \mathbf{o} for query q under a length budget L :

$$R(\theta, L, q) = \mathbb{E}_{\mathbf{o} \sim \pi_{\theta}(\cdot | q, L)} [R(\mathbf{o}, a)]. \quad (6)$$

152 Directly solving Eq. (5) can be difficult. Fortunately, *Lagrangian* optimization enables a conversion
 153 of the original problem to the following min–max objective:

$$\min_{\theta, L > 0} \max_{\lambda \geq 0} \mathcal{L}(\theta, L, \lambda) = L + \lambda (C - R(\theta, L, q)), \quad (7)$$

162 where λ is the dual variable penalizing constraint violation. Assuming differentiability, the solution
 163 of the original constrained optimization can be approximated by applying first-order stochastic up-
 164 dates with learning rates η_λ , η_θ , and η_L (for the dual variable, model parameters, and length budget,
 165 respectively), together with implicit projections onto $\lambda \geq 0$ and $L > 0$:

$$166 \quad \lambda \leftarrow \lambda + \eta_\lambda (C - R(\theta, L, q)), \quad (8)$$

$$169 \quad \theta \leftarrow \theta + \eta_\theta \cdot \lambda \cdot \nabla_\theta R(\theta, L, q), \quad (9)$$

$$171 \quad L \leftarrow L - \eta_L (1 - \lambda \cdot \nabla_L R(\theta, L, q)). \quad (10)$$

174 These updates admit a natural interpretation. When the performance constraint is satisfied, λ re-
 175 mains small and the corresponding length budget L is reduced. Empirically, longer responses tend
 176 to correlate with higher reward, so $\nabla_L R \geq 0$. Conversely, when performance falls below C , λ
 177 increases, expanding L and prioritizing updates to θ to restore performance. Beside the explicit
 178 balance between performance and conciseness, the update rule for length budget L , Eq. (10), offers
 179 a principled way to achieve the concise reasoning, without heuristics on the target generation length.

180 4.2 PRACTICAL ALGORITHM

182 Guided by the min–max formulation and the first-order update rules, we introduce performance-
 183 aware length update (PALU), a pragmatic and principled algorithm for training concise reasoning
 184 models. PALU simplifies the complicated updates rules by three components: (i) an off-policy pass-
 185 rate estimate, (ii) a regime-based optimization scheme that toggles the optimization focus, and (iii)
 186 a quantile-based surrogate for the derivative term $\nabla_L R(\theta, L, q)$.

188 **Off-policy performance estimation (Eq. (8))** Updating the length budget L and model param-
 189 eters θ requires estimating the performance R . Computing this quantity on-policy would demand
 190 repeatedly reloading the latest parameters, which is computationally costly. Instead, we approximate
 191 it with the previous round’s evaluation:

$$192 \quad R(\theta, L, q) \approx R(\theta_{\text{old}}, L_{\text{old}}, q) = \mathbb{E}_{o \sim \pi_{\theta_{\text{old}}}(\cdot | q, L_{\text{old}})} [r(o, a)]. \quad (11)$$

194 This off-policy reuse provides a conservative estimate of the true pass rate. While such approxi-
 195 mations are often unstable in reinforcement learning with randomly initialized policies, LLM fine-
 196 tuning differs because performance typically improves monotonically thanks to pretraining. Thus,
 197 this conservative bias is acceptable, and even desirable, because it naturally underestimates model
 198 performance and emphasizes more on policy improvement (Eq. (9), *i.e.*, the case of large λ).

200 **Regime-based optimization (Eq. (8) and Eq. (10))** In the *Lagrangian* view, λ reweights the
 201 emphasis between conciseness and performance. When the performance constraint is satisfied ($C -$
 202 $R \leq 0$), residuals integrate to a small λ , so the update prioritizes reducing the length budget. In
 203 this case, $(1 - \lambda \cdot \nabla_L R(\theta, L, q)) > 0$. Conversely, when the constraint is violated ($C - R > 0$), a
 204 sequence of positive residuals drives λ upward, shifting the emphasis toward recovering performance
 205 by enlarging L and updating the model π_θ .

206 While this continuous adjustment is elegant in theory, it depends critically on carefully tuned learn-
 207 ing rates and a long integration horizon. Both impractical for LLM post-training. PALU therefore
 208 discards the need for a continuously evolving λ and instead approximates only its sign behavior with
 209 a two-regime controller:

$$211 \quad \text{Optimization regime} = \begin{cases} L \leftarrow L - \alpha_\tau^q & \text{if } R(\theta, L, q) \geq C \\ L \leftarrow L_{\max} & \text{otherwise} \end{cases}, \quad (12)$$

214 where $\alpha_\tau^q > 0$ is a new term we will explain later. This simplification turns the *Lagrange* multiplier
 215 into an implicit “bang–bang” controller with two regimes: one regime pushes toward conciseness,
 the other safeguards performance by resetting to the maximum L_{\max} when the constraint is violated.

216 **Algorithm 1 Performance-Aware Length Update (PALU) with GRPO**

217 **Input:** initial model π_{θ} , dataset \mathcal{D} , bound L_{\max} , performance threshold C
218
219 1: **for** epoch in range(N) **do**
220 2: **for** each mini-batch $\mathcal{D}_b \subset \mathcal{D}$ **do**
221 3: **if** first epoch **then**
222 4: Initialize the length budget for all questions: $L = L_{\max}$
223 5: **else**
224 6: Reuse the last round pass rate, e.g., Eq. (11)
225 7: Update L for each $q \in \mathcal{D}_b$ using rule Eq. (12)
226 8: **end if**
227 9: Collect responses o with parameter θ and per sample budget L
228 10: Update θ with GRPO as per Eq. (4)
229 11: **end for**
230 12: **end for**
231 13: **Output:** concise reasoning model π_{θ}

232 **Quantile-driven budget update (Eq. (10))** To set the per-question reduction step $\alpha_{\tau}^{(q)}$ used by
233 the regime controller (Eq. (12)), we use Eq. (10) as an interpretive guide. The term $\nabla_L R(\theta, L, q)$
234 captures the sensitivity of performance to the length budget. Because R is a non-differentiable,
235 rule-based reward, we approximate this sensitivity via the difference between two nearby operating
236 points in the distribution of correct response lengths. Let

$$237 \quad Q_{\tau}^{(q)} := \text{Quantile}_{\tau} \left(\{\text{len}(o_i)\}_{i=1}^G \mid o \sim \pi_{\theta_{\text{old}}}(\cdot | q, L_{\text{old}}); r(o, a) = 1 \right) \quad (13)$$

238 and define the quantile gap

$$239 \quad \alpha_{\tau}^{(q)} := Q_{1.0}^{(q)} - Q_{1.0-\tau}^{(q)}. \quad (14)$$

240 If L is near $Q_{1.0}^{(q)}$, typical when the performance threshold C is high, reducing L by $\alpha_{\tau}^{(q)}$ lowers the
241 success rate by approximately τ . Hence,

$$242 \quad \nabla_L R(\theta, L, q) \approx \frac{R(\theta, L, q) - R(\theta, L - \alpha_{\tau}^{(q)}, q)}{\alpha_{\tau}^{(q)}} = \frac{\tau}{\alpha_{\tau}^{(q)}}, \quad (15)$$

243 Substituting into Eq. (10) yields the budget update:

$$244 \quad L = L - \eta_L \cdot \Delta L, \quad \Delta L = \left(1 - \lambda \cdot \nabla_L R(\theta, L, q) \right) \approx \left(1 - \lambda \cdot \frac{\tau}{\alpha_{\tau}^{(q)}} \right) \propto \alpha_{\tau}^{(q)}. \quad (16)$$

245 Accordingly, our regime update uses $L \leftarrow L - \alpha_{\tau}^{(q)}$ when $R(\theta, L, q) \geq C$, with $\alpha_{\tau}^{(q)}$ as the gap
246 between the longest correct response and its $(1-\tau)$ -quantile length, capturing how dispersed correct
247 responses are. In simple terms, when correct responses cluster tightly in length (small α_{τ}), updates
248 proceed cautiously; when they exhibit a wider tail, the adjustment is correspondingly more aggressive.
249 The resulting update embodies a direct, data-driven proxy for inverse sensitivity (the derivative
250 term in Eq. (10)), capturing the essence of Lagrangian optimization within a pragmatic rule.

251 **Summary** PALU circumvents the instability and cost of the full *Lagrangian* multiplier method
252 while retaining its principled grounding, by combining off-policy performance check, the regime-
253 based controller, and the quantile-driven update step. This design offers three key advantages:

254 (i) *Efficiency*, no additional computations are required to estimate the performance,
255 (ii) *Balance*, the two-regime controller reconciles conciseness and performance,
256 (iii) *Adaptivity*, the quantile-based step scales naturally across domains and model scales.

257 Algorithm 1 presents the pseudocode of PALU, instantiated with the GRPO performance objective
258 (Shao et al., 2024), where the update rule in Eq.(9) is replaced by maximizing Eq.(4)

259 **The implicit assumption** PALU works best when correct responses exhibit non-trivial dispersion
260 in length. When lengths concentrate tightly (e.g., when $\alpha_{0.1}$ is small for all questions), the regime
261 update in Eq. (12) shrinks accordingly, yielding conservative (slower) reductions in L while pre-
262 serving performance. Empirically, we rarely observe such concentration in reasoning models (see
263 Figure 1), though we acknowledge it as a potential limitation.

270
 271
 272
 273
 Table 2: Performance and conciseness comparison of different concise reasoning methods with
 274 DEEPSEEK-R1-DISTILL-QWEN-1.5B as the base model and DEEPSACLER as the training dataset.
 275 **P@1**: average pass@1 accuracy (%); **Tok**: average response length in tokens. **AE Score**: accuracy-
 276 efficiency score for balancing length reduction and accuracy preservation (Luo et al., 2025a).

Model & Methods	MATH 500		AIME 2024		AIME 2025		AMC 2023		Olympiad		Minerva-Math		Macro Average		AE Score \uparrow
	P@1	Tok	P@1	Tok	P@1	Tok	P@1	Tok	P@1	Tok	P@1	Tok	P@1	Tok	
R1-DISTILL-QWEN-1.5B	82.1	5534	28.5	16590	22.3	16381	62.7	10615	43.5	11587	26.0	7076	44.2	11297	0.0
<i>SFT- & DPO-Based</i>															
Kimi 1.5 SFT (Team et al., 2025a)	68.5	6761	22.0	17400	-	-	60.4	9323	39.4	10036	23.6	2804	42.7	9865	-0.499
Kimi 1.5 DPO (Team et al., 2025a)	83.3	4464	31.7	13389	-	-	63.0	8678	44.5	9604	26.9	6070	49.9	8441	0.289
TokenSkip (Xia et al., 2025)	64.1	1120	6.8	2231	-	-	37.3	1401	25.8	2061	20.7	1674	30.9	1697	-1.173
<i>RL-Based</i>															
CosFn (Yeo et al., 2025)	75.6	2735	27.5	12492	-	-	61.1	6970	42.9	8307	27.1	3485	46.8	6798	0.249
DIET (Chen et al., 2025)	83.0	3061	31.8	10578	-	-	65.4	6425	43.7	6917	26.9	3505	50.2	6097	0.547
Kimi 1.5 RL (Team et al., 2025a)	66.3	1552	18.8	9109	-	-	44.7	3808	28.5	4774	16.7	1009	35.0	4050	-0.871
O1-Pruner (Luo et al., 2025a)	79.1	2531	25.0	8961	-	-	62.5	5010	39.0	5242	23.7	2400	45.9	4829	0.193
AutoThink-Stage1 (Tu et al., 2025)	82.1	2473	33.5	12716	22.9	10028	66.0	5440	45.6	7328	27.0	5372	46.2	7226	-36.0%
AutoThink-Stage2 (Tu et al., 2025)	85.2	3702	31.8	12117	25.6	11557	66.6	7415	46.4	8030	27.2	5481	47.1	6768	0.552
AutoThink-Stage3 (Tu et al., 2025)	85.1	1897	41.9	9033	25.4	8968	71.9	4696	49.0	5005	30.5	3834	50.6	5563	-50.7%
ALP (Xiang et al., 2025)	80.5	1435	37.9	8084	26.2	8556	76.5	3513	47.6	4670	24.5	2197	48.9	4742	-58.0%
L1-Max (Aggarwal & Welleck, 2025)	83.5	3337	21.7	4093	25.1	3792	66.3	3350	45.6	2698	25.2	2595	44.6	3311	-70.7%
ShorterBetter (Yi et al., 2025)	62.9	626	22.9	4617	21.0	4454	65.0	2311	34.8	2674	19.8	827	37.7	2585	-77.1%
ThinkPrune-4k (Hou et al., 2025)	83.0	2745	29.5	8557	22.6	7952	71.7	4241	45.2	5505	26.5	3341	46.4	5390	-52.3%
PALU (ours)	85.3	1502	40.0	7132	28.8	6869	81.8	3174	49.5	3958	24.2	1922	51.6	4093	-63.8%
															1.185

5 EXPERIMENT

5.1 GENERATION LENGTH ASSUMPTION

PALU is predicated on the assumption that correct responses exhibit a *broad* distribution of lengths for given questions. If not, and the distribution were narrow, updates to the budget L would converge slowly. To evaluate this key assumption, we prompt open-source reasoning models, measuring the response lengths deemed correct for a sample prompt (Figure 1). Results on more prompts, together with extended analyses for the QWEN3 and DEEPSEEK-R1 families, are reported in Figure 6 in Appendix. The observed distribution in Figure 1 reveals marked variability: the longest correct responses are two to three times longer than the shortest. This broad spread supports PALU’s premise and indicates that the length budget L can be progressively reduced once the performance threshold is satisfied.

5.2 COMPARISON WITH EXISTING SOLUTIONS

Model and training data. We finetune DEEPSEEK-R1-DISTILL-QWEN-1.5B (Guo et al., 2025) and PHI-4-MINI-REASONING (Xu et al., 2025a) on a curated 12k math problems from GURU’s DEEPSACLER partition, removing overly easy or difficult samples (Cheng et al., 2025; Luo et al., 2025b). **Implementation.** We implement PALU on top of VERL (Sheng et al., 2024), with the hyperparameter step size $\alpha_{0.5}$ for (rapid) length reduction and performance threshold $C = 0.8$. **Training** is performed for 6400 gradient update steps (roughly 1100 H200 GPU hours) for DEEPSEEK-R1-DISTILL-QWEN-1.5B and 3200 steps (850 H200 GPU hours) for PHI-4-MINI-REASONING. We apply PALU from an initial generation budget of 16k tokens (Line 4 in Algorithm 1) and update it based on Eq. (12). **Evaluation Protocol.** During the evaluation, the generation budget is set to 32k. We report Pass@1 and the output length on: MATH-500 (Hendrycks et al., 2021), AIME 24, AIME 25, AMC 2023, MINERVA, and OLYMPIADBENCH (He et al., 2024). Besides, we employ the Accuracy-Efficiency (AE) Score (Luo et al., 2025a), a composite metric balancing

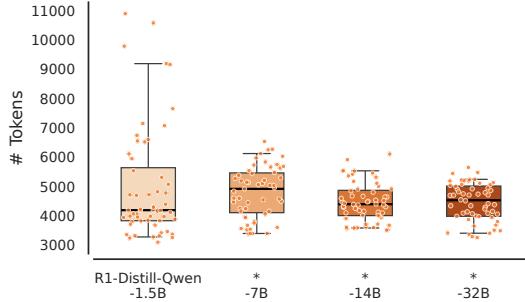
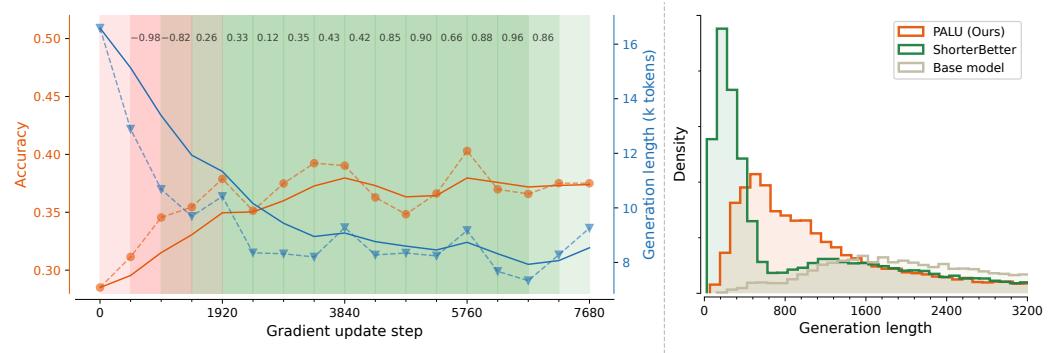


Figure 1: Token-length distribution of correct rollouts from the DEEPSEEK-R1-DISTILL-QWEN series of reasoning models. Box plots indicate the range between the 25th and 75th percentiles.

that the length budget L can be progressively reduced once the performance threshold is satisfied.

324
325
326
327
328
329
330
331
Table 3: Performance and conciseness comparison on PHI-4-MINI-REASONING.

Model & Methods	MATH 500		AIME 2024		AIME 2025		AMC 2023		Olympiad		Minerva-Math		Macro Average		AE Score \uparrow
	P@1	Tok	P@1	Tok	P@1	Tok									
PHI-4-MINI-REASONING	89.9	3997	45.6	13354	31.7	13733	84.5	7451	19.7	5164	33.5	5894	50.8	8265	0.0
Overlong punishment (Yu et al., 2025)	88.1	2795	28.5	3824	22.3	4019	79.7	5524	43.5	6065	30.0	4954	48.6	4539	-0.15
ThinkPrune-4k (Hou et al., 2025)	88.9	2819	35.5	6163	29.2	5941	82.5	4764	42.2	5135	31.3	2677	51.6	4583	-0.01
PALU (Ours)	89.3	1929	45.3	7423	30.7	7152	84.6	3241	49.8	3900	34.3	2056	55.7	4283	0.27

343
344
345
346
Figure 2: *Left*: Performance-conciseness evolution of PALU. The evaluation dataset is AIME24. We encode their *Spearman’s* correlations with red (negative) and green (positive) regions. *Right*: Distribution of generation lengths under PALU and ShorterBetter (Yi et al., 2025).347
348
length reduction against accuracy preservation, for overall comparison. We report results averaged
349
over 32 rollouts for AIME 24, AIME 25, and 10 for others, following Chen et al. (2025).350
351
352
353
354
355
356
357
Comparison results on DEEPSEEK-R1-DISTILL-QWEN-1.5B (Table 2) We consider two
358 families of baselines. *(i)* *SFT/DPO-based models*: Kimi k1.5 SFT, Kimi k1.5 DPO (Team et al.,
359 2025a), and TokenSkip (Xia et al., 2025). *(ii)* *RL-based methods*: reward-function-based meth-
360 ods such as CosFN (Yeo et al., 2025), Kimi k1.5 RL (Team et al., 2025a), DIET (Chen et al.,
361 2025), ShorterBetter (Yi et al., 2025), L1-Max (Aggarwal & Welleck, 2025), and ALP (Xiang et al.,
362 2025); stage-based length budgeting methods that progress shrink the rollout budget, for example,
363 ThinkPrune (Hou et al., 2025); and multi-stage RL pipelines, e.g., AutoThink (Tu et al., 2025).364
365
366
367
368
369
370
371
PALU achieves superiority in both conciseness and accuracy (Table 2). Across six math and science
372 tasks, PALU reduces the macro-average response length from 11,297 to 4093 tokens, a 63% reduction.
373 Meanwhile, it surpasses other RL-based methods in terms of accuracy. The consistent gains in
374 accuracy and conciseness highlight the effectiveness of the *Lagrangian* optimization objective.375
376
377
378
379
380
381
PALU reduces both easy and hard redundancies (Figure 2, left). We monitor the joint evolution
382 of evaluation accuracy and generation length throughout training, with *Spearman* correlations be-
383 tween the two encoded by color (window size 4). In the initial phase (red-shaded), accuracy rises
384 as length falls, showing that PALU eliminates redundant tokens without harming performance. As
385 training progresses, the correlation turns positive (green-shaded), revealing a genuine trade-off: fur-
386 ther compression now risks eroding accuracy. This marks the *harder redundancies*. PALU responds
387 adaptively, retaining moderately longer responses when beneficial while continuing to shorten those
388 that can be solved concisely. Consequently, the overall generation length continues to decline (solid
389 curves), even under trade-off pressure. These dynamics demonstrate that PALU not only captures
390 the low-hanging fruit of trivial redundancy removal but also sustains balanced improvements in the
391 more challenging regime where performance and conciseness must be carefully reconciled.392
393
394
395
396
397
398
PALU retains moderate-length responses when beneficial (Figure 2, right). We then present the
399 generation length distributions of PALU and ShorterBetter (Yi et al., 2025) on evaluations tasks in
400 Figure 2. ShorterBetter, as a reward-based method, produces a sharp peak at very short lengths (less
401 than 320 tokens) and very few responses in the middle range around 800 tokens, suggesting it often
402 cuts too aggressively. In contrast, PALU spreads its density more evenly, keeping many responses in
403 the moderate range while still limiting very long outputs. This pattern reflects PALU’s strength: it
404 avoids excessive shortening while still trimming unnecessary length, which helps preserve accuracy.

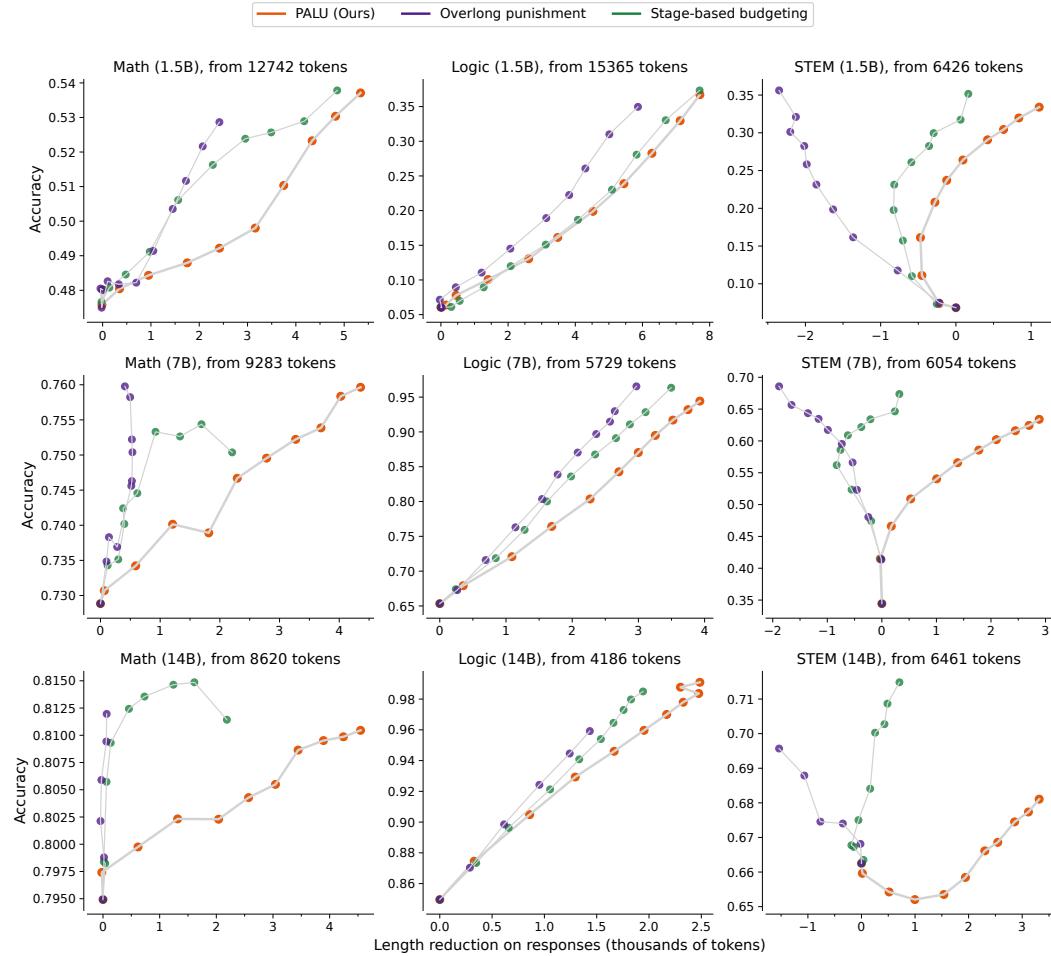
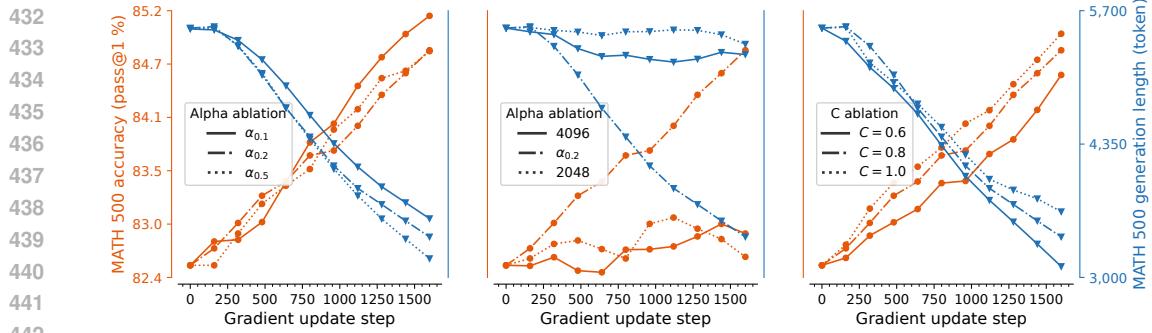


Figure 3: Conciseness-performance evolution of DEEPSEEK-R1-DISTILL-QWEN-1.5B trained with different concise reasoning methods. The training dataset covers three-domain questions: math, logic and STEM. Results are plotted with time weight exponential moving average smoothing.

Comparison results on PHI-4-MINI-REASONING (Table 3) To assess the generality of PALU across model architectures, we further evaluate it on PHI-4-MINI-REASONING. Owing to the computational cost, we include two representative baselines: ThinkPrune-4k, and overlong-punishment (Yu et al., 2025), which penalizes responses exceeding 4k tokens. All models are trained with a context length of 8k, and the results are summarized in Table 3. PALU attains comparable accuracy to the base model while maintaining a shorter generation length, in contrast to alternative methods that sacrifice accuracy for brevity. This superior balance between accuracy and conciseness on PHI-4-MINI-REASONING confirms PALU’s robust and architecture-agnostic effectiveness.

5.3 SCALING TO MULTI-DOMAIN TASKS AND LARGE MODELS

Multi-domain and multi-scale comparison (Figure 3) To examine PALU’s adaptivity on domains and model scales, we conduct comparison using a series of DEEPSEEK-R1-DISTILL-QWEN models with parameters 1.5B, 7B, and 14B, with the training data covering math, logic and STEM from the GURU(Cheng et al., 2025) dataset. We limit the training data to 5,120 samples (2k math, 2k STEM and 1k logic) and train the model for only 10 epochs. For evaluation, we use another 768 questions spanning math, logic, and STEM, and report both accuracy (pass@1 over 10 rollouts) and generation length reductions (in thousands of tokens) on test partitions. For comparison, we employ (i) stage-based budgeting from Hou et al. (2025) with gradually reducing the generation-length budget from 16k to 8k over five stages; and (ii) soft overlong punishment strategy introduced by DAPO (Yu et al., 2025), with a penalty for responses with length exceeding 8k. These approaches serve as representatives of length-budget-based and reward-function-based methods.

Figure 4: **Ablation study on the step size α_τ (left, middle) and the performance threshold C (right).**

PALU adapts across data domains and model scales (Figure 3). All three methods improve accuracy on the in-distribution test sets. Yet, their impact on conciseness diverges. **The multi-domain scenario.** Consider the 1.5B model (first row of Figure 3). Stage-based budgeting and overlong punishment shorten responses for math and logic tasks, with evaluation curves showing clear progress to the right-hand side (*i.e.*, gains in length reduction). Yet in STEM, these heuristics fail. Their reliance on a fixed target length (8k in our implementation) leaves little space for further reduction, as the base model already generates shorter responses (~ 6.5 k tokens), well below the assumed optimum. **The multi-scale scenario.** Initial generation length varies substantially across model sizes, especially for math and logic tasks (as indicated in subtitles for the left column of Figure 3). This variation poses a fundamental challenge for heuristic methods: because they require an explicit length target, each new model scale demands repeated trial-and-error sweeps to locate a workable setting. **PALU.** Rather than imposing heuristic length targets, PALU dynamically adjusts its budget under a joint conciseness-performance objective. This principled formulation, grounded in *Lagrangian* dynamics, adapts seamlessly to varying initial length distributions and performance-length trade-offs. As a result, PALU achieves consistent improvements across domains and model sizes. In short, heuristic approaches work in narrow cases but break down when domain or model characteristics shift. PALU avoids this brittleness by treating concise reasoning as a performance-constrained optimization problem, delivering robust conciseness and accuracy gains across diverse settings.

462 5.4 ABLATION AND COMPUTATIONAL OVERHEAD ANALYSIS

464 PALU draws inspirations from the *Lagrangian* formulation for minimizing the length budget for 465 rollouts. This provides a principled yet efficient budgeting mechanism involving two hyperparameters: 466 (1) a step size α_τ , and (2) a performance threshold C :

$$467 \quad 468 \quad 469 \quad L = \begin{cases} L - \alpha_\tau^{(q)} & \text{if } R \geq C \\ L_{\max} & \text{otherwise} \end{cases}.$$

471 **Step size in PALU (Figure 4, left)** α_τ^q measures the gap between the longest correct response and 472 the $(1 - \tau)$ -quantile length for the question q . τ directly determines the step size for updating L . 473 To examine its sensitivity and guide practitioners, we conduct an ablation study across different τ 474 values **with fixed performance threshold $C = 0.8$** . Using the multi-domain dataset (math, logic, 475 and STEM), we run PALU with update steps $\alpha_{0.1}$, $\alpha_{0.2}$, and $\alpha_{0.5}$. We evaluate the model on the 476 MATH 500 benchmark and report the accuracy and generation length during the training process. 477 As shown in Figure 4, left, a larger step ($\alpha_{0.5}$) accelerates length reduction but slightly compromises 478 accuracy, whereas smaller steps stabilize performance but provide weaker pressure for conciseness.

479 **Replacing α_τ with heuristic values (Figure 4, middle)** The *Lagrangian*-based formulation in 480 PALU provides a principled mechanism for adjusting the length budget. To highlight its advantage, 481 we replace the step size α_τ with fixed values, setting $\Delta L \in \{2048, 4096\}$. In this setup, once the 482 model meets the performance threshold (*e.g.*, $C = 0.8$), the length budget is reduced by a fixed 483 amount; otherwise, it is reset to the maximum budget (16k). The comparison results in the middle 484 panel of Figure 4 show that PALU’s adaptive step size allows the model to shorten outputs smoothly 485 and stably, while the heuristic fixed-step variants struggle to balance conciseness and performance. 486 This confirms the importance of PALU’s principled update rule for stable optimization.

486
 487 **Performance threshold in PALU (Figure 4, right)** The threshold C serves as a constraint bound-
 488 ary between samples that should receive more or less generation budget and thus balances accuracy
 489 and conciseness. We validate this intuition by sweeping $C \in \{0.6, 0.8, 1.0\}$ and reporting results
 490 on the MATH-500 task in the right panel of Figure 4. A high threshold *e.g.*, $C = 1.0$, drives the
 491 optimization toward performance recovery, preserving accuracy at the cost of longer outputs, while
 492 a lower threshold, $C = 0.6$, yields the most compact generations with a modest drop in accuracy.
 493 The intermediate setting, $C = 0.8$, achieves the balance between the two objectives.

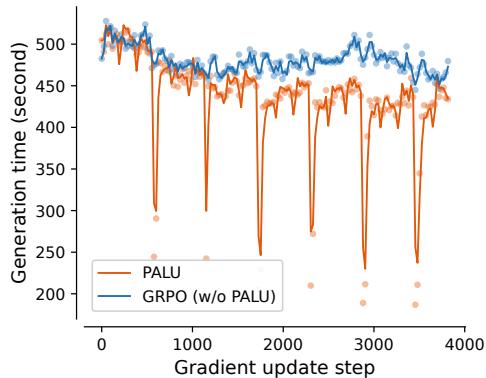
494 **Computational overhead analysis (Figure 5)**

495 On the memory side, PALU introduces three ar-
 496 rays and one scalar to record: (1) pass rates from
 497 the previous epoch, (2) the interested length quan-
 498 tiles of correct responses in the previous epoch, (3)
 499 length budgets for each prompt, and (4) a global
 500 performance threshold. This requires about 144
 501 KB for a dataset of 12 thousand of prompts. On
 502 the computation side, PALU assigns each prompt
 503 a generation length (budget) that progressively
 504 drives towards concise reasoning traces compared
 505 to the GRPO baseline. Besides, since the length
 506 budget is assigned before conducting the rollouts,
 507 it is therefore to sort the prompts by their budget
 508 to form balanced batches. Together, these two fac-
 509 tors reduce idle time and computation during inference,
 510 thereby improving overall efficiency by
 511 approximately 9.2% compared to the GRPO implemen-
 512 tation, as shown in Figure 5.

513 **6 LIMITATIONS AND CONCLUSION**

514 **Limitation** PALU assumes that overthinking LLMs have a broad distribution of response lengths.
 515 While we empirically verified this property in our experiments, we acknowledge an extreme case
 516 where the model always generates responses of identical length. In such a scenario, even reducing
 517 the length budget by a single token could cause accuracy to collapse from 1.0 to 0.0, rendering
 518 PALU ineffective. Another limitation is that we do not claim PALU’s concise reasoning behavior
 519 will generalize to out-of-distribution domains. We view such generalization as stemming primarily
 520 from the diversity of training data and the RL component, rather than from PALU itself.

521 **Conclusion** Although these limitations define the scope of our study, they do not detract from our
 522 central contribution: a principled and pragmatic solution for concise reasoning. Although trimming
 523 overly long responses seems intuitive, achieving this without compromising accuracy and while re-
 524 taining adaptivity across domains and model scales calls for a principled formulation. PALU elevates
 525 the intuition into theory by casting the task as a constrained optimization and resolving it through the
 526 *Lagrangian* framework. This shift from intuitive observation to principled methodology constitutes
 527 PALU’s broader contribution to the community. Technically, it affords two advantages. First, PALU
 528 automatically balances conciseness and performance without ad-hoc heuristics, reducing generation
 529 length by 64% while improving accuracy by 16% across six benchmark tasks. Second, it provides a
 530 principled update rule for the length budget, enabling robust adaptation across domains (math, logic,
 531 STEM) and model scales (1.5B, 7B, and 14B parameters).



532 **Figure 5: Rollout time comparison (training).**
 533 On the memory side, PALU introduces three ar-
 534 rays and one scalar to record: (1) pass rates from
 535 the previous epoch, (2) the interested length quan-
 536 tiles of correct responses in the previous epoch, (3)
 537 length budgets for each prompt, and (4) a global
 538 performance threshold. This requires about 144
 539 KB for a dataset of 12 thousand of prompts. On
 540 the computation side, PALU assigns each prompt
 541 a generation length (budget) that progressively
 542 drives towards concise reasoning traces compared
 543 to the GRPO baseline. Besides, since the length
 544 budget is assigned before conducting the rollouts,
 545 it is therefore to sort the prompts by their budget
 546 to form balanced batches. Together, these two fac-
 547 tors reduce idle time and computation during inference,
 548 thereby improving overall efficiency by
 549 approximately 9.2% compared to the GRPO implemen-
 550 tation, as shown in Figure 5.

540 REFERENCES
541

542 Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
543 reinforcement learning. *arXiv preprint arXiv:2503.04697*, 2025.

544 Daman Arora and Andrea Zanette. Training language models to reason efficiently. *arXiv preprint*
545 *arXiv:2502.04463*, 2025.

546 Weize Chen, Jiarui Yuan, Tailin Jin, Ning Ding, Huimin Chen, Zhiyuan Liu, and Maosong Sun.
547 The overthinker’s diet: Cutting token calories with difficulty-aware training. *arXiv preprint*
548 *arXiv:2505.19217*, 2025.

550 Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
551 Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for $2+3=?$ on the overthinking
552 of o1-like llms. *arXiv preprint arXiv:2412.21187*, 2024.

553 Zhoujun Cheng, Shibo Hao, Tianyang Liu, Fan Zhou, Yutao Xie, Feng Yao, Yuexin Bian, Yonghao
554 Zhuang, Nilabjo Dey, Yuheng Zha, et al. Revisiting reinforcement learning for llm reasoning
555 from a cross-domain perspective. *arXiv preprint arXiv:2506.14965*, 2025.

557 Mehdi Fatemi, Banafsheh Rafiee, Mingjie Tang, and Kartik Talamadupula. Concise reasoning via
558 reinforcement learning. *arXiv preprint arXiv:2504.05185*, 2025.

559 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
560 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
561 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

562 Hasan Abed Al Kader Hammoud, Kumail Alhamoud, Abed Hammoud, Elie Bou-Zeid, Marzyeh
563 Ghassemi, and Bernard Ghanem. Train long, think short: Curriculum learning for efficient rea-
564 soning. *arXiv preprint arXiv:2508.08940*, 2025.

566 Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-
567 budget-aware llm reasoning. *arXiv preprint arXiv:2412.18547*, 2024.

568 Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
569 Tian. Training large language models to reason in a continuous latent space. *arXiv preprint*
570 *arXiv:2412.06769*, 2024.

572 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
573 Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
574 promoting agi with olympiad-level bilingual multimodal scientific problems. *arXiv preprint*
575 *arXiv:2402.14008*, 2024.

576 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
577 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv*
578 *preprint arXiv:2103.03874*, 2021.

579 Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
580 Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. *arXiv preprint*
581 *arXiv:2504.01296*, 2025.

583 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
584 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv*
585 *preprint arXiv:2412.16720*, 2024.

586 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
587 man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers
588 in open language model post-training. *arXiv preprint arXiv:2411.15124*, 2024.

589 Zheng Li, Qingxiu Dong, Jingyuan Ma, Di Zhang, and Zhifang Sui. Selfbudgeter: Adaptive token
590 allocation for efficient llm reasoning. *arXiv preprint arXiv:2505.11274*, 2025.

592 Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
593 and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning.
594 *arXiv preprint arXiv:2501.12570*, 2025a.

594 Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y Tang, Manan Roongta, Colin Cai,
 595 Jeffrey Luo, Tianjun Zhang, Li Erran Li, et al. Deepscaler: Surpassing o1-preview with a 1.5 b
 596 model by scaling rl. *Notion Blog*, 2025b.

597

598 Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve: Length-
 599 compressible chain-of-thought tuning. *arXiv preprint arXiv:2502.09601*, 2025.

600 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 601 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 602 scaling. *arXiv preprint arXiv:2501.19393*, 2025.

603

604 Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin Yang, Yujin Kim, and Se-Young Yun. Self-
 605 training elicits concise reasoning in large language models. *arXiv preprint arXiv:2502.20122*,
 606 2025.

607 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 608 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

609

610 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 611 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
 612 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

613 Jianshu She, Zhuohao Li, Zhemin Huang, Qi Li, Peiran Xu, Haonan Li, and Qirong Ho. Hawkeye:
 614 Efficient reasoning with model collaboration. *arXiv preprint arXiv:2504.00424*, 2025.

615

616 Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wenjing Zhang, Jiangze Yan, Ning Wang, Kai
 617 Wang, Zhaoxiang Liu, and Shiguo Lian. Dast: Difficulty-adaptive slow-thinking for large reasoning
 618 models. *arXiv preprint arXiv:2503.04472*, 2025.

619

620 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 621 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint
 622 arXiv: 2409.19256*, 2024.

623

624 Vaishnavi Shrivastava, Ahmed Awadallah, Vidhisha Balachandran, Shivam Garg, Harkirat Behl,
 625 and Dimitris Papailiopoulos. Sample more to think less: Group filtered policy optimization for
 concise reasoning. *arXiv preprint arXiv:2508.09726*, 2025.

626

627 Mingyang Song and Mao Zheng. Walk before you run! concise llm reasoning via reinforcement
 628 learning. *arXiv preprint arXiv:2505.21178*, 2025.

629

630 DiJia Su, Hanlin Zhu, Yingchen Xu, Jiantao Jiao, Yuandong Tian, and Qingqing Zheng. Token
 631 assorted: Mixing latent and text tokens for improved language model reasoning. *arXiv preprint
 632 arXiv:2502.03275*, 2025.

633

634 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 635 Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
 636 llms. *arXiv preprint arXiv:2501.12599*, 2025a.

637

638 Prime Intellect Team, Sami Jaghouar, Justus Mattern, Jack Min Ong, Jannik Straube, Manveer
 639 Basra, Aaron Pazdera, Kushal Thaman, Matthew Di Ferrante, Felix Gabriel, et al. Intellect-2:
 640 A reasoning model trained through globally decentralized reinforcement learning. *arXiv preprint
 641 arXiv:2505.07291*, 2025b.

642

643 Songjun Tu, Jiahao Lin, Qichao Zhang, Xiangyu Tian, Linjing Li, Xiangyuan Lan, and Dongbin
 644 Zhao. Learning when to think: Shaping adaptive reasoning in r1-style models via multi-stage rl.
 645 *arXiv preprint arXiv:2505.10832*, 2025.

646

647 Heming Xia, Chak Tou Leong, Wenjie Wang, Yongqi Li, and Wenjie Li. Tokenskip: Controllable
 648 chain-of-thought compression in llms. *arXiv preprint arXiv:2502.12067*, 2025.

649

650 Violet Xiang, Chase Blagden, Rafael Rafailov, Nathan Lile, Sang Truong, Chelsea Finn, and Nick
 651 Haber. Just enough thinking: Efficient reasoning with adaptive length penalties reinforcement
 652 learning. *arXiv preprint arXiv:2506.05256*, 2025.

648 Haoran Xu, Baolin Peng, Hany Awadalla, Dongdong Chen, Yen-Chun Chen, Mei Gao, Young Jin
649 Kim, Yunsheng Li, Liliang Ren, Yelong Shen, et al. Phi-4-mini-reasoning: Exploring the limits
650 of small reasoning language models in math. *arXiv preprint arXiv:2504.21233*, 2025a.
651

652 Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing
653 less. *arXiv preprint arXiv:2502.18600*, 2025b.
654

655 Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long chain-
656 of-thought reasoning in llms. *arXiv preprint arXiv:2502.03373*, 2025.
657

658 Jingyang Yi, Jiazheng Wang, and Sida Li. Shorterbetter: Guiding reasoning models to find optimal
659 inference length for efficient reasoning. *arXiv preprint arXiv:2504.21370*, 2025.
660

661 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
662 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
663 at scale. *arXiv preprint arXiv:2503.14476*, 2025.
664

665 Qingjie Zhang, Di Wang, Haoting Qian, Yiming Li, Tianwei Zhang, Minlie Huang, Ke Xu, Hewu
666 Li, Yan Liu, and Han Qiu. Understanding the dark side of llms' intrinsic self-correction. *arXiv
667 preprint arXiv:2412.14959*, 2024.
668

669 Jason Zhu and Hongyu Li. Towards concise and adaptive thinking in large reasoning models: A
670 survey. *arXiv preprint arXiv:2507.09662*, 2025.
671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

A CONFIGURATIONS FOR TRAINING AND EVALUATION

Training recipe We integrate our PALU strategy to the VeRL implementation of GRPO and fine-tune DEEPSEEK-R1-DISTILL-QWEN-1.5B, 7B, and 14B models using the following recipe:

Table 4: Training recipe for finetuning DEEPSEEK-R1-DISTILL-QWEN-1.5B, 7B, and 14B.

Parameter	Value
Learning rate	$1e-6$
Rollout batch size (prompts)	512
Gradient update batch size (prompts)	32
KL-divergence coefficient	0.0
Max response length	16k
Loss aggregation mode	token-loss
Clip ratio low	0.2
Clip ratio high	0.28
Number of rollouts per sample	8
*Length update step size (Table 2, Figure 2)	$\alpha_{0.5}$
*Length update step size (Figure 3)	$\alpha_{0.2}$
*Performance threshold C	0.8

Training datasets For training, we employ two types of datasets:

- 12k mathematics question-answer pairs for the run in **Table 2**, **Figure 2**, and **Table 7** (benchmarking comparison and its in-depth analysis). This dataset is a slice from the GURU’s DEEPSACLER partition. We train DEEPSACER-R1-DISTILL-QWEN-1.5B for 20 epochs on it. This dataset is used to compare performance.
- 5k multi-domain questions for the comparisons in **Figure 3**, **Figure 4** and **Figure 5**. We randomly select (i) 2k math samples from the DEEPSACLER partition, (ii) 2k STEM samples from the STEM-web partition and (iii) 1k logic questions from the logic ordering puzzle partition of the GURU collection. We train DEEPSACER-R1-DISTILL-QWEN-1.5B, 7B, and 14B for 10 epochs for the multi-domain comparison and the ablation study. This dataset is used to analyze training dynamics.

Compute resources We conduct our experiments on H200 GPUs clusters. Results in Table 2 are from DEEPSEEK-R1-DISTILL-QWEN-1.5B trained on 12k DEEPSCLER questions, which takes 2 nodes (16 GPUs) for 1100 GPU hours. Results in Figure 3 are from DEEPSEEK-R1-DISTILL-QWEN-1.5B, 7B, and 14B models trained on 5k multi-domain questions, which takes 2 nodes, 4 nodes and 8 nodes for roughly 300, 700, and 2300 GPU hours.

Evaluation protocol We follow the standard decoding protocol used in concise reasoning research as listed in Table 5. For the rollout numbers, we collect 32 responses and report their statistics for the small dataset (AIME24) and 10 responses for others.

Table 5: Decoding parameters

Parameter	Value
Temperature	0.6
Top_p	0.95
Top_k	-
Max response length	32k

Table 6: Number of Rollouts for reporting the averaged performance and generation length

Dataset partition	Number of rollouts (for evaluation)
AIME 24	32
Others (MATH 500, AMC 23, <i>etc.</i>)	10

Table 7: Detailed Accuracy-Efficiency (AE) Score comparison.

Methods/Model	MATH 500	AIME24	AIME 2025	AMC23	Olympiad	MinervaMath	Marco	Average ↑
R1-Distill-Qwen-1.5B	0.000	0.000	0.000	0.000	0.000	0.000	0.00	
Kimi 1.5 SFT	-1.050	-1.189	-	-0.062	-0.337	0.142	-0.499	
Kimi 1.5 DPO	0.237	0.530	-	0.197	0.240	0.246	0.290	
TokenSkip	-0.299	-2.941	-	-1.158	-1.212	-0.256	-1.173	
CosFn	0.110	0.072	-	0.216	0.214	0.634	0.249	
DIET	0.480	0.710	-	0.524	0.417	0.609	0.548	
Kimi 1.5 RL	-0.243	-1.251	-	-0.794	-1.136	-0.931	-0.871	
O1-Pruner	0.360	-0.154	-	0.512	0.030	0.219	0.193	
GRPO	0.102	1.124	0.923	1.136	0.590	-0.496	0.563	
AutoThink-Stage1	0.553	0.760	0.470	0.645	0.512	0.356	0.552	
AutoThink-Stage2	0.444	0.617	0.740	0.488	0.507	0.364	0.521	
AutoThink-Stage3	0.767	1.866	0.870	0.998	0.947	0.977	1.077	
ALP	0.643	1.502	1.000	1.329	0.880	0.401	0.958	
L1-Max	0.448	-0.440	1.150	0.857	0.912	0.479	0.551	
ShorterBetter	-0.282	-0.261	0.440	0.892	-0.231	-0.309	0.030	
ThinkPrune	0.536	0.589	0.550	1.031	0.642	0.585	0.659	
PALU (ours)	0.846	1.781	1.460	1.615	1.072	0.382	1.185	

Accuracy-Efficiency (AE) Score (in Table 2) To evaluate whether a model improves inference efficiency, in other words, producing shorter responses without sacrificing accuracy, we adopt the *Accuracy-Efficiency (AE) Score*, introduced by Luo et al. (2025a). This metric combines the length reduction in response length and the accuracy improvement into a single number. It is formally defined as

$$\text{AE Score} = \begin{cases} \varphi \cdot \Delta\text{Length} + \eta \cdot |\Delta\text{Acc}|, & \text{if } \Delta\text{Acc} \geq 0 \\ \varphi \cdot \Delta\text{Length} - \theta \cdot |\Delta\text{Acc}|, & \text{if } \Delta\text{Acc} < 0 \end{cases},$$

where the terms are defined as follows:

- **Length reduction ratio:**

$$\Delta\text{Length} = \frac{\text{Length}_{\text{base}} - \text{Length}_{\text{model}}}{\text{Length}_{\text{base}}}.$$

A positive ΔLength indicates the evaluated model produces shorter outputs than the base model.

- **Accuracy change ratio:**

$$\Delta\text{Acc} = \frac{\text{Acc}_{\text{model}} - \text{Acc}_{\text{base}}}{\text{Acc}_{\text{base}}}.$$

$|\Delta\text{Acc}|$ measures the relative magnitude of accuracy gain or drop against the base model.

Positive AE Scores reflect desirable improvements: generating shorter outputs while maintaining or improving accuracy. Negative AE Scores arise when accuracy degradation outweighs the benefit of shorter responses. We follow Luo et al. (2025a) and adopt the same hyperparameters:

- $\varphi = 1$ (weight on length reduction),
- $\eta = 3$ (bonus for accuracy gains),
- $\theta = 5$ (penalty for accuracy drops).

The asymmetric weighting ($\theta > \eta$) ensures that accuracy drops are penalized more heavily than accuracy gains are rewarded, aligning with the practical preference to avoid performance degradation even when outputs become shorter.

We provide the detailed comparison of AE Score in Table 7 for reference.

B SOME EMPIRICAL EVIDENCE

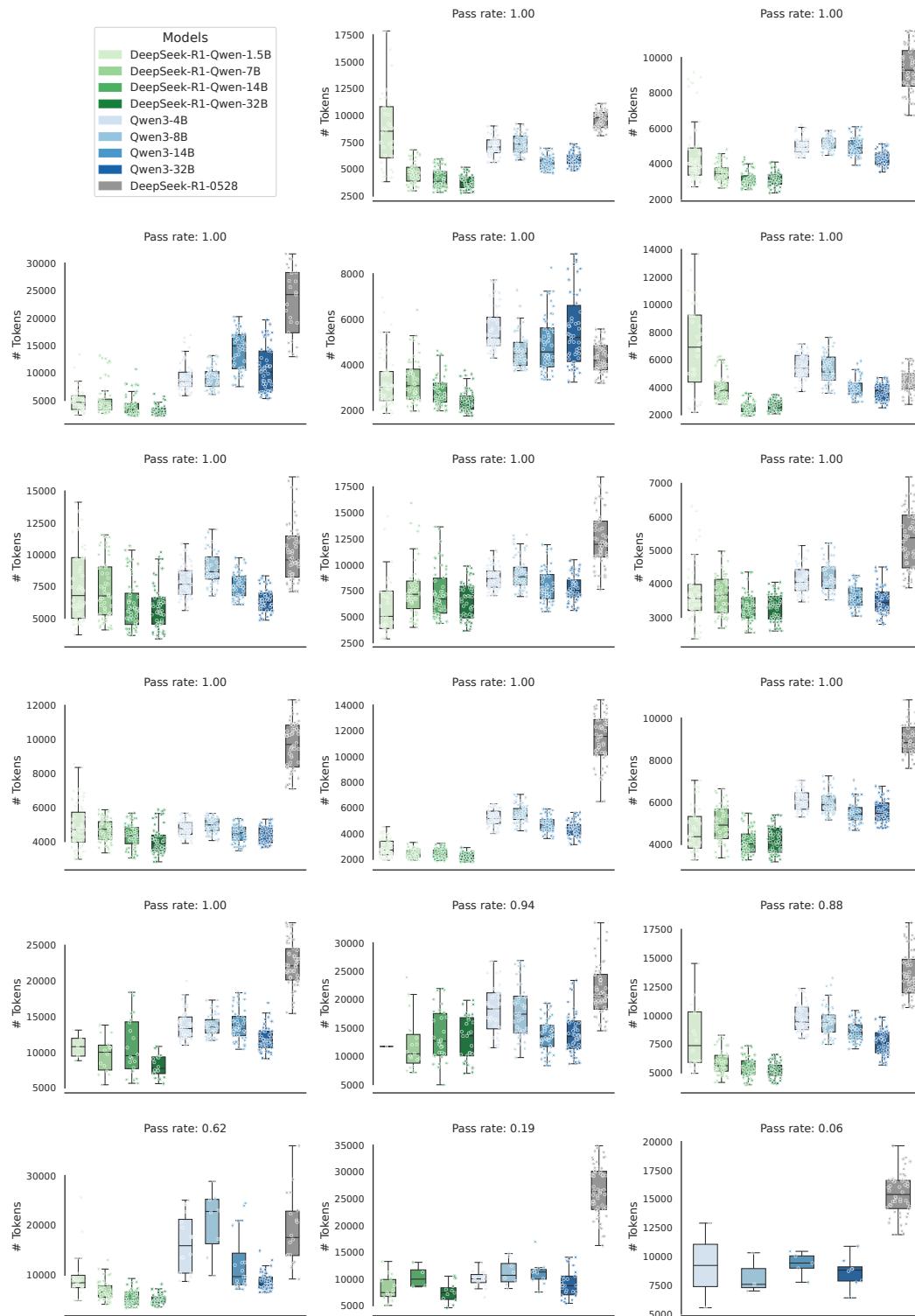


Figure 6: **Overthinking LLMs exhibit broad variation in the length of (correct) generations (Figure 1).** Token-length distributions of correct responses from open-source reasoning LLMs (DEEPEEK-R1-DISTILL-QWEN, QWEN3, and DEEPEEK-R1-0528) on randomly selected 18 questions from the GURU dataset. Box plots show the interquartile range (25th–75th percentiles).

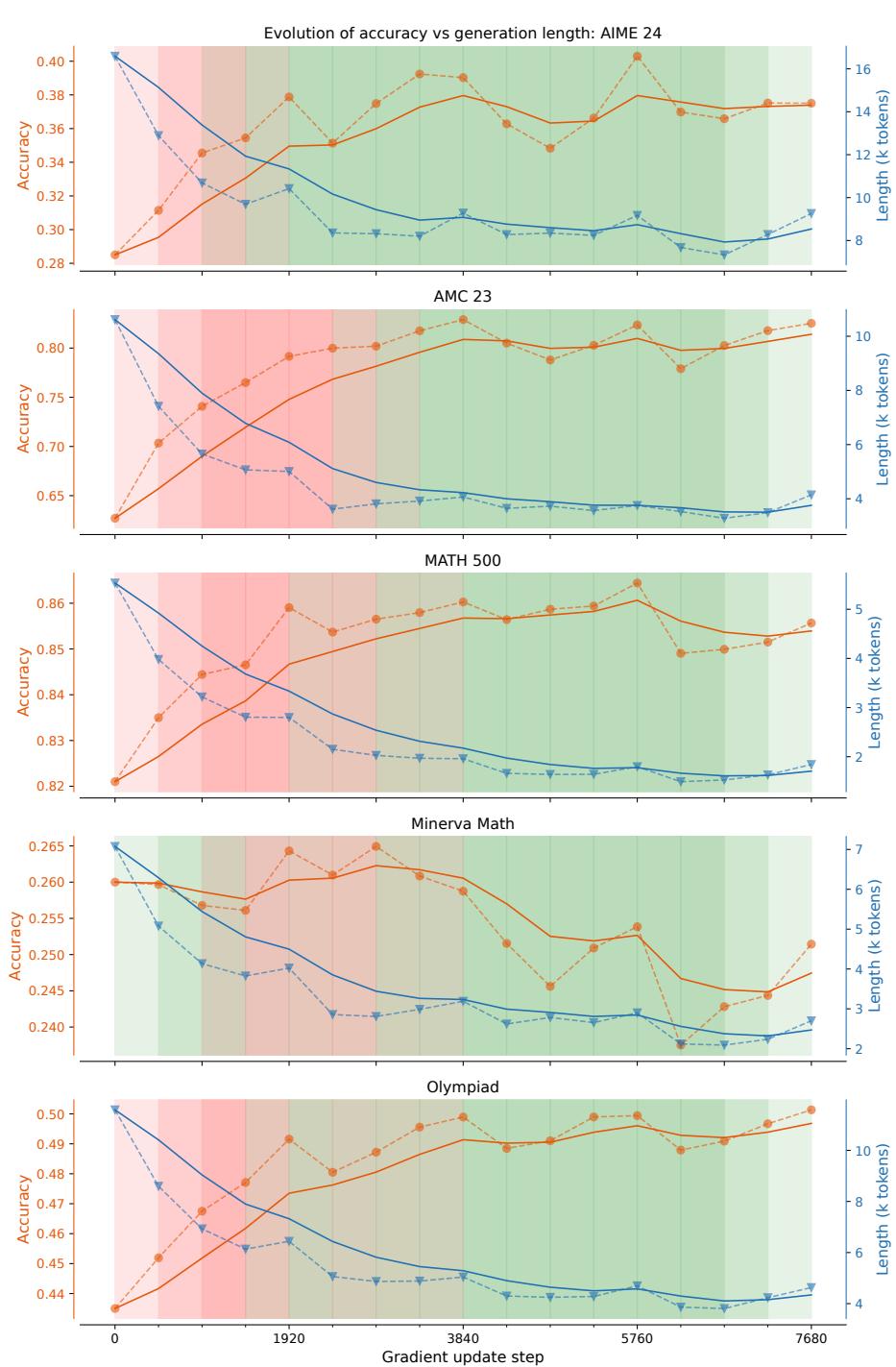


Figure 7: **PALU reduces both easy and hard redundancies (Figure 2).** Performance-conciseness evolution during PALU’s training. We encode the *Spearman* correlation between performance and generation length using red (negative) and green (positive) colors. In the early phase, the two are negatively correlated: accuracy rises while length decreases. As training progresses, the correlation becomes positive, indicating further shortening begins to limit accuracy. Nevertheless, PALU continues to reduce generation length even in this harder regime, as shown by the overall solid curves.

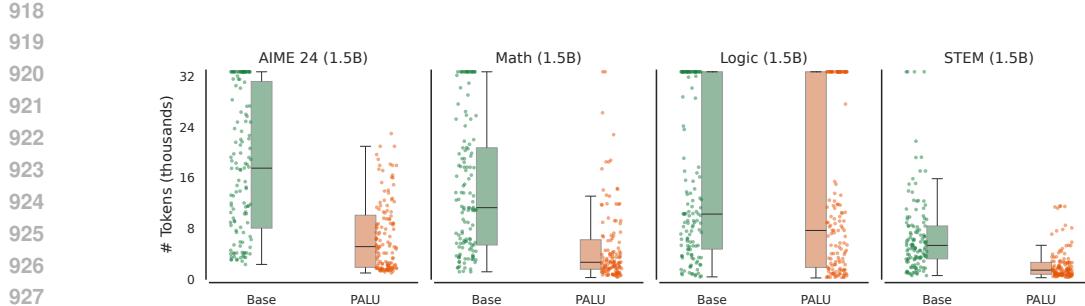


Figure 8: **Different question domains exhibit distinct generation length distributions.** We plot the length distributions of responses from the base model (DEEPSPEEK-R1-DISTILL-QWEN-1.5B) and the model finetuned with PALU (on math data, specifically, the 12k DEEPSACLER subset). Scatter points show raw lengths, while boxplots indicate the interquartile range (25th–75th percentiles). The base model produces shorter responses on STEM-domain questions but much longer ones on AIME 24 questions.

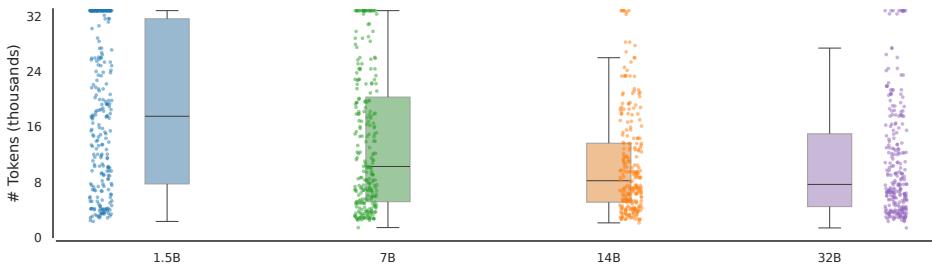


Figure 9: **Different model scales exhibit distinct generation length distributions.** We plot the response length distributions of models from the DEEPSPEEK-R1-DISTILL-QWEN series with parameter 1.5B, 7B, 14B and 32B. Scatter points show raw lengths, while boxplots indicate the interquartile range (25th–75th percentiles). The evaluation dataset is AIME 2024.

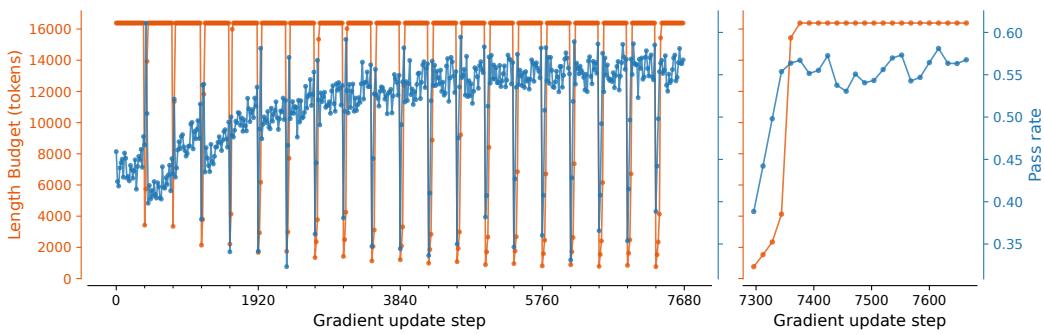


Figure 10: **Evolution of length budget (orange) and on-policy pass rate (blue) during training.** The model is DEEPSPEEK-R1-DISTILL-QWEN-1.5B, trained on a 12k-sample dataset. The right panel zooms in on the final training epoch for better visualization. Throughout training, the on-policy pass rate shows a steady upward trend. In the last epoch, among the 24 generation batches, five exhibit a reduced length budget, while the rest maintain the maximum 16k-token budget.

972 C GENERATION EXAMPLES
973974 **Question 1: Which one is greater, 8.11 or 8.9?**
975976 **DeepSeek-R1-Distill-Qwen-1.5B:**
977978 First, I need to compare the whole number parts of both numbers. Both 8.11 and 8.9 have
979 the same whole number part, which is 8. Since the whole numbers are equal, I'll move
980 on to comparing the decimal parts. Looking at 8.11, the decimal part is 0.11, while the
981 decimal part of 8.9 is 0.9. To make the comparison easier, I can rewrite 0.9 as 0.90. Now,
982 comparing 0.11 and 0.90, it's clear that 0.90 is larger. Therefore, 8.9 is greater than 8.11.
983984 *Solution:*
985986 *To determine which number is larger between 8.11 and 8.9, follow these steps:*
987988

1. *Compare the Whole Numbers:* - Both numbers have the same whole number part: 8.
2. *Compare the Decimal Parts:* - Convert 8.9 to have two decimal places: 8.90. - Now, compare 0.11 (from 8.11) and 0.90 (from 8.90).
3. *Determine Which Decimal is Larger:* - 0.90 is greater than 0.11.
4. *Conclusion:* - Since $0.90 > 0.11$, 8.90 is greater than 8.11.

989 *Therefore, 8.9 is larger than 8.11.*990 8.9
991992 **PALU:**
993994 *To determine which number is larger between 8.11 and 8.9, I'll compare their decimal
995 places. Both numbers have the same whole number part, which is 8. Next, I'll look at the
996 tenths place. In 8.11, the tenths digit is 1, while in 8.9, it's 9. Since 9 is greater than 1, 8.9
997 is larger than 8.11.*998 *To determine which number is larger between 8.11 and 8.9:*
9991000

1. *Compare the Whole Number Part:* - Both numbers have the same whole number part,
which is 8.
2. *Compare the Tenths Place:* - 8.11 has a tenths digit of 1. - 8.9 has a tenths digit of 9.
Since 9 is greater than 1, 8.9 is larger than 8.11.

1001 8.9
10021003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
1027**Question 2: What is the first prime number after two hundred?**1028
1029**DeepSeek-R1-Distill-Qwen-1.5B:**1030
1031
1032
1033
1034
1035
1036
1037
1038
1039

To determine the first prime number after 200, I'll start by checking each number sequentially to see if it's prime. I'll begin with 201 and check if it's divisible by any prime numbers less than its square root. The square root of 201 is approximately 14.17, so I only need to check divisibility by primes up to 13. Next, I'll check 202. Since it's even, it's divisible by 2, so it's not prime. Then, 203: I'll check if it's divisible by 7, 11, and 13. 203 divided by 7 is 29, so it's not prime. After that, 204 is even, so it's divisible by 2. 205 ends with a 5, so it's divisible by 5. 206 is even, so it's divisible by 2. 207: Adding the digits gives 9, which is divisible by 3, so 207 is not prime. 208 is even, so it's divisible by 2. 209: Checking divisibility by 11, since 209 divided by 11 is 19, it's not prime. Finally, 210 is even, so it's divisible by 2. 211: Checking divisibility by primes up to 14, it doesn't divide evenly by 2, 3, 5, 7, 11, or 13. Therefore, 211 is the next prime number after 200.

1040
1041

To find the first prime number after 200, follow these steps:

1042
1043

1. Understand What a Prime Number Is: - A prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself.
2. Start Checking Numbers After 200: - Begin with the number 201 and check each subsequent number to see if it's prime.
3. Check Divisibility: - 201: - $201 / 3 = 67$ - Since 201 is divisible by 3, it's not prime. - 202: - It's even, so divisible by 2. - Not prime. - 203: - Check divisibility by primes up to $\sqrt{203} = 14.25$. - $203 / 7 = 29$, so it's not prime. - 204: - It's even. - Not prime. - 205: - Ends with 5, divisible by 5. - Not prime. - 206: - It's even. - Not prime. - 207: - Sum of digits is 9, divisible by 3. - Not prime. - 208: - It's even. - Not prime. - 209: - Check divisibility by primes up to $\sqrt{209} = 14.45$. - $209 / 11 = 19$, so it's not prime. - 210: - It's even. - Not prime. - 211: - Check divisibility by primes up to $\sqrt{211} = 14.52$. - 211 is not divisible by 2, 3, 5, 7, 11, or 13. - Conclusion: 211 is a prime number.

1050
1051
1052

4. Final Answer: The first prime number after 200 is: 211

1053

PALU:

1054

1055
1056
1057
1058
1059
1060

To determine the first prime number after two hundred, I'll start checking each number sequentially from 201 onwards. 201 is divisible by 3, so it's not prime. 202 is even, thus not prime. 203 is divisible by 7, so it's not prime. 204 is even, not prime. 205 ends with a 5, so it's divisible by 5, not prime. 206 is even, not prime. 207 is divisible by 3, not prime. 208 is even, not prime. 209 is divisible by 11, so it's not prime. 210 is even, not prime. 211 is a prime number because it isn't divisible by any number other than 1 and itself. Therefore, the first prime number after two hundred is 211.

1061

The first prime number after 200 is 211.

1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080
 1081 **Question 3 (the first AIME 2025 problem): Find the sum of all integer bases $b > 9$ for which**
 1082 **17_b is a divisor of 97_b .**

1083
 1084 **DeepSeek-R1-Distill-Qwen-1.5B:**

1085 *Okay, so I have this problem where I need to find the sum of all integer bases $b > 9$ for*
 1086 *which 17_b is a divisor of 97_b . Hmm, let me think about how to approach this. First, I*
 1087 *know that numbers in base b can be converted to decimal (base 10) by expanding each*
 1088 *digit multiplied by powers of b . So, 17_b should be equal to $1 * b + 7 * 1$, which is $b + 7$.*
 1089 *Similarly, 97_b would be $9 * b + 7 * 1$, so that's $9b + 7$. The problem says that 17_b divides*
 1090 *97_b . In decimal terms, this means that $b + 7$ is a divisor of $9b + 7$. So, mathematically, we*
 1091 *can write this as: $\frac{9b+7}{b+7}$ is an integer. Let me denote this fraction as k , where k is an integer.*
 1092 *So, $k = \frac{9b+7}{b+7}$. To find k , I can perform polynomial division or rearrange the equation. Let*
 1093 *me try rearranging it: Multiply both sides by $b + 7$: $9b + 7 = k(b + 7)$. Expanding the*
 1094 *right side: $9b + 7 = kb + 7k$. Now, let's bring all terms to one side: $9b + 7 - kb - 7k = 0$.*
 1095 *Factor out b from the terms that contain it: $b(9 - k) + (7 - 7k) = 0$. Let me solve for b :*
 1096 *$b(9 - k) = 7k - 7$. So, $b = \frac{7k-7}{9-k}$. Simplify numerator: $7(k-1)$. So, $b = \frac{7(k-1)}{9-k}$. Since b*
 1097 *must be an integer greater than 9, the right side must evaluate to an integer. Also, $b > 9$,*
 1098 *so we need to find integer values of k such that b is an integer greater than 9. Let me*
 1099 *denote $m = k - 1$, so $k = m + 1$. Substitute back into the equation: $b = \frac{7m}{9-(m+1)} = \frac{7m}{8-m}$*
 1100 *So now, $b = \frac{7m}{8-m}$. Since b must be a positive integer greater than 9, both numerator*
 1101 *and denominator must be integers, and $8 - m$ must divide $7m$. So, $8 - m$ divides $7m$.*
 1102 *Let me write this as: $8 - m \mid 7m$. Which implies that $8 - m$ divides $7m$. Since*
 1103 *$8 - m$ is a divisor, let me denote $d = 8 - m$. Then, d divides $7m$, which is $7(8 - d)$.*
 1104 *So, $d \mid 7(8 - d)$. Which is: $d \mid 56 - 7d$. Therefore, $d \mid 56 - 7d + 7d$ (since $d \mid$*
 1105 *$7d$, so adding it doesn't change divisibility). Simplifying: $d \mid 56$. So, d is a positive integer*
 1106 *divisor of 56. Since $d = 8 - m$, and m is an integer (because k is an integer, so $m = k - 1$*
 1107 *is also an integer), we can find possible values of d . Let me list all positive divisors of 56: 1,*
 1108 *2, 4, 7, 8, 14, 28, 56. So, $d \in \{1, 2, 4, 7, 8, 14, 28, 56\}$. But remember that $d = 8 - m$, and*
 1109 *$m = k - 1$. Also, since k is positive (as it's a divisor in $9b + 7 = k(b + 7)$), m must be*
 1110 *positive or zero, but since $d = 8 - m$, and d is positive, we have $8 - m > 0$, so $m < 8$.*
 1111 *Therefore, m can be 0, 1, 2, 3, 4, 5, 6, or 7. So, let's find corresponding d for each m :*
 1112 *$m = 0$: $d = 8 - 0 = 8$. $m = 1$: $d = 8 - 1 = 7$. $m = 2$: $d = 8 - 2 = 6$. $m = 3$:*
 1113 *$d = 8 - 3 = 5$. $m = 4$: $d = 8 - 4 = 4$. $m = 5$: $d = 8 - 5 = 3$. $m = 6$:*
 1114 *$d = 8 - 6 = 2$. $m = 7$: $d = 8 - 7 = 1$. But wait, earlier we concluded that d must be a*
 1115 *positive divisor of 56, which is the case here since all... (exceed 32k)*

1116 **PALU:**

1117 *Okay, so I need to find the sum of all integer bases $b > 9$ where 17 base b divides 97 base*
 1118 *b . Hmm, let me break this down. First, let's convert both numbers from base b to decimal. 17*
 1119 *base b is equal to $1 * b + 7$. Similarly, 97 base b is $9 * b + 7$. So we need 17_b divides*
 1120 *97_b . Translating to decimal: $1 * b + 7$ divides $9 * b + 7$. So the condition is $(b + 7)$ divides*
 1121 *$(9b + 7)$. So let's express this as $(9b + 7)$ divided by $(b + 7)$ must be an integer. Let me*
 1122 *compute the division: Divide $9b + 7$ by $b + 7$. Using polynomial division: Divide $9b + 7$ by*
 1123 *$b + 7$. So $9b$ divided by b is 9. Multiply $(b + 7)$ by 9: $9b + 63$. Subtract this from $9b + 7$:*
 1124 *$(9b + 7) - (9b + 63) = 7 - 63 = -56$. So the division gives 9 with a remainder of -56.*
 1125 *Therefore, $(9b + 7) = 9 * (b + 7) - 56$. So for $(b + 7)$ to divide $9b + 7$, $(b + 7)$ must*
 1126 *divide the remainder, which is -56. But since divisibility is concerned with absolute value, so*
 1127 *$(b + 7)$ divides 56. So $b + 7$ is a positive divisor of 56. Given that $b > 9$, so $b + 7 > 16$. So $b + 7$*
 1128 *is a divisor of 56 greater than 16. Let's list the divisors of 56: 1, 2, 4, 7, 8, 14, 28, 56. Which*
 1129 *of these are greater than 16? 28 and 56. So possible $b + 7 = 28$ or 56. Therefore $b = 21$*
 1130 *or 49. So the bases are 21 and 49. Sum is $21 + 49 = 70$. Hence the answer is 70. **Final*
 1131 *Answer** The sum of all such bases is 70.*

1132 *To find the sum of all integer bases $b > 9$ for which 17_b is a divisor of 97_b , we convert*
 1133 *these numbers from base b to decimal: $17_b = 1 \cdot b + 7 = b + 7$. $97_b = 9 \cdot b + 7$. We need*
 1134 *$b + 7$ to divide $9b + 7$. Using polynomial division, we find that the remainder when $9b + 7$*
 1135 *is divided by $b + 7$ is -56. Thus, $b + 7$ must be a divisor of 56. Given $b > 9$, we find the*
 1136 *divisors of 56 greater than 16: 28 and 56. Therefore, $b + 7 = 28$ or $b + 7 = 56$, giving*
 1137 *$b = 21$ or $b = 49$. The sum of these bases is $21 + 49 = 70$. Thus, the sum of all such bases*
 1138 *is 70.*

1134 **D THE USE OF LARGE LANGUAGE MODELS**
11351136 An LLM was used to refine writing for clarity and readability but did not contribute to research
1137 design, experiment, or analysis. All intellectual work was independently conducted by the authors,
1138 and any suggestions from the LLM were critically evaluated before use. The authors bear full
1139 responsibility for the research, and the LLM is not listed as a contributor or author.
11401141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187