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Abstract

This study presents a flexible modeling pipeline
for indoor temperature prediction that leverages a
Mixture-of-Experts (MoE) framework built upon
Light Gradient Boosting Machine (LightGBM)
models. The approach incorporates a set of tem-
poral feature-enhanced experts using methods
such as Moving Average (MA) and Exponentially
Weighted Moving Average (EWMA) to embed
temporal trends. A model selector is trained to
assign dynamic soft weights to each expert at
every time step based on contextual features, en-
abling the final prediction to be a weighted com-
bination of all experts’ outputs. The Soft-MoE
framework achieved a mean absolute error (MAE)
of 1.1839 °F across all rooms over the entire
validation period. Notably, during periods with
pronounced diurnal temperature fluctuations, the
EWMA-enhanced expert reduced MAE by 45.4%
compared to the base mode. The proposed MoE
framework demonstrates strong adaptability to di-
verse temporal dynamics and is readily applicable
in real-world building environment control sys-
tems. The complete Jupyter Notebook is available
at: https://drive.google.com/file/
d/10s6GDuHBo0CpUwvMVGwWr5giuXFoEa
waB/view?usp=sharing.

1. Introduction

Indoor temperature predicting is essential for building envi-
ronment control, serving as a prerequisite for downstream
applications such as energy consumption simulation, Heat-
ing, Ventilation, and Air Conditioning (HVAC) control and
thermal comfort modeling (Palaic et al., 2023; Sasaki et al.,
2024; Xu et al., 2021). However, accurate prediction re-
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mains challenging due to the highly coupling interactions
between numerous exogenous factors driven by weather, oc-
cupants behaviors and HVAC regulations (Jiang et al., 2024;
Mtibaa et al., 2020). The Smart Buildings Competition at
the ICML 2025 CO-BUILD Workshop offers an opportunity
to deep dive into the field. The task involves leveraging
the building sensor data from Google’s open-source Smart
Building Simulator framework (Goldfeder & Sipple, 2023)
(hereafter referred to as SBS dataset), which is part of the
Smart Buildings Control Suite (Goldfeder et al., 2025) —
an interactive benchmark framework for building control.
The developed models, trained on the provided dataset, are
required to predict indoor temperatures over a validation
dataset of six month period. In addition to the above men-
tioned inherent difficulties, the competition poses further
unique challenges as follows.

* Substantial Missing in Datasets: Total missing data
ratio in training dataset is 35.18%, the time period
of which is almost overlapped across all sensors, in-
cluding a over-one-month period (from 2022-04-08
to 2022-05-17). For the validation set, 19.51% of the
sensor data is missing with the similar overlapping pat-
tern but more sparsely distributed. The missing pattern
across timestamps and devices is shown in App. Fig-
ure 6. The data missing in the training set, especially
the long term ones, hinders the model to learn and track
the temporal pattern. During inference, the data gap
causes drift problem and thus more severe cumulative
error.

¢ Disproportion of Training and Validation Dataset
Length: Both datasets are recorded from a 6 month
period (Jan-June 2022 and July-Dec 2022 respectively).
This equal split is unusual in Machine Learning (ML),
especially in time series forecasting, where the train-
ing datasets usually span over a year or at least cover
the involved months in the validation set to allow the
model to capture the whole temporal pattern. The lim-
ited training horizon calls for higher robustness and
generality of the model.

* Room-wise Variability in Sensor Modalities: The
task involves over a hundred sensors with various ob-
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served variables across a two-floor indoor space. Al-
though not a fully multivariate forecasting, the hetero-
geneity in input space introduces further challenge in
capturing the shared pattern yet with nuanced, room-
specific differences for robust prediction.

To address these challenges, this study proposes a multi-
stage imputation and temporal context aware Soft Mixture-
of-Experts (Soft-MoE) framework, training a set of Gradi-
ent Boosting Machine-based models with various methods
of additional temporal smoothing features. The proposed
MoE approach achieves a mean absolute error (MAE) of
1.1839 °F over the whole span of validation set, with stable
performance across rooms (MAE standard deviation within
0.4 °F). The additional temporal smoothing features en-
hance the model’s robustness in response to fluctuation and
enable flexible model ensemble based on the forecasting
context. The pipeline is well-suited for real-world appli-
cations, effectively leveraging weather data and enabling
efficient online prediction with lightweight deployment.

2. Methodology

2.1. Modeling Framework Overview

Our approach follows a modular, multi-stage design tailored
for the challenges in indoor temperature forecasting with
sparse and heterogeneous sensor data. As shown in Fig-
ure 1, the high-resolution outdoor temperature signal recon-
structed with an external coarse-grained meteorological data
serves as an anchor to impute missing data in the training
dataset. Based on the completed sequences, a set of Light
Gradient Boosting Machine (LightGBM) models (Ke et al.,
2017), incorporating temporal smoothing method such as
Moving Averages (MA) and Exponentially Weighted Mov-
ing Average (EWMA) to enhance the model’s ability to
capture temporal dynamics. During inference, the same
feature processing is applied to the validation data, and a
Soft-MoE selector dynamically calculate the weighted pre-
dictions from each expert mode for each timestep. This
design enables the framework to adapt to varying temporal
patterns and improves overall prediction accuracy, which
is validated through further evaluation and spatiotemporal
analysis.

2.2. Data Imputation and Consolidation
2.2.1. DATA SOURCE

The datasets used through the pipeline are from two sources,
the SBS dataset provided by the competition organizer and
the local weather data collected from National Oceanic and
Atmospheric Administration (NOAA) API, which is a part
of Global Historical Climatology Network daily (GHCNd)
dataset (National Centers for Environmental Information,

2023). The SBS dataset is originally recorded from a com-
mercial office building located in Mountain View, California,
with a total area of 68,000 square feet across two stories
(Goldfeder & Sipple, 2023). Various observation and con-
trol action data are collected from 127 HVAC devices with a
S-minutes interval, 123 of which have target indoor tempera-
ture records. The GHCNd dataset is an integrated collection
of daily climate summaries from land-based meteorologi-
cal stations worldwide, curated and maintained by NOAA
(Menne et al., 2012). The geographically closest to the afore-
mentioned office building and relatively complete weather
data comes from a station located in San Jose, California,
United States (latitude 37.35938, longitude -121.92444).
The collected weather contains the daily maximum tempera-
ture (TMAX) and daily minimum temperature (TMIN) with
full coverage of year 2022.

2.2.2. DATA CONSOLIDATION

Before imputation, the training and validation datasets are
each reorganized into graph structures by grouping the obser-
vations data by rooms and sensors. Each room is represented
as a node containing metadata (e.g. room area, device infor-
mation) and room-specific observation data. Two additional
global nodes are introduced: exterior_space, which
holds outdoor sensor data including outdoor temperature
(Tout), and global _weather, which stores TMAX and
TMIN from external weather file. This consolidated graph
serves as the sole input for subsequent processing.

2.2.3. DATA IMPUTATION

To address the substantial data missing problem in SBS
dataset, a multi-step imputation method is applied. First,
Tout 1s imputed by leveraging external weather file and Ma-
chine Learning modeling. A proxy outdoor temperature
series is reconstructed by scaling the normalized daily tem-
perature template to match the TMAX and TMIN from the
weather file as shown in Equation (1) and (2). Then a Light-
GBM model is trained to map the relationship of the 7},
from the sensor and the constructed series, combining with
time-related features (hour, weekday, etc.) to impute the
missing data in T,,,;. After imputation, a weighted linear
smoothing is applied to avoid jump at the joint points.

N 1 2@ — min(z@
© = 107 2 (@) ; <)<d)>
o max(z min(x

(D
#0 = TMIN, + 2 . (TMAX, — TMIN;)  (2)

where D denotes the set of days with complete data, (%)
is the observed temperature series for day d, 7 is the nor-

malized average daily temperature pattern, and mgi) is the
scaled temperature at time index ¢ on day t.
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Figure 1. Data processing and modeling framework

Then, the indoor temperatures (7;,,) across different rooms
in training dataset are imputed with the full 7},,; series by
similar modeling and smoothing method, which is further
applied to the other exogenous variables with the combi-
nation of T},, and T,,,; as main training features (exclude
T, when completing validation dataset). All the imputed
rows are marked in an artificial column for future training,
enabling the model to learn the potential pattern distinction.
With the above iterative imputation steps, 14,931 missing
rows out of 51,852 in training set and 13,589 out of 52,716
in validation set are restored, substantially improving the
data completeness for subsequent modeling.

2.3. Prediction Model Training and Inference

Based on the completed datasets, the entire training and
inference pipeline consists of following stages: (1) tempo-
ral context feature engineering, (2) best-performing expert
model selection through cross-validation, (3) expert mod-
els and model selector training, and (4) inference on the
validation set.

2.3.1. TEMPORAL CONTEXT FEATURE ENGINEERING

To enhance temporal consistency and capture short-and-
medium-term trends in the sensor data, we apply two
common temporal smoothing techniques—Moving Aver-
age (MA) and Exponentially Weighted Moving Average
(EWMA)—as part of our temporal context feature engineer-
ing process. These techniques transform the original time
series into smoothed versions that better reflect underlying
temporal structures, which are added as additional training

features.

We define a general smoothing transformation S, which
maps a raw temporal feature sequence z() = {z{"}Z_,
to its smoothed version #® = {#{"}7 . Two specific
smoothing methods are applied:

* Moving Average (MA): A symmetric rolling mean
with window size w, defined as:

w—1

(i 1 i
#) == a2 3)

Jj=0

¢ Exponentially Weighted Moving Average (EWMA):
A recursive smoothing function that emphasizes recent

values:

i =a 2+ (1-a) 3 @
where the decay factor @ € (0, 1) is computed from
the smoothing span s as o = sil'

As the span increases, the smoothing parameter « decreases,
thereby reducing the weight assigned to the most recent
data point and increasing the influence of past observations,
which leads to better preservation of medium-to-long-term
trends.

In practice, these smoothed values are computed for all
numeric columns as additional features in the dataset and
configure the following modes.



* base: uses external and node-specific features only,
without any temporal smoothing features.

e MA_winW: adds MA features of each time series from
the base mode, where W represents the rolling win-
dow size. (1 interval equals 5 minutes)

¢ EWMA_span$S: adds EWMA features, where S is the
Span parameter.

2.3.2. CROSS-VALIDATION AND MODES EVALUATION

To facilitate the training of both expert models and the mode
selector in our Soft-MoE framework, we first split the origi-
nal training set Dy, into two parts: a cross-validation set
D.y, which is used to train and evaluate individual expert
modes, and a held-out set Dyeq, Which is formed by select-
ing a fixed ratio (e.g., the last 10%) of the training sequence.
The internal held-out set is reserved for training the MoE
model selector and ensuring that the selector does not overfit
to the training process of expert modes.

Expanding Window Cross-Validation (EWCYV). To ro-
bustly evaluate each temporal mode under realistic fore-
casting conditions, Expanding Window Cross-Validation
(EWCYV) is employed on D,,. This strategy mimics real-
world forecasting where models are updated with more data
rolling over time.

We begin by dividing D, into P equal-length, contiguous
blocks, where each block B, represents a fixed time span:

P
Do =B, ®)
p=1

K folds of validation are defined based on a growing
training window. Let py be the number of blocks used
in the initial training set (e.g., po = 3). For each fold

k € {1,..., K}, the training and validation subsets are:
* po+(k—1)
k
Dtrain = U BP
et ©)
k
D\(/al) = Bpo+k

This results in an expanding training set and a fixed-width
validation set that slides forward in time.

Evaluation Procedure. For each mode (e.g., base, MA
with various window sizes, EWMA with various spans), we
perform EWCYV independently on each room. At each fold,

a LightGBM model is trained on D) and evaluated on

train
Dgfl) using MAE and MSE and are aggregated across folds
and rooms. The top-performing modes from each group (i.e.
base, MA_ and EWMA_) are selected as candidate experts
for the Soft-MoE ensemble.

2.3.3. EXPERT MODELS AND MODEL SELECTOR
TRAINING

Given the selected M expert modes (e.g., Base, MA-w*,
EWMA-s*), we retrain each corresponding expert model
using the full training dataset excluding held-out portion.
Each expert model is trained per room using LightGBM
regressors. The input features include: global features X *!,
room-specific features X node and additional smoothed fea-
tures depending on the mode, i.e. X™ or X°*™2,

After training, each expert model performs inference on the
held-out set to generate per-room predictions. These pre-
dictions, alongside the input features, serve as supervision
signals for training the Soft-MoE model selector to learn
which mode performs best under different temporal contexts.
Specifically, the selector takes the current input features as
predictors and is trained to estimate a soft probability dis-
tribution over all expert modes (i.e., mode-wise weights).
These probabilities are interpreted as soft confidence scores
that guide how much each expert should contribute to the
final prediction at each time step.

2.3.4. INFERENCE ON THE VALIDATION SET

Finally, dynamic inference is performed over the full time
span of validation set. At each time step, the model selector
generates soft weights for all experts, and the final prediction
is computed as the weighted average of the predictions from
all experts. Other individual modes are also evaluated on the
validation set for further analysis. The full inference process
is described in Algorithm 1. Due to the incompleteness
of the validation set, the error metrics are only calculated
where the true values exists.

3. Results

3.1. Data Imputation Results

In the data imputation process, T, from the outdoor sensor
is the the key variable, bridging the external weather file and
the other sensor data including 7;,,. The imputation accu-
racy is evaluated with MAE between the model-predicted
values and corresponding ground truth values where avail-
able, with 2.0505 and 2.0111 °F on training and validation
dataset respectively. Despite the close metric, how the im-
puted T5,,; series is enveloped within the TMIN and TMAX
range is noticeably different between the two datasets, as
illustrated in App. Figure 7. While the model generally
captures temperature spikes well, during a long missing
period in July, it consistently underestimates peak temper-
atures—potentially due to more substantial deviations of
daily patterns from seasonal averages in summer.



Algorithm 1 Inference with Soft-MoE

1: Input: Validation graph G, trained room-level expert
models { MP&e Mfma_ prevmal soft model selector S
2: for each node n in G, do

3:  if any model M), is missing then

4: continue

5:  endif

6 Extract external features X' and room-level fea-

tures X% for node n

Construct base features X3¢ = Xext 4 xnode

Apply smoothing on X% to obtain X™? and X "™

9:  Concatenate to form selector input X s¢lect = xbase 4

Xma + Xewma

10:  Use selector S to predict soft weights w; € R? for
each time step ¢ {Each w; = (wb°, @M &¥ma)}

11:  Predict expert outputs:

[o BN |

12: yltaase — MPLase ( X?ase)
B g = MPAXPR 4 X
14. ggwma — Mewma(XFase + X?Wma)
N n
15:  Compute final prediction:
16: Qt — w?ase . g)Itaase + w;na . @;na 4 wgwma . ggwma
17:  Record prediction g, expert weights w;, and ground
truth y,
18: end for

19: Output: Room-level predictions, ground truth and soft
expert weights at each timestamp.

3.2. Prediction Results Overview

To better assess the impact of different mode configurations,
all tested modes—including the MoE approaches-alongside
the AutoRegressive Integrated Moving Average (ARIMA)
model (Box & Jenkins, 1970) as the baseline (with hyperpa-
rameters selected via grid search) are deployed to generate
predictions over the entire 6-month validation period. The
prediction results are summarized in Table 1, reporting the
mean and standard deviation (std) of MAE and MSE across
all rooms with target variable 7T;,,.

Based on cross-validation results, the best-performing
variants from each group—base, MA winl08, and
EWMA_spanl08—are selected as expert candidates for the
MOoE framework. In addition to the Soft-MoE described in
Section 2.3.3, a Hard-MoE variant is also evaluated for com-
parison, where the selector chooses the single best expert
for each instance instead of computing a weighted ensemble
of all expert predictions. The Soft-MoE mode achieved the
best overall performance on validation set with a mean MAE
of 1.1839 °F. Despite the marginal improvement over the
second-best mode in terms of mean MAE (i.e., MA_win72),
it ensures both accuracy and stability with 14.47% lower
standard deviation across rooms. Among the individual
modes, MA_win72 performed the best, reducing the aver-
age MAE by 62.29% and 9.66% compared to the baseline

and base mode respectively. While EWMA modes show
slightly higher errors, they offer more stable predictions; no-
tably, EWMA_span72 achieves an 20.64% reduction in the
std of MSE compared to base mode. The optimal rolling
window or span is 72-108 intervals, suggesting that a 6-to-
9-hour historical context strikes a good balance between
capturing long-term trends and short-term variations.

In terms of runtime, on a MacBook Air equipped with an Ap-
ple M3 chip, all MA and EWMA variants require 2.20-2.62
seconds per room for training and inference, while the base
mode is notably faster at 1.82 seconds. For the MoE modes,
assuming the models have been pre-trained, per-room in-
ference takes 1.66 seconds (Soft-MoE) and 1.35 seconds
(Hard-MoE). These LightGBM-based methods show strong
potential for lightweight, real-time forecasting with minimal
computational overhead.

3.3. Temporal Pattern Investigation

General error metrics alone are not sufficient to fully capture
the nuance differences between modes. In this section, we
further compare the performance of various modes with
respect to temporal characteristics, such as seasonal pattern
and their responsiveness to abrupt or periodic changes in
the series. As shown in Figure 2, it is interesting to notice
that all modes have best performance during hottest months.
The Soft-MoE and MA_win72 modes demonstrate more
consistent performance throughout the year. In contrast,
EWMA-based modes lag behind notably during the colder
months.

Nevertheless, EWMA-based modes demonstrates more ro-
bust stability in response to recurrent fluctuations in tem-
perature as illustrated in Figure 3 and Figure 4. Between
mid-September and mid-October, the EWMA-based modes
demonstrated a stronger ability to adapt to cyclical fluc-
tuations in daily temperature, achieving higher prediction
accuracy, followed by the MA modes with long windows.
Interestingly, the MA modes with short windows performed
even worse than the base mode in this period. However,
with the intense volatility of daily temperature during win-
ter, EWMA modes lose advantage while all modes under-
performance. This observation confirms that a smaller o
(bigger span) allows EWMA to more effectively capture
long-term smoothing patterns, at the tradeoff of reduced
sensitivity to short-term spike, which further highlights the
effectiveness of a dynamic model selection approach and
suggests that in practical applications, selecting an appro-
priate model or weights should be guided by the expected
temporal characteristics of the data.

3.4. Spatial Pattern Investigation

The prediction error is relative stable across all rooms as
shown in the room-level MAE heatmap (Figure 5), ex-



Table 1. Prediction results across all rooms with different settings.

MODE MAE MEAN ( °F)  MAE sTD (°F) MSE MEAN (°F?) MSE sTD (°F?)
ARIMA (BASELINE) 3.1532 0.9477 18.2929 9.1192
BASE 1.3161 0.3426 3.3299 1.6778
MA_WIN12 1.2715 0.3613 3.1546 1.7568
MA_WIN36 1.2258 0.3761 2.9565 1.7961
MA_WIN72 1.1889 0.3871 2.7386 1.7948
MA_WIN108 1.1938 0.3303 2.6652 1.5324
EWMA _SPAN12 1.3292 0.2734 3.3741 1.3090
EWMA _SPAN36 1.3810 0.2865 3.5664 1.3253
EWMA _SPAN72 1.3463 0.2719 3.3252 1.2267
EWMA _SPAN108 1.3058 0.2882 3.0974 1.2913
SOFT-MOE 1.1839 0.3311 2.6841 1.4609
HARD-MOE 1.2547 0.3227 2.9874 1.4886

MAE and MSE values are first computed individually for each room and then aggregated across all rooms

to calculate the mean and standard deviation value.
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Figure 2. Average MAEs by different modes and months across all
rooms.

cept for several rooms on the second floor with notably
high MAEs. By calculating the Pearson correlation be-
tween all trained features and MAEs, it is found that the
features related to supply air control—such as the std of
flowrate and damper commands—show the highest correla-
tion with prediction error. For example, room 2-16 with
the highest prediction error has a supply air flowrate setpoint
std (supply-air_flowrate_setpoint_std) 13.84%
higher than the average across all rooms. This finding sug-
gesting that rooms with more dynamic HVAC regulation are
harder for the model to predict accurately.

4. Conclusion

This study was conducted in response to the Smart Buildings
Competition and proposes an automated data imputation,
modeling and prediction pipeline that leverages external
weather information and Gradient Boost Regression models.
The pipeline incorporates temporal smoothing methods such
as MA and EWMA to enrich the model with historical
context. Building upon these individual models, a Soft
Mixture-of-Experts (Soft-MoE) framework is developed,
which assigns learned weights to each expert at every time
step, further enhancing predictive accuracy and robustness
across varying temporal patterns.

Among the various modes, the Soft-MoE mode achieved
the overall best performance on the whole validation set,
reaching a MAE of 1.1839 °F. Both the MA and EWMA-
based features demonstrated improved compatibility with
temperature fluctuations at daily scale, validating the ef-
fectiveness of integrating traditional time series modeling
techniques into ML workflows, which shows greater flexibil-
ity and ease of deployment while maintaining competitive
predictive accuracy.

Several directions remain open for future work. First, al-
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though the dataset is organized as a graph, its structure has
not been fully utilized for feature enhancement—such as
incorporating physical attributes of individual rooms or mod-
eling inter-room thermal dynamics. Second, the adaptability
of EWMA to different temporal fluctuations highlights its
potential for further exploration, for instance, introducing
a dynamic self-calibration mechanism for the smoothing
parameter « in an online prediction setting, to enable the
model to better accommodate various temporal pattern and
improve real-time forecasting robustness.
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A. Appendix

Daily Missing Data Ratio per Device
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Figure 6. Missing data points across timestamps and sensors in training dataset (above) and validation dataset (lower).
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Figure 7. Filled outdoor temperature series with external weather data
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