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ABSTRACT

Synthetic image generators evolve rapidly, challenging detectors to generalize
across current methods and adapt to new ones. We study domain-incremental
synthetic image detection with a two-phase evaluation. Phase I trains on ei-
ther diffusion- or GAN-based data and tests on the combined group to quantify
bidirectional cross-generator transfer. Phase II sequentially introduces renders
from 3D Gaussian Splatting (3DGS) head avatar pipelines, requiring adaptation
while preserving earlier performance. We observe that CLIP-based detectors in-
herit text-image alignment semantics that are irrelevant to authenticity and hinder
generalization. We introduce a Hilbert-Schmidt Independence Criterion (HSIC)
bottleneck loss on intermediate CLIP ViT features, encouraging representations
predictive of real versus synthetic while independent of generator identity and
caption alignment. For domain-incremental learning, we propose HSIC-Guided
Replay (HGR), which selects per-class exemplars via a hybrid score combining
HSIC relevance with k-center coverage, yielding compact memories that mitigate
forgetting. Empirically, the HSIC bottleneck improves transfer between diffusion
and GAN families, and HGR sustains prior accuracy while adapting to 3DGS ren-
ders. These results underscore the value of information-theoretic feature shaping
and principled replay for resilient detection under shifting generative regimes.

1 INTRODUCTION

The rapid progress of generative models has led to increasingly realistic synthetic images, raising
urgent concerns about the spread of misleading digital content. The detection problem is inherently
open-world: new diffusion architectures, GAN variants, and 3D Gaussian Splatting (3DGS) ren-
dering pipelines will continue to emerge, remaining unseen during training. Among these, 3DGS
has enabled photorealistic, real-time head avatars, expanding the scope of rendered imagery beyond
traditional 2D synthesis. As illustrated in Figure 1, synthetic images produced by GANs, Deep-
fake, and 3DGS exhibit distinct artifacts and statistical patterns, motivating detectors that generalize
beyond any single generative family.

A practical detector therefore requires two key capabilities: (i) robust generalization across diverse
generation paradigms and (ii) continual adaptability to incorporate new synthetic sources without
catastrophic forgetting. Existing systems that rely on the vision backbone of CLIP show promising
cross-generator transfer between diffusion and GAN data. However, CLIP embeddings are primarily
optimized for text-image alignment, embedding caption semantics that are irrelevant to authenticity
and potentially detrimental when the task is purely image-based. As shown in Figure 2, the raw
CLIP features cluster together according to object class rather than the real-synthetic boundary.

We tackle these challenges with two complementary components integrated into a single pipeline.
First, we introduce a Hilbert-Schmidt Independence Criterion (HSIC) bottleneck on features ex-
tracted from the intermediate layers of the CLIP ViT. Specifically, we aggregate multi-layer repre-
sentations, project them to a compact latent space, and optimize an HSIC objective that minimizes
dependence on the input while maximizing dependence on the label. This regularization suppresses
nuisance factors (including text-alignment signals) and produces generator-invariant yet discrimina-
tive representations, strengthening mutual generalization between diffusion and GAN models.
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Figure 1: Diversity of synthetic images across paradigms. Columns show representative sources
of synthetic faces: StarGAN, StyleGAN, Deepfake (face swap), multi-view 3D Gaussian Splatting
(3DGS) head avatar, single-view 3DGS head avatar, and generative 3DGS head avatar. Top row: real
images. Bottom row: corresponding synthetic examples. The breadth of GAN-based synthesis and
rendered 3DGS avatars creates substantial distribution shifts, underscoring the need for detectors
that both generalize to unseen sources and continually adapt as new synthetic sources emerge.

Second, for continual learning on rendered domains, we propose HSIC-Guided Replay (HGR). Dur-
ing adaptation, HGR constructs a compact exemplar memory per class by ranking candidates with a
weighted score that combines HSIC relevance (information centrality) and k-center coverage (spa-
tial spread). These exemplars are replayed alongside new data to mitigate forgetting and stabilize
performance across evolving domains. To support this setting, we curate three 3DGS head avatar
datasets covering multi-view reconstruction, single-view reconstruction, and a generative pipeline.
Each dataset provides paired real and synthetic frames with identity-disjoint splits and standardized
preprocessing. Our evaluation first trains detectors exclusively on diffusion or GAN images to mea-
sure cross-generator transfer, and then sequentially adapts them to the curated 3DGS domains under
all adaptation orderings, while continuously monitoring prior-domain accuracy.

In summary, our contributions are threefold.

• HSIC Bottleneck on CLIP Intermediates. We impose an HSIC bottleneck on interme-
diate CLIP features to suppress text-alignment nuisances and amplify image-label depen-
dence, substantially improving cross-generator generalization.

• HSIC-Guided Replay (HGR) for Continual Adaptation. We introduce an HSIC-driven
exemplar selection and weighting scheme that delivers compact yet effective replay, en-
abling adaptation to 3DGS content while preserving prior accuracy.

• 3DGS Synthetic Image Benchmark. We curate a 3DGS rendered image suite spanning
multi-view reconstruction, single-view reconstruction, and a generative 3DGS pipeline,
offering a benchmark to advance research on synthetic image detection.

2 RELATED WORK

2.1 GENERALIZED SYNTHETIC IMAGE DETECTION AND 3DGS HEAD AVATARS

Wang et al. (2020) first explicitly posed the problem of generalization to unseen generators in syn-
thetic image detection, showing that with careful pre/post-processing and augmentation, a classifier
trained on one GAN (e.g., ProGAN) can transfer to other generators, indicating shared synthesis
artifacts. LGrad (Tan et al., 2023) moved toward generator-agnostic cues by operating in gradient
space, yielding strong cross-generator generalization for GAN fakes.

A complementary trajectory leverages large vision-language backbones, and we group these CLIP-
based methods together. UniFD (Ojha et al., 2023) demonstrated that operating directly in frozen
CLIP feature space—using a nearest-neighbor or a linear probe—provides markedly improved trans-
fer to unseen families, including mutual transfer between diffusion and GAN models. Building on
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Figure 2: HSIC bottleneck transforms CLIP semantic clusters into real/synthetic separability.
t-SNE visualization of features before (x, left) and after (z, right) applying the HSIC bottleneck.
Points are colored by semantic class, with markers denoting Real ( • ) and Synthetic (×). Pretrained
CLIP features x mainly cluster by object category, intermixing real and synthetic samples within
each class. By contrast, the HSIC bottleneck suppresses nuisance semantics and reshapes the rep-
resentation to align with the labels, causing real images to cluster together and synthetic images to
cluster together across categories, thereby producing a clearer decision boundary for detection.

this idea, RINE (Koutlis & Papadopoulos, 2024) extracts intermediate encoder-block representations
from CLIP rather than only the final layer, capturing richer structural and semantic cues that enhance
out-of-distribution generalization. Most recently, VIB-Net (Zhang et al., 2025) couples a pre-trained
CLIP backbone with a variational information bottleneck to suppress task-irrelevant factors while re-
taining discriminative evidence, pushing universal detection performance across generator families.
Orthogonal to CLIP-based approaches, NPR (Tan et al., 2024) rethinks source-invariant artifacts by
analyzing up-sampling operations common to GANs and diffusion pipelines, proposing neighbor-
ing pixel relationships as a simple, local pixel-dependency descriptor that generalizes across a wide
range of generators.

Beyond diffusion and GAN imagery, 3D Gaussian Splatting (3DGS) enables photorealistic, real-
time rendering with explicit point-based primitives and has rapidly become a foundation for head
avatar synthesis, introducing rendered-fake sources that differ from conventional image synthe-
sis. We highlight three representative families that define our rendered-fake domains: (i) Multi-
view 3DGS head avatar—Gaussian Head Avatar (Xu et al., 2024) proposes dynamic, control-
lable 3D Gaussians for ultra high-fidelity head modeling, pairing a learned deformation field
with an explicit 3DGS representation and multi-view supervision; (ii) Single-view 3DGS head
avatar—SplattingAvatar (Shao et al., 2024) embeds Gaussians on a deformable mesh to disentan-
gle motion and appearance, supporting real-time rendering from monocular training signals; and
(iii) Generative 3DGS head avatar—GAGAvatar (Chu & Harada, 2024) predicts 3DGS parameters
from a single image for one-shot, animatable, and generalizable avatars. These three categories
define the rendered-fake domains in our continual learning protocol, complementing diffusion and
GAN synthesis, and support systematic cross-generator evaluation. Despite the progress of general-
ized detection on diffusion and GAN, detectors that transfer well across these paradigms frequently
falter on 3DGS-rendered fakes, motivating methods that couple stronger generalization with princi-
pled continual adaptation.

2.2 CONTINUAL LEARNING

We study continual learning in the domain-incremental regime: the label space remains fixed, while
the input distribution shifts across domains—first among diffusion or GAN generators, and later to
3DGS categories. Continual methods are commonly grouped into three families: regularization-
based, architecture-based, and rehearsal-based. Regularization-based approaches (Kirkpatrick
et al., 2017; Zenke et al., 2017; Li & Hoiem, 2018; Aljundi et al., 2018) constrain parameter updates
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to protect knowledge from earlier domains. Architecture-based methods (Rusu et al., 2016; Mallya
& Lazebnik, 2018; Yan et al., 2021) expand capacity or allocate disjoint subnetworks to reduce
interference. Rehearsal-based methods maintain a compact memory and interleave past exemplars
with current data. Class-mean herding (iCaRL) (Rebuffi et al., 2017) selects exemplars near class
centroids to ensure representativeness. Class-balanced reservoir sampling (CBRS) (Chrysakis &
Pourkamali-Anaraki, 2020) adapts classical reservoir sampling to preserve label balance in nonsta-
tionary streams. Coverage-oriented selection via the greedy k-center (farthest-first) heuristic (Gon-
zalez, 1985; Sener & Savarese, 2018) spreads exemplars across the feature space to improve diversity
and reduce redundancy. We build on this rehearsal line for the domain-incremental case and intro-
duce HSIC-Guided Replay, which scores and selects exemplars to preserve prior domain coverage
while adapting to new domains.

2.3 HILBERT-SCHMIDT INDEPENDENCE CRITERION (HSIC)

HSIC (Gretton et al., 2005) measures statistical dependence between random variables via repro-
ducing kernel Hilbert spaces (RKHS). Let a ∈ A and b ∈ B be random variables with RKHSs
(F, k) and (G, ℓ) induced by feature maps ϕ : A → F and ψ : B → G. Denote mean embeddings
µa=E[ϕ(a)] and µb=E[ψ(b)]. The cross-covariance operator Cab : G → F is

Cab = E
[
(ϕ(a)− µa)⊗ (ψ(b)− µb)

]
, (1)

and the population HSIC is the squared Hilbert-Schmidt norm of this operator:

HSIC(Pab,F,G) =
∥∥Cab∥∥2HS

. (2)

Kernel expectation form (population). Let (a′,b′) be an independent copy of (a,b). Expanding
equation 2 yields the following equivalent expression in terms of kernels k and ℓ:

HSIC(a,b) = Eaa′bb′
[
k(a,a′) ℓ(b,b′)

]
+ Eaa′

[
k(a,a′)

]
Ebb′

[
ℓ(b,b′)

]
− 2Eab

[
Ea′k(a,a′) Eb′ℓ(b,b′)

]
,

(3)

which is zero if and only if a and b are independent under characteristic kernels.

Empirical estimator. Given n i.i.d. samples {(ai, bi)}ni=1 from Pab, define Gram matrices
K,L ∈ Rn×n with Kij = k(ai, aj) and Lij = ℓ(bi, bj), and the centering matrix H = In− 1

n11
⊤.

The commonly used (biased) V-statistic estimator is

ĤSIC(a,b) =
1

(n− 1)2
tr
(
KHLH

)
=

1

(n− 1)2
tr
(
K̄L̄

)
, (4)

which provides an efficient empirical estimate without requiring density models. In practice, Gaus-
sian RBF kernels are often adopted for k and ℓ, and the bandwidth can be set by the median heuristic.
The centered version K̄ = KH and L̄ = LH removes mean components in RKHS so that equa-
tion 4 matches the population definition equation 2 through equation 3.

3 METHOD

Our detector builds on CLIP ViT features, which, like most pretrained extractors, are not optimized
for synthetic image detection and often entangle authenticity with generator identity and text-image
semantics. To address this, we introduce an HSIC bottleneck that refines representations for real-
versus-synthetic discrimination while suppressing spurious dependencies. For domain-incremental
learning, we propose HSIC-Guided Replay (HGR), which selects compact, representative exemplars
to balance adaptation to new generators with retention of prior knowledge.

3.1 HSIC BOTTLENECK

Let the model be hθ = gθg ◦ fθf , where fθf is an encoder and gθg a classifier. In DualHSIC (Wang
et al., 2023), the encoder is a ResNet with L intermediate layers. Given an input x, its label y, and
the feature representation at layer j, Zj (j = 1, . . . , L), the layer-wise HSIC objective is defined as

LHB(θf ) = λx
∑L

j=1
ĤSIC

(
x, Zj

)
− λy

∑L

j=1
ĤSIC

(
y, Zj

)
, (5)
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where λx controls compression of information from the input x and λy encourages dependence on
its associated label y. Here y∈{0, 1} indicates whether x is synthetic (1) or authentic (0).

Unlike DualHSIC, which applies HSIC at every intermediate layer, our approach leverages CLIP
ViT as the feature extractor. We form the input x by concatenating features from its 24 intermediate
layers and the final layer. The encoder fθf then compresses this representation into a compact feature
z = fθf (x). Specializing equation 5 to this setting yields

LHSIC-Bottleneck(θf , θg) = λx ĤSIC(x, z) − λy ĤSIC(y, z). (6)

3.2 TRAINING OBJECTIVE

The classifier gθg outputs a logit ui = gθg (zi) for each sample, and a probability pi = σ(ui) via the
sigmoid σ(·). For binary labels yi ∈ {0, 1}, we use the binary cross-entropy with logits:

LBCE(θf , θg) = − 1

n

n∑
i=1

[
yi log σ(ui) + (1− yi) log

(
1− σ(ui)

) ]
. (7)

The final objective combines the bottleneck with the classifier:

Ltotal = LHSIC-Bottleneck + LBCE. (8)

3.3 HSIC-GUIDED REPLAY (HGR)

We couple HSIC relevance with a k-center coverage term to select exemplars for the rehearsal buffer.
A single nonnegative weight λkc≥ 0 controls the relative strength of the k-center regularizer to the
HSIC relevance: λkc=0 yields pure HSIC; larger values emphasize coverage. Exemplar selection is
performed per class c ∈ {0, 1}, but for notational simplicity, we omit the index c in the following
derivation. Let X = {xi}i∈I be the candidate set with index set I. At step t, let St−1 ⊂ I denote
the indices already selected (with S0 = ∅), and define the active set as At = I \ St−1.

For xi ∈ X , compute features zi = fθf (xi). Form the Gaussian RBF Gram matrix K on {zi}i∈I
and let K̄ be its centered version as in equation 4. The HSIC relevance for index i ∈ I is

ri =
∥∥K̄i,:

∥∥2
2
. (9)

To promote coverage and reduce redundancy, we add a k-center term in feature space, following the
coreset view of Sener & Savarese (2018). Define, for i ∈ At,

di(t) =

 ∥zi − µ∥22, t=1,

min
j∈St−1

∥zi − zj∥22, t≥2,
with µ = 1

|X |

∑
j∈I

zj .

so that larger di(t) favors points farther from the already-selected set.

Selection rule. HGR selects exemplars by minimizing the λkc-regularized score

si(t) =
(
1−N (ri)

)
+ λkc

(
1−N (di(t))

)
, i ∈ At . (10)

N denotes a normalization operation. Choose i⋆t = argmin
i∈At

si(t) and update St = St−1 ∪{i⋆t } until

|St| = mc, where mc is the number of exemplars assigned to class c. We repeat this procedure for
c ∈ {0, 1} and then take the union across classes and domains to form the replay buffer. Intuitively,
HGR prefers items that are both HSIC-central (large ri) and offer coverage (large di(t)).

3.4 IMPLEMENTATION DETAILS

Models are implemented in PyTorch and trained on a single NVIDIA GPU with SGD (learning rate
10−4). The HSIC bottleneck uses a 64-D projection and Gaussian RBF kernels with bandwidth set
by the median heuristic. We set λx = 900 and λy = 700 when training on SDV1.4 and λx = 500
and λy = 600 when training on ProGAN. We pick mc exemplars per class c with m0 + m1 =
⌈keep frac ·N⌉, where N is the total number of training samples and we set keep frac=0.01.
We first enforce class balance and then assign any remainder to the larger class.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Task and protocol. We study cross-generator synthetic-image detection in two phases under the
following protocol. (1) Cross-generator generalization: train a detector on one paradigm (diffusion
or GAN) and evaluate on the union of diffusion and GAN targets to measure generalization abil-
ity. (2) Domain-incremental learning: starting from the model in phase (1), continue training as
rendered-fakes from 3DGS head avatar pipelines are introduced sequentially (GHA, SA, GAGA-
vatar). During this phase, we always monitor performance on previously seen diffusion and GAN
test sets to quantify retention alongside adaptation.

Baselines. We benchmark against classical and recent detectors for cross-generator generaliza-
tion, including CNNSpot (Wang et al., 2020), LGrad (Tan et al., 2023), UniFD (Ojha et al., 2023),
NPR (Tan et al., 2024), RINE (Koutlis & Papadopoulos, 2024), and VIB-Net (Zhang et al., 2025).
For domain-incremental learning, we compare HSIC-Guided Replay with iCaRL (Rebuffi et al.,
2017) and CBRS (Chrysakis & Pourkamali-Anaraki, 2020). All rehearsal-based methods share the
same per-class memory budget, and all other training hyperparameters are identical across methods.

Datasets. For cross-generator generalization, we use GenImage, which contains diffusion-
generated images from Stable Diffusion v1.4/v1.5 (Rombach et al., 2022), ADM (Dhariwal &
Nichol, 2021), GLIDE (Nichol et al., 2022), Midjourney (Midjourney, 2022), Wukong (Wukong,
2022), and VQDM (Gu et al., 2022). The GAN sources are taken from the collection of Wang et al.
(2020), including ProGAN (Karras et al., 2018), CycleGAN (Zhu et al., 2017), BigGAN (Brock
et al., 2019), StyleGAN (Karras et al., 2019), StarGAN (Choi et al., 2018), GauGAN (Park et al.,
2019), as well as Deepfake (Rossler et al., 2019) and SAN (Dai et al., 2019).

For domain-incremental learning, we curate a three-part 3DGS benchmark: (i) Gaussian Head
Avatar (Xu et al., 2024) (GHA) trained on NeRSemble (Kirschstein et al., 2023) with identity-
disjoint, balanced splits (train: 45,772 real / 45,772 synthetic; val: 9,480 / 9,480; test: 9,782 /
9,782); (ii) SplattingAvatar (Shao et al., 2024) (SA) trained on subjects from NeRFace (Gafni et al.,
2021), NHA (Grassal et al., 2022), and IM Avatar (Zheng et al., 2022) (train: 20,322 real / 20,094
synthetic; val: 4,007 / 4,036; test: 5,631 / 5,622); and (iii) GAGAvatar (Chu & Harada, 2024), a one-
shot generative 3DGS avatar using FFHQ (Karras et al., 2019) inputs with pose-driven reenactment
(train: 55,963 real / 55,963 synthetic; val: 6,995 / 6,995; test: 6,996 / 6,996).

4.2 CROSS-GENERATOR GENERALIZATION

We study out-of-source transfer by training detectors on a single family (diffusion or GAN) and
evaluating across the union of diffusion and GAN targets, plus two additional sets (Deepfake, SAN).
This setting measures whether a detector trained on one paradigm can generalize to the other without
exposure to its data.

Training on diffusion. Table 1 reports cross-generator generalization with diffusion-only training.
Specifically, the detectors are trained on the SDV1.4 dataset. Using intermediate ViT features with
an HSIC bottleneck yields the strongest overall mean, outperforming both strong baselines and our
non-intermediate variant. Improvements are especially robust on GAN targets and remain consistent
across several diffusion datasets, while AP is near-saturated for most rows, indicating stable ranking
quality. Although the non-intermediate variant occasionally tops individual entries (e.g., StyleGAN,
SAN), the intermediate configuration is overall more consistent and generator-invariant, preserving
performance across diverse generators and manipulations.

Training on GAN. Table 2 summarizes cross-generator generalization under GAN-only training.
Specifically, the detectors are trained on the ProGAN dataset. Using intermediate ViT features with
an HSIC bottleneck achieves the best overall mean, outperforming strong baselines while markedly
improving transfer to diffusion models. The intermediate configuration secures the best ACC on
most diffusion targets and on a subset of GANs (e.g., ProGAN, StarGAN), while remaining com-
petitive elsewhere. AP is near-saturated across large portions of the table, indicating that suppressing
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Table 1: Cross-generator generalization with diffusion-trained detectors (ACC/AP). Each cell
reports ACC/AP (%). Within each dataset row, the highest, second highest, and third highest ACC
are shaded red, orange, and yellow, respectively. The SDV1.4 row label cell is shaded green to
indicate the diffusion training source. Methods are trained only on diffusion sources and evaluated
on diffusion targets (top block), GAN targets (middle block), and two other datasets (bottom). The
last row reports the mean across all targets.

Dataset Method (ACC/AP %)

CNNSpot LGrad UniFD NPR VIB-Net Ours Ours w/ intermediate

SDV1.4 99.48/99.98 99.12/99.94 83.55/96.04 100.00/100.00 99.55/100.00 99.33/99.98 99.92/100.00
SDV1.5 99.35/99.83 99.05/99.92 84.80/96.26 99.90/99.97 99.20/99.97 99.24/99.95 99.81/100.00
ADM 50.10/51.10 53.00/58.52 53.35/66.34 73.00/94.70 73.85/95.49 85.82/97.69 91.10/99.61
GLIDE 50.90/58.80 64.24/84.00 75.30/93.73 89.70/95.80 74.25/97.13 94.97/99.26 97.07/99.85
Midjourney 56.42/67.93 76.34/91.06 71.60/92.08 82.30/95.50 88.05/97.81 83.12/97.35 80.86/99.34
Wukong 97.90/99.80 97.53/99.72 73.55/90.98 100.00/100.00 98.25/99.93 98.62/99.92 99.86/100.00
VQDM 50.04/49.92 50.93/56.34 55.10/74.53 68.30/86.30 89.35/97.00 93.69/99.25 99.42/99.99

ProGAN 50.27/53.15 61.61/83.59 58.65/51.77 60.30/83.30 89.70/96.59 97.54/99.64 99.49/99.99
CycleGAN 49.81/50.23 60.74/90.24 59.30/63.42 67.20/94.90 88.60/98.44 97.92/99.86 99.66/99.97
BigGAN 50.10/49.79 48.82/47.51 61.45/75.81 59.20/72.00 91.20/97.17 90.28/98.01 91.75/99.74
StyleGAN 50.98/55.98 61.43/82.74 56.80/54.12 58.00/82.70 74.10/84.31 94.42/98.93 88.15/97.89
StarGAN 49.77/47.07 50.17/99.19 61.45/54.93 73.20/97.30 80.70/97.60 96.05/99.52 100.00/100.00
GauGAN 50.38/56.08 49.70/49.25 55.30/65.99 52.00/66.00 87.15/96.94 87.38/94.51 90.02/97.60

Deepfake 51.98/54.86 50.17/66.49 58.40/70.24 74.80/85.30 72.00/81.32 66.35/76.47 82.15/93.82
SAN 50.22/54.03 56.49/65.09 72.00/83.34 89.60/95.90 81.50/93.27 90.64/96.13 88.58/95.51

Avg 60.51/63.24 65.29/78.24 65.37/75.31 76.50/89.98 85.83/95.53 91.69/97.10 93.86/98.89

Table 2: Cross-generator generalization with GAN-trained detectors (ACC/AP). Each cell re-
ports ACC/AP (%). Within each dataset row, the highest, second highest, and third highest ACC are
shaded red, orange, and yellow, respectively. The ProGAN row label cell is shaded green to indicate
the GAN training source. All methods are trained only on GAN sources and evaluated on GAN
targets (top block), two other datasets (middle), and diffusion targets (bottom). The final row reports
the mean across all targets.

Dataset Method (ACC/AP %)

CNNSpot LGrad UniFD NPR RINE VIB-Net Ours Ours w/ intermediate

ProGAN 99.99/99.99 99.80/99.90 99.90/100.00 99.80/100.00 100.00/100.00 99.99/100.00 99.83/100.00 100.00/100.00
CycleGAN 87.59/96.40 86.94/94.01 98.50/99.21 96.10/98.50 99.32/99.99 99.00/99.80 88.38/99.74 93.07/99.99
BigGAN 71.18/87.50 85.63/90.75 94.50/98.31 84.40/87.80 99.60/99.94 95.75/99.29 90.08/99.53 82.05/99.94
StyleGAN 89.95/96.94 91.08/99.80 84.40/97.98 97.70/99.80 88.86/99.44 91.25/98.79 91.37/98.33 93.41/100.00
StarGAN 94.60/94.24 99.27/99.98 95.85/99.35 99.30/99.90 99.55/100.00 98.95/99.72 97.45/99.87 100.00/100.00
GauGAN 81.44/98.28 72.49/79.29 99.50/99.80 82.50/85.50 99.77/100.00 99.70/99.99 82.32/99.99 68.33/99.98

Deepfake 51.69/64.42 56.42/71.71 67.40/82.04 80.20/82.40 80.57/97.90 83.20/92.64 83.98/92.97 82.48/96.82
SAN 50.00/55.89 44.47/45.09 56.50/82.18 69.20/71.60 68.26/94.93 70.50/91.62 86.99/92.25 93.61/97.94

SDV1.4 50.82/52.86 63.03/70.90 63.10/85.48 76.60/84.00 83.96/98.35 71.55/87.24 85.79/92.25 98.82/99.94
SDV1.5 50.88/53.25 63.67/71.72 63.57/82.30 77.90/84.60 83.35/98.33 70.00/86.98 85.14/92.23 98.67/99.85
ADM 60.20/65.14 67.10/71.83 66.90/84.34 69.70/74.60 74.61/96.23 71.45/87.88 81.46/89.61 93.01/97.70
GLIDE 57.85/68.10 66.10/75.96 61.70/84.04 77.30/85.70 80.72/97.87 69.40/88.53 89.72/96.39 97.02/99.56
Midjourney 50.77/56.60 56.20/71.42 57.85/69.10 77.80/85.40 57.12/87.41 61.25/75.68 60.36/66.83 69.40/82.49
Wukong 51.13/51.15 63.60/66.51 71.06/90.13 76.10/80.50 84.95/98.62 75.90/90.92 88.36/95.38 98.62/99.88
VQDM 56.20/69.49 67.02/70.23 85.00/94.96 78.10/81.20 89.79/99.23 86.65/96.51 88.72/96.08 97.49/99.74

Avg 66.95/74.02 72.19/78.61 77.72/89.95 82.84/86.77 86.03/97.88 82.97/93.04 86.66/94.10 91.07/98.25

nuisance variation at intermediate layers yields a representation that generalizes across generation
paradigms without sacrificing ranking quality on the source domain.

4.3 CONTINUAL ADAPTATION TO 3DGS DOMAINS

We evaluate sequential adaptation to three 3DGS domains (GHA, SA, GAGAvatar), averaging over
all six permutations of arrival order, and report group means for Diffusion, GANs, and Others (Deep-
fake, SAN), per-domain 3DGS columns, and an all-targets average over 18 datasets. In our setup,
base trains only on SDV1.4 or ProGAN without 3DGS and RINE is a non-continual oracle jointly
trained on the base plus 3DGS domains. iCaRL, CBRS, and our HGR are sampling methods for the
replay buffer whose scores are averaged across arrival orders. In the tables, boldface marks the best
mACC among sampling methods only (iCaRL, CBRS, HGR). With an SDV1.4 start (Table 3), HGR
achieves the highest overall mean among sampling methods and even surpasses the non-continual
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Table 3: Training from SDV1.4. Cells show mACC/mAP (%). We evaluate sequential adaptation to
three 3DGS domains (GHA, SA, GAGAvatar), averaging over all six permutations of arrival orders.
We report group means for Diffusion, GANs, and Others; per-domain 3DGS columns; and an all-
targets average over 18 datasets. In our setup, base trains only on SDV1.4 without 3DGS; RINE is
a non-continual oracle trained jointly on SDV1.4 plus {GHA, SA, GAGAvatar}; and iCaRL, CBRS,
and our HGR are sampling methods for the replay buffer. Bold highlights the best mACC among
the sampling methods only.

Method Diffusion GANs Others GHA SA GAGAvatar Average

base 95.43/99.83 94.85/99.20 85.37/94.67 66.05/78.10 64.65/80.66 50.39/54.56 88.27/94.26

iCaRL 96.00/99.65 91.57/97.61 78.11/93.34 96.01/99.85 94.99/99.80 94.52/99.12 92.40/98.26
CBRS 95.15/99.68 93.15/98.60 77.58/94.24 95.23/99.78 96.58/99.97 96.02/99.50 92.66/98.73
HGR 97.12/99.81 94.00/99.07 82.31/94.29 97.06/99.77 98.07/99.99 95.18/99.07 94.38/98.92
RINE 95.54/99.76 95.62/99.39 78.39/96.08 94.57/98.86 98.67/99.94 94.90/99.08 93.75/99.15

Table 4: Training from ProGAN. Cells show mACC/mAP (%). We evaluate sequential adaptation
to three 3DGS domains (GHA, SA, GAGAvatar), averaging over all six permutations of arrival
orders. We report group means for Diffusion, GANs, and Others; per-domain 3DGS columns;
and an all-targets average over 18 datasets. In our setup, base trains only on ProGAN without
3DGS; RINE is a non-continual oracle trained jointly on ProGAN plus {GHA, SA, GAGAvatar};
and iCaRL, CBRS, and our HGR are sampling methods for the replay buffer. Bold highlights the
best mACC among the sampling methods only.

Method Diffusion GANs Others GHA SA GAGAvatar Average

base 93.29/97.02 89.48/99.99 88.05/97.38 51.25/74.75 55.78/94.09 61.98/73.83 85.28/95.36

iCaRL 76.79/91.10 88.84/94.74 78.90/92.80 95.23/99.86 97.47/99.98 96.93/99.85 84.33/93.96
CBRS 80.33/92.97 89.99/95.34 77.55/90.63 97.82/99.85 98.07/100.00 98.09/99.89 86.18/94.65
HGR 82.87/94.33 93.94/98.85 80.99/90.72 94.71/99.47 99.45/100.00 95.47/99.26 88.63/96.31
RINE 82.15/95.58 96.10/99.72 85.15/97.11 90.90/96.66 98.81/99.96 90.98/97.06 89.04/98.27

oracle; on 3DGS, HGR leads on GHA and SA, while CBRS is slightly higher on GAGAvatar. With
a ProGAN start (Table 4), HGR again delivers the best overall mean among sampling methods and
clearly improves the GANs group relative to the base; within 3DGS, CBRS tops GHA and GAGA-
vatar, whereas HGR peaks on SA. The base and RINE serve as reference points rather than direct
competitors; across both initializations, HGR is the most effective sampling strategy, with CBRS
offering targeted gains on specific 3DGS regimes.

4.4 ABLATION ON HSIC COMPONENTS AND INTERMEDIATE FEATURES

Table 5 examines (left) the roles of HSIC(x, z), HSIC(y, z), and intermediate ViT/CLIP representa-
tions, and (right) the choice of HSIC kernel/bandwidth. Enforcing HSIC(y, z) consistently strength-
ens cross-generator generalization by aligning the latent with task-relevant variation, while HSIC(x,
z) acts as a complementary regularizer that discourages input-anchored shortcuts and stabilizes op-
timization; using both terms together yields a representation that preserves prior competencies yet
remains adaptable. Enabling intermediate features improves both accuracy and ranking across all
configurations, indicating that earlier layers expose generator cues that the HSIC bottleneck can
regularize toward invariance.

For the dependence measure, Cosine and IMQ perform competitively, but an RBF kernel with a
median heuristic provides the most stable behavior across both SDV1.4 and ProGAN bases, likely
due to its scale adaptivity without manual tuning.

4.5 DOMAIN-INCREMENTAL LEARNING ANALYSIS

We report per-dataset detection performance (mACC/mAP) for the arrival order whose final mACC
is closest to the mean over all six permutations of arrival orders; in each subtable, the first row
lists the chosen sequence (starting from the base), and the column shows the performance after the
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Table 5: HSIC ablations (components/intermediate on the left; kernel/bandwidth on the right).
We report mACC/mAP (%) on SDV1.4 and ProGAN. (a) toggles HSIC(x, z), HSIC(y, z), and the
use of intermediate ViT features; the full configuration (both HSIC terms + intermediates) attains
the best overall performance. (b) compares HSIC kernels and bandwidths (σ); an RBF with the
median heuristic performs best and is adopted as default. Bold marks the top mACC per dataset.

(a) Ablations on HSIC components and intermedi-
ate features. ✓= enabled, ✗= disabled. We report
mACC/mAP (%) on SDV1.4 and ProGAN.

HSIC(x, z) HSIC(y, z) Intermed. SDV1.4 ProGAN

✗ ✗ ✗ 89.20/96.77 83.30/90.26
✓ ✗ ✗ 89.75/96.66 83.29/90.22
✗ ✓ ✗ 91.64/97.34 87.05/94.45
✗ ✗ ✓ 92.22/98.31 89.22/95.62
✓ ✓ ✗ 91.69/97.10 86.66/94.10
✗ ✓ ✓ 93.39/98.80 90.67/97.78
✓ ✗ ✓ 90.27/97.48 87.12/93.70
✓ ✓ ✓ 93.86/98.89 91.07/98.25

(b) Ablations on HSIC kernel and bandwidth. “IMQ”
denotes the inverse multiquadratic kernel. We report
mACC/mAP (%) on SDV1.4 and ProGAN.

Kernel SDV1.4 ProGAN

Cosine 88.70/98.64 91.49/97.22
IMQ 92.79/98.59 89.23/97.50
RBF (σ = 1) 92.75/98.72 88.82/97.89
RBF (σ = 2) 92.71/98.55 90.50/97.52
RBF (σ = 3) 93.14/98.71 90.83/97.48
RBF (σ = median) 93.86/98.89 91.07/98.25

Table 6: Domain-Incremental Learning Analysis. Each subtable shows the arrival order whose
final mACC is closest to the mean over all six permutations of arrival orders; the first row lists the
selected sequence, and the column shows the performance after the dataset has arrived. The numbers
highlighted in gray indicate that their corresponding 3DGS datasets have not yet been included in
the domain-incremental training.

(a) Starting from SDV1.4, then SA, GAGAvatar,
and GHA arrived sequentially. Forgetting happened
mostly on GANs and Others.

Dataset SDV1.4 SA GAGAvatar GHA
Diffusion 95.43/99.83 97.41/99.84 97.59/99.81 96.90/99.79
GANs 94.85/99.20 93.74/98.60 94.36/99.12 93.24/98.79
Others 85.37/94.67 81.01/96.35 76.79/93.93 84.43/93.06
SA 64.65/80.66 97.01/99.83 99.86/100.00 98.99/100.00
GAGAvatar 50.39/54.56 64.91/69.93 99.37/99.98 94.17/99.51
GHA 66.05/78.10 66.67/86.96 66.41/84.82 98.80/99.94

Average 88.27/94.26 90.83/96.66 92.70/98.11 94.36/98.71

(b) Starting from ProGAN, then SA, GHA, and
GAGAvatar arrived sequentially. Forgetting happened
mostly on Diffusion and Others.

Dataset ProGAN SA GHA GAGAvatar
GANs 89.48/99.99 91.96/99.77 89.56/99.42 93.18/99.39
Others 88.05/97.38 76.84/94.96 83.28/94.53 82.82/92.31
Diffusion 93.29/97.02 85.33/94.85 87.67/94.75 84.66/93.63
SA 55.78/94.09 94.17/100.00 100.00/100.00 99.55/100.00
GHA 51.25/74.75 66.71/88.29 96.23/99.93 92.57/99.03
GAGAvatar 61.98/73.83 50.23/71.24 55.18/68.98 98.49/99.88

Average 85.28/95.36 84.10/95.11 87.17/95.43 89.33/96.40

dataset has arrived. Forgetting concentrates on out-of-domain targets; for example, when training
from SDV1.4, degradation is most pronounced on GANs and Others (and symmetrically, diffusion
degrades when starting from ProGAN), though the effect remains modest under our rehearsal budget.
At the same time, new domains provide positive transfer by exposing the model to additional artifact
patterns and scene statistics, yielding consistent gains on datasets related to the most recently trained
domain and smaller but nontrivial improvements on some cross-generator targets.

5 CONCLUSION

We presented a detector that couples an HSIC bottleneck on intermediate CLIP features with HSIC-
Guided Replay regularized by a k-center coverage term. The bottleneck filters text-alignment nui-
sances while preserving discriminative cues, yielding strong cross-generator generalization when
training on either diffusion or GAN sources. The replay mechanism selects compact, informative
exemplars that stabilize continual adaptation to 3D Gaussian Splatting (3DGS) domains. Across
SDV1.4- and ProGAN-based training, our method achieves consistent gains in both mACC and
mAP, maintains performance on earlier targets, and shows low variance under different 3DGS or-
derings. To support rigorous study of rendered-fakes, we curated three 3DGS head avatar datasets
spanning multi-view reconstruction, single-view reconstruction, and a generative method.

This work suggests that independence-driven regularization and coverage-aware replay are comple-
mentary for open-world forgery detection. Future directions include extending the approach to video
and audio-driven avatars, scaling to larger backbones and training regimes, learning to adaptively
allocate memory over time, and exploring task-agnostic online updates without explicit domain
boundaries.

9
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ETHICS STATEMENT

Our study uses only publicly available image datasets containing human faces, accessed and used
under the research licenses of the datasets. We conducted no interaction or intervention with indi-
viduals and accessed no private or non-public data. We process facial imagery solely for research
on synthetic-content detection, apply data minimization and security safeguards consistent with the
dataset licenses, and report only aggregate results. We do not attempt to identify, profile, or tar-
get individuals. We have carefully considered potential impacts and do not anticipate ethical risks
beyond those commonly encountered in computer vision and machine learning research.

REPRODUCIBILITY STATEMENT

We document the training pipeline and evaluation protocols in both the main paper and the appendix,
with explicit hyperparameters and dataset partitions to support exact replication. We also describe
implementation settings and reporting conventions to match our results. To further enable repro-
ducibility, we will release the full training and evaluation code, along with runnable scripts, in the
camera-ready version.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs to assist with (i) polishing prose (grammar, flow, and clarity), (ii) reorganizing and
tightening section structure, captions, and titles, and (iii) brainstorming keywords and query strings
to surface related work.

For literature discovery, the model suggested search terms and produced brief summaries to orient
the authors. Every citation in the paper was located through standard search engines or digital
libraries and then read and verified by the authors; we did not accept model-generated references
without inspection. Numerical results, comparisons, and quotes were cross-checked against the
original sources.

We edited all model-suggested text for accuracy and originality and ensured that the writing reflects
our intent. No confidential or sensitive data were shared with the model. The final manuscript,
including all tables and figures, was reviewed end-to-end by the authors for factual correctness and
completeness.
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A APPENDIX

A.1 ROBUSTNESS OF CROSS-GENERATOR SYNTHETIC IMAGE DETECTION

Figure 3 plots mean accuracy with across-seed standard deviation shown as error bars. Variation
is consistently small: for most targets, the standard deviation is roughly 0 to 1.5 percentage points,
with slightly larger yet still bounded spreads on a few harder sets such as Midjourney, GauGAN,
and Deepfake. Overall accuracies remain high, typically in the 80 to 90% range, and several tar-
gets approach 100%. The tight uncertainty bands indicate robustness to random initialization and
optimization noise and support the conclusion that our HSIC-based training yields reliable cross-
generator synthetic image detection.

A.2 PRETRAINED MODEL CHOICE

Figure 4 compares three feature extractors: CLIP ViT-L/14, CLIP ViT-B/16, and DINOv2 ViT-L/14.
CLIP ViT-L/14 is our default and consistently delivers the highest accuracy across most datasets.
CLIP ViT-B/16 follows closely, typically trailing by about 1 to 3 percentage points, which indicates
that the method is not overly sensitive to model scale within the CLIP family. DINOv2 ViT-L/14
lags more clearly, particularly on targets produced by GANs and on Deepfake, where the gap can
widen to roughly 10 to 30 percentage points. These trends suggest that image-text pretraining in
CLIP exposes generator-related artifacts more effectively, while the improvements we observe are
largely attributable to the HSIC-based training objective rather than reliance on a single backbone.

A.3 BLOCK-WISE EFFECTS OF INTERMEDIATE FEATURES

Figure 5 reports performance when evaluation is restricted to a single CLIP ViT block. At inference
time, we zero out features from all non-target blocks and retain only the target block.

Across most GAN families (ProGAN, StyleGAN, StarGAN; and to a lesser extent CycleGAN and
BigGAN), we observe a broad mid-to-late plateau: many adjacent blocks yield comparable mean
accuracy, indicating robustness to modest shifts in the chosen block. In contrast, GauGAN exhibits
a narrow late-layer peak with steep degradation outside that region. Because our protocol fixes
the intermediate block globally for efficiency and fairness, the choice that best serves the majority
becomes suboptimal for GauGAN—accounting for its weaker row in Table 2.

When GauGAN performance is prioritized, two lightweight adjustments help: (i) aggregate a small
window of adjacent late blocks to form a multi-block feature; or (ii) apply an HSIC pyramid that reg-
ularizes over neighboring blocks, capturing late-layer signal while preserving the plateaued behavior
on other models.

A.4 ANALYSIS OF LEARNED REPRESENTATIONS

Figure 6 and Figure 7 visualize feature geometry before and after applying the HSIC bottleneck
using t-SNE. For each target dataset, the upper panel shows pretrained CLIP embeddings x and the
lower panel shows learned embeddings z after training on SDV1.4 in Figure 6 and on ProGAN in
Figure 7; blue denotes real and orange denotes synthetic. Relative to x, z forms tighter within-class
clusters and larger margins between real and synthetic across generators, with the effect most visi-
ble for transfer from diffusion to GAN and from GAN to diffusion. This matches the objective: the
HSIC term with labels increases between-class separation, while the HSIC term with inputs reduces
reliance on input-specific artifacts and lowers within-class variance. When trained on SDV1.4, real
clusters in z become more generator-agnostic, and synthetic clusters move closer together, indicat-
ing stronger alignment across models. When trained on ProGAN, z sharpens separation on GAN
targets and increases margins on diffusion targets, though small pockets of overlap remain for cer-
tain datasets, such as GauGAN. Overall, these t-SNE views corroborate the quantitative results by
showing that the HSIC bottleneck reshapes features toward a generator-invariant yet discriminative
structure.
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Figure 3: Per-dataset accuracy with variability. Bars show the mean accuracy over 5 runs; error
bars denote the across-seed standard deviation. Colors compare detectors trained on SDV1.4 (blue)
versus ProGAN (orange).

Figure 4: Pretrained model choice. We extract frozen features from three pretrained mod-
els—CLIP ViT-L/14, CLIP ViT-B/16, and DINOv2 ViT-L/14—and train the detector on SDV1.4.
The figure reports accuracy for each target dataset.

Figure 5: Where the signal lives: block-wise test accuracy across GAN families. Each group
reports accuracy when the detector uses only one CLIP ViT intermediate block (non-target blocks
are zeroed at inference).
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Figure 6: t-SNE of test features across generators (upper: x, lower: z), trained on SDV1.4. For
each test set (columns grouped by generator; rows per dataset), the upper panel shows embeddings
of the pretrained CLIP features x, while the lower panel shows embeddings of the features z learned
by training on SDV1.4 with the HSIC bottleneck. Points are colored by ground truth (blue = real,
orange = synthetic). Relative to x, the HSIC-trained z generally yields tighter, better-separated
clusters of real versus synthetic across both diffusion and GAN generators, indicating improved
transferable separability.
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Figure 7: t-SNE of test features across generators (upper: x, lower: z), trained on ProGAN.
For each test set, the upper panel visualizes embeddings of the pretrained CLIP features x, and
the lower panel shows embeddings of the features z learned by training with the HSIC bottleneck
on ProGAN. Points are colored by ground truth (blue = real, orange = synthetic). Relative to x,
the HSIC-trained z typically exhibits tighter clusters and larger margins between real and synthetic
across both GAN and diffusion generators, indicating improved transferable separability from a
ProGAN-trained detector.
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