
Published as a conference paper at ICLR 2022

LEARNED COARSE MODELS FOR
EFFICIENT TURBULENCE SIMULATION

Kimberly Stachenfeld,1 Drummond B. Fielding,2 Dmitrii Kochkov,3

Miles Cranmer,4 Tobias Pfaff,1 Jonathan Godwin,1 Can Cui,2

Shirley Ho,2 Peter Battaglia,1 Alvaro Sanchez-Gonzalez1

1DeepMind, London, UK 2Center for Computational Astrophysics, Flatiron Institute, New York, NY
3Google Research, Cambridge, MA 4Princeton University, Princeton, NJ

alvarosg@google.com , stachenfeld@google.com

ABSTRACT

Turbulence simulation with classical numerical solvers requires high-resolution
grids to accurately resolve dynamics. Here we train learned simulators at low
spatial and temporal resolutions to capture turbulent dynamics generated at high
resolution. We show that our proposed model can simulate turbulent dynamics
more accurately than classical numerical solvers at the comparably low resolutions
across various scientifically relevant metrics. Our model is trained end-to-end
from data and is capable of learning a range of challenging chaotic and turbulent
dynamics at low resolution, including trajectories generated by the state-of-the-art
Athena++ engine. We show that our simpler, general-purpose architecture outper-
forms various more specialized, turbulence-specific architectures from the learned
turbulence simulation literature. In general, we see that learned simulators yield
unstable trajectories; however, we show that tuning training noise and temporal
downsampling solves this problem. We also find that while generalization beyond
the training distribution is a challenge for learned models, training noise, added
loss constraints, and dataset augmentation can help. Broadly, we conclude that
our learned simulator outperforms traditional solvers run on coarser grids, and
emphasize that simple design choices can offer stability and robust generalization.

1 INTRODUCTION

Turbulent fluid dynamics are ubiquitous throughout the natural world, and many scientific and
engineering disciplines depend on high quality turbulence simulations. Examples range from design
problems in aeronautics (Rhie, 1983) and medicine (Sallam & Hwang, 1984) to scientific problems
of understanding molecular dynamics (Smith, 2015), weather (Beljaars, 2003), and vast galactic
systems (Canuto & Christensen-Dalsgaard, 1998). Predicting turbulent dynamics is challenging, and
finding a general solution to the governing equations of fluid dynamics, the Navier-Stokes Equation,
is a famously open problem in Mathematical Physics (Jaffe, 2006). The challenge is due in large
part to the fact that turbulence is chaotic: small-scale changes in the initial conditions can lead to a
large difference in the outcome. Nonetheless, over the past several decades, high-quality numerical
solvers have been engineered that integrate the governing partial differential equations (PDEs) and
can maintain accuracy over long integration periods even for complex dynamics. These solvers often
must operate over high-resolution grids and therefore require substantial computational resources.
Otherwise, high-frequency information is lost due to hard-to-model “numerical viscosity”, and the
simulated dynamics can further diverge from the underlying equations due to the chaotic dynamics.

Learned simulation represents a promising avenue for efficient fluid simulation because learned
models can potentially adapt to capture the large-scale dynamics on coarse grids. Learned simulators
vary in the extent to which they incorporate components from classical solvers, like those that learn
closures and subgrid discretization (Duraisamy et al., 2019; Freund et al., 2019; Pathak et al., 2020;
Um et al., 2021; Kochkov et al., 2021), versus adopting a pure Machine Learning (ML) approach
(Kim et al., 2018; Lusch et al., 2018; Sanchez-Gonzalez et al., 2020; Wang et al., 2020; Li et al.,
2020c;a; Pfaff et al., 2021). Advantages of the pure ML route are that the same model can be used

1

Published as a conference paper at ICLR 2022

without specialized knowledge of the domain and that they do not involve the challenge of interfacing
with PDE solvers. However, fully learned simulators often work well only when conditions are
similar to the training distribution, which can limit their stability over time and their generalization
capabilities.

Our primary contribution is to demonstrate that fully learned simulators can learn to predict turbulent
dynamics on coarse grids more accurately than classical solvers. This is true over a range of
performance metrics, but the learned simulators particularly excel in their ability to preserve high
frequency information. While learned simulators can be prohibitively unstable, we show that the
simple practice of tuning training noise and the temporal downsampling factor can reliably produce
stable rollouts. We introduce a simple model that combines neural networks architectures for grids
(Dilated CNNs (Yu & Koltun, 2016), ResNets (He et al., 2015)) with recent advancements on general
purpose learned simulation on graphs (encode-process-decode models (Sanchez-Gonzalez et al.,
2020; Pfaff et al., 2021) trained with noise (Sanchez-Gonzalez et al., 2018; 2020; Pfaff et al., 2021)).
We implement this as well as a set of learned models from the literature that have been proposed
for modeling turbulence, and show that Dilated ResNet (Dil-ResNet) outperforms the often more
complicated, more heavily parameterized models. Rather than looking at a single problem, we
evaluate our models over a variety of challenging turbulent and chaotic domains, showing that
Dil-ResNet is generally able to capture a variety of turbulent dynamics out-of-the-box. This includes
two environments generated by the new Athena++ solver(Stone et al., 2020), a state of the art
(magneto-)hydrodynamics simulator used for astrophysics, where extremely high-resolution and
large-scale simulations are often required. Finally, we evaluate the ability of the learned models
to generalize to initial conditions, rollout durations, and environment sizes outside of the training
distribution. Generalizing out of distribution is a known challenge for learned models, and we
document where our models fail and what model and training choices can improve generalization.

2 RELATED WORK

Turbulence simulation is a crucial step in problems across disciplines. These include forecasting
problems, like predicting the spread of a wildfire (Leonardi et al., 2019) or the evolution of a hurricane
(Zhang et al., 2020), engineering challenges, like designing more aerodynamic machinery (Rhie,
1983), and scientific questions, like understanding the physics of insect flight (Dickinson et al., 1999)
or dynamics of celestial objects (Fielding et al., 2018). Across applications, a variety of statistical
measures are relevant for quantifying physical variables under turbulence (Velocity Autocorrelation,
variable histograms, Cooling, Energy spectra). The primary challenge for simulating turbulence is
accurately capturing small- and large-scale flow dynamics, and their interplay, simultaneously.

Traditional approaches to computational fluid dynamics integrate the governing PDEs describing
the fluid flow, given initial and boundary conditions. State-of-the-art turbulence simulators, such
as Athena++, are built upon efficient algorithms that prioritize the preservation of high-order
statistics. Such simulators are used frequently in scientific applications to numerically compare model
predictions with experimental observations, but can be extremely–often prohibitively–expensive to
run. Thus, there is significant practical interest in developing more efficient simulators.

Deep learning models for predicting physical dynamics have traditionally been used for modeling
low-dimensional dynamical systems with graph-like (Battaglia et al., 2016; Sanchez-Gonzalez et al.,
2018) and grid-like specifications (Raissi et al., 2017; Chen et al., 2018), but there is a growing body
of work for fine-grained modeling of complex dynamics, as in particle-based liquids and soft-body
physics (Li et al., 2019; Ummenhofer et al., 2020; Sanchez-Gonzalez et al., 2020). Learned models
are often used in computer graphics to speed up (Wiewel et al., 2019; Um et al., 2018; Ladický et al.,
2015; Holden et al., 2019) or super-resolve (Xie et al., 2018) simulations. A number of papers predict
the steady-state flow around 2D airfoil wings, using CNN (Thuerey et al., 2020; Bhatnagar et al.,
2019) or GCN (Belbute-Peres et al., 2020) architectures, or the transient dynamics of various low
Reynolds number flows using mesh representations (Pfaff et al., 2021).

In recent years, a number of models have been introduced specifically for learning turbulent dynamics.
Many of these use neural networks to model some part of an otherwise classical, theoretically
motivated numerical integration setup (Duraisamy et al., 2019; Freund et al., 2019; Pathak et al.,
2020; Um et al., 2021; Kochkov et al., 2021; Tompson et al., 2016), PDE formulation (Raissi et al.,
2017; Champion et al., 2019), or embedding space (Lusch et al., 2018). Other models incorporate

2

Published as a conference paper at ICLR 2022

Learned simulator

ρ

P

vx

vy

vz

0

2�Pr
ed

ic
tio

n

1D KS Equation (KS-1D)

0
Time

0

2�

Gr
ou

nd
Tr

ut
h

50 150

3D Compressible Decaying
Turbulence (CompDecay-3D)

3D Mixing Layer
(CoolMixLayer-3D)

Ground truthPrediction

2D Incompressible Decaying
 Turbulence (Incomp-2D)

b

c d e

100

a

Initial Ground truthPredictionInitial GTPredInit

CNNenc

dCNN1 ×N
...

...

Encoder Decoder
Processor

x

y fea
tu

res

CNNdec

...

Figure 1: (a) Learned simulator framework. The model is trained to predict the difference between
the current and next state. Gaussian noise can be added to the inputs during training to produce
models that are robust to small perturbations. Shown below is the schematic for the Dilated ResNet
model (Dil-ResNet). (b-e) Frames predicted by rollouts from the learned simulator model compared
to ground truth frames. (b) KS-1D: The model follows the ground truth closely for the first 150
steps (t < 75) and remains plausible thereafter. (c) INCOMP-2D: The model remains accurate after
119 model steps (91,392 solver steps). (d) COMPDECAY-3D: The model remains accurate after
31 model steps (1984 solver steps). (e) COOLMIXLAYER-3D. The model remains qualitatively
accurate after 59 model steps (59,000 solver steps) of a box size of (L = 0.75). Videos available at
sites.google.com/view/learned-turbulence-simulators.

some information about turbulence simulation into the architecture, but like ours, are learned end-
to-end in a supervised way. Wang et al. (Wang et al., 2020) implemented a fully learned, neural
network “Turbulent Flow Network” (TF-Net) that applies physically inspired decomposition with
learned parameters and processes the components with U-Nets for fluid simulation. Li and colleagues
introduced “Fourier Neural Operators” for turbulence simulation (Li et al., 2020a), which apply
neural networks that convolution parameters in the Fourier domain. This model is part of a broader
family of work (Portwood et al., 2019; Li et al., 2020b) which combines basis transforms (Fourier,
Multipole, etc) with neural operators that process the transformed input. We implement models from
these papers as baselines to compare to our learned simulator.

3 MODEL

3.1 LEARNED SIMULATION FRAMEWORK ON GRIDS

We train a simulation model s : X → X that maps Xt to Xt+∆t, where X is a space of n+1
dimensional tensors which represent the state variables for each point on a grid with n spatial
dimensions and one feature dimension at time t. The true physical dynamics applied over K time
steps yields a trajectory of states which we denote (Xt0 , ..., XtK). The “rollout” trajectory produced
by iteratively applying s for K steps is denoted (X̃t0 , X̃t1 , ..., X̃tK), where X̃t0 = Xt0 represents
initial conditions given as input. Our learnable simulators (Fig. 1a) implement s using neural
networks denoted NN (with weights θ), and predict the next state as the difference from the current
state, X̃t+∆t = s(X̃t; θ) = X̃t + NN(X̃t; θ).

3.2 MODELS

In this work we study “fully learned“ models, which learn the physical dynamics end-to-end without
any hard-coded solver components. We implemented a novel Dilated ResNet model, as well as
several baseline models. Detailed model parameters can be found in the Appendix.

3

https://sites.google.com/view/learned-turbulence-simulators

Published as a conference paper at ICLR 2022

Dilated ResNet Encode-Process-Decode (Dil-ResNet) We designed this architecture to combine the
encode-process-decode paradigm (Sanchez-Gonzalez et al., 2018; 2020) with dilated convolutional
networks (Fig. 1a). The encoder and decoder each consist of single linear convolutional layer.
The processor consists of N = 4 dilated CNN blocks (dCNNn) connected in series with residual
connections (Yu & Koltun, 2016; He et al., 2015). Each block consists of 7 dilated CNN layers
with dilation rates of (1, 2, 4, 8, 4, 2, 1). A dilation rate of N, indicates each pixel is convolved
with pixels that are multiples of N pixels away (N=1 reduces to regular convolution). This model
is not specialized for turbulence modeling per se, and its components are general-purpose tools for
improving performance in CNNs. Residual connections help avoid vanishing gradients, and dilations
allow long-range communication while preserving local structure. All individual CNNs use a kernel
size of 3 and have 48 output channels (except the decoder, which has an output channel for each
feature). Each individual CNN layer in the processor is immediately followed by a rectified linear
unit (ReLU) activation function. The Encoder CNN and the Decoder CNNs do not use activations.

Encode-U-Net-Decode (U-Net) We designed this architecture as a simplification of the TF-Net
baseline explained below. It uses a simple linear CNN encoder and decoder (same as Dil-ResNet)
and a standard U-Net block (Ronneberger et al., 2015). As in (Ronneberger et al., 2015), each CNN
stack is made of 3 CNNs, followed by activations. Other hyperparameters of the U-Net also matched
those used in (Ronneberger et al., 2015).

Turbulent Flow Net (TF-Net) (Wang et al., 2020) TF-Net uses a domain-specific variation of U-
Nets to model turbulence, along with other architectural elements inspired by RANS-LES Hybrid
Coupling in the encoder. Hyperparameters matched those used in (Ronneberger et al., 2015; Wang
et al., 2020).

Constrained Turbulent Flow Net (Con-TF-Net) (Wang et al., 2020) Wang et al. also explored
a constraint term in the loss which penalizes the divergence, which was constrained to be zero
everywhere for the PDE in their incompressible turbulence experiments. We implemented a similar
model, adapting the constrained function to match constraints or preserved quantities in our datasets.
For KS-1D, the mean is constrained to be 0; for INCOMP-2D, the divergence is constrained to be 0,
and for COMPDECAY-3D the total energy is constrained to be the same as input’s total energy.

Constrained Dilated ResNet (Con-Dil-ResNet) This model is Dil-ResNet (described above) with
the additional constraint terms from (Con-TF-Net) added to the loss function. This allows us to
examine the effect of the loss term separately from the other aspects of the TF-Net architecture.

Fourier Neural Operator (FNO) (Li et al., 2020a) This model uses the neural operator formalism
introduced in earlier work (Li et al., 2020c;b), applied in the Fourier domain. We implemented FNO
for 1D and 2D spatial domains as in (Li et al., 2020a) Hyperparameters are from (Li et al., 2020a).

CNN padding We use periodic padding for spatial axes to implement periodic boundary conditions.
For the COOLMIXLAYER-3D, which has a fixed boundary condition along the vertical axis, we mask
out the value at the boundary when computing training loss and set it to the ground truth at each step
of the rollout. We also augment the input state with a binary feature to distinguish boundary pixels.

3.3 TRAINING

Loss All models1 are trained to predict ∆X . We use a mean square error loss `(Xt, Xt+∆t) =
MSE(NN(Xt; θ),∆X) to optimize parameters θ. Input Xt and target ∆X = Xt+∆t −Xt features
are normalized to be zero-mean and unit variance, which seemed to improve training speed. The
additional mean square error loss components for constraint preservation in Con-Dil-ResNet and
Con-Dil-ResNet are added to the main loss with a relative weight of 1.

Training noise Optionally, we trained with Gaussian random noise with fixed standard deviation
σ added to the input Xt and subtracted from the target ∆X , as this has been shown to improve
stability of rollouts and prevent error accumulation by training the model to correct for small errors
(Sanchez-Gonzalez et al., 2018; 2020; Pfaff et al., 2021). See Appendix for more details.

1In the original papers, TF-Net, Con-TF-Net, and FNO directly predict X but we did not find substantive
differences from predicting ∆X . By having all models predict ∆X as a target, this allows a fairer comparison
by reusing the same target normalization.

4

Published as a conference paper at ICLR 2022

4 EXPERIMENTAL TURBULENT DOMAINS

We use four PDEs exhibiting chaotic or turbulent dynamics representative of a wide range of problems
across science and engineering. (Fig. 1b-e). These environments range from the classic problems
(KS Equations, Incompressible Turbulence) to more challenging environments that incorporate
compressibility and non-uniform initial conditions. The training data is generated at high resolution
Spatial and temporal downsampling factors and additional details about the environments are shown
in the Appendix.

1D Kuramoto-Sivashinsky Equation (KS-1D): A PDE that generates unstable, chaotic dynamics
in 1D, solved using Fourier spectral method (Kuramoto, 1978; Sivashinsky, 1977). The state consists
of a scalar velocity v per 1D grid point. While KS-1D is not technically turbulent, it is a well-studied
chaotic equation that is useful for assessing the ability of our learned models to capture dynamics
that are highly unstable and nonlinear.

2D Incompressible Decaying Turbulence (INCOMP-2D): Fluid flow modeled by Navier-Stokes
in which small-scale eddies decay into large-scale structures due to the inverse energy cascade, solved
using direct numerical simulation (Kochkov et al., 2021). The state consists of a vector velocity
vx, vy per 2D grid point. These simulations are relevant to open questions in atmospheric dynamics
(Boffetta & Ecke, 2012a).

3D Compressible Decaying Turbulence (COMPDECAY-3D): Decaying transonic turbulent flow
under Navier-Stokes, assuming adiabatic equation of state with adiabatic index γ = 5/3. The state
consists of scalar density ρ, vector velocity vx, vy, vz , and scalar pressure P per 3D grid point. Energy
at each grid point isE = 1/2ρv2+3/2P . Simulations were carried out with Athena++ (Stone et al.,
2020), a state-of-the-art simulator used in astrophysics. All real fluids are somewhat compressible,
and this is particularly non-negligible when modeling gases (Pope, 2000). In astrophysics problems,
for which the Athena++ was developed, understanding the properties of these flows plays a crucial
role in regulating planet, star, black hole, and galaxy formation (Brandenburg & Nordlund, 2011).

3D Compressible Turbulence with Radiative Cooling Mixing Layer (COOLMIXLAYER-3D):
Turbulent mixing resulting from the Kelvin-Helmholtz instability, caused by velocity differences
across the interface between fluids of different densities, solved with Athena++. The state is
specified in the same way as in COMPDECAY-3D. Mixing involves strong cooling, leading to net flow
from the low-density phase into the mixing layer. This environment was additionally challenging
because of its open boundaries and non-uniform initial conditions. This process is common in
atmosheric flows as well as many aspects of galaxy formation (Fielding et al., 2020).

5 RESULTS

We evaluate the learned simulator models in terms of stability, performance, efficiency, and general-
ization. Unlike numerical solvers, which are PDE specific, learned simulator models can be designed
to be reusable across domains. In Figure 1, we show that the same general-purpose architecture
(Dil-ResNet) and loss, trained on each of the domains, learns to capture a range of qualitatively diverse
turbulent dynamics across domains (Fig. 1b-e, videos: sites.google.com/view/learned-turbulence-
simulators). All results are evaluated on held-out test trajectories sampled from the same distribution
used for training (except for generalization sections). All units (except time) are normalized and
therefore dimensionless.

Spatial coarsening Numerical solvers are known to lose information, particularly high-frequency
information, when applied to coarse grids. We compared our Dil-ResNet learned simulator to
Athena++ run on spatially coarsened grids (see Section 5 for comparison with learned models).
We chose the energy field E = 1

2ρv
2 + 3

2P as the quantitative metric of 3D turbulence for the main
text, as it summarizes performance on all state variables. We show results for Athena++ run at
resolutions of 323 (the same resolution as the learned models) and at 643 (higher resolution than the
learned models, lower than the ground truth). The “ground truth” data is from Athena++ run at
1283. All grids are downsampled to 323 for comparison. We compared models in terms of the RMSE

3Note the reason that error rises and falls for this model is that COMPDECAY-3D is decaying turbulence. As
time passes, the distribution becomes more uniform in space, resulting in lower error across models.

5

https://sites.google.com/view/learned-turbulence-simulators
https://sites.google.com/view/learned-turbulence-simulators

Published as a conference paper at ICLR 2022

0.5 1.0
Frequency [1/2dx]

3

4

6

En
er

gy
 S

pe
ct

ru
m

 [l
og

]

0.0

0.2

0.4

0.6

En
er

gy
 F

ie
ld

 R
M

SE

Energy Field

10− 1

100

Lo
g

En
er

gy

Sp
ec

tr
um

 R
M

SE

Energy Spectrum

Energy Field

Dil-ResNet
Athena++ 32
Athena++ 64
Athena++ 128
Ground Truthgeneralization

window
training
window

Error over Time

Energy Spectrum Dil-ResNetAthena++128

Athena++64Athena++32

i

g

h

fb

Energy Fields (t=1)

0 1 2 3 4
Time

Energy Spectrum

d

0.0

0.2

0.4

0.6

En
er

gy
 F

ie
ld

 R
M

SE
10−1

100 e

t=1

c

Error

a

DRN Ath32 Ath64

Lo
g

En
er

gy

Sp
ec

tr
um

 R
M

SE

Figure 2: Comparison between learned 323 Dil-ResNet and same-resolution 323 Athena++, interme-
diate resolution 643 Athena++, and ground truth high resolution 1283 Athena++ in COMPDECAY-
3D. (a) Energy Field RMSE (y-axis) for Dil-ResNet (323 resolution (blue)) and Athena++ (643

(dark gray), and 323 (light gray)) on a test trajectory the window of times seen during training.
Dil-ResNet RMSE is lower than that of the comparably coarse Athena++ 323 but higher than
Athena++ 643. (b) Energy Field RMSE (y-axis) as a function of rollout duration (x-axis) over
the training window (white background) and generalizing beyond (pink background)3. The learned
simulator’s error grows faster starting around 3x the training window (at t ≈ 3000). Each blue line
corresponds to a different seed. Ground truth (red) error is at 0 and hidden by x-axis. (c) Energy
Spectrum RMSE (y-axis). Dil-ResNet has lower error than both comparable and higher resolution 323

and 643 Athena++ models. (d) Energy Spectrum RMSE (y-axis) over rollout. Dil-ResNet’s rollouts
maintain lower Energy Spectrum error for up to 4× the training duration. (e) Energy Spectrum for
the learned and Athena++ simulators at rollout t ≈ 1 s (the end of the training window). The x-axis
represents spatial frequency, and the y-axis represents spectral power. Compared to Dil-ResNet,
the coarse Athena++ models lose power in the high frequency range. (f–i) Sample energy Fields
at t ≈ 1 s for Dil-ResNet and the three Athena++ resolutions. States from coarse Athena++
resolutions lose high frequency detail with respect to the ground truth, which the coarse learned
model captures.

of the predicted Energy Field and the Log Energy Spectrum (See Appendix for definition). We used
the energy field as the main variable as it is a combination of all five state variables, but see Videos
and Appendix for per-variable results.

The learned simulator outperforms the comparable resolution Athena++ 323 across a variety of
metrics, despite having no built-in specializations for turbulent dynamics. In Figure 2a-b, we show
RMSE for the Energy Field for t < 1, which corresponds to the initial phase of the turbulence decay
seen during training (white window in Fig 2b). Energy Field is given as E = 1

2ρv
2 + 3

2P , and it
implicitly summarizes performance on all state variables (other metrics are shown in the Appendix).
The learned simulator outperforms both the same- and higher-resolution Athena++ rollouts in
terms of the Log Energy Spectrum (Fig. 2c,d), as the Athena++ simulators lose high frequency
components that the learned simulators preserve (Figure 2e-i). Log Energy Spectrum is computed by
(1) taking the 3-D Fourier transform, (2) computing the amplitude of each component, (3) taking the
histogram of the 3-D Fourier transform over frequency amplitude (

√
k2
x + k2

y + k2
z) to get a 1-D PSD,

and (4) then taking the log. We looked at a range of other physically relevant metrics and find that the
learned simulator outperforms the comparably coarse 323 Athena++ but not 643 Athena++ on
predicting feature histograms, the phase histograms (pressure v. density and entropy v. pressure),
and mean squared error for each feature. The learned simulator outperformed both 323 and 643

Athena++ simulators on higher order velocity autocorrelations, as well as spectrum error. Since
different scientific questions rely on different metrics, the tradeoffs of learned versus physics based
simulators may vary across applications. These metrics are defined in the Appendix.

Stability and training noise While scientific simulators are typically designed to be stable over
time, a common failure mode in learned models is that small errors can accumulate over rollouts
and lead to a domain shift. One reason for this is that, as the model is fed its most recent prediction
back in as input for predicting future steps, its distribution of input states begins to deviate from

6

https://sites.google.com/view/learned-turbulence-simulators

Published as a conference paper at ICLR 2022

10−2
10−1

100

O
ne

 s
te

p

 c
No noise

 e
Noise 0.01

1 2 4 8
16 32 64

12
8

25
6

100

101

Ro
llo

ut

Model Timestep ∆t [x10-3]

 d

1 2 4 8
16 32 64

12
8

25
6

 f

5e-3

1e-2

1.5e-2

O
ne

 s
te

p

10−2

108

1018
Ro

llo
ut

No noise Noise 0.01 a

 b

0.0 0.2 0.4 0.6 0.8 1.0
Time [s] (∆t=10-3)

CompDecay-3D Energy RMSE over Time CompDecay-3D Energy RMSE

Figure 3: Effects of noise and temporal downsampling on rollout stability. (a) One step errors are
larger for models trained with noise. Note the error spikes are very small and are not model-related
general artifacts, but specific to particular frames of this test trajectory. (b) However, models trained
without noise can yield unstable rollouts, especially when using very small time steps, which is not a
problem for models trained with noise. (c, e) One-step model error rises monotonically with coarser
temporal downsampling. (d, f) Rollout error has a U-shaped curve over temporal downsampling
factors, for a trajectory of the same time duration, with minimum error around ∆t = 0.032.

that experienced at training, where it fails to generalize and can make arbitrarily poor predictions.
We found that adding Gaussian noise σ = 0.01 to the inputs Xt during training led to less accurate
one-step predictions (Fig. 3a), but more stable trajectories (Fig. 3b). This is of particular importance
for models that take a very large number of small steps. This is presumably because the training
distribution has broader support and the model is optimized to map deviant inputs back to the training
distribution.

Temporal coarsening An advantage of learned simulators is that they can exploit a much larger
step size than the numerical solver, as they can discover efficient updates that capture relevant
dynamics on larger timescale. This allows for faster simulation. See Videos and Appendix for
qualitative examples of Dil-ResNet trained on a large range of exponentially increasing coarse
timesteps in KS-1D, INCOMP-2D and COMPDECAY-3D, which the model can adapt to (note that a
separate model is trained for each ∆t). Quantitatively, though the one-step error is at its lowest when
using smaller time steps (Fig. 3c), the rollout error has an optimal time step at around 0.032 (Fig.
3d). This demonstrates the tradeoff between large and small time steps. Large time steps (> 0.032)
cause predicting the next state to become more challenging. Small time steps (< 0.008), which
require more simulator steps for the same duration, often yield unstable models because they provide
more opportunities for errors to accumulate (Fig. 3d) (e.g. for some ∆t, 1s/∆t steps are required).
However, they can still be stabilized to some extent with training noise (Fig. 3f).

no noise noise
0

1

2

Ve
lo

cit
y

RM
SE 5.3a

KS-1D
Velocity RMSE

no noise noise
0.00

0.01

0.02

Ve
lo

cit
y

RM
SE 8.2e+11,

6.6e+12,
5.9e+15

b

Incomp-2D
Velocity RMSE

no noise noise
0.0

0.5

1.0

En
er

gy
 R

M
SE

1.5c

CompDecay-3D
Energy Field RMSE

Dil-ResNet
Con-Dil-ResNet
U-Net (n=1)
TF-Net
Con-TF-Net
FNO (k=8)
FNO (full rank)

Figure 4: Comparison across learned models, contrasting noise and no-noise training conditions,
across the three primary tasks (a) KS-1D, (b) INCOMP-2D, and (c) COMPDECAY-3D. With a few
exceptions, the various learned models had comparable performance, though the Dilated ResNets
(Dil-ResNet, Con-Dil-ResNet) consistently have the lowest error. In KS-1D (a), the noise harmed
performance; in INCOMP-2D (b) the noise particularly benefits the FNO rollouts; in COMPDECAY-3D
(c) the noise mainly stabilized rollouts.

7

https://sites.google.com/view/learned-turbulence-simulators

Published as a conference paper at ICLR 2022

Comparison across learned models In Figure 4 we compare the learned models in terms of
the performance across the different primary turbulence datasets. We find that Dilated ResNets
(Dil-ResNet, Con-Dil-ResNet) are the top performing models, numerically outperforming more
specialized architectures. However, we find that all learned models (ours and the baselines) produce
qualitatively good rollouts compared to Athena++ 323, suggesting learned simulators are generally
a good approach to turbulence simulation on coarse grids (see Videos). We also find training noise
improves stability across learned models. All models shown in Figure 4 are evaluated such that the
first predicted step is the 7th step of the ground truth trajectory. This is to allow comparison with
TF-Net, which takes C = 6 context states as input. We show in further detail the predictions of the
different models in the Appendix.

Running time Learned simulators can accelerate simulations not only by coarsening in time and
space, but also by running off-the-shelf on specialized GPU hardware, unlike e.g., Athena++
which is currently CPU specific. By downsampling in time (∆t = 0.0005 → 0.032) and space
(1283 → 323), the Dil-ResNet model trained on COMPDECAY-3D running on a single GPU speeds
up the wall-clock simulation time by 1000x compared to Athena++ running on an 8-core CPU
(further details in Appendix). GPU solvers can be developed for many applications and can greatly
accelerate simulation; however, these can require a lot of expertise and time to develop, and will still
require high spatial and temporal resolution grids.

Constraint satisfaction and preserved quantities Traditional solvers often implement constraints
to preserve conserved quantities. Learned simulators do not necessarily learn such constraints and may
fail to capture these (see Appendix). We found that training with noise prevents this in some cases:
it helps Dil-ResNet keep the mean value of the KS-1D velocity, and the INCOMP-2D divergence
bounded near zero. However, in COMPDECAY-3D using noise does not seem to help preventing the
model from predicting drifts in total mass, vector momentum and energy, even though they are fixed
across the whole dataset. We speculate this is because these preserved quantities only account for 5
degrees of freedom out of a 3D state that is made of 163840 (= 5 · 323) output variables.

Generalization to longer rollouts Dil-ResNet can stably unroll KS-1D for much longer than the
trajectories seen in training. This is expected, as the distribution of states is stationary in time (see
Appendix). By contrast, the distribution of states in COMPDECAY-3D is not stationary in time, as
the flow decays progressively into smaller and smaller structures. We can use this to construct a
more challenging generalization setting by training Dil-ResNet on early stages of the decay only
(t < 1), and testing on longer durations in which the turbulence develops further than observed during
training. (1 < t < 4 in Fig. 2b, d). We find Dil-ResNet remains competitive with 323 Athena++
for turbulence that has decayed for up to twice longer t < 2 than observed during training.

Generalization to different initial conditions We varied the ratio of solenoidal to compressive
components in the initial velocity field in COMPDECAY-3D (Fig. 5a) in order to test the models’
ability to generalize to novel initial conditions. Compared to Athena++ at 323 and 643, we found
that the models generalize well to more solenoidal but not to more compressive initial conditions,
possibly due to faster turbulence decay under compressive conditions4. We find that Dil-ResNet (with
or without noise) has particular difficulty generalizing to the more compressive components. This is
somewhat ameliorated with the added constraint to the loss function (Con-Dilated-ResNet). Results
for other models are similar (see Appendix).

Generalization to larger boxes We tested the generalization capability of Dil-ResNet to
COOLMIXLAYER-3D boxes with different size L in the x and y direction (the length along the verti-
cal z axis perpendicular to the mixing layer remained constant). We quantified the predicted cooling
velocity (small laminar flow in the low-density phase perpendicular to the interface, see Appendix for
more details) which is of scientific relevance and known to depend on the box size. Specifically, for
COOLMIXLAYER-3D, the dynamics undergo a transition when the box width increases relative to the
cooling length,which is difficult to study because simulations for these widths essentially prohibitive.
We found that unless Dil-ResNet is trained on a range of sizes, the predicted cooling velocity does not
follow the right trend, and even when trained on a range of sizes, generalization beyond the training

4Note the baseline error is expected to decrease for more compressive components due to faster decay.

8

https://sites.google.com/view/learned-turbulence-simulators

Published as a conference paper at ICLR 2022

0.00 0.25 0.50 0.75 1.00

10 0

� Generalization to Different Box Sizes
CoolMixLayer-3D

Athena++ 32
Athena++ 64

Con-Dil-ResNet
Dil-ResNet

�

0.5 1.0 1.5 2.0
Box length (L)

−2.0

−1.5

−1.0

Ground Truth

Dil-ResNet
Train L=0.75

Dil-ResNet
Train L={0.5,0.75,1,1.25}

Co
ol

in
g

ve
lo

ci
ty

(v
z i

n
lo

w
 d

en
si

ty
 p

ha
se

)

more solenoidalmore compressive

Training value

RM
SE

Generalization to Different Initial Conditions
CompDecay-3D

Figure 5: Generalization outside of the training distribution. (a) Generalization to different initial
conditions. We vary the ratio of compressive and solenoidal components in the initial velocity
field. Solid markers indicated the training region. We find that, compared to coarse Athena++,
generalization to more compressive initial states is challenging for learned models and inconsistent
across seeds, but that loss constraints (Con-Dil-ResNet) ameliorate this to some extent. (b) Cooling
velocity generalization as function of the box size in the mixing layer. The black line indicates the
ground truth cooling velocity averaged across time for 8 test trajectories with different box sizes,
with one standard deviation represented as the shaded region. None of 3 seeds of Dil-ResNet trained
on a single length of L = 0.75 (blue) generalize outside the training range. Dil-ResNet trained
on multiple lengths (orange) shows better generalization performance. However, generalization far
beyond training box sizes remains a challenge.

range is not reliable across seeds (Fig. 5b). We speculate that achieving this form of generalization
would require either stronger inductive biases, more sophisticated dataset engineering, or both.

6 CONCLUSIONS

Learned simulation techniques have been advancing steadily in recent years. Our results demonstrate
that learned simulators can outperform comparably coarse solvers in challenging turbulence settings
on a range of scientifically relevant statistical measures, suggesting that state-of-the-art learned
simulators can be useful for efficient, accurate simulation even in chaotic domains. Learned simulators
can perform particularly well in terms of preserving high frequency information. The Dilated ResNet
model had lower log Energy Spectrum RMSE than both 323 Athena++ and the higher resolutions
643 Athena++, and the RMSE remained lower even beyond the duration seen during training.
In our experiments, we found that using training noise and temporal downsampling improved the
stability and accuracy of extended rollouts.

Out-of-distribution generalization is a known challenge for learned simulation (Duraisamy et al.,
2019) and for deep learning methods generally, and we find that the coarse Athena++ models
outperform the learned models on more extreme generalization conditions. However, certain training
choices can make learned models more robust. In particular, physically-informed regularization
(e.g., Con-Dil-ResNet and Con-TF-Net) improved generalization to different initial conditions on
COMPDECAY-3D, and for COOLMIXLAYER-3D, augmenting the training data with a larger range
of box sizes improved generalization performance on an even larger range. Future work should
explore methods from other areas of deep learning for improving adversarial robustness and domain
generalization, such as feature denoising (Xie et al., 2019) and discriminative objectives (Tzeng et al.,
2017; Lample et al., 2017).

More broadly, we conclude that a key potential role for learned simulators in the near term is distilling
expensive, high-resolution engineered simulators into low-resolution algorithms to strike better
performance-versus-efficiency tradeoffs. Our approach can be applied effectively to diverse and
challenging environments, which suggests that even generic CNN-based models may apply well to
low-resolution simulation on a wide range of physical domains which can be represented as grids.

9

Published as a conference paper at ICLR 2022

ACKNOWLEDGMENTS

We would like to thank Meire Fortunato, Matthew Grimes, and Lyuba Chumakova for helpful
discussions and comments on the manuscript.

REFERENCES

Peter W Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, and Koray Kavukcuoglu. Interac-
tion networks for learning about objects, relations and physics. arXiv preprint arXiv:1612.00222,
2016.

Filipe de Avila Belbute-Peres, Thomas D. Economon, and J. Zico Kolter. Combining differentiable
PDE solvers and graph neural networks for fluid flow prediction. In Proceedings of the 37th
International Conference on Machine Learning ICML 2020, 2020.

A. Beljaars. Parameterization of physical processes | turbulence and mixing. In James R. Holton
(ed.), Encyclopedia of Atmospheric Sciences, pp. 1705–1717. Academic Press, Oxford, 2003.
ISBN 978-0-12-227090-1. doi: https://doi.org/10.1016/B0-12-227090-8/00310-9. URL https:
//www.sciencedirect.com/science/article/pii/B0122270908003109.

Saakaar Bhatnagar, Yaser Afshar, Shaowu Pan, Karthik Duraisamy, and Shailendra Kaushik. Predic-
tion of aerodynamic flow fields using convolutional neural networks. Computational Mechanics,
64(2):525–545, 2019.

Guido Boffetta and Robert E. Ecke. Two-dimensional turbulence. Annual Review of Fluid Mechanics,
44(1):427–451, 2012a. doi: 10.1146/annurev-fluid-120710-101240. URL https://doi.org/
10.1146/annurev-fluid-120710-101240.

Guido Boffetta and Robert E Ecke. Two-dimensional turbulence. Annual Review of Fluid Mechanics,
44:427–451, 2012b.

Axel Brandenburg and Åke Nordlund. Astrophysical turbulence modeling. Reports on Progress in
Physics, 74(4):046901, April 2011. doi: 10.1088/0034-4885/74/4/046901.

V. M. Canuto and J. Christensen-Dalsgaard. Turbulence in astrophysics: Stars. Annual Review of
Fluid Mechanics, 30(1):167–198, 1998. doi: 10.1146/annurev.fluid.30.1.167.

Kathleen Champion, Bethany Lusch, J. Nathan Kutz, and Steven L. Brunton. Data-driven discovery
of coordinates and governing equations. Proceedings of the National Academy of Sciences, 116
(45):22445–22451, 2019. ISSN 0027-8424. doi: 10.1073/pnas.1906995116. URL https:
//www.pnas.org/content/116/45/22445.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential
equations. arXiv preprint arXiv:1806.07366, 2018.

Michael H. Dickinson, Fritz-Olaf Lehmann, and Sanjay P. Sane. Wing rotation and the aerodynamic
basis of insect flight. Science, 284(5422):1954–1960, 1999. doi: 10.1126/science.284.5422.
1954. URL https://www.science.org/doi/abs/10.1126/science.284.5422.
1954.

Karthik Duraisamy, Gianluca Iaccarino, and Heng Xiao. Turbulence modeling in the age
of data. Annual Review of Fluid Mechanics, 51(1):357–377, Jan 2019. ISSN 1545-
4479. doi: 10.1146/annurev-fluid-010518-040547. URL http://dx.doi.org/10.1146/
annurev-fluid-010518-040547.

Christoph Federrath and Ralf S. Klessen. The Star Formation Rate of Turbulent Magnetized Clouds:
Comparing Theory, Simulations, and Observations. The Astrophysical Journal, 761(2):156,
December 2012. doi: 10.1088/0004-637X/761/2/156.

Drummond Fielding, Eliot Quataert, and Davide Martizzi. Clustered supernovae drive powerful
galactic winds after superbubble breakout. Monthly Notices of the Royal Astronomical Society,
481(3):3325–3347, December 2018. doi: 10.1093/mnras/sty2466.

10

https://www.sciencedirect.com/science/article/pii/B0122270908003109
https://www.sciencedirect.com/science/article/pii/B0122270908003109
https://doi.org/10.1146/annurev-fluid-120710-101240
https://doi.org/10.1146/annurev-fluid-120710-101240
https://www.pnas.org/content/116/45/22445
https://www.pnas.org/content/116/45/22445
https://www.science.org/doi/abs/10.1126/science.284.5422.1954
https://www.science.org/doi/abs/10.1126/science.284.5422.1954
http://dx.doi.org/10.1146/annurev-fluid-010518-040547
http://dx.doi.org/10.1146/annurev-fluid-010518-040547

Published as a conference paper at ICLR 2022

Drummond B. Fielding, Eve C. Ostriker, Greg L. Bryan, and Adam S. Jermyn. Multiphase gas and
the fractal nature of radiative turbulent mixing layers. The Astrophysical Journal, 894(2):L24, May
2020. ISSN 2041-8213. doi: 10.3847/2041-8213/ab8d2c. URL http://dx.doi.org/10.
3847/2041-8213/ab8d2c.

Drummond B. Fielding, Stephanie Tonnesen, Daniel DeFelippis, Miao Li, Kung-Yi Su, Greg L. Bryan,
Chang-Goo Kim, John C. Forbes, Rachel S. Somerville, Nicholas Battaglia, Evan E. Schneider,
Yuan Li, Ena Choi, Christopher C. Hayward, and Lars Hernquist. First Results from SMAUG:
Uncovering the Origin of the Multiphase Circumgalactic Medium with a Comparative Analysis of
Idealized and Cosmological Simulations. The Astrophysical Journal, 903(1):32, November 2020.
doi: 10.3847/1538-4357/abbc6d.

Jonathan B. Freund, Jonathan F. MacArt, and Justin Sirignano. DPM: A deep learning PDE augmen-
tation method (with application to large-eddy simulation), 2019.

Uriel Frisch. Turbulence. The legacy of A.N. Kolmogorov. Cambridge University Press, 1995.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition, 2015.

Daniel Holden, Bang Chi Duong, Sayantan Datta, and Derek Nowrouzezahrai. Subspace neu-
ral physics: Fast data-driven interactive simulation. In Proceedings of the 18th annual ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 1–12, 2019.

Arthur M. Jaffe. The millennium grand challenge in mathematics. Notices of the AMS, 53(6):652–660,
2006.

Byungsoo Kim, Vinicius C. Azevedo, Nils Thuerey, Theodore Kim, Markus H. Gross, and Barbara
Solenthaler. Deep fluids: A generative network for parameterized fluid simulations. CoRR,
abs/1806.02071, 2018. URL http://arxiv.org/abs/1806.02071.

Dmitrii Kochkov, Jamie A. Smith, Ayya Alieva, Qing Wang, Michael P. Brenner, and Stephan Hoyer.
Machine learning accelerated computational fluid dynamics, 2021.

A. Kolmogorov. The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large
Reynolds’ Numbers. Akademiia Nauk SSSR Doklady, 30:301–305, January 1941.

Yoshiki Kuramoto. Diffusion-Induced Chaos in Reaction Systems. Progress of Theoretical Physics
Supplement, 64:346–367, 02 1978. ISSN 0375-9687. doi: 10.1143/PTPS.64.346. URL https:
//doi.org/10.1143/PTPS.64.346.

L’ubor Ladický, SoHyeon Jeong, Barbara Solenthaler, Marc Pollefeys, and Markus Gross. Data-
driven fluid simulations using regression forests. ACM Trans. Graph., 34(6), 2015.

Guillaume Lample, Neil Zeghidour, Nicolas Usunier, Antoine Bordes, Ludovic Denoyer, and
Marc’Aurelio Ranzato. Fader networks: Manipulating images by sliding attributes. arXiv preprint
arXiv:1706.00409, 2017.

Stefano Leonardi, Martand Mayukh Garimella, and Umberto Ciri. Effect of turbulence on wildfire
propagation. In APS Division of Fluid Dynamics Meeting Abstracts, APS Meeting Abstracts, pp.
S18.006, November 2019.

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B. Tenenbaum, and Antonio Torralba. Learning
particle dynamics for manipulating rigid bodies, deformable objects, and fluids. In International
Conference on Learning Representations, 2019.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations,
2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Multipole graph neural operator for parametric partial differential
equations. arXiv preprint arXiv:2006.09535, 2020b.

11

http://dx.doi.org/10.3847/2041-8213/ab8d2c
http://dx.doi.org/10.3847/2041-8213/ab8d2c
http://arxiv.org/abs/1806.02071
https://doi.org/10.1143/PTPS.64.346
https://doi.org/10.1143/PTPS.64.346

Published as a conference paper at ICLR 2022

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differential
equations, 2020c.

Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear embeddings
of nonlinear dynamics. Nature Communications, 9(1):4950, 2018. ISSN 2041-1723. doi: 10.1038/
s41467-018-07210-0. URL https://doi.org/10.1038/s41467-018-07210-0.

Steven A. Orszag and G. S. Patterson. Numerical Simulation of Three-Dimensional Homo-
geneous Isotropic Turbulence. Physical Review Letters, 28(2):76–79, January 1972. doi:
10.1103/PhysRevLett.28.76.

Jaideep Pathak, Mustafa Mustafa, Karthik Kashinath, Emmanuel Motheau, Thorsten Kurth, and
Marcus Day. Using machine learning to augment coarse-grid computational fluid dynamics
simulations, 2020.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-based
simulation with graph networks. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=roNqYL0_XP.

Stephen B. Pope. Turbulent Flows. Cambridge Univ. Press, 2000.

Gavin D Portwood, Peetak P Mitra, Mateus Dias Ribeiro, Tan Minh Nguyen, Balasubramanya T
Nadiga, Juan A Saenz, Michael Chertkov, Animesh Garg, Anima Anandkumar, Andreas Dengel,
et al. Turbulence forecasting via neural ode. arXiv preprint arXiv:1911.05180, 2019.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learning (part i):
Data-driven solutions of nonlinear partial differential equations. arXiv preprint arXiv:1711.10561,
2017.

Li Rhie, C Chow. Numerical study of the turbulent flow past an airfoil with trailing edge separation.
AIAA Journal, 21(11):1525–1532, 1983.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

Ahmed M. Sallam and Ned H. C. Hwang. Human red blood cell hemolysis in a turbulent shear flow:
Contribution of reynolds shear stresses. Biorheology, 21(6):783–797, 1984.

Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller,
Raia Hadsell, and Peter Battaglia. Graph networks as learnable physics engines for inference and
control. In International Conference on Machine Learning, pp. 4470–4479. PMLR, 2018.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In International Conference
on Machine Learning, pp. 8459–8468. PMLR, 2020.

G.I. Sivashinsky. Nonlinear analysis of hydrodynamic instability in laminar flames—i. derivation of
basic equations. Acta Astronautica, 4(11):1177–1206, 1977. ISSN 0094-5765. doi: https://doi.org/
10.1016/0094-5765(77)90096-0. URL https://www.sciencedirect.com/science/
article/pii/0094576577900960.

E. R. Smith. A molecular dynamics simulation of the turbulent couette minimal flow unit. Physics of
Fluids, 27(11):115105, 2015. doi: 10.1063/1.4935213.

James M. Stone, Kengo Tomida, Christopher J. White, and Kyle G. Felker. The athena++ adaptive
mesh refinement framework: Design and magnetohydrodynamic solvers. The Astrophysical
Journal Supplement Series, 249(1):4, Jun 2020. ISSN 1538-4365. doi: 10.3847/1538-4365/ab929b.
URL http://dx.doi.org/10.3847/1538-4365/ab929b.

Nils Thuerey, Konstantin Weißenow, Lukas Prantl, and Xiangyu Hu. Deep learning methods for
reynolds-averaged navier–stokes simulations of airfoil flows. AIAA Journal, 58(1):25–36, 2020.

12

https://doi.org/10.1038/s41467-018-07210-0
https://openreview.net/forum?id=roNqYL0_XP
https://www.sciencedirect.com/science/article/pii/0094576577900960
https://www.sciencedirect.com/science/article/pii/0094576577900960
http://dx.doi.org/10.3847/1538-4365/ab929b

Published as a conference paper at ICLR 2022

Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. Accelerating eulerian
fluid simulation with convolutional networks. CoRR, abs/1607.03597, 2016. URL http://
arxiv.org/abs/1607.03597.

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain
adaptation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
7167–7176, 2017.

Kiwon Um, Xiangyu Hu, and Nils Thuerey. Liquid splash modeling with neural networks. In
Computer Graphics Forum, volume 37, pp. 171–182. Wiley Online Library, 2018.

Kiwon Um, Robert Brand, Yun, Fei, Philipp Holl, and Nils Thuerey. Solver-in-the-Loop: Learning
from differentiable physics to interact with iterative PDE-solvers, 2021.

Benjamin Ummenhofer, Lukas Prantl, Nils Thürey, and Vladlen Koltun. Lagrangian fluid simulation
with continuous convolutions. In International Conference on Learning Representations, 2020.

Rui Wang, Karthik Kashinath, Mustafa Mustafa, Adrian Albert, and Rose Yu. Towards physics-
informed deep learning for turbulent flow prediction, 2020.

Steffen Wiewel, Moritz Becher, and Nils Thuerey. Latent space physics: Towards learning the
temporal evolution of fluid flow. In Computer Graphics Forum, pp. 71–82. Wiley Online Library,
2019.

Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan L Yuille, and Kaiming He. Feature denoising
for improving adversarial robustness. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 501–509, 2019.

You Xie, Erik Franz, Mengyu Chu, and Nils Thuerey. Tempogan: A temporally coherent, volumetric
gan for super-resolution fluid flow. ACM Trans. Graph., 37(4), July 2018.

Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions, 2016.

Jun A. Zhang, Evan A. Kalina, Mrinal K. Biswas, Robert F. Rogers, Ping Zhu, and Frank D. Marks.
A review and evaluation of planetary boundary layer parameterizations in hurricane weather
research and forecasting model using idealized simulations and observations. Atmosphere, 11
(10), 2020. ISSN 2073-4433. doi: 10.3390/atmos11101091. URL https://www.mdpi.com/
2073-4433/11/10/1091.

13

http://arxiv.org/abs/1607.03597
http://arxiv.org/abs/1607.03597
https://www.mdpi.com/2073-4433/11/10/1091
https://www.mdpi.com/2073-4433/11/10/1091

Published as a conference paper at ICLR 2022

A APPENDIX

Hyperparameter Dil-ResNet U-Net TF-Net FNO

Kernel size 3 3 3
Latent size 48 48
Activation ReLU ReLU ReLU ReLU

Loss MSE MSE MSE MSE

Dilated block depth 7
Dilated block dilations (1, 2, 4, 8,

4, 2, 1)
processor blocks N 4

Shared processors? No

U-Net layers 7 4 (x3 encoders) +
3 (single decoder)

Stride 2 2
CNN stack depth 3 3

Base latent size 64 64
Spatial downsample by layer (1, 2, 4, 8, 4, 2, 1) (1, 2, 4, 8, 4, 2, 1)

Latent sizes (64, 128, 256, 512, (64x3, 128x3,
256, 128, 64) 256x3, 512x3

256, 128, 64)

Spatial filter kernel size 5
Length of input sequence C 1 1 1 6 1

modes 8 or all
layers 4

Constraint weight 1 1

Table A.1: Model hyperparameters for the four basic models used. Con-Dil-ResNet and Con-TF-Net
have the same architectural parameters as Dil-ResNet and TF-Net, respectively, with the added
constraint weighted by the constraint weight. Note that spatial filter kernel for TF-Net is different
from the kernel size in the first row: this spatial filter is applied during the decomposition in the
TF-net model.

B ADDITIONAL MODEL DETAILS

Encode-U-Net-Decode (U-Net) We designed this architecture as a simplification of the TF-Net
baseline explained below. It uses a simple linear CNN encoder and decoder (same as Dil-ResNet)
and a standard U-Net block (Ronneberger et al., 2015). The standard U-Net block consists of 7 layers.
The first 3 layers each consist of a CNN stack followed by a factor-of-2 downsampling via striding
the input. The fourth layer of the U-Net is another CNN stack, which at this point operates over a
grid that is 8 times smaller than the input along each spatial axis. The last 3 layers each consist of
a factor-of-2 upsampling using nearest neighbors, concatenation with the output of one of the first
three layers (in reverse), and another CNN stack. This downsampling/upsampling process allows
long-range communication similar to the Dilated ResNet, while also preserving local structure. As
in (Ronneberger et al., 2015), each CNN stack is made of 3 CNNs, followed by activations. Other
hyperparameters of the U-Net also matched those used in (Ronneberger et al., 2015).

Turbulent Flow Net (TF-Net) (Wang et al., 2020) TF-Net uses a domain-specific variation of
U-Nets to model turbulence, along with other architectural domain-specific elements inspired by
RANS-LES Hybrid Coupling in the encoder. The model implements a custom encoder by taking a
sequence of the most recent C = 6 states as inputs, and uses this to build three separate input arrays,
by applying specific combinations of learned spatial filters, learned temporal filters, and differences

14

Published as a conference paper at ICLR 2022

of those. Each of these components are processed by a separate U-Net encoder (first 4 layers of the
U-Net), then the latent outputs of each layer are concatenated and fed into a shared U-Net decoder
(final 3 layers). Hyperparameters also matched those used in (Ronneberger et al., 2015; Wang et al.,
2020).

Constrained Turbulent Flow Net (Con-TF-Net) (Wang et al., 2020) Wang et al. also explored
a constraint term in the loss which penalizes the divergence, which was constrained to be zero
everywhere for the PDE in their incompressible turbulence experiments. We implemented a similar
model, adapting the constrained function to match either constraints or preserved quantities in our
datasets. For KS-1D, the mean is constrained to be 0; for INCOMP-2D, the divergence is constrained
to be 0, and for COMPDECAY-3D the total energy is constrained to be the same as the total energy of
the input.

Constrained Dilated ResNet (Con-Dil-ResNet) This model is Dil-ResNet (described above) with
the additional constraint terms from (Con-TF-Net) added to the loss function. This allows us to
examine the effect of the loss term separately from the other aspects of the TF-Net architecture.

Fourier Neural Operator (FNO) (Li et al., 2020a) This model uses the neural operator formalism
introduced in earlier work (Li et al., 2020c;b), applied in the Fourier domain. This model applies
matrix multiplications in the Fourier-transformed grid with complex weights learned independently for
each component, as well as linear updates The model combines pixel-wise learned linear embeddings
in the spatial domain The model combines learned linear layers, applied to each point of the spatial
grid separately, with matrix multiplication on the Fourier-transformed grid using learned weights.
A unique matrix of weights is learned for point in the Fourier grid. Low-pass filtering is optionally
implemented by truncating all but K modes along each dimension in the Fourier-transformed grid.
The authors explored using a version of the model that takes a stack of past states as input. Since
the state is fully-Markov, we opted for the version of the model that takes a single state as input as
it is more comparable to the majority of the other models. Unlike previous models, which rely on
spatially local convolutions and depth for long-range communication, this model applies long-range
communication at every step in the Fourier domain. We implemented this model for 1D and 2D
spatial domains as in (Li et al., 2020a).

We found difficulties running this model on the 3D datasets due to compute and memory constraints.
We speculate this is due to time and space complexity of the Fourier transform (when taking into
account the backwards pass) which would probably require a custom gradient re-materialization
strategy. This may be specific to TensorFlow which required us to reimplement the non-differentiable
tf.signal.rfft3d as a sequence of tf.signal.rfft2d and tf.signal.fft.

B.1 ADDITIONAL DATASET DETAILS

B.1.1 1D KURAMOTO-SIVASHINSKY (KS) EQUATION

This is a well-studied 1D PDE that generates unstable, chaotic dynamics in 1 dimension (Kuramoto,
1978; Sivashinsky, 1977) with periodic boundaries. The ground truth simulations are computed using
the Fourier Spectral Method. Initial condition was set to cos (w1x+ φ1)(1+sin (w2x+ φ2)), where
x ranges from 0 to 2π, φi are sampled uniformly from [0, 2π), and w1 are integers sampled uniformly
from [1, 12). We perform a warmup from this initial condition for 75 simulation time units.

B.1.2 2D INCOMPRESSIBLE DECAYING TURBULENCE

This models fluid flow described by the Navier-Stokes equations in which small-scale eddies decay
into the large-scale structures due to the inverse energy cascade (Boffetta & Ecke, 2012b). The
underlying simulations were performed by solving the incompressible Navier-Stokes equations using
a direct numerical simulation (DNS) finite-volume solver. Boundaries along both dimensions are
periodic, and the initial conditions consist of random velocity fields with small-scale variation. Initial
conditions for different trajectories were obtained by sampling a high-resolution velocity field from
a log-normal distribution of amplitude 1 and wavenumber k = 10. We perform a warmup for 500
simulation time units, this is done to discard the transient flow that is heavily influenced by the
underlying numerical scheme.

15

Published as a conference paper at ICLR 2022

Compressible
KS Equation Incompressible Compressible Radiative Cooling

Decaying Decaying Mixing Layer

Numerical Solver Fourier Method DNS Athena++ Athena++
Spatial dims 1 2 3 3

Features 1 2 5 5
Features v vx, vy ρ, vx, vy, vz, P ρ, vx, vy, vz, P

Box size
Lx 2π 2π 1 0.25 to 2
Ly n/a 2π 1 0.25 to 2
Lz n/a n/a 1 3

Grid element size
Solver 2π / 256 2π / 576 1 / 128 1 / 128

Learned model 2π / 64 2π / 48 1 / 32 1 / 32
(relative to solver) 4x 12x 4x 4x

Warm-up duration 75 500 0.05 2.32
Trajectory duration 181 400 1 7.226

Time step
Solver 0.5 0.00436 0.0005 0.00012 to 0.00014

Learned model 0.5 3.35 0.032 0.12
(relative to solver) 1x 768x 64x 1000x to 875x

Trajectories
Training 1000 190 27 20 if Lx = 0.75

5 if Lx 6= 0.75
Validation 100 10 4 1 per Lx

Test 100 10 4 1 per Lx

Training details
Early stopping? No No No Yes

Batch size 32 8 1 1 (4 if multisize)
Noise 1e-2 1e-4 1e-2 1e-3

Constrained mean v divergence total energy 1e-3

Table B.1: Dataset details. ρ refers to density, P to pressure, and vx, vy, vz to velocity components.
Warm-up refers to the initial transient from initial conditions which is influenced by the underlying
numerical scheme and discarded from evaluation and training. Figures are dimensionless.

Parameters 1D 2D 3D

Dil-ResNet 195361 584162 1757477
U-Net 3916993 11739202 35072581

TF-Net 17358540 31239137 93712968
FNO (K=8) 288433 4159250 62222693

FNO (K=full) 1191601 42479378 603994469

Table B.2: Number of parameters per model.

B.1.3 3D COMPRESSIBLE DECAYING TURBULENCE

This models decaying transonic Navier-Stokes turbulent flow in a 3D cubic box with periodic
boundary conditions (e.g., Orszag & Patterson, 1972). These simulations adopt an adiabatic equation
of state with a constant adiabatic index γ = 5/3. Simulations were carried out with Athena++
(Stone et al., 2020). The initial turbulence is driven on scales ≥ L, the size of the box. The turbulent

16

Published as a conference paper at ICLR 2022

driving pattern in the initial condition is split into its compressive and solenoidal components using
a Helmholtz decomposition. The relative strength of these two components is varied from purely
compressive to purely solenoidal. The initial driving pattern results in a root-mean-squared velocity
of
√

2cs, where c2s = (5/3)(P/ρ) is the sound speed of the fluid. The initial conditions are varied
across trajectories by randomizing the phase of the spectral components, leading to different pattern
in real space. We perform a warmup for 0.05 simulation time units. Compressible turbulence is
ubiquitous across problems in science: all fluids are somewhat compressible, and this is usually non-
negligible when modeling gases (Pope, 2000). In astrophysics problems, for which the Athena++
was specifically developed, understanding the dynamics and properties of these flows on small
and large scales plays a crucial role in regulating planet, star, black hole, and galaxy formation
(Brandenburg & Nordlund, 2011).

B.1.4 3D COMPRESSIBLE RADIATIVE COOLING MIXING LAYER DYNAMICS

These simulations model the interplay of radiative cooling and mixing that results from turbulence
driven by the Kelvin-Helmholtz instability, which can arise when there is velocity difference across
the interface between two fluids of different densities. The simulations are set up as a boundary
problem initialized with a low-density fluid (ρ = 0.01) on the top half of the domain (z > 0) moving
in the positive x direction (vx = 2.04, vy = vz = 0), and a high-density fluid (ρ = 1.) moving in
the negative x direction in the bottom half of the domain (vx = −2.04, vy = vz = 0). The initial
pressure is set to 1. The boundary conditions are periodic in both x and y, and fixed in z. To break the
symmetry, small perturbations to vz are added along the boundary. These perturbations are changed
across trajectories by randomizing the phase of the spectral components, leading to different patterns
in real space. We perform a warmup for 2.32 simulation time units. Simulations were carried out
with Athena++ (Stone et al., 2020).

This data presents a few unique challenges compared to the others. First, it was the only domain
with fixed boundary conditions. Second, because turbulent dynamics are limited to the vicinity of the
mixing layer, and because the behavior of the fluid above, at, and below the mixing layer is markedly
different, there is less data representative of each type of fluid dynamic behavior.

B.2 ADDITIONAL MODEL DETAILS

The learned simulator consisted of a CNN encoder, a dilated CNN processor with residual skip
connections, and a CNN decoder. The parameters of the model are listed in Table A.1.

CNN parameters All individual CNNs use a kernel size of 3 and have 48 output channels (except
the decoder, which has an output channel for each feature). Each individual CNN layer in the
processor is immediately followed by a rectified linear unit (ReLU) activation function. The Encoder
CNN and the Decoder CNNs do not use activations.

Dilated connections The dilation rate in the CNN filter introduces space between each element
in the filter. Whereas a standard CNN filter with kernel 3 would operate over 3 adjacent pixels, a
dilated CNN filter with kernel 3 and dilation 2 will operate over 3 pixels spaced at intervals of 2 in
each dimension, spanning a field 5 pixels wide. This increases the scale of the CNN kernels while
preserving the number of parameters and the resolution.

CNN padding For each dimension in X with periodic boundary conditions, we implemented
periodic padding. For dimensions with a fixed boundary condition, we forced the boundary to a
value rather than letting the model predict it, and masked the loss so the model was not trained to
predict boundary conditions. The tensor was padded with repetitions of the boundary value. We also
augmented the input state with a feature that indicated fixed-boundary versus non-boundary states
using a one-hot vector, so the model could distinguish them.

B.3 ADDITIONAL TRAINING DETAILS

Training noise In some cases, we trained with Gaussian random noise with fixed variance σ added
to the input Xt of the loss function. Note that this not only affects the input to the neural network, but

17

Published as a conference paper at ICLR 2022

also slightly modifies the target ∆X = Xt+∆t−Xt (and also impacts the variance used to normalize
targets).

Loss At training time we sample pairs of input-output states (separated by the model time step)
from the trajectories, and perform gradient updates based on a single step of the model. We do not
rollout the model during training.

Optimization We optimized the loss using an Adam optimizer. We trained the models for up to
10M steps, with exponential learning rate decay annealed from 1e− 4 to 1e− 7 in the first 6M steps.
Models usually reached convergence at around 5M steps. Training took up to a week on an NVIDIA
V100 GPU.

Hyper-parameter optimization We did not perform exhaustive hyper-parameter optimization,
except on the scale of the noise (which we scanned for each domain) and some informal tuning of
the depth of the dilated blocks and latent size (to make sure the network had enough capacity for the
most challenging domain). Note that achieving optimal performance on test trajectories from the
training distribution was not part of the scope of this work, and there are likely hyperparameters that
would improve performance over our results.

Validation All of the research was performed by looking at performance on the validation sets.
The test set was completely held-out until final evaluation prior to writing the paper.

Early stopping For the Mixing Layer Turbulence (COOLMIXLAYER-3D), which was more prone
to overfitting, we used early stopping based on the validation performance. For all other models we
simply evaluated the model as it was at the end of training.

B.4 ADDITIONAL RESULTS

Three instances of each model were trained 3 times using 3 different initialization seeds. Bar plots
indicate median performance and bars indicate min-max performance. We chose the energy field
E = 1

2ρv
2 + 3

2P as the quantitative metric of 3D turbulence for the main text, as it summarizes
performance on all state variables.

Figures and videos for 3D environments (COOLMIXLAYER-3D and COMPDECAY-3D) show a
single slice of the 3D grid at y = 0, displaying the x and z coordinates in the horizontal and vertical
axis, respectively.

Downsampling in time Fig. B.6 as well as Videos show models for KS-1D, INCOMP-2D, and
COMPDECAY-3D models trained and working well on a wide range of time step sizes. Note that for
a fair comparison in Fig. 3d,f performance is averaged across only time steps that are predicted for
all models (e.g. multiples of the largest time step, 256).

Downsampling in space All comparisons across spatial resolutions are always obtained by first
downsampling the data into a common 323 grid, using an approach that preserves mass, momentum,
and energy (Same approach used by Athena++). Fig. B.2 (top row) shows the downsampling
comparisons equivalent to Fig. 2g-i for each of the state variables independently.

Running time For 1 simulation time unit of COMPDECAY-3D, the CPU runtime for Athena++
with 8 CPU processors is ∼4s, ∼60s, and ∼1000s for 323, 643, and 1283 resolutions, respectively
(quartic scaling, as the time step is also scaled with the resolution to compensate for numerical
viscosity). In comparison, the learned model’s runtime is 1s on an NVIDIA V100 GPU, and 20-30s
on a 8-core CPU. Note that the learned model runs at reduced spatial and temporal resolution,
but preserves the dynamics of the high resolution 1283 Athena++ simulation. Simulations in
Athena++ may be faster if implemented for GPUs. However, because scientific simulators like
Athena++ are specialized, each simulator’s GPU implementation requires specialized engineering
effort, whereas learned models can take advantage of methods designed more generally for deep
learning.

18

https://sites.google.com/view/learned-turbulence-simulators

Published as a conference paper at ICLR 2022

Cooling velocity Having reliable models that generalize to larger boxes increases the applicability
of learned models to scientific domains by enabling experiments in regions of parameter space
that would otherwise be prohibitively expensive to simulate. For example, for COOLMIXLAYER-
3D, the dynamics undergo a transition when the box width increases relative to the cooling length
(vturbtcool), which is difficult to study because simulations for these widths essentially prohibitive.
Thus, we want to understand what affects the learned simulator’s ability to generalize to a range
of box widths (the length Lx and width Ly of the input tensor X) not previously seen in the
training data. For COOLMIXLAYER-3D, we can look at the cooling velocity, the average in-
flowing velocity at the low density fluid boundary that develops as a means to resupply the energy
that has been radiated away in the mixing layer. Cooling velocity is a useful metric because it
is a scalar quantity that depends on the box width. Furthermore, understanding how turbulent
dynamics at a mixing layer pull heat from the surroundings is scientifically relevant for questions in
astrophysics (Fielding et al., 2020). We evaluate generalization to different box sizes (Lx = Ly ∈
[0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0]) (Fig. 5b). We find that the model trained on box length
Lx = Ly = 0.75 (orange) is not able to produce trajectories with the correct cooling velocity for
other box sizes. However, we also find that augmenting the dataset with data from a range of box sizes
(Lx = Ly ∈ [0.5, 0.75, 1.0, 1.25]) improves accuracy of the cooling velocity estimate for the unseen
box lengths, although the generalization outside the training domain remains imperfect and unreliable
across seeds. We speculate that achieving this form of generalization would require stronger inductive
biases and/or more sophisticated dataset engineering.

Other Statistical Metrics The choice of metrics can impact the utility of learned simulators for
scientific applications. Here we describe a few physically motivated metrics we use to evaluate the
learned models.

We use the power spectral density, which we quantify for the total energy in Figure 2, to quantify
how well the different models are preserving information at different resolutions. Simulators at
coarse resolution are known to lose high-frequency information, and we are specifically interested
understanding how learned and physics-based simulators compare in terms of preserving detailed,
high-frequency components. To quantify the power spectral density, we n-D Fourier transform, take
the magnitude at each point of the Fourier transformed signal to get the n-D PSD, and convert this
to a 1D spectrum by taking the mean magnitude over points in the n-D frequency grid with the
same frequency vector length to get a 1D power spectral density PSD(k) over a scalar frequency
k =

√∑
k2
xi

for spatial dimensions xi . Frequencies with a vector of length > 1 (the length of
the environment along 1 dimension) are cutoff, leaving only frequencies that fall within the sphere
of radius 1. We plot log PSD and compute spectrum error over these frequencies. The spectra for
different state variables are shown in Figure B.1 for the coarsened Athena++ models and Dil-
ResNet, and in Figure B.3 for the learned models. The error over time for the spectra is shown in
Figures B.2 and B.2.

The probability distribution functions (PDFs) of the fluid quantities provides an important basis for
understanding turbulent flows. Due to the inherently chaotic nature of turbulence, statistical measures
are often the most robust measures of their properties. The shape and widths of PDFs are common
metrics for characterizing turbulent flows(Federrath & Klessen, 2012). Moreover, joint PDFs of fluid
quantities (e.g., velocity-temperature, or pressure-entropy) are used to understand more complex flow
behavior and to characterize which flow components are responsible for observed behavior (Fielding
et al., 2020). Joint distribution functions are often especially useful when certain physical processes
only take place in specific region of phase space (e.g., combustion or radiative cooling). PDFs for
different state variables and joint distributions (entropy v. pressure, density v. pressure) are shown in
Figure B.1 for the coarsened Athena++ models and Dil-ResNet, and in Figure B.3 for the learned
models. The error over time for these statistics is shown in Figures B.2 and B.2.

Another measure of interest are spatial autocorrelation measures, particularly velocity autocorrelation.
Like the histograms, these capture statistical structure and provide a metric that is more invariant to
the chaotic behavior of turbulence. The pth order autocorrelation is closely related to the velocity
structure function, Sp(`) = Er,u,‖u‖=1[‖vr+`u − vr‖p], for velocity v, defined at a position vector
r (e.g., vr), with unit vector u multiplied by a scalar `. Seminal self-similarity arguments that
underpin turbulent theory lead to the prediction that Sp(`) ∝ `p/3 (Kolmogorov, 1941; Frisch, 1995).
Structure and autocorrelation functions, therefore, provide important measures on the ability of
learned simulators to capture subtle, but scientifically essential properties of turbulent flows. First-

19

Published as a conference paper at ICLR 2022

and second-order autocorrelation functions for different state variables are shown in Figure B.1 for
the coarsened Athena++ models and the Dil-ResNet model and Figure B.3 for all models trained on
COMPDECAY-3D. The error for each of these functions over time are shown in Figures B.2 and B.4.

Model comparison Fig. B.7 shows predicted rollouts for KS-1D of different learned models
presented in Figure 4a. Fig. B.3 shows statistics of the final frame of the predicted rollouts for
different learned models presented in Figure 4. The error of each of these statistics over time is
shown in Fig. B.4. Videos show the rolled out predictions for different models for INCOMP-2D and
COMPDECAY-3D.

KS-1D generalization Figs. B.8 and B.9 show generalization to larger domains and longer
trajectories. While the learned simulations do not perfectly capture the ground truth, we see that
qualitative features of turbulence are preserved across the rollout.

COMPDECAY-3D generalization Figs. B.8 and B.9 show quantitative generalization performance
of the Dil-ResNet model to larger domains and longer trajectories on KS-1D. While the learned
simulations do not perfectly capture the ground truth, we see that qualitative features of turbulence are
preserved across the rollout. Figures B.2 and B.4 show different metrics for different variables across
rollout (pink background indicates the region not seen during training). Videos show the predicted
rollouts when generalizing to different initial conditions and to longer rollouts.

20

https://sites.google.com/view/learned-turbulence-simulators
https://sites.google.com/view/learned-turbulence-simulators

Published as a conference paper at ICLR 2022

0.25 0.50 0.75 1.00
Frequency

4

6

Lo
g

Sp
ec

tru
m

Energy Field

0.25 0.50 0.75 1.00
Frequency

8

9

10

Density

0.25 0.50 0.75 1.00
Frequency

10

11

12

Velocity

0.25 0.50 0.75 1.00
Frequency

9

10

11
Pressure

Dil-ResNet
Athena++ 64
Athena++ 32
Athena++ 128
(Ground Truth)

0 10 20
Distance

0.0

0.5

1.0

Au
to

co
rr

(k
=1

)

0 10 20
Distance

0.0

0.5

1.0

0 10 20
Distance

0.0

0.5

1.0

0 10 20
Distance

0.0

0.5

1.0

0 10 20
Distance

0.0

0.2

0.4

Au
to

co
rr

(k
=2

)

0 10 20
Distance

0.0

0.2

0.4

0 10 20
Distance

0.00

0.05

0.10

0 10 20
Distance

0.0

0.2

0.4

2 4 6
Energy

0

500

1000

1500

Hi
st

og
ra

m
W

as
s E

rr

0.5 1.0 1.5 2.0
Density

0

500

1000

−1 0 1
Velocity

0

1000

2000

3000

1 2 3
Pressure

0

500

1000

1500

Figure B.1: COMPDECAY-3D Comparison of learned Dil-ResNet model trained with noise=0.01 to
Athena++ run at resolutions of 323, 643, and 1283 (ground truth) for a variety of different metrics
at t = 0.99 (the end of a rollout that lasts the duration seen during training).

21

Published as a conference paper at ICLR 2022

0 1 2 3 4
Time

0.0

0.5

1.0

RM
SE

Energy Field

0 1 2 3 4
Time

0.0

0.2

0.4
Density

0 1 2 3 4
Time

0.0

0.2

0.4

0.6

Velocity

0 1 2 3 4
Time

0.0

0.2

0.4

0.6

Pressure
Dil-ResNet
Athena++ 64
Athena++ 32

0 1 2 3 4
Time

100

3 × 10−1
4 × 10−1

6 × 10−1

Lo
g

Sp
ec

tru
m

 R
M

SE

0 1 2 3 4
Time

100

2 × 10−1
3 × 10−1
4 × 10−1
6 × 10−1

0 1 2 3 4
Time

100

0 1 2 3 4
Time

100

0 1 2 3 4
Time

0.96

0.98

1.00

Au
to

co
rr

(k
=1

)
co

rr

0 1 2 3 4
Time

0.96

0.98

1.00

0 1 2 3 4
Time

0.98

0.99

1.00

0 1 2 3 4
Time

0.96

0.98

1.00

0 1 2 3 4
Time

0.0

0.5

1.0

Au
to

co
rr

(k
=2

)
co

rr

0 1 2 3 4
Time

0.0

0.5

1.0

0 1 2 3 4
Time

0.0

0.5

1.0

0 1 2 3 4
Time

0.0

0.5

1.0

0 1 2 3 4
Time

101

102

Hi
st

og
ra

m
W

as
s E

rr

0 1 2 3 4
Time

101

102

0 1 2 3 4
Time

101

102

0 1 2 3 4
Time

101

102

0 1 2 3 4
Time

0.0

0.5

1.0

Hi
st

og
ra

m
W

as
s E

rr

Entropy v. Pressure

0 1 2 3 4
Time

0

1

2

3
Density v. Pressure

Figure B.2: COMPDECAY-3D Model metrics over time across learned Dil-ResNet model trained
with noise=0.01 and Athena++ coarsened to different levels of resolution. Except for the last row,
which shows the error in the Entropy v. Pressure and Density v. Pressure 2D histograms, each column
is a state variable (Energy Field, Density, Velocity Components, and Pressure) and each row is the
error for a different function over the data. Note rollouts start at t = 0.16, after 5 model steps would
have elapsed, because TF-Net takes in 6 frames and all models should start at the same point. Same
color scaling is used across each 2D histogram row. Background is pink for times not shown during
training.

22

Published as a conference paper at ICLR 2022

0.25 0.50 0.75 1.00
Frequency

4

5

6

7

Lo
g

Sp
ec

tru
m

Energy Field

0.25 0.50 0.75 1.00
Frequency

9

10

11
Density

0.25 0.50 0.75 1.00
Frequency

11.0

11.5

12.0

12.5

Velocity

0.25 0.50 0.75 1.00
Frequency

10

11

Pressure
Dil-ResNet
Con-Dil-ResNet
U-Net
TF-Net (T=6)
Con-TF-Net (T=6)
FNO (k=8)
FNO (k=32)
Ground Truth

0 10 20
Distance

0.0

0.5

1.0

Au
to

co
rr

(k
=1

)

0 10 20
Distance

0.0

0.5

1.0

0 10 20
Distance

0.0

0.5

1.0

0 10 20
Distance

0.0

0.5

1.0

0 10 20
Distance

0.0

0.2

0.4

Au
to

co
rr

(k
=2

)

0 10 20
Distance

0.0

0.2

0.4

0 10 20
Distance

−0.05

0.00

0.05

0.10

0 10 20
Distance

0.0

0.2

0.4

0 5 10 15
Energy

0

2000

4000

Hi
st

og
ra

m
W

as
s E

rr

0 2
Density

0

1000

2000

−2 0 2
Velocity

0

2000

4000

6000

0 2 4 6
Pressure

0

1000

2000

Figure B.3: COMPDECAY-3D Comparison of learned models trained with noise=0.01 for a variety of
different metrics at t = 0.99 (the end of a rollout that lasts the duration seen during training).

23

Published as a conference paper at ICLR 2022

0 1 2 3 4
Time

0.00

0.25

0.50

0.75

1.00

RM
SE

Energy Field

0 1 2 3 4
Time

0.0

0.1

0.2

0.3

0.4
Density

0 1 2 3 4
Time

0.0

0.2

0.4

0.6

Velocity

0 1 2 3 4
Time

0.0

0.2

0.4

0.6

Pressure
Dil-ResNet
Con-Dil-ResNet
U-Net
TF-Net (T=6)
Con-TF-Net (T=6)
FNO (k=8)
FNO (k=32)

0 1 2 3 4
Time

100

Lo
g

Sp
ec

tru
m

 R
M

SE

0 1 2 3 4
Time

100

0 1 2 3 4
Time

100

0 1 2 3 4
Time

100

0 1 2 3 4
Time

0.6

0.8

1.0

Au
to

co
rr

(k
=1

)
co

rr

0 1 2 3 4
Time

0.6

0.8

1.0

0 1 2 3 4
Time

0.7

0.8

0.9

1.0

0 1 2 3 4
Time

0.6

0.8

1.0

0 1 2 3 4
Time

0

1

Au
to

co
rr

(k
=2

)
co

rr

0 1 2 3 4
Time

−0.5

0.0

0.5

1.0

0 1 2 3 4
Time

0

1

0 1 2 3 4
Time

0

1

0 1 2 3 4
Time

100

101

102

103

Hi
st

og
ra

m
W

as
s E

rr

0 1 2 3 4
Time

100

101

102

103

0 1 2 3 4
Time

100

101

102

103

0 1 2 3 4
Time

100

101

102

103

0 1 2 3 4
Time

0.00

0.25

0.50

0.75

1.00

Hi
st

og
ra

m
W

as
s E

rr

Entropy v. Pressure

0 1 2 3 4
Time

0

2

4

Density v. Pressure

Figure B.4: COMPDECAY-3D Model metrics over time across different learned models trained with
noise=0.01. Except for the last row, which shows the error in the Entropy v. Pressure and Density v.
Pressure 2D histograms, each column is a state variable (Energy Field, Density, Velocity Components,
and Pressure) and each row is the error for a different function over the data. Background is pink for
times not shown during training. One seed shown per model (quantitative results for multiple seeds
shown in Figure B.11)

0 200 400 600 800

10−1

101

KS
-1

D
M

ea
n

RMSE in preserved quantities
(3 seeds)

No noise
Noise 1e-2

0 100 200 300 400
Time

10−2

10−1

In
co

m
pr

es
sib

le
 T

ur
bu

le
nc

e
 (I

T-
2D

) D
iv

er
ge

nc
e

No noise
Noise 1e-4

1.00

1.05

M
ea

n
De

ns
ity

Training
Region

Generalization
Region

3D Compressible Decaying Turbulence
Comparison to Athena at 128

(3 seeds)
Athena at 64
Athena at 32
ResNet at 32
(No noise)
ResNet at 32
(Noise 0.01)

−0.10

−0.05

0.00

M
ea

n
X

M
om

en
tu

m

−0.1

0.0

0.1

M
ea

n
Y

M
om

en
tu

m

0.0

0.1

M
ea

n
Z

M
om

en
tu

m

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time

1.9

2.0

2.1

M
ea

n
En

er
gy

Figure B.5: (left) KS equation (KS-1D) net velocity error, and Incompressible Turbulence (INCOMP-
2D) divergence error as function of model step. Training with noise helps keeping the values bounded
to be close to 0. (right) Preservation of the 5 conserved quantities in 3D Compressible Turbulence
(COMPDECAY-3D) as a function of time. In this case, training with noise does not completely prevent
drift of the conserved quantities.

24

Published as a conference paper at ICLR 2022

0

2πGr
ou

nd
 T

ru
th

Example 0 Example 1 Example 2 Example 3

0

2πPr
ed

ict
io

n
Do

wn
sa

m
pl

e
1

0

2πPr
ed

ict
io

n
Do

wn
sa

m
pl

e
2

0

2πPr
ed

ict
io

n
Do

wn
sa

m
pl

e
4

0

2πPr
ed

ict
io

n
Do

wn
sa

m
pl

e
8

0

2πPr
ed

ict
io

n
Do

wn
sa

m
pl

e
16

0

2πPr
ed

ict
io

n
Do

wn
sa

m
pl

e
32

0

2πPr
ed

ict
io

n
Do

wn
sa

m
pl

e
64

0

2

RM
SE

0 50 100 150
Time

0

1

Co
rre

la
tio

n

0 50 100 150
Time

0 50 100 150
Time

0 50 100 150
Time

Downsample
factor
in time

1
2
4
8
16
32
64

Figure B.6: (top) Sample trajectories from the model trained on the KS-1D dataset at different
temporal downsampling factors. (bottom) MSE and correlation performance of ML models for
different downsampling factors in time as a function of simulation steps.

Figure B.7: KS-1D Rollouts for models trained with noise=0.01.

25

Published as a conference paper at ICLR 2022

0

2π

4π
Gr

ou
nd

 T
ru

th
Sp

at
ia

l
co

or
di

na
te

Example 0 Example 1 Example 2 Example 3

0 50 100 150
Time

0

2π

4π

Pr
ed

iti
on

Sp
at

ia
l

co
or

di
na

te

0 50 100 150
Time

0 50 100 150
Time

0 50 100 150
Time

Figure B.8: Dil-ResNet model generalizing to larger spatial domains on KS-1D (trained on domains
2π wide).

0

2π

Ex
am

pl
e

0
 G

ro
un

d
Tr

ut
h

0

2π

Pr
ed

.

0

2π

Ex
am

pl
e

1
 G

ro
un

d
Tr

ut
h

0

2π

Pr
ed

.

0

2π

Ex
am

pl
e

2
 G

ro
un

d
Tr

ut
h

0

2π

Pr
ed

.

0

2π

Ex
am

pl
e

3
 G

ro
un

d
Tr

ut
h

0 200 400 600 800
Time

0

2π

Pr
ed

.

Figure B.9: Dil-ResNet model generalizing to longer trajectories on KS-1D (trained on trajectories
with 181 simulation time units).

no noise noise
0.0

0.5

1.0

1.5

2.0

Ve
lo

cit
y

RM
SE

5.6

KS-1D
Larger Space Generalization

no noise noise
0.0

0.5

1.0

1.5

2.0

Ve
lo

cit
y

RM
SE

2.1e+15,
2.9e+16,
inf

9.1e+10

KS-1D
Longer Rollout Generalization

Dil-ResNet
Con-Dil-ResNet
U-Net (n=1)
TF-Net (T=6)
Con-TF-Net (T=6)
FNO (K=8)
FNO (full rank)

Figure B.10: Model comparison for KS-1D generalization to larger spatial domains (left) and longer
rollouts (right).

26

Published as a conference paper at ICLR 2022

0.0 0.2 0.4 0.6 0.8 1.0
Ratio

1 0 0

En
er

gy
 RM

SE

CompDecay-3D
Initial Condition Generalization

no noise noise
0.0

0.5

1.0

1.5

2.0

2.5

3.0

En
er

gy
 RM

SE

inf

3.5
e+

05

3.9e+05,
1.2e+08,
2.4e+11

3.2
e+

02

CompDecay-3D
Longer Rollout Generalization

Dil-ResNet
Con-Dil-ResNet
U-Net (n=1)
TF-Net
Con-TF-Net
FNO (k=8)
FNO (full rank)

Figure B.11: Model Comparison for Generalization. (left) Generalization to different ratios of
solenoidal to compressive components in the initial conditions for learned models (trained with
noise=0.01). 0=more compressive, 1=more solenoidal components in initial conditions. The gray
line marks the value the models were trained on (0.66). (right) Generalization to longer rollouts.
Added noise during training improves stability and therefore leads to lower error on longer rollouts.
Cutoff point for TF-Net with no noise has RMSE 2.99, and cutoff bar for Dil-ResNet goes to Inf
(numerical error). As shown in Figure 5, we see that adding the constraint to the loss function makes
the model generalize more reliably to the more compressive regime, and that training noise promotes
stability for longer rollouts.. Note that these results are numerically different from Figure 5 because
rollouts were started from the sixth timestep to allow comparison with TF-Net, which takes as input a
sequence of length C = 6.

27

	Introduction
	Related Work
	Model
	Learned Simulation Framework on Grids
	Models
	Training

	Experimental Turbulent Domains
	Results
	Conclusions
	Appendix
	Additional Model Details
	Additional dataset details
	1D Kuramoto-Sivashinsky (KS) Equation
	2D Incompressible Decaying Turbulence
	3D Compressible Decaying Turbulence
	3D Compressible Radiative Cooling Mixing Layer Dynamics

	Additional model details
	Additional training details
	Additional results

