
Sample-and-threshold differential privacy:
Histograms and applications

Akash Bharadwaj
Facebook

akashb@fb.com

Graham Cormode
Facebook

gcormode@fb.com

Abstract

Federated analytics aims to compute accurate statistics from distributed datasets. A
"Differential Privacy" (DP) guarantee is usually desired by the users of the devices
storing the data. In this work, we prove a strong (ε,δ)-DP guarantee for a highly
practical sampling-based procedure to derive histograms. We also provide accuracy
guarantees and show how to apply the procedure to estimate quantiles and modes.

1 Introduction

Building private histograms is a task that underpins a variety of machine learning and data analytics
tasks. Histograms enable building usable discrete representations, distributions and marginals.
Materializing histograms is thus a core subroutine in instantiating graphical models for synthetic
data generation (McKenna et al., 2021), and hence they support numerous statistical analyses and
inference tasks. The problem has been heavily studied in the setting of differential privacy, with a
number of results shown under various models, such as the central model (Dwork, 2006; Xu et al.,
2012; Dwork and Roth, 2014), local model (Bassily and Smith, 2015; Wang et al., 2017; Acharya
et al., 2019) and shuffle model (Erlingsson et al., 2020; Balcer and Cheu, 2020; Li et al., 2020). All
prior work has fundamentally relied on adding noise to data as a means to ensure privacy.

In this paper, we revisit this foundational question, and show how differential privacy can be obtained
via a simple sample-and-threshold mechanism, which can be readily implemented in a distributed
setting. Importantly, privacy is derived from enforcing a minimum threshold on the exact counts
evaluated on sampled data—there is no additional explicit addition of noise. This has the convenient
characteristic of avoiding false positives in the derived histogram, i.e. no spurious counts are added
to it. Moreover, it is intuitively appealing to know that data will not be released unless it occurs
with some minimum frequency—similar to the motivations of k-anonymity. We also note that while
building production systems for federated analytics (Bonawitz et al., 2019), sampling participating
devices is often unavoidable because of underlying periodicity in their availability, throughput
limitations of production systems, or the need for timely and inexpensive results. Thus, being able
to extract a DP guarantee from the sampling operator is opportune. Equipped with an private and
efficient mechanism for histogram computation, we can apply it to various core analytics tasks.

Our contributions. We introduce a histogram mechanism that extends prior work by showing that:

1. The sample-and-threshold approach gives an (ε,δ)-DP guarantee

2. The counts provide accurate frequency estimates for items in the federated data set

3. The resulting mechanism can also answer heavy hitter, quantile and range queries

The key is to choose a sampling rate that is not too large compared to population size, and to prune
items with low frequency in the sample, so that the presence of an item in the pruned sample does not
indicate exactly how many instances were in the original population. While prior work has considered

Preprint. Under review.

the ability of sampling to amplify DP privacy bounds from noise addition, we observe that sampling
(when combined with a thresholding mechanism on histogram counts) is sufficient to ensure DP.

2 Preliminaries

We address the federated scenario where there are n users and the ith user holds a value xi. The
collection of all user inputs defines a dataset D. Our goal is to construct a histogram of the frequency
distribution according to a fixed set of buckets B. We assume each input xi is already mapped into
its corresponding bucket, so that xi ∈ [B]. We will describe a randomized mechanism, M, that can
process a dataset D to give a distribution over output histograms H†. The objective is to ensure that
a sampled output histogram H from H† is close to the true histogram H∗, while ensuring that the
output meets (ε,δ)-differential privacy (Dwork and Roth, 2014). Formally, we require

Pr [M(D) = H]≤ exp(ε)Pr
[
M
(
D′
)
= H

]
+δ

for neighboring inputs D, D′ that differ in the data held by one individual. As usual, we expect δ to
be small, typically much less than 1/n.

Privacy and computational model: Our mechanism is designed to operate in a federated (dis-
tributed) setting that uses a hub-and-spoke communication topology. A central server samples a
set of users to privately disclose data held on their devices back to it. The server then combines
this information before reporting results to an analyst. The server is assumed to be unbiased and
benign in sampling these devices. For example, we do not consider differencing/sybil attacks by the
server. However, we assume that the server is “honest-but-curious” about all disclosures made to
it. If sampled users communicate with the central server, it is through an anonymous channel that
obscures their identifying attributes. User disclosures are routed through a “secure aggregator” which
performs simple aggregation (adding, thresholding etc.) before disclosing aggregates to the server.
Such a secure aggregator typically provides the following guarantees:

1. Its computational state depends only on input disclosures from users and known code;

2. Its computational state is never observed;

3. Only the final aggregate is eventually disclosed as an output.

Such guarantees can either by made mathematically via carefully designed protocols, or hardware
solutions like Intel’s SGX. In this work, disclosures are aggregated to build their frequency histogram.
Buckets with frequency below a threshold are reset to zero. Final aggregates have formal DP
guarantees and are disclosed to the analyst. This model sits between the shuffle and central DP model:
it securely prunes histograms using a threshold, but no noise is added and the server is untrusted.

Related work. Histograms are one of the most heavily studied tasks in differential privacy (DP).
Initial DP results added independent Laplace noise to each entry of the exact histogram (Dwork, 2006;
Dwork and Roth, 2014). For multi-dimensional data, histograms of low-degree marginal distributions
can be created via noise addition to the Hadamard transform of the data (Barak et al., 2007). In
the local model of DP for histograms, users add noise to their data independently before disclosure.
Here "frequency oracles" are used, and frequent items are extracted from the input (Bassily and
Smith, 2015; Wang et al., 2017; Erlingsson et al., 2014; Apple, 2017; Bassily et al., 2020). In the
shuffle model, messages from individuals are anonymized by a "shuffler", so the analyst sees only
the multiset of messages received without attribution (Erlingsson et al., 2020; Ghazi et al., 2021).
Under shuffling, for a fixed privacy level ε , accuracy comparable to the central DP case is achievable
by introducing a little random noise per user (Balcer and Cheu, 2020; Li et al., 2020). Similarly,
quantiles are found via "hierarchical histograms" in local and shuffle models (Qardaji et al., 2013;
Xiao et al., 2010; Cormode et al., 2019; Ghazi et al., 2021).

It is well-known that sampling can amplify DP guarantees when combined with a DP mechanism on
the sample: Balle et al. (2020) show results for Poisson sampling, and fixed-size sampling with and
without replacement, while Imola and Chaudhuri (2021) study privacy amplification when sampling
according to differentially private parameters. By contrast, we consider mechanisms where sampling
in isolation (with a threshold) provides the DP guarantee directly. The closest work to ours is recent
work on Federated Heavy Hitters discovery (Zhu et al., 2020), which uses sampling and thresholding
to discover the set of heavy hitters. The key advance in our work is to show that we can output the

2

sampled frequencies as well as the discovered items, and hence produce private histograms. We also
provide accuracy guarantees. Our work complements other efforts in the federated setting to achieve
privacy guarantees with a restricted set of operations—for instance, Kairouz et al. (2021) seek to
perform federated learning via noise addition without sampling.

3 Histograms

In the (B-bucket) histogram problem, each client i holds a single item xi corresponding to a single
bucket bi ∈ [B], and our aim is to produce a private histogram of item frequencies, such that a
frequency associated with b in the private histogram approximates its frequency over the federated
dataset.

The algorithm is based on Bernoulli sampling. Each client out of n is sampled with probability
ps = m/n, so the expected size of the sample is m (in the appendix, we discuss different ways to
implement this sampling). Our subsequent analysis will set an upper bound on the sample size m in
order to give a required privacy guarantee. The algorithm makes use of a threshold θ , so that buckets
whose sampled counts are at least θ are reported in the histogram, and the rest are omitted from the
histogram. Note then that the mechanism introduces no spurious items into the output: any item
which is not present in the input can not appear in the output histogram. In addition, the costs of the
algorithm are independent of the dimensionality of the underlying histogram, B.

Theorem 1. The resulting histogram obeys (ε,δ)-differential privacy, for δ = O(exp(−θ)) and
ε = O(m

n ln(1/δ))≤ 1.

We provide formal proofs in the appendix, for completeness. The histogram produced by the
mechanism is ultimately based on sampling and pruning, so for any prefix whose frequency is
sufficiently above the pruning threshold, then its frequency within the histogram is an (almost)
unbiased estimate of its true frequency. There is a small gap, since even for an item with high
frequency, there is a small chance that it is not sampled often enough, and so its estimate will fall
below the threshold θ (in which case we do not report the item).

Probability of omitting a heavy hitter: We first consider the probability that a frequent item is not
reported by the algorithm.

Lemma 2. The sample and threshold histogram protocol omits an item whose true frequency is
W (where Wm

n > θ) with probability at most exp(−(Wm
n −θ)2 ·n/2Wm).

When Wm
n is sufficiently bigger than θ , this gives a very strong probability. For example, consider the

case n = 106, ε = 1, and we set θ = 20 to obtain a δ of 10−8. Under these settings, the probability
that an item which occurs 0.1% of the time fails to be detected with probability less than 10−7.

Frequency estimation bounds. More generally, we can use the frequency of any item in the
histogram to estimate its true occurrence rate.

Lemma 3. We can estimate the frequency of any item whose proportion in the federated dataset is φ

within γ relative error with probability O(exp(−γ2φm)).

Remark. It is instructive to compare these bounds to those that hold for the shuffle model. We
observe that in practical federated computing settings, the server can contact only a fixed size
cohort of m clients out of a much larger (unknown) population n. If this sampling is uniform,
we obtain error O(1/

√
m) to estimate the proportion of the population in each bucket. A shuffle-

based approach to histograms due to Balcer and Cheu (2020) adds appropriately parameterized
Bernoulli random noise to reports from m clients yields (ε,δ)-DP, with additional error that scales as
O(1

ε2m log(1/δ)) for ε ≤ 1, provided m is large enough. For our mechanism, we obtain a bound on
the estimate of any frequency with error from rounding small values down to zero, which is bounded
by O(θ/m) = O(ln(1/δ)/m) = O(ln2(1/δ)/(εn)). We observe that results in both the shuffle and
sample-and-threshold paradigms both incur the same sampling error of O(1/

√
m). Then shuffling

introduces additional noise of O(1
ε2m log(1/δ)), whereas sample-and-threshold incurs zero additional

noise on items that exceed the θ threshold, and at most O(ln(1/δ)/m) on small items. Hence, we
argue that when shuffling implicitly samples m users from the population, the sample-and-threshold
approach has superior error guarantees.

3

4 Heavy hitters and Quantiles

We sketch how to use the basic histogram protocol to find the heavy hitters and quantiles of the input.

Heavy hitters. A result for heavy hitters follows immediately from Theorem 1: we materialize the
histogram of the input items, and report those items as heavy whose frequency in the same exceeds a
given threshold fraction φ . This compares favourably with the approach of Zhu et al. (2020), which
proceeds over L rounds, and incurs a cost of L in the privacy parameters ε and δ . In addition, the
histogram-based protocol provides estimated frequencies for each heavy hitter, whose accuracy is
guaranteed by Lemma 3. The motivation for having L rounds given by Zhu et al. (2020) is to reduce
the exposure of the server to private information: they only observe prefixes from clients that extend
shorter prefixes that are already known to be popular. However, this does not impact on the formal
DP properties of the output.

Single quantiles via interactive search. Given client inputs which fall in the range [0,1], we seek a
value f such that the fraction of clients whose value is below f is (approximately) φ . The quantile
query can be carried out by a binary search: we begin by creating a histogram with buckets [0, 1

2], [
1
2 ,1],

and recursively try different split points [0, t], [t,1] until we obtain a result with approximately a φ

fraction of points in the first bucket, at which point we can report t as the φ -quantile. Provided φ is
sufficiently larger than θ/m (and smaller than 1−θ/m), then we are unlikely to hit any cases where
a bucket count is removed. As a result, the error will primarily the error from sampling, which is
O(1/

√
m), plus the error from rounding, which is 2−h if we perform h steps of binary search. That

is, we find a result t such that there is a point t± 2−h that dominates a φ ±O(1/
√

m) fraction of
the input. The privacy guarantee is ε = O(hm ln(1/δ)/n), from the composition of h queries. This
approach is very effective for single queries, but is less desirable when we have a large number of
quantile queries to answer in parallel, in which case the hierarchical histogram approach is preferred.

Quantiles via hierarchical histograms. A common technique to answer quantile and range queries
in one-dimension is to make use of hierarchical histograms: histograms with geometrically decreasing
bucket sizes, so that any range can be expressed as the union of a small number of buckets. In more
detail, assume again that each client has an input value in the range [0,1] (say), and we can interpret
these as prefixes, corresponding to subranges. Each of L histograms partitions the range [0,1] with
increasingly fine buckets, so that the histogram at level `+1 refines the buckets of the histogram
at level ` by a constant factor. The privacy guarantee for this summary follows from the the L-fold
composition of a differentially private mechanism, giving (Lε,Lpθ)-differential privacy via basic
composition. Any range query can then be answered by greedily summing buckets that are fully
contained in the range, so any range query is answered by combining the counts of O(L) buckets.
The error in answering a range query is bounded by O(Lθ/m) additive error, arising from omitting at
most O(L) counts due to thresholding. Quantile queries are then addressed by binary searching for
the prefix range that contains the target quantile value.

5 Concluding Remarks

In this paper, we have shown how the sample-and-threshold approach can be applied to the funda-
mental problem of private histogram computation, and related tasks like heavy hitter and quantile
estimation. As with other works on private histograms, we assume that the bucket boundaries of the
histogram are given. Adaptive division of the histogram buckets is possible, with privacy guarantees
resulting from basic (or advanced) composition results. Nevertheless, this approach can give poor
results in extreme cases, such as when the bulk of the data resides in a very small fraction of the input
domain. In the full version of this work, we will show experimental results that confirm the predicted
accuracy of this approach.

It is natural to consider what other computations might benefit from this sample-and-threshold
approach. Direct application of the sample-and-threshold technique makes sense when many users
hold copies of the same value. Hence, it is not well-suited to questions like finding sums and means
of general distributions, unless we additionally apply some rounding and noise addition to input
values. The approach may be of value for more complex computations, such as clustering or outlier
removal, where dropping rare items is a benefit, or tasks where we seek to discover descriptions of
patterns in the data that have large support.

4

References

Acharya, J., Sun, Z., and Zhang, H. (2019). Hadamard response: Estimating distributions privately,
efficiently, and with little communication. In The 22nd International Conference on Artificial
Intelligence and Statistics, volume 89 of Proceedings of Machine Learning Research, pages
1120–1129. PMLR.

Apple (2017). Apple differential privacy technical overview. https://www.apple.com/privacy/
docs/Differential_Privacy_Overview.pdf, last accessed 19/07/21.

Balcer, V. and Cheu, A. (2020). Separating local & shuffled differential privacy via histograms. In
1st Conference on Information-Theoretic Cryptography, ITC 2020, June 17-19, 2020, Boston, MA,
USA, volume 163 of LIPIcs, pages 1:1–1:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

Balle, B., Barthe, G., and Gaboardi, M. (2020). Privacy profiles and amplification by subsampling. J.
Priv. Confidentiality, 10(1).

Barak, B., Chaudhuri, K., Dwork, C., Kale, S., McSherry, F., and Talwar, K. (2007). Privacy,
accuracy, and consistency too: a holistic solution to contingency table release. In Proceedings of
the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
pages 273–282. ACM.

Bassily, R., Nissim, K., Stemmer, U., and Thakurta, A. (2020). Practical locally private heavy hitters.
J. Mach. Learn. Res., 21:16:1–16:42.

Bassily, R. and Smith, A. D. (2015). Local, private, efficient protocols for succinct histograms. In
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, pages
127–135. ACM.

Bonawitz, K. A., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V., Kiddon, C.,
Konečný, J., Mazzocchi, S., McMahan, B., Overveldt, T. V., Petrou, D., Ramage, D., and Rose-
lander, J. (2019). Towards federated learning at scale: System design. In Proceedings of Machine
Learning and Systems. mlsys.org.

Cormode, G., Kulkarni, T., and Srivastava, D. (2019). Answering range queries under local differential
privacy. Proc. VLDB Endow., 12(10):1126–1138.

Dwork, C. (2006). Differential privacy. In Automata, Languages and Programming, 33rd Interna-
tional Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings, Part II, volume
4052 of Lecture Notes in Computer Science, pages 1–12. Springer.

Dwork, C. and Roth, A. (2014). The algorithmic foundations of differential privacy. Found. Trends
Theor. Comput. Sci., 9(3-4):211–407.

Erlingsson, Ú., Feldman, V., Mironov, I., Raghunathan, A., Song, S., Talwar, K., and Thakurta, A.
(2020). Encode, shuffle, analyze privacy revisited: Formalizations and empirical evaluation. CoRR,
abs/2001.03618.

Erlingsson, Ú., Pihur, V., and Korolova, A. (2014). RAPPOR: randomized aggregatable privacy-
preserving ordinal response. In Ahn, G., Yung, M., and Li, N., editors, Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security, pages 1054–1067. ACM.

Ghazi, B., Golowich, N., Kumar, R., Pagh, R., and Velingker, A. (2021). On the power of multiple
anonymous messages: Frequency estimation and selection in the shuffle model of differential
privacy. In Advances in Cryptology - EUROCRYPT, volume 12698 of Lecture Notes in Computer
Science, pages 463–488. Springer.

Imola, J. and Chaudhuri, K. (2021). Privacy amplification via bernoulli sampling. CoRR,
abs/2105.10594.

Kairouz, P., McMahan, B., Song, S., Thakkar, O., Thakurta, A., and Xu, Z. (2021). Practical and
private (deep) learning without sampling or shuffling. In Meila, M. and Zhang, T., editors, Pro-
ceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 5213–5225. PMLR.

5

https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf

Li, X., Liu, W., Chen, Z., Huang, K., Qin, Z., Zhang, L., and Ren, K. (2020). DUMP: A dummy-
point-based framework for histogram estimation in shuffle model. CoRR, abs/2009.13738.

McKenna, R., Miklau, G., and Sheldon, D. (2021). Winning the NIST contest: A scalable and general
approach to differentially private synthetic data. CoRR, abs/2109.04978.

Qardaji, W. H., Yang, W., and Li, N. (2013). Understanding hierarchical methods for differentially
private histograms. Proc. VLDB Endow., 6(14):1954–1965.

Wang, T., Blocki, J., Li, N., and Jha, S. (2017). Locally differentially private protocols for frequency
estimation. In Kirda, E. and Ristenpart, T., editors, 26th USENIX Security Symposium, USENIX
Security, pages 729–745. USENIX Association.

Xiao, X., Wang, G., and Gehrke, J. (2010). Differential privacy via wavelet transforms. In Proceedings
of the 26th International Conference on Data Engineering, ICDE, pages 225–236. IEEE Computer
Society.

Xu, J., Zhang, Z., Xiao, X., Yang, Y., and Yu, G. (2012). Differentially private histogram publication.
In IEEE 28th International Conference on Data Engineering (ICDE 2012), Washington, DC, USA
(Arlington, Virginia), 1-5 April, 2012, pages 32–43. IEEE Computer Society.

Zhu, W., Kairouz, P., McMahan, B., Sun, H., and Li, W. (2020). Federated heavy hitters discovery
with differential privacy. 108:3837–3847.

6

A Omitted Proofs

We provide proofs for the claimed properties of the sample-and-threshold histogram mechanism. We
begin with some bounds on the number of sampled copies of an item.
Lemma 4. The probability that the number of samples of an item is more than θ times its expectation
is at most δ , for θ = 3+ ln1/δ .

Proof. Given a prefix that occurs k times in the input, each occurrence has probability ps = m/n of
being picked. The expected number of sampled occurrences is then kps = km/n.

Let X denote the random variable that counts the number of successes (times the prefix is picked) out
of the k trials, so E[X] = km/n. Then, X is a sum of k Bernoulli random variables with parameter ps.
We do a case split on ps:

Case: ps ≤ 1/k. If ps ≤ 1/k, we apply an (additive) Chernoff-Hoeffding bound to the mean of the
k trials:

Pr[X ≥ θ] = Pr

[
1
k

X− 1
k
E[X]≥(θ ps− ps)

]

≤ exp
(
−D

(
θ

k

∥∥∥∥1
k

)
k
)
.

Here, D(p‖q) denotes the K-L divergence (relative entropy) between the (Bernoulli) distributions
with parameters p and q. We have

−D(p‖q)k =−θ ln
(

θ

k
· k

1

)
− (k−θ) ln

(
k−θ

k
· k

k−1

)
=−θ lnθ − (k−θ) ln

(
1− θ −1

k−1

)
=−θ lnθ +(k−θ) ln

(
k−1
k−θ

)
=−θ lnθ +(k−θ) ln

(
1+

θ −1
k−θ

)
≤−θ lnθ +θ −1

Hence, Pr[X ≥ θ]≤ exp(−θ lnθ +θ −1) (1)

For this case, to achieve a target error bound δ , we rearrange to obtain θ

e ln θ

e = 1
e ln(1/eδ), and

apply Lambert’s W function. This gives θ

e = W (1
e ln(1/eδ), i.e., θ = eW (1

e ln 1
eδ
). Note that this

case corresponds to the scenario where we do not publish the counts, but only indicate which items
occurred more than θ times in the sample.

Case: ps > 1/k. If ps > 1/k, we apply a (multiplicative) Chernoff bound:

Pr[X ≥ θE[X]]≤ exp(−(θ −1)2E[X]/(1+θ))

= exp(−(θ −1)2kps/(1+θ))

≤ exp(−(θ −1)2/(1+θ))

In this case, to achieve a target error bound δ , we can pick θ = 3+ ln(1/δ), and obtain exp(−(2+
ln1/δ)2/(4+ ln1/δ))< exp(− ln(1/δ)) = δ .

The second case is stricter for all θ > 1, so we will use this setting of θ in what follows.

We next give a bound on the ratio of probabilities of seeing the same output on neighboring inputs.
Lemma 5. Given two neighboring inputs D, D′, such that D differs in one item from D′, the ratio of
probabilities of seeing a cell with a given value τ is bounded by k+1

k+1−τ
, where k+1 is the number of

copies of the given item in input D and k > τ .

7

Proof. The case to focus on is when input D has one extra copy of a particular item compared to D′, at
some intermediate stage of the algorithm. For notation, we will write Sk(n,s,τ) to denote the number
of ways to succeed in collecting exactly τ instances of the target item while picking s items out of
n, when there are k total instances of the item. We can observe that there is a simple combinatorial
expression for this quantity: we count the number of combinations where we pick a particular subset
of size τ from the k instances, and a particular subset of size s−τ from the remaining n−k examples.

Sk(n,s,τ) =
(

k
τ

)(
n− k
s− τ

)
(2)

Our goal is to bound the ratio of probabilities of seeing a count of τ copies of the item in the output
of D, who has k+1 copies of the item, and of D′ who holds k copies. The probability that the sample
size is exactly s is given by Ps = ps

s(1− ps)
n−s. For a given sample size s, the probability for D is

Sk+1(n,s,τ)Ps, and for D′ it is Sk(n,s,τ)Ps. Then this ratio of probabilities is given by

Sk+1(n,m,τ)Ps

Sk(n,m,τ)Ps
=

(k+1
τ

)(n−k−1
m−τ

)(k
τ

)(n−k
m−τ

) =
(k+1)(n− k−m− τ)

(n− k)(k+1− τ)

=

(
1− m+ τ

n− k

)(
k+1

k+1− τ

)
≤ k+1

k+1− τ

Then we can bound this ratio across all sample sizes as simply ∑
n
s=0

k+1
k+1−τ

Ps =
k+1

k+1−τ
.

Proof of Theorem 1. Consider the treatment of an item x between two neighboring inputs D and D′.
If fx = f ′x, i.e., the number of copies of x is the same in both inputs, then x is treated identically in both
cases. Otherwise, wlog we are looking at an x such that fx = f ′x+1 = k+1. We condition on the event
that the number of samples of the item x is not more than θ times its expectation. Call this event E.
By Lemma 4, event E holds except with probability pθ = exp(−(θ −1)2/(θ +1)) = O(exp(−θ)).
We condition on E holding, and just account for this probability in our final reckoning.

Suppose that the count of x for D is less than n/m. Then, by our assumption of E, D will not sample
θ copies of x, and so both D and D′ would output the same histogram. Hence, the probability of all
outputs are equal on D and on D′.

Otherwise, the count of x (k+1 for D) is at least n/m, and by our assumption D samples at most
τ ≤ θm(k + 1)/n copies of x. Then, by Lemma 5, we can state that for the mechanism M, the
probability of seeing a given output histogram H satisfies:

Pr[M(D) = H|E]
Pr[M(D′) = H|E]

≤ k+1
k+1− τ

≤ k+1
k+1−θ(k+1)m/n

=
n

n−θm
(3)

We will assume that m = cε
n
θ

for a constant cε < 1−1/e that depends on ε . The effect is to ensure
that the sample size m is a small fraction of n. Substituting this assumption in (3), we conclude

Pr[M(D) = H|E]
Pr[M(D′) = H|E]

=
n

n− cε n
=

1
1− cε

:= exp(ε) (4)

That is, except with probability pθ , we have ε-differential privacy. Rearranging, we set cε =
1− exp(−ε). For small ε , we can approximate cε = ε . We can also write

ε = ln
1

1− cε

= ln
(

1+
cε

1− cε

)
= ln

(
1+

mθ/n
1− cε

)
≤ ln

(
1+

emθ

n

)
where the last step uses cε ≤ 1− 1/e. This proves (O(mθ

n),O(exp(−θ))-differential privacy, as
claimed.

Proof of Lemma 2. For an item with (absolute) frequency W out of the n input items, it is reported
if the number of sampled occurrences exceeds θ . Similar to the analysis above, we can apply a
Chernoff-Hoeffding bound to the random variable X that counts the number of occurrences of the

8

item. Now, the probability of each sample picking the item is W/n, and the expected number in the
sample is Wm/n > θ . For convenience, we will write w =Wm/n for this expectation. We have that1

Pr[X ≤ θ] = Pr
[

X ≤ θ

w
w
]

= Pr
[

X ≤
(

1− w−θ

w

)
E[X]

]
= exp

(
− (w−θ)2

2w

)

Proof of Lemma 3. Applying the same Chernoff-Hoeffding bound as above, we have for γ < 1,

Pr[|X−µ|> γµ] = 2exp(−γ
2
µ/3) = β

Rearranging, we obtain µ = 3
γ2 ln(1/2β). Suppose we aim to find all items whose frequency is at

least φ , and estimate their frequency with relative error at most γ . Then we have µ = φm≥ φ
εn
θ
=

3
γ2 ln(1/2β).

Fixed sized sampling. For practical efficiency, we would often like to work with a fixed size
sample. However, the above histogram protocol performs Poisson sampling instead. The reason is
that if the fixed size of the sample, m, is known, then we are effectively also releasing the number of
samples that were suppressed by the θ threshold (by adding up the released counts, and subtracting
from m). This potentially leaks information. Consider the case where D′ contains n copies of the same
item, while D contains n−1 copies of the same item, and one unique item. With probability m/n,
the mechanism on input D samples the unique item along with m−1 other items, and so produces a
sample of size m−1. But on input D′, there is zero probability of producing a sample smaller than m.
This forces δ ≥ m/n, which is typically too large for (ε,δ)-DP (we usually seek δ � 1/n).

Performing Poisson sampling with ps addresses this problem: the expected sample size is the
same, but we no longer leak the true size of the sample before censoring. Indeed, we can see
that the (observable) size of the sample is differentially private: given two inputs D and D′ such
that D has one additional unique item, the distribution of sample sizes are close, up to a factor of
1+ ps/(1− ps) = 1+m/(n−m), which is below exp(εi) by (4).

Implementing Poisson sampling may appear costly: the server needs to contact n clients instead of m,
where we expect n� m. However, we can perform this more efficiently.
Lemma 6. Sampling m+O(

√
m) clients is sufficient to apply the sample-and-threshold mechanism,

with high probability.

Proof. Observe that, with high probability, the size of the (Poisson) sample will be close to expected
value of m. In particular, by a Chernoff bound, the probability that the sample size is more than c

√
m

larger than m is
Pr[s > (1+ c/

√
m)m]≤ exp(−c2/3).

Hence, for c a suitable constant (say, 10), this probability is negligibly small. To realize this sampling,
we contact a fixed size number of clients s = m+c

√
m, and then have each client perform a Bernoulli

test on whether to participate: with probability m/s, it participates, otherwise it abstains. An
abstaining client can, for example, vote for a unique element (e.g., an item based on a hash of its
identifier), and so be automatically discounted from the protocol, without revealing this information
to the aggregator.

1Here we are sampling without replacement. However, the bounds for sampling with replacement are still
valid here.

9

	Introduction
	Preliminaries
	Histograms
	Heavy hitters and Quantiles
	Concluding Remarks
	Omitted Proofs

