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Abstract

Deep learning methods have gained popularity in high energy physics for fast mod-
eling of particle showers in detectors. Detailed simulation frameworks such as the
gold standard GEANT4 are computationally intensive, and current deep generative
architectures work on discretized, lower resolution versions of the detailed simula-
tion. The development of models that work at higher spatial resolutions is currently
hindered by the complexity of the full simulation data, and by the lack of simpler,
more interpretable benchmarks. Our contribution is SUPA, the SUrrogate PArticle
propagation simulator, an algorithm and software package for generating data by
simulating simplified particle propagation, scattering and shower development in
matter. The generation is extremely fast and easy to use compared to GEANT4,
but still exhibits the key characteristics and challenges of the detailed simulation.
The proposed simulator generates thousands of particle showers per second on
a desktop machine, a speed up of up to 6 orders of magnitudes over GEANT4,
and stores detailed geometric information about the shower propagation. SUPA
provides much greater flexibility for setting initial conditions and defining multi-
ple benchmarks for the development of models. Moreover, interpreting particle
showers as point clouds creates a connection to geometric machine learning and
provides challenging and fundamentally new datasets for the field.

1 Introduction

In order to understand the fundamental building blocks of nature, High Energy Physics (HEP)
experiments involve highly energetic particle collisions. These collisions cause particles to decay,
and the identification of the resulting decay particles is of key importance to develop and confirm
new physics/theories. This is enabled through an electromagnetic or hadronic calorimeter. As
particles interact with the calorimeter, they split into multiple other particles, forming a particle
shower. The nature of the generated shower depends on the specific material and geometry of the
calorimeter, which are carefully selected and driven by physics theory and pratical considerations.
The generated shower deposits energy in active layers of the calorimeters, and provides energy and
location measurements from the particles produced in the cascade.
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Precise computer simulation is central to a better understanding of experimental results in HEP.
Simulation is especially useful for the task of event reconstruction, where the deposited energy in the
calorimeter is used to identify the particle that originated a given shower. The pattern of the deposited
energy depends on the specific type of the (intermediate) particles, the initial energy and incidence
angle, as well as the specific geometry and shape of the detector material, among other factors. The
state-of-the-art for this kind of simulations is GEANT4 [Agostinelli et al., 2003], a Monte Carlo
toolkit for modeling the propagation of particles through matter.

While detailed simulation through GEANT4 provides fine-grained shower generation and captures the
underlying distributions accurately, this software consists of more than 3.5 million lines of C++, is
computationally very expensive, and requires specific domain knowledge to be set up and tuned. This
makes it cumbersome and expensive to produce the amount and diversity of data needed to speed up
machine learning research on these topics. Table 1 compares GEANT4 with our proposed simulator
SUPA.

Our key contributions to ease these issues are:

• We introduce SUPA: a fast, easy to use simulator for simple particle propagation, scattering
and shower development in matter (see § 3).

• We structure the simulator in a way that allows to easily change the complexity of the under-
lying shower development as well as the properties of the showers in terms of multiplicity,
energy range, structure (see § 4.1).

• We use SUPA to generate data that highlights the limitations of current machine learning
approaches for fast shower simulation (see § 5.2). We experimentally demonstrate that
SUPA can be used as a proxy for detailed simulation, while being easy to tune and up to 6
orders of magnitude faster than GEANT4.

1.1 Image Representation

Existing approaches for generating particle showers [Paganini et al., 2018, Krause and Shih, 2021]
focus on a quantized representation of the calorimeter hits, binning them into discrete pixels, or
cells, and setting the pixel intensity to the sum of the energy deposited. The upside of this approach
is that, due to the structure of existing calorimeters, the data takes the form of low resolution
images and standard computer vision models can be directly applied. However, as we increase the
resolution of the quantized representations in order to preserve more information, the resulting images
become exceedingly sparse, leading to difficulties in training existing machine learning architectures.
Figure 1b, 1c, and 1d show the downsampled image representations at resolutions of 3x, 2x and 1x
respectively for the shower shown in Figure 1a. We choose 1x to be the same resolution as used in
CaloGAN [Paganini et al., 2018] (i.e. 12× 12 for Layer 1).

It is also important to notice that, when decreasing the resolution of the data and looking at showers,
while the signal to model is of lower dimension and less sparse, the underlying structure and rela-
tionships between hits are lost. This requires models to implicitly learn equivariances from multiple
examples, while also introducing artificial structure arising from the chosen detector geometry. For
example, with a shower incident on the surface of a detector, a slight translation in either direction
does not change the properties of the shower. However it still has an impact on the resulting datasets,
where for small shifts it is not translationally equivariant. Having access to the underlying energy
depositions would therefore greatly reduce the dependence on the geometry of the detectors in the
models, and allow generative models to learn the underlying structure from the physical process
directly.

1.2 Point Cloud Representation

Many popular point-cloud datasets [Wu et al., 2015, Chang et al., 2015] in the machine learning
community contain shape representations of physical objects, such as points sampled uniformly
from the surfaces of chairs, tables, etc. These datasets enjoy many nice properties, e.g. locality and
redundancy, that calorimetry datasets do not. Moreover, existing generative models for point clouds
rely on these simplifying assumptions and therefore their performance on more diverse datasets is still
relatively unexplored. In the case of particle showers in calorimeters, dealing directly with the point
cloud representation provides an optimal description of the underlying physics processes. However,
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Figure 1: An example shower (single layer) shown at different resolutions

due to the detailed simulation resulting from GEANT4, the number of points per shower represents a
huge computational challenge.

A key objective of our synthetic simulator is to bridge this gap by allowing for quicker ground truth
data generation for different initial settings, thus providing a way of modulating the complexity of the
dataset, leading to more interpretable benchmarks. This would also make it possible to take gradual
steps in developing the models and work out which of the many complexities in the GEANT4 datasets
are hardest to model.

2 Related Work

Shower simulation with GEANT4 requires a complete description of the geometry and material of
the detector and simulates all interactions between the initial particle, any subsequently produced
particles through decays or emissions, and the detector material. The upside of using GEANT4 for
simulation is that it is very accurate and represents the underlying physical phenomena precisely,
but it comes at the cost of being computationally very expensive. Moreover, it requires expertise to
define the configuration and a multitude of expert hours to set it up for new detector geometries. To
reduce the computational resources required to simulate particle physics collisions and their energy
depositions in detectors, deep generative models have been applied to generate particle showers. Most
of these models [Abhishek et al., 2021, Krause and Shih, 2021, Paganini et al., 2018] employ the
dataset first introduced in CaloGAN [Paganini et al., 2018] which is based on a simplified calorimeter
inspired by the ATLAS Liquid Argon (LAr) electromagnetic calorimeter. 1

2.1 Datasets and calorimeter structure

For the CaloGAN dataset, the calorimeter is cubic in shape with each dimension being 480 mm and
no material in front of it. The volume is divided into three layers along the radial (z) direction with
varying thicknesses of 90 mm, 347 mm, and 43 mm, respectively. These layers are further segmented
into discrete cells, with different sizes for each layer: 160 mm × 5 mm (first layer), 40 mm × 40 mm
(second layer) and 40 mm × 80 mm (third layer). Each layer can be represented as a single-channel
two-dimensional image with pixel intensities representing the energy deposited in the region. The
final read-out has the resolution of 3×96, 12×12, and 12×6. For this dataset, three different particle
types were considered, namely, positrons, charged pions and photons. Further, the particles were
configured to be incident perpendicular to the calorimeter with initial energies uniformly distributed
in the range between 1 GeV and 100 GeV.

Several other calorimeter geometries and configurations are employed across the literature. Erdmann
et al. [2019] consider a calorimeter configuration motivated by the CMS High Granularity Calorimeter
(HGCAL) prototype, while Belayneh et al. [2020] study a calorimeter based on the geometric layout
of the proposed Linear Collider Detector (LCD) for the CLIC accelerator. Buhmann et al. [2021b,a]
investigate the prototype calorimeter for the International Large Detector (ILD) which is one of the
two proposed detector concepts for the International Linear Collider (ILC). The Fast Calorimeter
Simulation Challenge 2022 (CaloChallenge2022) Faucci Giannelli et al. [2022c,a,b] was proposed
to spur the development and benchmarking of fast and high-fidelity calorimeter shower generation
using deep learning methods. The challenge proposed three datasets, ranging in difficulty from easy

1The ATLAS calorimeter has e.g. a more complex geometry, with the cells having accordion shaped
electrodes to maximise the active volume
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to medium to hard. the difficulty is determined by the dimensionality of the calorimeter showers i.e.
number of layers and number of voxels in each layer. In a different application setting, Erdmann et al.
[2018] model a calorimeter response for cosmic ray-induced air showers in the Earth’s atmosphere,
producing signals in ground based detector stations. In contrast to the CaloGAN calorimeter, it has a
single readout layer with 9× 9 cells, each cell corresponds to a detector unit placed with a spacing of
1500 m. Although many different detector technologies are considered in the various models, the
common aspect between the models and the corresponding datasets is the projection of the spatial
signal onto discretized cells in 2D planes or a generalized 3D volume. The projection is done either
directly while designing the calorimeter geometry, or as a post processing step. Further, the number
of cells and thus the resolution of the final read-out is usually kept small. This is done either to
simplify the data for training the models, or in order to speed up the simulations.

Due to the different geometries used for generating the datasets, it is not a straightforward task to
compare the performance of the various models. As the developments of each shower are completely
dependent on the detailed model of the detector in GEANT4, although the same initial particles can
be simulated, it is very difficult to draw parallels between two different datasets, as it is not possible
simply to change the representation of the data from one model to look like that of another.

2.2 Deep Generative Models

The applications of deep generative modeling to calorimeter simulation have so far almost entirely
focused on Generative Adversarial Networks (GANs, Goodfellow et al. 2014) and Normalizing Flows
[Rezende and Mohamed, 2016]. CaloGAN [Paganini et al., 2018] was the first application of GANs
to a longitudinally segmented calorimeter. The approach is based on LAGAN [de Oliveira et al.,
2017], a DCGAN [Radford et al., 2016]-like architecture, that is able to synthetize the shower images.
The generator outputs a gray-scale image for each layer in the calorimeter, with each output pixel
representing the energy pattern collected at that location. The architecture is also complemented with
an auxiliary classifier tasked with reconstructing the initial energy E.

Krause and Shih [2021] improve on CaloGAN with CaloFlow, a normalizing flow architecture to
generate shower images. CaloFlow is able to generate better samples than previous approaches based
on GANs and VAEs, while also providing more stable training. Inductive CaloFlow (iCaloFlow)
Buckley et al. [2023] extends the CaloFlow model to higher granularity detector geometries. It
utilizes a teacher-student distillation to increase sampling speed without loss of expressivity.

Previous work by ATLAS collaboration [2018] proposes to use a Variational Autoencoder on the
flattened images [Kingma and Welling, 2014] . Both the encoder and decoder consist of an MLP
conditioned on the energy of the initial particle. In addition to the reconstruction and KL-terms, the
authors also optimize for the overall energy deposit in both in the individual layers and in the overall
system.

Buhmann et al. [2023] proposes a diffusion-based generative model representing one of the initial
methods devised for effectively processing the point cloud representation of calorimeter showers.

3 Propagation Model

SUPA generates data that imitates the propagation and splitting/scattering of point particles. To
generate an event, a point particle is initialized at the origin of the 3D space with an initial energy 2

value and a velocity parallel to the z-axis. We then define a sequence of 2D planes orthogonal to the
z−axis at {z0, ..., zN} that we call “slices” (or “sub-layers”, interchangeably). We assume that the
slices are evenly spaced along the z-axis, with a gap of ∆z between consecutive slices. As the initial
particle reaches the first predefined z-slice at z0, it has 3 options (see Figure 2): stop and deposit
its energy with stopping probability pstop, split into two with splitting probability psplit, or simply
continue moving with the same velocity with pass-through probability ppass = 1− (pstop + psplit).
Then:

• If the particle splits, two particles are generated at the splitting location with energy and
velocity features that ensure momentum conservation, i.e., that the sum of momentum

2A continuous attribute obeying simple conservation laws at each splitting, which can be interpreted as an
equivalent for the energy of the particles in a shower. As such, we refer to this property as the energy.
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Figure 2: Schematic summary of a propagation event generated by SUPA. (left) Splitting events can
happen at the black vertical lines, called slices. See § 3 for a detailed explanation of the process.
(right) Each time a particle crosses a pre-defined “slice”, it either splits in two, stops and deposits
energy, or passes through unperturbed.

vectors of the new particles is equal to the decaying one. The original particle is removed
from the propagation model and the two new ones continue propagating with their respective
velocities. The splitting angle θ and deviation angle ϵ are sampled from distributions pθ(.)
and pϵ(.), respectively.

• If the particle stops, its energy is deposited and the energy value and the location of the hit
are recorded.

• If the particle passes through, it simply continues with its original velocity.

See Algorithm 1 for the pseudocode of this process. We can think of the process as a detector layer
being positioned at the z0-slice recording energy deposits. After the slice at z0, the model either
contains 0,1 or 2 particles still propagating. As they reach the additional slices at {z1, ..., zN} the
above procedure is repeated: whenever a particle is at a z-slice, it either passes, deposits its energy or
decays.

After all particles crossed the last slice at zN we collect all energy deposits (energy value and 3D
location). Instead of building a dataset from the exact 3D location of these deposits, we partition the
slices into subsets we call layers. We refer to the partitioning scheme as layer configuration.

We then build an event from the energy deposit E and the (x, y)-coordinate of all hits for all slices
within a given layer Li, effectively projecting the z-axis into a single point. An event then consists of
N 2D point clouds, one for each layer, with a single scalar feature per point. Intuitively, the slices zi
are the positions where the particle can split and stop (granularity of the simulation), and the layers Li

correspond to the detector layers, where the readout happens. Figure 2 contains a schematic summary
for the propagation process.

Having complete control over the algorithm, we can increase/decrease the complexity of the generated
data by adjusting the distribution of the properties of the initial particle, the number and location of
the slices zi, the probabilities pstop, ppass, psplit and the distribution of the properties of the children
after a splitting event. This is especially useful to debug and understand the behaviour of machine
learning models at different levels for complexity.

Table 1: Comparison of GEANT4 and the proposed model (SUPA)

GEANT4 SUPA

codebase 3.6m lines
in C++

few hundred lines
in Python

target usage detailed physics
simulations

fast data
generation

speed 1772 ms/shower3 0.1-100 ms/shower4
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Algorithm 1 SUPA - Particle Splitting

Parameters: Stopping probability: pstop
Splitting probability: psplit
Layer configuration :

L1 = {z0, ..., zi1},
L2 = {zi1+1, ..., zi2},
. . .
Ln = {zin−1+1, ..., zN},

Slice Gap: ∆z
Splitting angle: pθ(.)
Deviation angle: pϵ(.)

Input: Tree T , Position p = (∆η,∆ϕ),
Energy E, Layer l

Output: a collection of {pi, Ei}N
of generated particles

1: (p, E, l)← Input, N ← p(δ(n = 2))

2: θ ∼ pθ(.), ϵ ∼ pϵ(.), α ∼ U(0, 1)
3: if α < pstop[l] then
4: Active← False
5: else if pstop[l] < α < pstop[l] + psplit then
6: ω ← U(0, 2π)
7: p0 ← p+∆z ∗ (sin(θ/2 + ϵ), cos(θ/2 + ϵ))

8: p1 ← p−∆z ∗ (sin(θ/2 + ϵ), cos(θ/2 + ϵ))

9: E{0,1} ← E ∗ (θ/2 ± ϵ)/θ
10: T .add(p0, l + 1, E0), T .add(p1, l + 1, E1)
11: else
12: T .add(p, l + 1, E)
13: end if
14: Return T

Notation. We denote a single shower as x = {xL1
,xL2

, . . . ,xLN
}, where xLi

denotes the ith layer
and N is the total number of layers considered. For the point cloud representation, xLi

can be further
expanded as xLi

= {xi
1,x

i
2, . . . ,x

i
Ni

}, where Ni denotes the total number of points in layer i of the
shower (can vary across showers). Further, each point is a vector xi

j = [ηij , ϕ
i
j , E

i
j ], where η and ϕ

are the coordinates and E denotes the energy.

4 Using SUPA

SUPA provides various meta-parameters which affect the data generation and various characteristics
of the generated data. This allows to generate shower data with varying levels of complexity and thus
enables incremental benchmarking. For instance, psplit affects the number of emerging secondary
particles and thus implicitly the number of hits (or points), while pstop controls the position (in depth)
of the observed hits. θ controls the overall spread of the hits in the lateral plane and α controls the
dynamic range of the observed energy values. The different configurations for these parameters is
analogous to different detector geometry/material or perhaps a different particle.

4.1 SUPA Datasets

We propose five standard configurations and the resulting datasets SUPAv1-5 for our analysis and
benchmarking, summarized in Table 2. All configurations have the same initial energy of 65 GeV,
initial angle of π/2 and initial impact position (0, 0), i.e. particles are incident perpendicular and
at the center of the calorimeter. Section A.2 in the appendix gives more details and also shows the
interpretation of these variations with respect to different summary variables. SUPAv1 is deterministic

Table 2: Summary of different datasets generated with SUPA
Dataset θ α psplit, pstop, ppass # Points Layer Configuration
SUPAv1 π

24 0 see Fig. 5a 128 L0 : [5, 10]
SUPAv2 π

24 0 see Fig. 5b [1, 91] L0 : [7, 20]
SUPAv3 U( π

32 ,
π
16 ) U(−θ

4 , θ
4 ) see Fig. 5b [1, 91] L0 : [7, 20]

SUPAv4 U( π
32 ,

π
16 ) U(−θ

4 , θ
4 ) see Fig. 5b [1, 84] L0 : [7, 12]

SUPAv5 U( π
32 ,

π
16 ) U(−θ

4 , θ
4 ) see Fig. 5c [5, 280] L0 : [7, 12], L1 : [13, 28]

3The exact simulation time depends on the incident particle and its kinematic properties, as well as the
detailed composition of the detector geometry in the GEANT4 model. These numbers are taken for the CaloGAN
geometry introduced in Paganini et al. [2018].

4Reflects the time to generate directly the point cloud representation, which is more granular than the
corresponding GEANT4 generation
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with respect to splitting and stopping probabilities as well as in θ and α. It has the same number
of points across all events and all the hits have the same energy value. SUPAv2-4 have the same
configuration for splitting and stopping probabilities (see Sec. A.2.1), while SUPAv2 is deterministic
in θ and α. SUPAv3 is naturally more spread out than SUPAv2 (see Fig. 6b vs. Fig. 6c, and also
distributions for η, ϕ, r in Fig. 7, and ⟨η⟩, ⟨ϕ⟩, ⟨r⟩ in Fig. 8). SUPAv4 is similar to SUPAv3,
except for the layer configuration. SUPAv4 only has a subset of the sub-layers by dropping the last 8
sub-layers from SUPAv3. While SUPAv3 captures the total initial energy in Layer 0, SUPAv4 has
some energy leakage which is apparent from the distribution of layer energy Ē in Fig. 10f. Another
interesting structure in shower data is the dynamic range of the energy values in a given shower. A
high dynamic range of energy makes learning generative models difficult [Krause and Shih, 2021].
With SUPA, we can control the dynamic range via the parameter α. SUPAv1 and SUPAv2 have
fixed α(= 0), thus all the splits are symmetric leading to a low dynamic range (see Fig. 10d for
histogram of variance in energy values). The other factor which affects the dynamic range is the
layer configuration, more number of slices in a layer would lead to more dynamic range. SUPAv5
has multiple layers and has a higher psplit in the initial slices, thus it is more complex in terms of
multiplicity or total number of hits. Please refer to the appendix Sec. A.2 for more details and other
canonical SUPA datasets.

4.2 Extensions

SUPA is very flexible and can be easily extended. The slices can be further divided into different
regions each with their own meta-parameters providing more granular control over the scattering
and splitting process. Another variation requires having some slices that are not merged into layers
to mimic dead material. These extensions can possibly bring it closer to more realistic detectors,
and lead to unique structures in the dataset and thus present challenges for model development and
evaluation. It is also possible to condition the data generation on various attributes, for example:
initial impact angle, impact energy, impact position, etc. This encourages interesting studies and
benchmarks regarding extrapolation and generalization capabilities of generative models for unseen
conditioning variables during training.

5 Evaluation and Analysis

The evaluation of generative models for high dimensional data is a non-trivial problem. While
reconstruction losses and/or data likelihood are available for some model architectures (e.g. auto-
encoders or flows), judging the sample quality is still difficult. Moreover, the average log-likelihood
is difficult to evaluate or even approximate for many interesting models. For instance, in computer
vision, evaluating generative models for images is done via proxy measures such as the Frechet
Inception Distances (FID, Heusel et al., 2017). Point cloud generative models are evaluated [Yang
et al., 2019] using metrics such as Minimum matching distance (MMD), Coverage (COV) and
1-Nearest Neighbour Accuracy (1-NNA), where similarity between a set of reference point clouds
and generated point clouds are measured using a distance metric such as the Chamfer distance (CD)
or Earth mover’s distance (EMD) based on optimal matching.

5.1 Shower Shape Variables

For calorimeter simulation, we cannot judge performance using individual examples due to the
stochastic nature of shower development. The standard practice to estimate the quality of generative
models for calorimetry data (shower simulations) is to use histograms of different metrics called
shower shape variables [Paganini et al., 2018] in addition to images of calorimeter showers. These
shower shape variables are domain-specific and physically motivated, and matching densities over
these marginals is indicative of matching salient aspects of the data. These marginals capture various
aspects of how energy is distributed within individual layers and across different layers.

We extend the shower shape variables for the point clouds representation of showers. A summary of
all the shower shape variables considered are present in the appendix.

Point level marginals. Marginals of each point feature by considering the set all the points from all
the point clouds together.
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Feature means ⟨ηi⟩, ⟨ϕi⟩, ⟨ri⟩, ⟨Ei⟩. Mean of each feature.

⟨ηi⟩ =
∑

j η
i
j∑

j 1
, ⟨ϕi⟩ =

∑
j ϕ

i
j∑

j 1
, ⟨ri⟩ =

∑
j r

i
j∑

j 1
⟨Ei⟩ =

∑
j E

i
j∑

j 1

where rij =
√
(ηij)

2 + (ϕi
j)

2 denotes the distance of the point in the lateral plane from the center.

Feature variances σ⟨ηi⟩, σ⟨ϕi⟩, σ⟨ri⟩, σ⟨Ei⟩. Variance of each feature. σ⟨ηi⟩ =

√∑
j ηi

j
2∑

j 1 − ⟨ηi⟩2

Layer Energy Ēi. Denotes the total energy deposited in layer i of the shower. Ēi =
∑

j∈Ni
Ei

j .

Total Energy Etot. Total energy across all layers of the shower. Etot =
∑

i≤N Ēi.

Layer Centroids ⟨ηi⟩E , ⟨ϕi⟩E , ⟨ri⟩E . Energy weighted mean of the features (η, ϕ, or r).

⟨ηi⟩ =
∑

j E
i
jη

i
j

Ei
, ⟨ϕi⟩ =

∑
j E

i
jϕ

i
j

Ei
, ⟨ri⟩ =

∑
j E

i
jr

i
j

Ei

The layer centroids can be interpreted as the center of energy in the lateral plane in respective
dimensions.

Layer Lateral Width σ⟨ηi⟩E , σ⟨ϕi⟩E , σ⟨ri⟩E . Denotes the standard deviation of the layer centroids.

σ⟨ηi⟩E =

√∑
j E

i
j(η

i
j)

2

Ei
− ⟨ηi⟩2E

The layer lateral widths can be interpreted as the spread around the center of energy in the lateral
plane in respective dimensions. We drop the layer notation i from the above metrics when working
with a single layer for brevity.

5.2 Performance Analysis of Generative Models

In order to summarise the discrepancy into a scalar value, we consider the Wasserstein-1 distance
between the histograms of the ground truth and generated sample’s marginals5. Further, we compute
the mean discrepancy over different groups of marginals to summarize the performance of models.

We train point cloud generative models, PointFlow [Yang et al., 2019], SetVAE [Kim et al., 2021],
and a transformer-based flow model (which we call Transflowmer, see Sec. A.3), on SUPA data.
Table 3 summarizes the performance of different models across different variations of SUPA datasets.
Pointflow performs better than SetVAE for all marginals not involving energy feature such as point
level marginals, feature means and variances for location parameters, etc., and worse for marginals
which depend on energy such as, layer centroids, and layer energy, etc. (with the exception of layer
lateral widths and feature variance σ⟨E⟩, which are both second order moments), across all datasets.
Roughly speaking, PointFlow struggles at modeling the energy feature while it is competitive for
the location features, and SetVAE behaves opposite. It is interesting to observe that Transflowmer
is either the best performing or very close to best performing model (either SetVAE or PointFlow)
across all datasets and marginals, indicating relatively greater flexiblity at modeling a variety of
features. The instances with relatively high values in Table 3 (feature means for SUPAv1, and layer
energy for SUPAv2 and SUPAv3) are where the marginals had a very narrow spread, indicating the
difficulty in modeling discrete distributions. The models also have the tendency to predict points
with very high energy values unseen during training (see Fig. 24a). We provide more details in the
Appendix Section A.4 on the training, results and analysis, along with plots of various shower shape
variables to visually compare the goodness of fit.

These observations highlight the need for adapting point cloud generative models such that they
are able to model points with special features (different from location parameters), such as physical
features like energy, momentum, etc. Although the location parameters are correlated with these
special features, the overall structure of this correlation can be very different from domain to domain
and also from how they are correlated with other location features.

5For computing the Wasserstein distance, we normalize the shower shape variables for the ground truth and
the generated sample according to the mean and standard deviation of the ground truth.
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Table 3: Performance benchmarks across different datasets with SetVAE, PointFlow and Trans-
flowmer. The distance metric is Wasserstein-1. The reported numbers are averages over a group of
marginals as indicated in the top row. Lower numbers are better. See § 5.1 for more details on the
metrics.

Point Features : η, ϕ, r Point Feature : E ⟨ηi⟩, ⟨ϕi⟩, ⟨ri⟩
Dataset SV PF TF SV PF TF SV PF TF
SUPAv1 0.044 0.037 0.028 0.001 0.000 0.000 16.254 21.921 5.789
SUPAv2 0.290 0.167 0.029 0.253 0.462 0.145 0.517 0.256 0.091
SUPAv3 0.510 0.130 0.044 0.304 0.484 0.048 0.769 0.075 0.105
SUPAv4 0.269 0.122 0.029 0.111 0.459 0.006 0.460 0.094 0.073
SUPAv5 0.166 0.028 0.042 0.078 0.090 0.151 0.592 0.031 0.189

σ⟨ηi⟩, σ⟨ϕi⟩, σ⟨ri⟩ ⟨E⟩ σ⟨E⟩

Dataset SV PF TF SV PF TF SV PF TF
SUPAv1 0.513 0.585 0.359 0.001 0.000 0.000 0.000 0.000 0.000
SUPAv2 0.648 0.154 0.130 0.302 0.077 0.087 0.513 0.177 0.165
SUPAv3 1.114 0.109 0.126 0.320 0.064 0.071 0.500 0.152 0.144
SUPAv4 0.634 0.092 0.051 0.263 0.047 0.022 0.355 0.156 0.038
SUPAv5 0.799 0.040 0.223 0.251 0.059 0.414 0.377 0.047 0.421

⟨ηi⟩E , ⟨ϕi⟩E , ⟨ri⟩E σ⟨ηi⟩E , σ⟨ϕi⟩E , σ⟨ri⟩E Ē

Dataset SV PF TF SV PF TF SV PF TF
SUPAv1 16.244 21.921 5.766 0.517 0.591 0.379 0.101 0.000 0.039
SUPAv2 1.336 1.933 0.137 0.779 0.134 0.190 23.387 69.814 10.468
SUPAv3 1.365 1.627 0.217 1.226 0.147 0.151 36.116 79.062 5.916
SUPAv4 1.369 1.346 0.083 0.645 0.169 0.067 3.997 12.895 0.659
SUPAv5 2.373 1.615 0.463 0.740 0.058 0.317 6.132 16.742 9.273

5.3 SUPA as a benchmark

We train the models of § 2.2 on both the events generated by GEANT4 and SUPA. For these studies,
we generated another version of the dataset with SUPA and downsample the point clouds to grid
representation such that it is similar to the CALOGAN dataset (see § A.5 for details on data
generation). The training loss of the flow model is a log-likelihood which meaningfully represents
the quality of the captured distribution. Figure 3 displays the correlation of the log-likelihood values
of different variations of the CaloFlow architecture trained both on GEANT4 and SUPA-generated
events. Figure 4 shows the scatter plot of the mean discrepancy (across all marginals) obtained by
different models on GEANT4 and SUPA-generated events. We show more plots in the Appendix § A.5.
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Figure 3: Scatter plot for loss over different ver-
sions of CaloFlow models. Each point corre-
sponds to an architecture, its x and y coordinates
are the negative log-likelihoods on data gener-
ated by GEANT4 and SUPA, respectively. Point
size reflects the capacity of the model (number
of layers, learnable parameters, etc.).
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Figure 4: Scatter Plot for mean discrepancy (§ 5)
over different models. Lower numbers are better.
Performance of models are consistent over both
datasets, a better model on SUPA implies a bet-
ter model on GEANT4 and vice versa.
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We can observe that all these correlation plots are roughly monotonic, showing that benchmarking on
SUPA provides a good estimate of relative performance on the detailed GEANT4.

6 Conclusion

We introduced SUPA, a lightweight pseudo-particle simulator that is inspired by the physics governed
development of particle showers and qualitatively resembles the data generated by the gold standard
GEANT4. By allowing to easily change the underlying parameters of the propagation model, we
introduce the freedom to define new benchmark datasets of varying complexity with a fidelity and
simplicity not available using the GEANT4 toolkit.

We believe that the ease of use, flexibility and speed of this simulator could be a MNIST moment
for the field, allowing the rapid exploration of models in various regime of functioning as discussed
in § 4.1. We also highlight the gaps in the ability of existing point cloud generative models on
calorimetry data in § 5.2 and highlight the need for more powerful point cloud generative models.

Additionally, we showed in § 5.3 and § A.5.1 that with grid representation of the shower data,
performance of deep generative models estimated on data produced with this simulator is a good
proxy for their performance on the standard data used historically in machine learning for particle
physics. We highlight flexibility of SUPA in § A.5.2, allowing us to train/evaluate at different
resolutions.

Moreover, by giving easy access to the fully recorded event, we open the way to applying methods
from point clouds and geometric deep learning research, with the goal of possibly devising end-to-end
architectures able to reconstruct a full event from the energy deposits by solving the complete inverse
problem, something currently impossible with data from GEANT4.
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A Appendix

A.1 Shower shape variables

We extend the list of shower shape variables described in Sec. 5.1 :

Layer Energy Fraction fi. Fraction of the total energy deposited in layer i of the shower. fi =
Ēi/Etot.

Energy Ratio Eratio,i. Ratio of the difference between highest and second highest energy intensity

point or cell in layer i and their difference. Eratio,i =
Ei

[1]−Ei
[2]

Ei
[1]

+Ei
[2]

.

Depth d. Deepest layer in the shower with non-zero energy deposit. d = maxi{i : maxj(E
i
j) > 0}.

Layer/Depth Weighted Total Energy ld. Sum of the layer energies weighted by the layer number.
ld =

∑
i≤N i · Ēi.

Shower Depth sd. Depth weighted total energy normalized by the total energy in the shower.
sd = ld/Etot.

Shower Depth Width σsd . Standard deviation of sd in units of layer number.

σsd =

√√√√∑2
i=0 i

2 · Ēi

Etot
−

(∑2
i=0 i · Ēi

Etot

)2

Brightest Voxels Ek_brightest_layeri. The kth brightest voxel in layer i normalized by the total layer
energy. Ek_brightest_layeri = Ei

[k]/Ei.

Layer Sparsity. The ratio of the number of cells with non-zero energy to the total number of cells in
layer i. This is only valid for the image representation of showers.

A.2 Details on different variations of SUPA datasets

A.2.1 Parameters

Fig. 5 shows the remaining parameters used for generating SUPA variations (see Table 2 for details
on other parameters). SUPAv1 is most deterministic as particles always split in the first six sub-layers
with no deposits (psplit = 1 and pstop = 0 for all sub-layers < 7), further since pstop = 1 at sub-layer
7, all the particles get deposited. Thus each event/example in SUPAv1 has exactly 128(= 27) points.
Further, since α is fixed to 0, all splits are symmetric and energy is always halved at each split, thus
all deposits have the same energy value. SUPAv5 has higher psplit in the initial sub-layers (< 7) than
SUPAv2-4, while pstop is the same for all of them, thus SUPAv5 has more number of hits/points than
SUPAv2-4 in the respective sub-layers or layers.

0 1 2 3 4 5 6 7
Slice ID

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
Va

lu
e

pstop

pdecay

ppass

(a) SUPAv1

0 5 10 15 20 25
Slice ID

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
Va

lu
e

pstop

pdecay

ppass

(b) SUPAv2, SUPAv3, SUPAv4

0 5 10 15 20 25
Slice ID

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
Va

lu
e

pstop

pdecay

ppass

(c) SUPAv5

Figure 5: Parameters psplit, pstop, ppass for SUPA variations

A.2.2 Shower Shape Variables

Fig. 6 shows the average events for different variations of SUPA datasets and Figs. Fig. 7 - 12 shows
the histograms of the various shower shape variables for all SUPA datasets.
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(d) SUPAv4
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Figure 6: Average event representation for different variations of SUPA datasets
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Figure 9: Histograms of feature variances
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Figure 10: Histograms of various shower shape variables
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Figure 11: Histograms of layer centroids
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Figure 12: Histograms of layer widths

A.3 Point Cloud Generative Models

PointFlow PointFlow [Yang et al., 2019] is a flow based model with a PointNet-like encoder and a
continuous normalizing flow (CNF) decoder. Additionally, the latents (encoder outputs) are modeled
with another CNF to enable sampling. We adapted the PointFlow code to handle variable number of
points with masking and masked batch norm. The encoder consists of 1D convolutions with filter
sizes 128, 128, 256 and 512, followed by a three-layer MLP with 256 and 128 hidden dimensions
to convert the point cloud into its latent representation of size 128. The CNF decoder has four
conditional concatsquash layers with a hidden dimension of 128 and the latent CNF has three
concatsquash layers with a hidden dimension of 64. The overall architecture has 0.7M trainable
parameters.

SetVAE SetVAE Kim et al. [2021] is a transformer-based hierarchical VAE for set-structured
data which learns latent variables at multiple scales, capturing coarse-to-fine dependency of the set
elements while achieving permutation invariance. We set the number of heads to 4, the dimension of
the initial set to 64, the hidden dimension to 64, the number of mixtures for the initial set to 4, and

15



the number of inducing points in the hierarchical setup to [2, 4, 8, 16, 32]. The overall architecture
has 0.5M trainable parameters.

Transflowmer The Transflowmer is flow-architecture using Real NVP layers [Dinh et al., 2016].
As the events are point clouds of varying cardinality, the coupling layers of the flow are required to be
permutation equivariant and able to process a varying number of inputs. To satisfy these constraints,
we use transformers [Vaswani et al., 2017] without positional encoding in the coupling layers. The
overall architecture consists of 16 coupling layers, each of them is parametrised by a 3 transformer
layers with dmodel = 32. The overall architecture has 2.1M parameters.

We train all the models with 100K training examples.

A.4 Experiments on SUPA datasets

We train point cloud generative models, PointFlow [Yang et al., 2019], SetVAE [Kim et al., 2021], and
Transflowmer on SUPA datasets. In this section, we show histogram plots to compare the generative
performance across different shower shape variables. For all these plots, the axes limits are chosen
according to the ground truth data and generated samples can have probability mass outside the
shown range.

A.4.1 SUPAv1

Figs. 13 - 18 show the histograms of various shower shape variables for SUPAv1 and samples
generated with PointFlow, SetVAE, and Transflowmer.
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Figure 13: Histograms of point distributions for η, ϕ, and r
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Figure 14: Histograms of sample means for different features
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Figure 15: Histograms of sample variance for different features
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Figure 16: Histograms of energy weighted averages
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Figure 17: Histograms of lateral widths
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Figure 18: Histograms of various shower shape variables
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A.4.2 SUPAv2

Figs. 19 - 24 show the histograms of various shower shape variables for SUPAv2 and samples
generated with PointFlow, SetVAE, and Transflowmer.
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Figure 19: Histograms of point distributions for η, ϕ, and r
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Figure 20: Histograms of sample means for different features
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Figure 21: Histograms of sample variance for different features
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Figure 22: Histograms of energy weighted averages
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Figure 23: Histograms of lateral widths
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Figure 24: Histograms of various shower shape variables
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A.4.3 SUPAv3

Figs. 25 - 30 show the histograms of various shower shape variables for SUPAv3 and samples
generated with PointFlow, SetVAE, and Transflowmer.
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Figure 25: Histograms of point distributions for η, ϕ, and r
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Figure 26: Histograms of sample means for different features
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Figure 27: Histograms of sample variance for different features
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Figure 28: Histograms of energy weighted averages
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Figure 29: Histograms of lateral widths
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Figure 30: Histograms of various shower shape variables
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A.4.4 SUPAv4

Figs. 31 - 36 show the histograms of various shower shape variables for SUPAv4 and samples
generated with PointFlow, SetVAE, and Transflowmer.

20 10 0 10 20
10 6

10 5

10 4

10 3

10 2

10 1

De
ns

ity

SUPAv4 (d : 0.00)
PF (d : 0.10)
SV (d : 0.21)
TF (d : 0.05)

20 10 0 10 20
10 6

10 5

10 4

10 3

10 2

10 1

De
ns

ity

SUPAv4 (d : 0.00)
PF (d : 0.08)
SV (d : 0.19)
TF (d : 0.02)

0 5 10 15 20 25
r

10 5

10 3

10 1

De
ns

ity

SUPAv4 (d : 0.00)
PF (d : 0.19)
SV (d : 0.40)
TF (d : 0.02)

Figure 31: Histograms of point distributions for η, ϕ, and r
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Figure 32: Histograms of sample means for different features
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Figure 33: Histograms of sample variance for different features
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Figure 34: Histograms of energy weighted averages
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Figure 35: Histograms of lateral widths
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Figure 36: Histograms of various shower shape variables
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A.4.5 SUPAv5

We only consider layer 0 for SUPAv5. Figs. 37 - 42 show the histograms of various shower shape
variables for SUPAv5 and samples generated with PointFlow, SetVAE, and Transflowmer.
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Figure 37: Histograms of point distributions for η, ϕ, and r
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Figure 38: Histograms of sample means for different features
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Figure 39: Histograms of sample variance for different features
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Figure 40: Histograms of energy weighted averages
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Figure 41: Histograms of lateral widths
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Figure 42: Histograms of various shower shape variables

A.5 Experiments on grid representation of data

In this section we will present some studies on generative modeling with the grid representation of
data from SUPA. We discuss about how to downsample the point clouds below. For these studies, we
generated another version of the dataset with SUPA such that it is similar to the CALOGAN dataset,
i.e., with three layers and downsampled to a resolution in the multiples of 3×96, 12×12, and 12×6,
for layer 0, 1, and 2, respectively.

Downsampling. For comparison, we downsample the point clouds to their corresponding image
representation (see Figure 1) by first defining the region of interest i.e. a rectangular region for each
layer and the number of bins/cells/pixels in both the horizontal (or η) and vertical (or ϕ) directions.
Finally, for each cell, we sum the energy of all the points falling within it to get the pixel intensity.
We can increase the number of cells in order to get higher resolutions. Figure 1b, 1c, and 1d show
the downsampled image representations at resolutions of 3x, 2x and 1x respectively for the shower
shown in Figure 1a. We choose 1x to be the same resolution as used in CaloGAN [Paganini et al.,
2018] (i.e. 12× 12 for Layer 1).

A.5.1 Validity of SUPA as a benchmark with grid representation

We show the comparison of performance of generative models trained over data generated with SUPA
and Geant4 in § 5.3. In this section, we extend those studies with more analysis and plots. Figure 43
shows the scatter plot of the average ranks of those models. The average rank for a model on a dataset
is obtained by first ranking them with respect to each marginal’s discrepancy and then averaging over
all the marginals.

Further, in Figures 44-49, we show a subset of the marginals (see § 5 for a detailed explanation on the
marginals and Paganini et al. [2018] for the grid representation based marginals) for GEANT4 and
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Figure 43: Scatter Plot for ranks over different models. Ranking of the models are consistent over
both, SUPA and GEANT4, showing the validity of SUPA as a benchmark.
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Figure 44: Histogram for various marginals for GEANT4 e+ (top) and SUPA (bottom) vs. showers
generated from different trained models

SUPA and also the showers generated with different models trained on them. These marginal plots
illustrate the diversity in various distributions present in data from GEANT4, and, more importantly
in SUPA. Further, the distributions of the generated showers from different models behave similarly
on both datasets, reinstating the proposition that a better model on SUPA implies a better model on
the detailed GEANT4.
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Figure 45: Histogram for Layer Energy for GEANT4 e+ (top) and SUPA (bottom) vs. showers
generated with different trained models.

26



10 4 10 3 10 2 10 1 100

Layer Energy Fraction : E0/Etot

10 3

10 2

10 1

100

101
CaloFlow
CaloGAN
CaloVAE
Geant e+

10 1 100

Layer Energy Fraction : E1/Etot

10 3

10 2

10 1

100

101
CaloFlow
CaloGAN
CaloVAE
Geant e+

10 4 10 3 10 2 10 1 100 101

Layer Energy Fraction : E2/Etot

10 3

10 2

10 1

100

101

102

103 CaloFlow
CaloGAN
CaloVAE
Geant e+

10 4 10 3 10 2 10 1 100

Layer Energy Fraction : E0/Etot

10 3

10 2

10 1

100

101
CaloFlow
CaloGAN
CaloVAE
SUPA

10 1 100

Layer Energy Fraction : E1/Etot

10 3

10 2

10 1

100

101 CaloFlow
CaloGAN
CaloVAE
SUPA

10 4 10 3 10 2 10 1 100 101

Layer Energy Fraction : E2/Etot

10 3

10 2

10 1

100

101

102 CaloFlow
CaloGAN
CaloVAE
SUPA

Figure 46: Histogram for Layer energy fraction for GEANT4 e+ (top) and SUPA (bottom) vs. showers
generated with different trained models.
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Figure 47: Histogram for Layer lateral width for GEANT4 e+ (top) and SUPA (bottom) vs. showers
generated with different trained models.

A.5.2 High-resolution experiments

In this section, we show the utility of SUPA beyond using it for training at low resolution (similar to
the resolution used in CaloGAN, which we call 1x), as well as the limitation of the current models.

1x 2x 3x
1x 3.57 6.35 7.20
2x - 6.78 -
3x - - 8.29

Table 4: Mean discrepancy metric (see § A.5.1) for CaloFlow model when trained and tested over
different resolutions. Columns correspond to the training resolution and rows to the test resolution.
The results on the diagonal show that CaloFlow’s performance degrades when resolution increases,
and the top row shows that it is not simply due to the sheer dimensionality of the signal since the
model does not leverage structure at high resolution to perform better at low resolution.

We train CaloFlow [Krause and Shih, 2021] with SUPA by downsampling the point clouds at the
higher resolutions of 2x and 3x. Table 4 shows the mean discrepancy metric (see § A.5.1) for the
models. We observe the trend that training at higher resolutions result in poorer performance (diagonal
terms) in general. Further, when the generated samples from the trained models are downsampled to
1x, the performance deteriorates as compared to samples generated from models trained directly with
data at 1x resolution.
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Figure 48: Histogram for Eratio,i for GEANT4 e+ (top) and SUPA (bottom) vs. showers generated
with different trained models.
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Figure 49: Histogram for Layer sparsity for GEANT4 e+ (top) and SUPA (bottom) vs. showers
generated with different trained models.
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