This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Unlearning through Knowledge Overwriting: Reversible Federated Unlearning
via Selective Sparse Adapter

Zhengyi Zhong!, Weidong Bao'

, Ji Wang'? Shuai Zhang!, Jingxuan Zhou',

Lingjuan Lyu?, Wei Yang Bryan Lim?

!Laboratory for Big Data and Decision, National University of Defense Technology, China.
2 Sony Al Japan.? Nanyang Technological University, Singapore.
{zhongzhengyi20, wdbao, wangji, zhangshuai20, zhoujingxuan } @nudt.edu.cn,
lingjuanlvsmile@gmail.com, bryan.limwy@ntu.edu.sg
https://github.com/Zhong-Zhengyi/FUSED-Code

Abstract

Federated Learning is a promising paradigm for privacy-
preserving collaborative model training. In practice, it is
essential not only to continuously train the model to ac-
quire new knowledge but also to guarantee old knowledge
the right to be forgotten (i.e., federated unlearning), espe-
cially for privacy-sensitive information or harmful knowl-
edge. However, current federated unlearning methods face
several challenges, including indiscriminate unlearning of
cross-client knowledge, irreversibility of unlearning, and
significant unlearning costs. To this end, we propose a
method named FUSED, which first identifies critical lay-
ers by analyzing each layer’s sensitivity to knowledge and
constructs sparse unlearning adapters for sensitive ones.
Then, the adapters are trained without altering the origi-
nal parameters, overwriting the unlearning knowledge with
the remaining knowledge. This knowledge overwriting pro-
cess enables FUSED to mitigate the effects of indiscrimi-
nate unlearning. Moreover, the introduction of indepen-
dent adapters makes unlearning reversible and significantly
reduces the unlearning costs. Finally, extensive experi-
ments on three datasets across various unlearning scenar-
ios demonstrate that FUSED's effectiveness is comparable
to Retraining, surpassing all other baselines while greatly
reducing unlearning costs.

1. Introduction

Background. Federated Learning (FL) [25, 30, 46] has
emerged as a promising paradigm for privacy-preserving
collaborative model training. In practice, FL. models need
to acquire new knowledge continuously while also ensuring

*Corresponding Author: Ji Wang

the “right to be forgotten” for previously used training data
[12, 37]. For example, a year after the launch of ChatGPT,
The New York Times accused OpenAl and Microsoft of the
unauthorized use of its media data for training, demand-
ing that they delete the acquired knowledge from its mod-
els [10]. Furthermore, malicious clients may inject harmful
data during training, potentially poisoning the global model.
As a result, it is crucial for the global model to eliminate
such harmful knowledge. This leads to the concept of Fed-
erated Unlearning (FU).

Challenges. In the field of FU, two primary categories
of methods have emerged: retraining-based methods [29]
and model manipulation-based methods [38]. Among these,
retraining-based methods are widely regarded as the state-
of-the-art (SoTA) for achieving model unlearning. This ap-
proach involves removing the data designated for unlearn-
ing and retraining the model from scratch until convergence.
Conversely, model manipulation methods modify the model
directly using techniques such as gradient ascent, knowl-
edge distillation, and setting parameters. However, existing
methods still face several challenges:

* Indiscriminate unlearning: In scenarios where knowl-
edge overlaps occur among clients, traditional methods
indiscriminately remove shared knowledge during the un-
learning process, leading to a substantial decline in the
performance of other clients.

* Irreversible unlearning: In FL systems, clients’ unlearn-
ing requests may change dynamically. When a client
no longer needs to forget certain knowledge, traditional
methods cannot recover that memory quickly.

o Significant unlearning costs: The retraining-based
method requires multiple iterations, resulting in signifi-
cant computational and communication costs. Even sim-
ple adjustments to model parameters can demand a sig-
nificant amount of storage as a compensatory cost.

30661

Method. To address these challenges, we propose a re-
versible Federated Unlearning method via SElective sparse
aDapter (FUSED). To begin, we perform a layer-wise anal-
ysis of the model’s sensitivity to knowledge changes, iden-
tifying the most affected layers. These sensitive layers are
then processed into sparse structures known as unlearning
adapters. This process, termed Critical Layer Identification
(CLI), significantly reduces the number of model parame-
ters, thereby lowering unlearning costs. Subsequently, the
unlearning adapters are distributed to clients that do not re-
quire unlearning for retraining. During this phase, the orig-
inal model is frozen, and only the independent unlearning
adapters are trained. Ultimately, the unlearning adapters
are integrated with the original model to yield a global un-
learning model. This method leverages training on the re-
maining knowledge to effectively overwrite the knowledge
that needs to be forgotten (i.e., knowledge overwriting), ad-
dressing the issue of indiscriminate unlearning. Moreover,
introducing independent adapters facilitates rapid recovery
of forgotten knowledge through their removal and signifi-
cantly reduces unlearning costs by utilizing sparse param-
eters. In summary, FUSED achieves high performance, re-
versibility, and cost-efficiency in FU, making it suitable for
scenarios involving client unlearning, class unlearning, and
sample unlearning scenarios.

Contributions. The contributions are as follows:

* We propose FUSED, a reversible FU approach that
retrains independent sparse adapters for unlearning.
These adapters effectively mitigate unlearning interfer-
ence while ensuring that the unlearning is reversible.

* We introduce the CLI method, which accurately identi-
fies model layers sensitive to knowledge changes and con-
structs sparse unlearning adapters, significantly reducing
the parameter scale and unlearning costs.

* We theoretically and experimentally prove the effective-
ness of the proposed method across different unlearning
scenarios in FL, including client unlearning, class un-
learning, and sample unlearning.

2. Related work

Machine unlearning. Currently, most researchers focus
on machine unlearning (MU) within centralized scenarios
[7, 24, 28, 48]. Mainstream methods can be classified into
two categories: data manipulation and model manipulation
[31]. Data manipulation includes data mixing and data par-
titioning. The former fine-tunes the model to forget spe-
cific samples by introducing interference data or by replac-
ing existing data [11, 14, 34, 36, 49]. In contrast, the lat-
ter divides the training dataset into multiple subsets and
retrains only the subset that contains the data to be for-
gotten [2, 6, 8, 19, 32]. Model manipulation [9, 23] con-
tains three strategies: model transformation, model prun-
ing, and model replacement. Model transformation meth-

ods directly update the model parameters to offset the in-
fluence of forgotten samples on the model [13, 16, 20, 40].
Model pruning methods involve pruning from the original
model [1, 17,27, 38]. Model replacement methods compute
nearly all possible sub-models and store them alongside the
deployed model. When an unlearning request is received,
only the sub-models affected by the unlearning operation
need to be replaced. This method is commonly utilized in
machine learning models such as decision trees [3, 33, 43].

Federated unlearning. Unlike centralized unlearning,
FU [26] expands the unlearning objectives to client unlearn-
ing [35], sample unlearning, and class unlearning [15, 42].
In this context, commonly used unlearning methods can be
classified into retraining-based methods [29] and parame-
ter manipulation-based methods [4, 5, 18, 39]. Retraining-
based methods means training a new model from scratch
without unlearning data. For example, when a particular
client needs to be forgotten, [27] have proposed approaches
that retrain the remaining clients to obtain corrected gra-
dient directions, which are then used to update the global
model stored on the server. [29] utilized an improved quasi-
Newton method to accelerate the training process. [35] re-
duces the time and computational resources required for re-
training through clustering. Despite these efforts to mitigate
the resource costs associated with retraining, the expenses
remain unacceptable in real-world scenarios. Consequently,
some researchers have proposed parameter manipulation-
based unlearning methods. For instance, [38] focuses on
classification tasks using CNN models and achieves un-
learning classes by pruning class-related channel parame-
ters. Furthermore, [41] eliminates the contribution of a tar-
get client by subtracting the accumulated historical updates
from the global model. It then uses the old global model
as a teacher model to train the unlearning model, employ-
ing knowledge distillation techniques to restore the model’s
performance. Overall, current research on FU is still lim-
ited, primarily focusing on client unlearning. Additionally,
the issues of knowledge interference and irreversibility have
not been adequately considered.

3. Problem formulation

Centralized machine unlearning. We denote D" as the
data to be forgotten, and D as the entire training dataset,
D = (zi,yi)I~,. Then, D" = D\D" represents the data to
be retained. Let M" denote the model before unlearning,
M/ is the model after unlearning, and FG7(-) denote the
unlearning process. The unlearning can be represented as:

MS = FGT(M”, D", DY), (1)

The objectives of FU are threefold: (a) minimizing the
performance of M7 on D%; (b) maximizing the perfor-
mance on D", and (c) minimizing the resources consumed

30662

Critical Layer Identification

Server Server
Clientl 1 , 2 . N | T 3
! :
taver i r: i Dff, |
Diff} Diff Diff, H Un\eammg
f ¢ layeriD |
Server 1 P > P N
Layer
Diff, Diff,
N N
ClientN 1 P 2> P N
Layer .. B
? Global Model
Local Models ¢)
. Client
Clientl
Local
S input Update
> — Unlearning
P y. Request
ersonalized Data Global Model Local Model
Client N f Local ’ =
input Update
—
—
Personalized Data Global Model Local Model

Figure 1.

Y __. ¢

; Unlearning
I Layer £

Forgetting Client

Unlearning Stage

% Frozen block & Training block |

Unlearning model
W
construction I h
7

I:* |#
+ —»7%—» + —»4{1—» + —»

/ 4 4

f
Frozen Layer [3 Iy »)

Sparse Mask Sparse Mask Sparse Mask

: Unlearmng Adapters A/

e)% %@j .

i, +® 'Ui,l |||+' M,l

q _ ® U1
M'(l’e+l)_(pm’“-hh+er) e, +1)= 4] o) -V (D], M, G,)

D(iy

Remember Client

(l

- —
D" D, S (O
> § 18
Remember Client
Client Unlearning

The figure illustrates the process of CLI (left) and unlearning (right). Left: the server computes the difference of each layer

between the models uploaded by each client and the distributed one, identifying critical layers that are sensitive to knowledge. Right: a
sparse adapter is constructed for each key layer, which is then independently trained on the remaining data.

by the unlearning process. Denoting F(-) as the model test
loss and RC(-) as resource consumption, the above objec-
tives can be respectively expressed as:

max F(M, (zi, ;). (i, y;) € D", 2
minF(Mfa (mia yi))a (xia yi) €D = D\Dua (3)
min RC(FGT(M”, D", DY)). @)

Ideally, when a model is considered to have fully forgot-
ten target knowledge, its performance should be equivalent
to that of a model trained from scratch without ever seeing
the forgotten data D*. This retraining ensures the worst per-
formance on the forgotten data D" and the best performance
on the remaining data D". However, this approach requires
significant computational resources and preserving all his-
torical training data, which is impractical in real-world sce-
narios. Therefore, we posit that the closer the performance
of the model M/ on D" and D" is to that of a retrained
model, the better the unlearning effect, while also striving
to minimize resource expenditure on this basis.

Unlearning scenarios in FL. In consideration of the dis-
tributed nature of FL, traditional machine unlearning can be
extended to client unlearning, class unlearning, and sam-
ple unlearning. In the case of client unlearning, we con-
sider N clients, a set of unlearning clients IV,,, with the un-
learning dataset D* = {Dg}ren,, and remember dataset
D" = {Dy}ren\N,,» Where Dy, represents the data of client

k. The optimization objectives are:

max Z F(M! D), &)
kEN,,

min Z F(M",Dy,), (6)
kEN\N,,

min RC(FGT (M",{Dy}ren). @)

Sample unlearning means forgetting a portion of
data within a client. It is similar to client unlearn-
ing. In the context of class unlearning, let all client
data classes be C and the classes to be unlearned be
C“. The unlearning dataset can be represented as

— {(2%, ¥ =) ucee (ot 44Dy ke - and the remem-
ber dataset as D" = {Dk}ke ~\D¥. The optimization ob-
jectives are:

max E

(z;,y;)€{Dr}ren

min Z
(z;,9;)€E{Dr}ren

min RC(FGT (M", (z;, yi)|yiec))'

]:(va (mivyi”y%ecu)v (8)

I(Mra (m%ayi”yigcu)a (9)

(10)

4. The proposed method: FUSED

FUSED involves a two-stage unlearning process (as shown
in Fig. 1). The first stage is Critical Layer Identifica-
tion (CLI), and the second stage is Unlearning via Sparse
Adapters, which is based on the critical layers identified.

30663

4.1. Critical layer identification

During the CLI phase, each client, coordinated by the
server, participates in a federated iteration process. Clients
receive the global model distributed by the server and train it
using their local data before uploading it back to the server.
Subsequently, the distance between the parameters of each
layer in the models from different clients and those in the
corresponding layers of the initial model is calculated by
the server. The layers with the most significant parameter
changes are obtained by averaging these distances.
Consider a global model with L layers, and N clients,
each with an identical model structure. After local train-
ing, the parameters of these models differ across clients.
Let p} represent the parameters of the /-th layer of the n-
th client, where n = 1,2,--- , N and [= 1,2,---, L.
The initial distributed global model is denoted as M"™ =
{p1,p2, - ,pr}. After local training by the clients, the
variation in the [-th layer of the model can be expressed as:

Dif fi = Diff(p;,p1) & -

where Dif f*(p}, pi) represents the difference between the
l-th layer of the n-th client’s model and the [-th layer of
the original model (need to be forgotten) distributed by the
server. We utilize the Manhattan distance for measurement.
Assuming that the dimensions of p; and p; are k x v. The
calculation process is as follows:

=Y bl 02

The aggregation method of & is as follows:

@ Dif NN,), (11)

Dif f(pr',p)

Dif ft(pl.p) ® Dif fN (), pi) = %

13
lefll(pllapl) ZNIDll szfl (pl 7pl)7 ()

where |D;| represents the data volume of client i. Eventu-

ally, LS = {arg max{Dif fi}, -+ ,arg min{Diffl}} in-
!]

dicating the changes in different model layers is obtained.
The first element corresponds to the layer index that is most
sensitive to changes in client knowledge, while the last el-
ement corresponds to the most robust layer. To minimize
resource cost, the subsequent unlearning process prioritizes
unlearning in the most sensitive model layers.

4.2. Unlearning via sparse adapters

Based on the list obtained from CLI, given a preset value
K for the number of layers to be unlearned, the first K in-
dices in LS are designated for FU. Let £/ denote the set of
layers that need to be unlearned, and £" denote the remain-
ing frozen layers. For each unlearning layer in £f, we dis-
card most of the parameters in a random manner and leave
only a small portion, forming a sparse parameter matrix A7.

During training, only Af is trained while £/ remains un-
changed. In the inference process, the new parameters of
the unlearning layer are directly obtained by adding the pa-
rameters of A/ (denoted by pars) and £f (denoted by prs).

For the original model M?", the entire unlearning pro-
cess can be divided into four stages: model distribution, lo-
cal training, model uploading, and model aggregation. In
FUSED, there are significant differences in the model dis-
tribution and local training stages compared to traditional
FL. The following sections will primarily focus on these
two stages. Firstly, during the model distribution stage, the
model is only distributed to clients that contain the remem-
bered dataset D" (see Problem Formulation), and only un-
learning adapters are transmitted. This means that in client
unlearning scenarios, the clients to be forgotten will not re-
ceive the adapters (in class/sample unlearning, the class-
es/samples that need to be forgotten will no longer par-
ticipate in training with the server). Additionally, the dis-
tributed model is a sparse matrix A/, which significantly
reduces communication overhead. Secondly, in the local
training stage, for a client n, assuming the total number
of local training epochs per federated iteration is E, then
in the ¢-th federated iteration, the parameters of the model
M, (i,e) are (pA{L(i75) + prs) o per. The training process
is as follows:

Al(i,e+1) = Al (i,e) = nVF, (D}, My (i,e)), (14)

Mn(i7 e+ 1) = (pA{L(i,e-‘rl) +p£f) °PL,s (15)

where e = 0,--- E — 1, F,,(D7,, M, (i, e)) represents the
loss and 7 denotes the learning rate. In each round of local
training, M, (%, e) is derived from the fusion of the original
model M" and the sparse matrix A7 (i, €) obtained from the
previous round. Each completed training round corresponds
to a process of knowledge overwriting, during which the re-
maining knowledge is progressively enhanced. It is worth
noting that during the training process, only p , L(ie) is up-
dated. The other parameters, p,s and p.-, remain frozen
and are only used to compute the loss during inference. Af-
ter local training is completed, each client uploads p , L(1E)
to the server, which aggregates the updates using the Fe-
dAvg [30] method to obtain a new p , s (i+1)° After training,
we need to concatenate the adapter with the corresponding
unlearning layer of the original model to derive the global
unlearning model. When the client’s knowledge no longer
needs to be unlearned, removing the unlearning adapters
will effectively restore the original memory, thereby mak-
ing the unlearning process reversible.

4.3. Algorithm

To elucidate the aforementioned training process more
clearly, this section presents it through pseudocode (as

30664

Algorithm 1 Our method FUSED

Input: Original model M", number of iteration I, number
of local training F/, number of clients IV, unlearning data
D,, all clients’ data D

Output: Unlearning model M7

1. LT < Unlearning Layer Identification
2: Adapters A/ < Random dropout parameters of £
3: for iteration ¢ = 0 to I do

4: if i=0 then

5 Server distribute M to all clients

6: endif

7: Server distribute adapters Ay to clients maintaining

D, = D\D,

8: forclientn =1to N do

9: Freezing the original parameter M"

10: for local epoche =0to E — 1 do

11: Merge the M" model with adapters to get
M., (e) (refer to Eq. (15))

12: Update adapters to get Af (e + 1) (Eq. (14))

13: end for

14: Upload A/ (E) to the server

15: end for

16: Server aggregates adapters to get Af
17: end for

18: Merge M" with Af to get M/f

19: return Unlearning model M/

shown in Algorithm 1). The inputs for Algorithm | are
the original model to be unlearned M", the total number
of federated training rounds I, the number of local training
epochs FE, the number of clients N, the forgetting dataset
D, and the dataset for all clients D. The output is the
model M7 after the unlearning process. First, based on the
original model M?", a federated iteration is conducted to
determine the model layers to be unlearned (details of CLI
are displayed in the Supplementary Material). Using the in-
dexes of unlearning layers, a series of unlearning adapters
are constructed through random sparsification. Then, the
FU process begins: during the first federated iteration, the
server distributes both the unlearning adapters and the origi-
nal model to the clients that contain the remembered dataset
(lines 4-7 in Algorithm 1), excluding clients that only con-
tain the forgetting dataset. Subsequently, the clients freeze
the original model (line 9 in Algorithm 1) and merge the
unlearning adapter with the original model (line 11 in Al-
gorithm 1). The clients then train unlearning adapters us-
ing local data and upload it to the server for aggregation
(line 16 in Algorithm 1). After I rounds of federated it-
erations, the final unlearning adapters are merged with the
original model (line 18 in Algorithm 1) to obtain the global
unlearned model M.

4.4. Theoretical analysis

In this section, we will theoretically analyze how knowl-
edge overwriting happens in the training process of differ-
ent tasks, providing theoretical support for the FUSED.

Suppose there are two learning tasks denoted as 7 and
Ts, each task has an input space X and an output space
Y. The parameterized model is represented as a mapping
f(©®) : X — Y, © denotes an n-dimensional parameter
vector of the neural network. For each task, we use a loss
function L7 (©) to measure the performance of the model.

The model learns on tasks 77 and 75 and obtains the op-
timized parameters ©F and ©3, which are, respectively, €;
and €5 away from the minimum value, where €; and e, are
arbitrarily small positive numbers:

O] = argmin(L7, (©) + €1), €1 > 0. (16)
©

05 = argmin(L7,(0) + €2), e2 > 0. (17)
e

We have the following assumptions:

Assumption 1: The loss function L1 (©) is continuous
and differentiable with respect to the parameters ©.

Assumption 2: Near the optimized parameters O3, the
loss function L1,(©) can be approximated using a first-
order Taylor expansion.

From the work of [22], we notice the agreement between
the predictions of the original network and those of the lin-
ear model obtained from the first-order Taylor expansion of
the network. Consider the linear model of the loss function
L1, (03%) for the old task T} at the optimized parameters
or:

Lr,(05) = L, (0]) + Ve Lr, (0])" - (65 — 67). (18)
Performance degradation ALy, is defined as:
ALy, = L1(05)-Lr,(07) ~ Velr,(07) (05-07). (19)

Defining the task difference ®(©, T}, T») as the cosine
similarity between the gradients of two tasks.At the opti-
mized parameters O7F, we have:

Veolr (01)" - VoLlr,(67)

(O, Ty, Ty) = . (0
OL T T) = (7 @ Veln @) 2

The changing direction of the parameters © is influenced
by the gradient of the new task 75, that is:

@Z - @T = —UV@ETQ (@ik)v 21

where 7 represents the learning rate.
Substituting into the performance degradation approxi-
mation formula, we can obtain:

ALr, =—n|Velr,(07)[Velr,(O7)| (07, T3, T2). (22)

30665

When the cosine similarity of the gradients of the loss
function at tasks 77 and 7% is less than 0, the performance
degradation of the old task is greater than 0. That is, when
the knowledge of the tasks learned sequentially is opposite,
the learning of new knowledge will overwrite the old knowl-
edge that the model has mastered.

The aforementioned analysis is based on full training of
model parameters. Specifically, in FUSED, only partial pa-
rameters of critical layers are updated with new data. Then,
the result will be:

05 - 01 = —n- (voVelr(07)),

(ve{0,1}"Plo;=1) =p.ic{l,....n}}, &

v is an n-dimensional binary vector. Each element of v
takes the value of 1 with probability p. Then, we can get:

E(ALz,) =—=n-p-[[VeLlr (07|

R N 24)
Ve L, (07)[- (07,11, T2).

Therefore, it can be inferred from the above formula that
when the angle between the gradients of the new task and
the old task is greater than 90 degrees, the old knowledge
learned by the model can also be covered by training some
parameters on the new task.

5. Experiments

5.1. Experimental setting

The experiments are built on PyTorch 2.2.0, developing an
FL framework comprising one server and 50 clients. The
hardware environment uses an NVIDIA RTX 4090. Opti-
mizers consisting of SGD and Adam are employed with a
batch size of 128. The result is listed in Tab. 1.

The datasets include FashionMNIST [44], Cifarl0 and
Cifar100 [21]. We use the Dirichlet function to partition the
dataset and conduct tests under two conditions: « = 1.0
and o = 0.1. In Tab. 1, we primarily present the results for
a = 1.0; for the results under non-independent and iden-
tically distributed, please refer to the appendix. The model
used for FashionMNIST is LeNet, while ResNet18 is em-
ployed for training on Cifar100. For CifarlO, training is
conducted using both ResNet18 and a vision-based Trans-
former model called SimpleViT [47]. Baselines include Re-
training, Federaser [27], Exact-Fun [45], and EraseClient
[18]. Among these, Retraining is the upper bound of un-
learning; it can achieve the effect of the model having never
encountered the forgotten data.

Evaluations. We evaluate FUSED from multiple per-
spectives:

* RA & FA: RA is the testing accuracy on the remaining
dataset, which should be as high as possible to minimize
knowledge interference. FA is the testing accuracy on the
unlearned dataset, which should be as low as possible.

* Comp & Comm: Comp is the time to complete pre-
defined unlearning iterations; Comm denotes the data vol-
ume transmitted between a single client and the server.

* MIA: the privacy leakage rate after unlearning, which is
assessed in the context of membership inference attacks.
A lower inference accuracy of the attack model indicates
less privacy leakage.

* ReA: the accuracy of relearning, which refers to the accu-
racy that can be achieved after a specified number of itera-
tions to relearn the unlearned knowledge. If the unlearned
knowledge is effectively erased, the accuracy achieved
during the subsequent relearning will be lower.

5.2. Critical layer identification

Before conducting unlearning, it is essential to identify the
layers that are sensitive to knowledge. We segment the
client data using a Dirichlet distribution with a parameter
a of 0.1 to enhance knowledge disparity among clients. For
the Cifar10 and Cifar100 datasets, we employ the ResNet18
and SimpleViT models, while the LeNet model is utilized
for FashionMNIST. After obtaining locally trained models
from different clients, we can observe the average change
in each layer. In Fig. 2, we present the Diff values for each
layer of the ResNet18 and SimpleViT across different train-
ing iterations. We can see the last, second-to-last, sixth-to-
last, and eighth-to-last layers of the ResNetl8 model, and
the last several layers of the Transformer model demon-
strate heightened sensitivity to data variations across clients.
Therefore, these layers will be designated as unlearning lay-
ers for sparse training in the subsequent unlearning pro-
cess. In fact, with the increasing number of federated iter-
ations, the global model’s knowledge generalization ability
improves, leading to a gradual reduction in the gap of Diff
values between layers. As illustrated in Fig. 2, the gap is
most pronounced when Epoch=1. Therefore, by comparing
the model after a single federated iteration, it is possible to
more precisely identify the critical layers.

15.0
125

50{ Al

0.0

6 10 20 30 40 50 60
Layer Index

(a) ResNet18

(b) Transformer

Figure 2. The average difference between local models and the
server model across different models.

5.3. Results Analysis

Unlearning performance. In the client unlearning sce-
nario, we use clients affected by Byzantine attacks as test

30666

Client Unlearning

‘ Class Unlearning ‘

Sample Unlearning

Retrain Federaser E-F FUSED E-C ‘ Retrain FUSED ‘ Retrain FUSED
FashionMNIST-LeNet
RA(T) 0.99 0.99 0.99 0.99 0.09 0.99 0.99 0A(1) 0.99 1.00
FA(]) 0.00 0.00 0.00 0.00 0.11 0.00 0.00 PS(1) 0.75 1.00
ReA(]) 0.77 0.94 0.96 0.97 0.96 1.00 1.00 ReA 0.15 0.70
MIA(]) 0.85 0.47 0.70 0.68 0.70 0.27 0.99 MIA 0.53 0.94
Comp(l) | 210.15 178.66 298.28 158.96 26.31 213.60 81.94 Comp 873.04 872.65
Comm(].) 177K 177K 177K 11K 177K 177K 11K Comm 177K 11K
Cifar10-ResNet18
RA(T) 0.71 0.67 0.65 0.67 0.64 0.73 0.73 0A(1) 0.56 0.52
FA(]) 0.04 0.04 0.05 0.05 0.06 0.00 0.00 PS(T) 0.55 0.54
ReA(]) 0.49 0.48 0.41 0.42 0.56 1.00 1.00 ReA 1.00 1.00
MIA(]) 0.78 0.67 0.43 0.65 0.78 0.86 0.96 MIA 0.98 0.99
Comp(l) | 434.39 990.91 1211.74 262.20 23345 735.07 183.02 Comp 4619.82 1253.98
Comm(]) | 42.73M 42.73M 42773M 0.98M 42.73M | 42.73M 0.98M | Comm 42.73M 0.98M
Cifar10-Transformer
RA(T) 0.33 0.21 0.33 0.41 0.35 0.27 0.44 0A(1) 0.05 0.33
FA(]) 0.08 0.09 0.07 0.07 0.07 0.00 0.00 PS(1) 0.20 0.54
ReA(]) 0.40 0.25 0.40 0.41 0.40 1.00 0.80 ReA 0.03 0.50
MIA(]) 0.62 0.41 0.76 0.62 0.63 0.64 0.88 MIA 0.85 1.00
Comp(]) | 5388.83 1867.36 492945 502.60 3240.05 | 1207.56 218.30 Comp 628.44 342.14
Comm()) | 36.2IM 362IM 3621M 0.71IM 36.2IM | 36.21M 0.71IM Comm 3621M 0.71IM
Cifar100-ResNet18
RA(T) 0.39 0.19 0.25 0.36 0.35 0.34 0.30 0A(T) 0.57 0.79
FA()) 0.01 0.01 0.00 0.01 0.01 0.00 0.00 PS(1) 0.54 0.66
ReA(]) 0.18 0.13 0.17 0.14 0.20 1.00 1.00 ReA 0.25 0.00
MIA(]) 0.22 0.28 0.08 0.48 0.36 0.66 0.10 MIA 0.98 1.00
Comp(l) | 443.86 1000.75 1598.55 276.59 235.65 820.43 188.00 Comp 412199 1580.91
Comm(]) | 4291M 4291IM 4291M 098M 4291M | 4291M 098M | Comm 429IM 0.98M

Table 1. Main Results. “OA” represents the accuracy of class 0, while “PS” refers to the precision of the predicted class 0. The symbol 1
indicates higher values are better, while | indicates the opposite. “E-F” is the short for Exact-Fun, and “E-C” is EraseClient.

cases. The mode of attack is label flipping, where one
client’s label is maliciously manipulated, resulting in a de-
mand for unlearning. From Tab. 1, it can be observed that
among the three metrics that directly measure forgetting
effects—RA, FA, and ReA—only FUSED is nearly on par
with Rrtraining. This approach maintains a low accuracy
on unlearned data while achieving a high accuracy on oth-
ers, and even demonstrates overall superiority compared to
Rrtraining, particularly in the Transformer model. It can
be concluded that FUSED effectively unlearns the specified
client knowledge while minimizing the impact on the orig-
inal knowledge. This is attributable to freezing the param-
eters of the original model and only training the unlearn-
ing adapter, thereby avoiding direct modifications to the
old knowledge and effectively reducing interference with

the existing knowledge. Similarly, the same results are ob-
served in class and sample unlearning.

Knowledge interference. To investigate the impact of
unlearning on the overlapping knowledge across clients, we
use the Cifarl0 dataset, distributing 90% of the data la-
beled as 0 and all data labeled as 1 to a client that needs
to be forgotten. The remaining data, labeled from 2 to 9,
and 10% of the data labeled as 0, are randomly assigned
to other clients. After unlearning, we evaluate the accu-
racy of the knowledge unique to the unlearning client (data
labeled as 1), the accuracy of the overlapping knowledge
(data labeled as O from the remaining clients), and the ac-
curacy of the knowledge unique to the remaining clients
(data labeled from 2 to 9). The final results are shown in
Tab. 2. It can be observed that all methods completely for-

30667

get the knowledge unique to the forgetting client, while only
the FUSED method demonstrates improved performance on
overlapping knowledge compared to Retraining. Therefore,
FUSED can reduce knowledge interference.

Method Federaser Retrain E-F FUSED E-C
F-Acc 0.00 0.00 0.00 0.00 0.00
C-Acc 0.14 0.38 0.07 0.37 0.06
R-Acc 0.27 0.65 0.64 0.65 0.66

Table 2. “F-Acc” is the accuracy of the knowledge unique to the
unlearning client, “C-Acc” is for overlapping knowledge, and “R-
Acc” is for the knowledge unique to the remaining clients

Unlearning cost. In the unlearning process, resource
overhead is an inevitable problem. Tab. | primarily illus-
trates the consumption of computational and communica-
tion resources. Since the FUSED trains and transmits only
the sparse adapters, it consistently demonstrates a signifi-
cant advantage across nearly all unlearning scenarios and
datasets. Additionally, in terms of storage resources, both
Federaser and EraseClient require the retention of all client
models and the global model during each round, which
presents significant challenges regarding storage capacity.
This demand increases exponentially with the number of
clients and iterations, rendering it impractical in real-world
applications. In contrast, FUSED only requires the stor-
age of a complete global model and its adapters. More-
over, when compared to the retraining method, the retrain-
ing method achieves RA/FA values of 0.71/0.04 when data is
complete, and FUSED achieves RA/FA values of 0.67/0.05.
When we reduce the number of retraining data by half,
FUSED maintains RA/FA values of 0.65/0.03, indicating no
significant decline in unlearning performance. This sug-
gests that FUSED can achieve results comparable to retrain-
ing with less data, thereby conserving storage resources.

Privacy protection. When unlearned data is users’ pri-
vacy, even if the model shows great unlearning perfor-
mance, an attacker may still be able to discern which data
corresponds to unlearned private information and which
does not, particularly in the context of member inference
attacks. Therefore, it is crucial to evaluate the privacy leak-
age rate of the model after unlearning. The MIA values for
FUSED are generally comparable to those of the Retraining
method, and in most instances, they remain at a relatively
low level. This indicates that FUSED’s capability to miti-
gate privacy leakage is on par with that of other methods.

Ablation study. To illustrate the necessity of CLI, we
conduct an ablation study using the Cifarl0 dataset, with
the experimental results presented in Fig. 3. In Fig. 3, “W/O
CLI” denotes the effect of FUSED achieved by randomly se-
lected layers. It is evident that, with the implementation of
CLI, the accuracy of remaining knowledge is higher in both

client unlearning and class unlearning scenarios. Although
the disparity is smaller in sample unlearning, it still main-
tains a comparable level. This indicates that CLI can more
accurately identify the model layers that are more sensitive
to knowledge, thereby enhancing the unlearning effect.

W/O CLI

[ZZ2 Remaining Data Acc
I Unlearning Data Acc

CLI 7

Client Unlearning

Accuracy

W/O CLI 7 [Z1 Remaining Data Acc
@ Unlearning Data Acc
CLI 7
Class Unlearning Accuracy
W/O CLI A‘i 71 Acc_zero
X3 Precision
CLI 1]
0.0 0.2 0.4 0.6 0.8 1.0
Sample Unlearning Accuracy

Figure 3. Ablation study of CLI.

6. Conclusion and Discussion

Conclusion. This paper focuses on the unlearning prob-
lem in FL. To address the challenges of indiscriminate un-
learning, irreversible unlearning, and significant unlearning
costs, we propose a reversible federated unlearning method
via selective sparse adapters (FUSED). Firstly, by compar-
ing the client model with the server model, we identify crit-
ical layers to unlearn. Then, independent sparse unlearning
adapters are constructed for each unlearning layer. After
that, only the sparse adapters are retrained, achieving effi-
cient resource utilization. In this way, FUSED greatly re-
duces knowledge interference. Furthermore, independent
adapters are easy to remove to facilitate memory recov-
ery. Finally, we validate FUSED in client, sample, and class
unlearning scenarios. The results show that FUSED’s un-
learning effectiveness matches that of Retraining, surpass-
ing other baselines while significantly reducing costs.
Discussion. The proposed adapters can also serve as
knowledge editors, adjusting the model’s knowledge on dif-
ferent occasions. For instance, they can help unlearn pri-
vate information and overcome catastrophic forgetting si-
multaneously. Moreover, when the knowledge editing re-
quirements vary among clients, combinations of adapters
can enhance global generalization. However, there are some
limitations of FUSED we can not overlook, for example, it
still requires a great number of remaining data to train the
adapters. Some techniques like data compression are ex-
pected to solve this problem.
Acknowledgement. This work was supported by National
Natural Science Foundation of China (62002369) and Post-
graduate Scientific Research Innovation Project of Hunan
(CX20230075).

30668

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

Thomas Baumbhauer, Pascal Schottle, and Matthias Zep-

pelzauer. Machine unlearning: Linear filtration for logit-
based classifiers. Machine Learning, 111(9):3203-3226,
2022. 2

Lucas Bourtoule, Varun Chandrasekaran, Christopher A
Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang,
David Lie, and Nicolas Papernot. Machine unlearning. In
2021 IEEE Symposium on Security and Privacy, pages 141—
159. IEEE, 2021. 2

Jonathan Brophy and Daniel Lowd. Machine unlearning for
random forests. In International Conference on Machine
Learning, pages 1092-1104. PMLR, 2021. 2

Xiaoyu Cao, Jinyuan Jia, Zaixi Zhang, and Neil Zhengiang
Gong. Fedrecover: Recovering from poisoning attacks in
federated learning using historical information. In 2023
IEEE Symposium on Security and Privacy, pages 1366—
1383. IEEE, 2023. 2

Tianshi Che, Yang Zhou, Zijie Zhang, Lingjuan Lyu, Ji Liu,
Da Yan, Dejing Dou, and Jun Huan. Fast federated machine
unlearning with nonlinear functional theory. In International
conference on machine learning, pages 4241-4268. PMLR,
2023. 2

Chong Chen, Fei Sun, Min Zhang, and Bolin Ding. Rec-
ommendation unlearning. In Proceedings of the ACM Web
Conference 2022, pages 2768-2777,2022. 2

Kongyang Chen, Zixin Wang, Bing Mi, Waixi Liu, Shaowei
Wang, Xiaojun Ren, and Jiaxing Shen. Machine unlearning
in large language models, 2024. 2

Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes,
Mathias Humbert, and Yang Zhang. Graph unlearning. In
Proceedings of the 2022 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 499-513, 2022.
2

Somnath Basu Roy Chowdhury, Krzysztof Choromanski,
Arijit Sehanobish, Avinava Dubey, and Snigdha Chaturvedi.
Towards scalable exact machine unlearning using parameter-
efficient fine-tuning. arXiv preprint arXiv:2406.16257,
2024. 2

CNN. New york times sues openai and microsoft, 2023. [On-
line; accessed: 2024-08-02]. |

Daniel L. Felps, Amelia D. Schwickerath, Joyce D.
Williams, Trung N. Vuong, Alan Briggs, Matthew Hunt,
Evan Sakmar, David D. Saranchak, and Tyler Shumaker.
Class clown: Data redaction in machine unlearning at en-
terprise scale, 2020. 2

Sanjam Garg, Shafi Goldwasser, and Prashant Nalini Va-
sudevan. Formalizing data deletion in the context of the
right to be forgotten. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques,
pages 373-402. Springer, 2020. 1

Aditya Golatkar, Alessandro Achille, and Stefano Soatto.
Eternal sunshine of the spotless net: Selective forgetting in
deep networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 9304—
9312, 2020. 2

30669

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amne-
siac machine learning. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, pages 11516-11524, 2021. 2
Hanlin Gu, Gongxi Zhu, Jie Zhang, Xinyuan Zhao, Yux-
ing Han, Lixin Fan, and Qiang Yang. Unlearning during
learning: An efficient federated machine unlearning method,
2024. 2

Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens
van der Maaten. Certified data removal from machine learn-
ing models, 2023. 2

Shaopeng Guo, Yujie Wang, Quanquan Li, and Junjie Yan.
Dmcp: Differentiable markov channel pruning for neural
networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1539—
1547, 2020. 2

Anisa Halimi, Swanand Kadhe, Ambrish Rawat, and
Nathalie Baracaldo. Federated unlearning: How to effi-
ciently erase a client in f1? In International Conference on
Machine Learning. PMLR, 2022. 2, 6

Dongxiao He, Youyou Wang, Jinxin Cao, Weiping Ding,
Shizhan Chen, Zhiyong Feng, Bo Wang, and Yuxiao Huang.
A network embedding-enhanced bayesian model for general-
ized community detection in complex networks. Information
Sciences, 575:306-322, 2021. 2

Zachary 1zzo, Mary Anne Smart, Kamalika Chaudhuri, and
James Zou. Approximate data deletion from machine learn-
ing models. In International Conference on Artificial Intelli-
gence and Statistics, pages 2008-2016. PMLR, 2021. 2
Alex Krizhevsky. Cifar-10 and cifar-100 datasets.
http://www.cs.toronto.edu/ kriz/cifar.html, 2009. Accessed:
2024-08-14. 6

Jaehoon Lee, Lechao Xiao, Samuel S. Schoenholz, Yasaman
Bahri, Roman Novak, Jascha Sohl-Dickstein, and Jeffrey
Pennington. Wide neural networks of any depth evolve as
linear models under gradient descent. In NeurlPS, pages
8570-8581, 2019. 5

Guihong Li, Hsiang Hsu, Chun-Fu Chen, and Radu Mar-
culescu. Fast-ntk: Parameter-efficient unlearning for large-
scale models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 227—
234,2024. 2

Meng Li and Haochen Sui. Causal recommendation via ma-
chine unlearning with a few unbiased data. In AAAI 2025
Workshop on Artificial Intelligence with Causal Techniques,
2025. 2

Yichen Li, Qunwei Li, Haozhao Wang, Ruixuan Li, Wen-
liang Zhong, and Guannan Zhang. Towards efficient re-
play in federated incremental learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12820-12829, 2024. |

Gaoyang Liu, Xiaogiang Ma, Yang Yang, Chen Wang, and
Jiangchuan Liu. Federated unlearning. arXiv preprint
arXiv:2012.13891, 2020. 2

Gaoyang Liu, Xiaogiang Ma, Yang Yang, Chen Wang, and
Jiangchuan Liu. Federaser: Enabling efficient client-level
data removal from federated learning models. In 2021
IEEE/ACM 29th International Symposium on Quality of Ser-
vice, pages 1-10. IEEE, 2021. 2, 6

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

[36]

(37]

(38]

(39]

[40]

[41]

Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper,
Nathalie Baracaldo, Peter Hase, Yuguang Yao, Chris Yuhao
Liu, Xiaojun Xu, Hang Li, Kush R. Varshney, Mohit Bansal,
Sanmi Koyejo, and Yang Liu. Rethinking machine unlearn-
ing for large language models, 2024. 2

Yi Liu, Lei Xu, Xingliang Yuan, Cong Wang, and Bo Li. The
right to be forgotten in federated learning: An efficient real-
ization with rapid retraining. In IEEE INFOCOM 2022-1EEE
Conference on Computer Communications, pages 1749—
1758. IEEE, 2022. 1,2

Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data.
In Artificial Intelligence and Statistics, pages 1273-1282.
PMLR, 2017. 1, 4

Thanh Tam Nguyen, Thanh Trung Huynh, Phi Le Nguyen,
Alan Wee-Chung Liew, Hongzhi Yin, and Quoc Viet Hung
Nguyen. A survey of machine unlearning, 2022. 2
Zhenwen Ren, Quansen Sun, and Dong Wei. Multiple kernel
clustering with kernel k-means coupled graph tensor learn-
ing. In Proceedings Of the AAAI Conference on Artificial
Intelligence, pages 9411-9418, 2021. 2

Sebastian Schelter, Stefan Grafberger, and Ted Dunning.
Hedgecut: Maintaining randomised trees for low-latency
machine unlearning. In Proceedings of the 2021 Interna-
tional Conference on Management of Data, pages 1545—
1557, 2021. 2

Rituparna Sinha, Rajat K Pal, and Rajat K De. Genseg and
mr-genseg: A novel segmentation algorithm and its parallel
mapreduce based approach for identifying genomic regions
with copy number variations. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 19(1):443-454,
2020. 2

Ningxin Su and Baochun Li. Asynchronous federated un-
learning. In IEEE INFOCOM 2023-IEEE Conference on
Computer Communications, pages 1-10. IEEE, 2023. 2
Ayush K Tarun, Vikram S Chundawat, Murari Mandal, and
Mohan Kankanhalli. Fast yet effective machine unlearning.
IEEE Transactions on Neural Networks and Learning Sys-
tems, 2023. 2

Eduard Fosch Villaronga, Peter Kieseberg, and Tiffany Li.
Humans forget, machines remember: Artificial intelligence
and the right to be forgotten. Computer Law & Security Re-
view, 34(2):304-313, 2018. 1

Junxiao Wang, Song Guo, Xin Xie, and Heng Qi. Federated
unlearning via class-discriminative pruning. In Proceedings
of the ACM Web Conference 2022, pages 622-632, 2022. 1,
-

Weiqi Wang, Zhiyi Tian, Chenhan Zhang, An Liu, and Shui
Yu. Bfu: Bayesian federated unlearning with parameter self-
sharing. In Proceedings of the 2023 ACM Asia Conference
on Computer and Communications Security, pages 567-578,
2023. 2

Alexander Warnecke, Lukas Pirch, Christian Wressnegger,
and Konrad Rieck. Machine unlearning of features and la-
bels, 2023. 2

Chen Wu, Sencun Zhu, and Prasenjit Mitra. Federated un-
learning with knowledge distillation, 2022. 2

30670

(42]

(43]

(44]

(45]

(46]

(47]

(48]

[49]

Leijie Wu, Song Guo, Junxiao Wang, Zicong Hong, Jie
Zhang, and Yaohong Ding. Federated unlearning: Guarantee
the right of clients to forget. IEEE Network, 36(5):129-135,
2022. 2

Yinjun Wu, Edgar Dobriban, and Susan Davidson. Delta-
grad: Rapid retraining of machine learning models. In In-
ternational Conference on Machine Learning, pages 10355—
10366. PMLR, 2020. 2

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
mnist: a novel image dataset for benchmarking machine
learning algorithms, 2017. 6

Zuobin Xiong, Wei Li, Yingshu Li, and Zhipeng Cai. Exact-
fun: An exact and efficient federated unlearning approach. In
2023 IEEE International Conference on Data Mining, pages
1439-1444. IEEE, 2023. 6

Xin Yang, Hao Yu, Xin Gao, Hao Wang, Junbo Zhang, and
Tianrui Li. Federated continual learning via knowledge fu-
sion: A survey. IEEE Transactions on Knowledge and Data
Engineering, 36(8):3832-3850, 2024. 1

Kentaro Yoshioka. vision-transformers-cifar10: Train-
ing vision transformers (vit) and related models on cifar-
10. https://github.com/kentaroy47/vision—
transformers—cifarl0, 2024. 6

Haibo Zhang, Toru Nakamura, Takamasa Isohara, and
Kouichi Sakurai. A review on machine unlearning. SN Com-
puter Science, 4(4):337, 2023. 2

Peng-Fei Zhang, Guangdong Bai, Zi Huang, and Xin-Shun
Xu. Machine unlearning for image retrieval: A generative
scrubbing approach. In Proceedings of the 30th ACM Inter-

national Conference on Multimedia, pages 237-245, 2022.
2

