
Unlearning through Knowledge Overwriting: Reversible Federated Unlearning

via Selective Sparse Adapter

Zhengyi Zhong1, Weidong Bao1, Ji Wang1*, Shuai Zhang1, Jingxuan Zhou1,

Lingjuan Lyu2, Wei Yang Bryan Lim3

1Laboratory for Big Data and Decision, National University of Defense Technology, China.
2 Sony AI, Japan.3 Nanyang Technological University, Singapore.

{zhongzhengyi20,wdbao,wangji, zhangshuai20, zhoujingxuan}@nudt.edu.cn,

lingjuanlvsmile@gmail.com, bryan.limwy@ntu.edu.sg

https://github.com/Zhong-Zhengyi/FUSED-Code

Abstract

Federated Learning is a promising paradigm for privacy-

preserving collaborative model training. In practice, it is

essential not only to continuously train the model to ac-

quire new knowledge but also to guarantee old knowledge

the right to be forgotten (i.e., federated unlearning), espe-

cially for privacy-sensitive information or harmful knowl-

edge. However, current federated unlearning methods face

several challenges, including indiscriminate unlearning of

cross-client knowledge, irreversibility of unlearning, and

significant unlearning costs. To this end, we propose a

method named FUSED, which first identifies critical lay-

ers by analyzing each layer’s sensitivity to knowledge and

constructs sparse unlearning adapters for sensitive ones.

Then, the adapters are trained without altering the origi-

nal parameters, overwriting the unlearning knowledge with

the remaining knowledge. This knowledge overwriting pro-

cess enables FUSED to mitigate the effects of indiscrimi-

nate unlearning. Moreover, the introduction of indepen-

dent adapters makes unlearning reversible and significantly

reduces the unlearning costs. Finally, extensive experi-

ments on three datasets across various unlearning scenar-

ios demonstrate that FUSED’s effectiveness is comparable

to Retraining, surpassing all other baselines while greatly

reducing unlearning costs.

1. Introduction

Background. Federated Learning (FL) [25, 30, 46] has

emerged as a promising paradigm for privacy-preserving

collaborative model training. In practice, FL models need

to acquire new knowledge continuously while also ensuring

*Corresponding Author: Ji Wang

the “right to be forgotten” for previously used training data

[12, 37]. For example, a year after the launch of ChatGPT,

The New York Times accused OpenAI and Microsoft of the

unauthorized use of its media data for training, demand-

ing that they delete the acquired knowledge from its mod-

els [10]. Furthermore, malicious clients may inject harmful

data during training, potentially poisoning the global model.

As a result, it is crucial for the global model to eliminate

such harmful knowledge. This leads to the concept of Fed-

erated Unlearning (FU).

Challenges. In the field of FU, two primary categories

of methods have emerged: retraining-based methods [29]

and model manipulation-based methods [38]. Among these,

retraining-based methods are widely regarded as the state-

of-the-art (SoTA) for achieving model unlearning. This ap-

proach involves removing the data designated for unlearn-

ing and retraining the model from scratch until convergence.

Conversely, model manipulation methods modify the model

directly using techniques such as gradient ascent, knowl-

edge distillation, and setting parameters. However, existing

methods still face several challenges:

• Indiscriminate unlearning: In scenarios where knowl-

edge overlaps occur among clients, traditional methods

indiscriminately remove shared knowledge during the un-

learning process, leading to a substantial decline in the

performance of other clients.

• Irreversible unlearning: In FL systems, clients’ unlearn-

ing requests may change dynamically. When a client

no longer needs to forget certain knowledge, traditional

methods cannot recover that memory quickly.

• Significant unlearning costs: The retraining-based

method requires multiple iterations, resulting in signifi-

cant computational and communication costs. Even sim-

ple adjustments to model parameters can demand a sig-

nificant amount of storage as a compensatory cost.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

30661

Method. To address these challenges, we propose a re-

versible Federated Unlearning method via SElective sparse

aDapter (FUSED). To begin, we perform a layer-wise anal-

ysis of the model’s sensitivity to knowledge changes, iden-

tifying the most affected layers. These sensitive layers are

then processed into sparse structures known as unlearning

adapters. This process, termed Critical Layer Identification

(CLI), significantly reduces the number of model parame-

ters, thereby lowering unlearning costs. Subsequently, the

unlearning adapters are distributed to clients that do not re-

quire unlearning for retraining. During this phase, the orig-

inal model is frozen, and only the independent unlearning

adapters are trained. Ultimately, the unlearning adapters

are integrated with the original model to yield a global un-

learning model. This method leverages training on the re-

maining knowledge to effectively overwrite the knowledge

that needs to be forgotten (i.e., knowledge overwriting), ad-

dressing the issue of indiscriminate unlearning. Moreover,

introducing independent adapters facilitates rapid recovery

of forgotten knowledge through their removal and signifi-

cantly reduces unlearning costs by utilizing sparse param-

eters. In summary, FUSED achieves high performance, re-

versibility, and cost-efficiency in FU, making it suitable for

scenarios involving client unlearning, class unlearning, and

sample unlearning scenarios.

Contributions. The contributions are as follows:

• We propose FUSED, a reversible FU approach that

retrains independent sparse adapters for unlearning.

These adapters effectively mitigate unlearning interfer-

ence while ensuring that the unlearning is reversible.

• We introduce the CLI method, which accurately identi-

fies model layers sensitive to knowledge changes and con-

structs sparse unlearning adapters, significantly reducing

the parameter scale and unlearning costs.

• We theoretically and experimentally prove the effective-

ness of the proposed method across different unlearning

scenarios in FL, including client unlearning, class un-

learning, and sample unlearning.

2. Related work

Machine unlearning. Currently, most researchers focus

on machine unlearning (MU) within centralized scenarios

[7, 24, 28, 48]. Mainstream methods can be classified into

two categories: data manipulation and model manipulation

[31]. Data manipulation includes data mixing and data par-

titioning. The former fine-tunes the model to forget spe-

cific samples by introducing interference data or by replac-

ing existing data [11, 14, 34, 36, 49]. In contrast, the lat-

ter divides the training dataset into multiple subsets and

retrains only the subset that contains the data to be for-

gotten [2, 6, 8, 19, 32]. Model manipulation [9, 23] con-

tains three strategies: model transformation, model prun-

ing, and model replacement. Model transformation meth-

ods directly update the model parameters to offset the in-

fluence of forgotten samples on the model [13, 16, 20, 40].

Model pruning methods involve pruning from the original

model [1, 17, 27, 38]. Model replacement methods compute

nearly all possible sub-models and store them alongside the

deployed model. When an unlearning request is received,

only the sub-models affected by the unlearning operation

need to be replaced. This method is commonly utilized in

machine learning models such as decision trees [3, 33, 43].

Federated unlearning. Unlike centralized unlearning,

FU [26] expands the unlearning objectives to client unlearn-

ing [35], sample unlearning, and class unlearning [15, 42].

In this context, commonly used unlearning methods can be

classified into retraining-based methods [29] and parame-

ter manipulation-based methods [4, 5, 18, 39]. Retraining-

based methods means training a new model from scratch

without unlearning data. For example, when a particular

client needs to be forgotten, [27] have proposed approaches

that retrain the remaining clients to obtain corrected gra-

dient directions, which are then used to update the global

model stored on the server. [29] utilized an improved quasi-

Newton method to accelerate the training process. [35] re-

duces the time and computational resources required for re-

training through clustering. Despite these efforts to mitigate

the resource costs associated with retraining, the expenses

remain unacceptable in real-world scenarios. Consequently,

some researchers have proposed parameter manipulation-

based unlearning methods. For instance, [38] focuses on

classification tasks using CNN models and achieves un-

learning classes by pruning class-related channel parame-

ters. Furthermore, [41] eliminates the contribution of a tar-

get client by subtracting the accumulated historical updates

from the global model. It then uses the old global model

as a teacher model to train the unlearning model, employ-

ing knowledge distillation techniques to restore the model’s

performance. Overall, current research on FU is still lim-

ited, primarily focusing on client unlearning. Additionally,

the issues of knowledge interference and irreversibility have

not been adequately considered.

3. Problem formulation

Centralized machine unlearning. We denote Du as the

data to be forgotten, and D as the entire training dataset,

D = (xi, yi)
n
i=1. Then, Dr = D\Du represents the data to

be retained. Let Mr denote the model before unlearning,

Mf is the model after unlearning, and FGT (·) denote the

unlearning process. The unlearning can be represented as:

Mf = FGT (Mr,Dr,Du). (1)

The objectives of FU are threefold: (a) minimizing the

performance of Mf on Du; (b) maximizing the perfor-

mance on Dr, and (c) minimizing the resources consumed

30662

Client1

Server

Client N

Layer

Layer

Layer

Server

Unlearning

Layer

Unlearning Adapters

Forgetting Client Remember Client Remember Client

Client

Unlearning model

construction

Sparse Mask Sparse Mask Sparse Mask

Frozen Layer

Critical Layer Identification Unlearning Stage

Client Unlearning

Unlearning

Layer ID

+

Client1

Client N

Local
Update

Local
Update

Local
Update

Local
Update

Client1

Client N

Local
Update

Local
Update

Unlearning

Request

1

1
iffD 1

2
iffD

1
iff

L
D

iff
N

L
D

2
iff

N
D

1
iff

N
D

1
iffD

2
iffD

1
iff

L
D −

iff
L

D

Local Models

Global Model

Global Model

Global Model

Personalized Data

Personalized Data

Server

input

input

Local Model

Local Model

()(, 1)
(, 1) f

f rn
n A i e

i e p p p
+

+ = +  ()(, 1) (,) , (,)
f f r

n n n n n
A i e A i e F D i e+ = − 

.
(,0)

f
A i

.
(,0)

f
A i

Frozen block Training block

2

r
D

r

N
Du

D

f

r

.

f
A

1

1
p 1

2
p

1

N
p 2

N
p

N

L
p

1

L
p

1
p

2
p

L
p

Figure 1. The figure illustrates the process of CLI (left) and unlearning (right). Left: the server computes the difference of each layer

between the models uploaded by each client and the distributed one, identifying critical layers that are sensitive to knowledge. Right: a

sparse adapter is constructed for each key layer, which is then independently trained on the remaining data.

by the unlearning process. Denoting F(·) as the model test

loss and RC(·) as resource consumption, the above objec-

tives can be respectively expressed as:

maxF(Mf , (xi, yi)), (xi, yi) ∈ D
u, (2)

minF(Mf , (xi, yi)), (xi, yi) ∈ D
r = D\Du, (3)

minRC(FGT (Mr,Dr,Du)). (4)

Ideally, when a model is considered to have fully forgot-

ten target knowledge, its performance should be equivalent

to that of a model trained from scratch without ever seeing

the forgotten dataDu. This retraining ensures the worst per-

formance on the forgotten dataDu and the best performance

on the remaining data Dr. However, this approach requires

significant computational resources and preserving all his-

torical training data, which is impractical in real-world sce-

narios. Therefore, we posit that the closer the performance

of the model Mf on Dr and Du is to that of a retrained

model, the better the unlearning effect, while also striving

to minimize resource expenditure on this basis.

Unlearning scenarios in FL. In consideration of the dis-

tributed nature of FL, traditional machine unlearning can be

extended to client unlearning, class unlearning, and sam-

ple unlearning. In the case of client unlearning, we con-

sider N clients, a set of unlearning clients Nu, with the un-

learning dataset Du = {Dk}k∈Nu
, and remember dataset

Dr = {Dk}k∈N\Nu
, where Dk represents the data of client

k. The optimization objectives are:

max
∑

k∈Nu

F(Mf ,Dk), (5)

min
∑

k∈N\Nu

F(Mr,Dk), (6)

minRC(FGT (Mr, {Dk}k∈N). (7)

Sample unlearning means forgetting a portion of

data within a client. It is similar to client unlearn-

ing. In the context of class unlearning, let all client

data classes be C and the classes to be unlearned be

Cu. The unlearning dataset can be represented as

Du = {(xk
i , y

k
i = c)}c∈Cu,(xk

i
,yk

i
)∈Dk,k∈N , and the remem-

ber dataset as Dr = {Dk}k∈N\D
u. The optimization ob-

jectives are:

max
∑

(x.
i
,y.

i
)∈{Dk}k∈N

F(Mf , (x.
i, y

.
i)|y.

i
∈Cu), (8)

min
∑

(x.
i
,y.

i
)∈{Dk}k∈N

F(Mr, (x.
i, y

.
i)|y.

i
/∈Cu), (9)

minRC(FGT (Mr, (x.
i, y

.
i)|y.

i
∈C)). (10)

4. The proposed method: FUSED

FUSED involves a two-stage unlearning process (as shown

in Fig. 1). The first stage is Critical Layer Identifica-

tion (CLI), and the second stage is Unlearning via Sparse

Adapters, which is based on the critical layers identified.

30663

4.1. Critical layer identification

During the CLI phase, each client, coordinated by the

server, participates in a federated iteration process. Clients

receive the global model distributed by the server and train it

using their local data before uploading it back to the server.

Subsequently, the distance between the parameters of each

layer in the models from different clients and those in the

corresponding layers of the initial model is calculated by

the server. The layers with the most significant parameter

changes are obtained by averaging these distances.

Consider a global model with L layers, and N clients,

each with an identical model structure. After local train-

ing, the parameters of these models differ across clients.

Let pnl represent the parameters of the l-th layer of the n-

th client, where n = 1, 2, · · · , N and l = 1, 2, · · · , L.

The initial distributed global model is denoted as Mr =
{p1, p2, · · · , pL}. After local training by the clients, the

variation in the l-th layer of the model can be expressed as:

Diffl = Diff1
l (p

1
l , pl)⊕ · · · ⊕DiffN

l (pNl , pl), (11)

where Diffn
l (p

n
l , pl) represents the difference between the

l-th layer of the n-th client’s model and the l-th layer of

the original model (need to be forgotten) distributed by the

server. We utilize the Manhattan distance for measurement.

Assuming that the dimensions of pnl and pl are k × v. The

calculation process is as follows:

Diff(pnl , pl) =
∑k

i=1

∑v

j=1

∣

∣pnl,ij − pl,ij
∣

∣. (12)

The aggregation method of ⊕ is as follows:

Diff1
l (p

1
l , pl)⊕Diff

N
l (pNl , pl) =

|D1|∑
N
n=1

|Dn|

Diff1
l (p

1
l , pl) +

|D1|∑
N
n=1

|Dn|
DiffN

l (pNl , pl),
(13)

where |Di| represents the data volume of client i. Eventu-

ally, LS =

[

argmax
l
{Diffl}, · · · , argmin

l
{Diffl}

]

in-

dicating the changes in different model layers is obtained.

The first element corresponds to the layer index that is most

sensitive to changes in client knowledge, while the last el-

ement corresponds to the most robust layer. To minimize

resource cost, the subsequent unlearning process prioritizes

unlearning in the most sensitive model layers.

4.2. Unlearning via sparse adapters

Based on the list obtained from CLI, given a preset value

K for the number of layers to be unlearned, the first K in-

dices in LS are designated for FU. Let Lf denote the set of

layers that need to be unlearned, and Lr denote the remain-

ing frozen layers. For each unlearning layer in Lf , we dis-

card most of the parameters in a random manner and leave

only a small portion, forming a sparse parameter matrix Af .

During training, only Af is trained while Lf remains un-

changed. In the inference process, the new parameters of

the unlearning layer are directly obtained by adding the pa-

rameters of Af (denoted by pAf) and Lf (denoted by pLf).

For the original model Mr, the entire unlearning pro-

cess can be divided into four stages: model distribution, lo-

cal training, model uploading, and model aggregation. In

FUSED, there are significant differences in the model dis-

tribution and local training stages compared to traditional

FL. The following sections will primarily focus on these

two stages. Firstly, during the model distribution stage, the

model is only distributed to clients that contain the remem-

bered dataset Dr (see Problem Formulation), and only un-

learning adapters are transmitted. This means that in client

unlearning scenarios, the clients to be forgotten will not re-

ceive the adapters (in class/sample unlearning, the class-

es/samples that need to be forgotten will no longer par-

ticipate in training with the server). Additionally, the dis-

tributed model is a sparse matrix Af , which significantly

reduces communication overhead. Secondly, in the local

training stage, for a client n, assuming the total number

of local training epochs per federated iteration is E, then

in the t-th federated iteration, the parameters of the model

Mn(i, e) are (pAf
n(i,e)

+ pLf) ◦ pLr . The training process

is as follows:

Af
n(i, e+ 1) = Af

n(i, e)− η∇Fn(D
r
n,Mn(i, e)), (14)

Mn(i, e+ 1) = (pAf
n(i,e+1) + pLf

) ◦ pLr
, (15)

where e = 0, · · ·E − 1, Fn(D
r
n,Mn(i, e)) represents the

loss and η denotes the learning rate. In each round of local

training,Mn(i, e) is derived from the fusion of the original

modelMr and the sparse matrix Af
n(i, e) obtained from the

previous round. Each completed training round corresponds

to a process of knowledge overwriting, during which the re-

maining knowledge is progressively enhanced. It is worth

noting that during the training process, only pAf
n(i,e)

is up-

dated. The other parameters, pLf and pLr , remain frozen

and are only used to compute the loss during inference. Af-

ter local training is completed, each client uploads pAf
n(I,E)

to the server, which aggregates the updates using the Fe-

dAvg [30] method to obtain a new pAf
n(i+1). After training,

we need to concatenate the adapter with the corresponding

unlearning layer of the original model to derive the global

unlearning model. When the client’s knowledge no longer

needs to be unlearned, removing the unlearning adapters

will effectively restore the original memory, thereby mak-

ing the unlearning process reversible.

4.3. Algorithm

To elucidate the aforementioned training process more

clearly, this section presents it through pseudocode (as

30664

Algorithm 1 Our method FUSED

Input: Original modelMr, number of iteration I , number

of local training E, number of clients N , unlearning data

Du, all clients’ data D
Output: Unlearning modelMf

1: Lf ← Unlearning Layer Identification

2: Adapters Af ← Random dropout parameters of Lf

3: for iteration i = 0 to I do

4: if i=0 then

5: Server distributeMr to all clients

6: end if

7: Server distribute adapters Af to clients maintaining

Dr = D\Du

8: for client n = 1 to N do

9: Freezing the original parameterMr

10: for local epoch e = 0 to E − 1 do

11: Merge the Mr model with adapters to get

Mn(e) (refer to Eq. (15))

12: Update adapters to get Af
n(e+ 1) (Eq. (14))

13: end for

14: Upload Af
n(E) to the server

15: end for

16: Server aggregates adapters to get Af

17: end for

18: MergeMr with Af to getMf

19: return Unlearning modelMf

shown in Algorithm 1). The inputs for Algorithm 1 are

the original model to be unlearned Mr, the total number

of federated training rounds I , the number of local training

epochs E, the number of clients N , the forgetting dataset

Du, and the dataset for all clients D. The output is the

modelMf after the unlearning process. First, based on the

original model Mr, a federated iteration is conducted to

determine the model layers to be unlearned (details of CLI

are displayed in the Supplementary Material). Using the in-

dexes of unlearning layers, a series of unlearning adapters

are constructed through random sparsification. Then, the

FU process begins: during the first federated iteration, the

server distributes both the unlearning adapters and the origi-

nal model to the clients that contain the remembered dataset

(lines 4-7 in Algorithm 1), excluding clients that only con-

tain the forgetting dataset. Subsequently, the clients freeze

the original model (line 9 in Algorithm 1) and merge the

unlearning adapter with the original model (line 11 in Al-

gorithm 1). The clients then train unlearning adapters us-

ing local data and upload it to the server for aggregation

(line 16 in Algorithm 1). After I rounds of federated it-

erations, the final unlearning adapters are merged with the

original model (line 18 in Algorithm 1) to obtain the global

unlearned modelMf .

4.4. Theoretical analysis

In this section, we will theoretically analyze how knowl-

edge overwriting happens in the training process of differ-

ent tasks, providing theoretical support for the FUSED.

Suppose there are two learning tasks denoted as T1 and

T2, each task has an input space X and an output space

Y . The parameterized model is represented as a mapping

f(Θ) : X → Y , Θ denotes an n-dimensional parameter

vector of the neural network. For each task, we use a loss

function LT (Θ) to measure the performance of the model.

The model learns on tasks T1 and T2 and obtains the op-

timized parameters Θ∗
1 and Θ∗

2, which are, respectively, ϵ1
and ϵ2 away from the minimum value, where ϵ1 and ϵ2 are

arbitrarily small positive numbers:

Θ∗
1 = argmin

Θ
(LT1

(Θ) + ϵ1), ϵ1 > 0. (16)

Θ∗
2 = argmin

Θ
(LT2

(Θ) + ϵ2), ϵ2 > 0. (17)

We have the following assumptions:

Assumption 1: The loss function LT (Θ) is continuous

and differentiable with respect to the parameters Θ.

Assumption 2: Near the optimized parameters Θ∗
1, the

loss function LT1
(Θ) can be approximated using a first-

order Taylor expansion.

From the work of [22], we notice the agreement between

the predictions of the original network and those of the lin-

ear model obtained from the first-order Taylor expansion of

the network. Consider the linear model of the loss function

LT1
(Θ∗

2) for the old task T1 at the optimized parameters

Θ∗
1:

LT1
(Θ∗

2) ≈ LT1
(Θ∗

1) +∇ΘLT1
(Θ∗

1)
T · (Θ∗

2 −Θ∗
1). (18)

Performance degradation ∆LT1
is defined as:

∆LT1
=LT1

(Θ∗
2)−LT1

(Θ∗
1)≈∇ΘLT1

(Θ∗
1)
T(Θ∗

2−Θ
∗
1). (19)

Defining the task difference Φ(Θ, T1, T2) as the cosine

similarity between the gradients of two tasks.At the opti-

mized parameters Θ∗
1, we have:

Φ(Θ∗
1, T1, T2) =

∇ΘLT1
(Θ∗

1)
T · ∇ΘLT2

(Θ∗
1)

||∇ΘLT1
(Θ∗

1)|| · ||∇ΘLT2
(Θ∗

1)||
. (20)

The changing direction of the parameters Θ is influenced

by the gradient of the new task T2, that is:

Θ∗
2 −Θ∗

1 = −η∇ΘLT2
(Θ∗

1), (21)

where η represents the learning rate.

Substituting into the performance degradation approxi-

mation formula, we can obtain:

∆LT1
≈−η∥∇ΘLT1

(Θ∗
1)∥∥∇ΘLT2

(Θ∗
1)∥Φ(Θ

∗
1, T1, T2). (22)

30665

When the cosine similarity of the gradients of the loss

function at tasks T1 and T2 is less than 0, the performance

degradation of the old task is greater than 0. That is, when

the knowledge of the tasks learned sequentially is opposite,

the learning of new knowledge will overwrite the old knowl-

edge that the model has mastered.

The aforementioned analysis is based on full training of

model parameters. Specifically, in FUSED, only partial pa-

rameters of critical layers are updated with new data. Then,

the result will be:

Θ∗
2 −Θ∗

1 = −η · (v ◦ ∇ΘLT2
(Θ∗

1)),
{v ∈ {0, 1}n|P (vi = 1) = p, i ∈ {1, . . . , n}},

(23)

v is an n-dimensional binary vector. Each element of v

takes the value of 1 with probability p. Then, we can get:

E(∆LT1
) =− η · p · ||∇ΘLT1

(Θ∗
1)||·

||∇ΘLT2
(Θ∗

1)|| · Φ(Θ
∗
1, T1, T2).

(24)

Therefore, it can be inferred from the above formula that

when the angle between the gradients of the new task and

the old task is greater than 90 degrees, the old knowledge

learned by the model can also be covered by training some

parameters on the new task.

5. Experiments

5.1. Experimental setting

The experiments are built on PyTorch 2.2.0, developing an

FL framework comprising one server and 50 clients. The

hardware environment uses an NVIDIA RTX 4090. Opti-

mizers consisting of SGD and Adam are employed with a

batch size of 128. The result is listed in Tab. 1.

The datasets include FashionMNIST [44], Cifar10 and

Cifar100 [21]. We use the Dirichlet function to partition the

dataset and conduct tests under two conditions: α = 1.0
and α = 0.1. In Tab. 1, we primarily present the results for

α = 1.0; for the results under non-independent and iden-

tically distributed, please refer to the appendix. The model

used for FashionMNIST is LeNet, while ResNet18 is em-

ployed for training on Cifar100. For Cifar10, training is

conducted using both ResNet18 and a vision-based Trans-

former model called SimpleViT [47]. Baselines include Re-

training, Federaser [27], Exact-Fun [45], and EraseClient

[18]. Among these, Retraining is the upper bound of un-

learning; it can achieve the effect of the model having never

encountered the forgotten data.

Evaluations. We evaluate FUSED from multiple per-

spectives:

• RA & FA: RA is the testing accuracy on the remaining

dataset, which should be as high as possible to minimize

knowledge interference. FA is the testing accuracy on the

unlearned dataset, which should be as low as possible.

• Comp & Comm: Comp is the time to complete pre-

defined unlearning iterations; Comm denotes the data vol-

ume transmitted between a single client and the server.

• MIA: the privacy leakage rate after unlearning, which is

assessed in the context of membership inference attacks.

A lower inference accuracy of the attack model indicates

less privacy leakage.

• ReA: the accuracy of relearning, which refers to the accu-

racy that can be achieved after a specified number of itera-

tions to relearn the unlearned knowledge. If the unlearned

knowledge is effectively erased, the accuracy achieved

during the subsequent relearning will be lower.

5.2. Critical layer identification

Before conducting unlearning, it is essential to identify the

layers that are sensitive to knowledge. We segment the

client data using a Dirichlet distribution with a parameter

α of 0.1 to enhance knowledge disparity among clients. For

the Cifar10 and Cifar100 datasets, we employ the ResNet18

and SimpleViT models, while the LeNet model is utilized

for FashionMNIST. After obtaining locally trained models

from different clients, we can observe the average change

in each layer. In Fig. 2, we present the Diff values for each

layer of the ResNet18 and SimpleViT across different train-

ing iterations. We can see the last, second-to-last, sixth-to-

last, and eighth-to-last layers of the ResNet18 model, and

the last several layers of the Transformer model demon-

strate heightened sensitivity to data variations across clients.

Therefore, these layers will be designated as unlearning lay-

ers for sparse training in the subsequent unlearning pro-

cess. In fact, with the increasing number of federated iter-

ations, the global model’s knowledge generalization ability

improves, leading to a gradual reduction in the gap of Diff

values between layers. As illustrated in Fig. 2, the gap is

most pronounced when Epoch=1. Therefore, by comparing

the model after a single federated iteration, it is possible to

more precisely identify the critical layers.

0 10 20 30 40 50 60
0
5

10
15
20

Di
ff

Weight Epoch 1
Weight Epoch 4
Weight Epoch 7
Weight Epoch 10

10 20 30 40 50 60
Layer Index

0.0
2.5
5.0
7.5

10.0
12.5
15.0

Di
ff

Bias Epoch 1
Bias Epoch 4
Bias Epoch 7
Bias Epoch 10

(a) ResNet18

0 10 20 30 40 50 60
0.0
2.5
5.0
7.5

10.0
12.5
15.0

Di
ff

Weight Epoch 1
Weight Epoch 4
Weight Epoch 7
Weight Epoch 10

0 10 20 30 40 50 60
Layer Index

0.0
2.5
5.0
7.5

10.0
12.5
15.0

Di
ff

Bias Epoch 1
Bias Epoch 4
Bias Epoch 7
Bias Epoch 10

(b) Transformer

Figure 2. The average difference between local models and the

server model across different models.

5.3. Results Analysis

Unlearning performance. In the client unlearning sce-

nario, we use clients affected by Byzantine attacks as test

30666

Client Unlearning Class Unlearning Sample Unlearning

Retrain Federaser E-F FUSED E-C Retrain FUSED Retrain FUSED

FashionMNIST-LeNet

RA(↑) 0.99 0.99 0.99 0.99 0.09 0.99 0.99 0A(↑) 0.99 1.00

FA(↓) 0.00 0.00 0.00 0.00 0.11 0.00 0.00 PS(↑) 0.75 1.00

ReA(↓) 0.77 0.94 0.96 0.97 0.96 1.00 1.00 ReA 0.15 0.70

MIA(↓) 0.85 0.47 0.70 0.68 0.70 0.27 0.99 MIA 0.53 0.94

Comp(↓) 210.15 178.66 298.28 158.96 26.31 213.60 81.94 Comp 873.04 872.65

Comm(↓) 177K 177K 177K 11K 177K 177K 11K Comm 177K 11K

Cifar10-ResNet18

RA(↑) 0.71 0.67 0.65 0.67 0.64 0.73 0.73 0A(↑) 0.56 0.52

FA(↓) 0.04 0.04 0.05 0.05 0.06 0.00 0.00 PS(↑) 0.55 0.54

ReA(↓) 0.49 0.48 0.41 0.42 0.56 1.00 1.00 ReA 1.00 1.00

MIA(↓) 0.78 0.67 0.43 0.65 0.78 0.86 0.96 MIA 0.98 0.99

Comp(↓) 434.39 990.91 1211.74 262.20 233.45 735.07 183.02 Comp 4619.82 1253.98

Comm(↓) 42.73M 42.73M 42.73M 0.98M 42.73M 42.73M 0.98M Comm 42.73M 0.98M

Cifar10-Transformer

RA(↑) 0.33 0.21 0.33 0.41 0.35 0.27 0.44 0A(↑) 0.05 0.33

FA(↓) 0.08 0.09 0.07 0.07 0.07 0.00 0.00 PS(↑) 0.20 0.54

ReA(↓) 0.40 0.25 0.40 0.41 0.40 1.00 0.80 ReA 0.03 0.50

MIA(↓) 0.62 0.41 0.76 0.62 0.63 0.64 0.88 MIA 0.85 1.00

Comp(↓) 5388.83 1867.36 4929.45 502.60 3240.05 1207.56 218.30 Comp 628.44 342.14

Comm(↓) 36.21M 36.21M 36.21M 0.71M 36.21M 36.21M 0.71M Comm 36.21M 0.71M

Cifar100-ResNet18

RA(↑) 0.39 0.19 0.25 0.36 0.35 0.34 0.30 0A(↑) 0.57 0.79

FA(↓) 0.01 0.01 0.00 0.01 0.01 0.00 0.00 PS(↑) 0.54 0.66

ReA(↓) 0.18 0.13 0.17 0.14 0.20 1.00 1.00 ReA 0.25 0.00

MIA(↓) 0.22 0.28 0.08 0.48 0.36 0.66 0.10 MIA 0.98 1.00

Comp(↓) 443.86 1000.75 1598.55 276.59 235.65 820.43 188.00 Comp 4121.99 1580.91

Comm(↓) 42.91M 42.91M 42.91M 0.98M 42.91M 42.91M 0.98M Comm 42.91M 0.98M

Table 1. Main Results. “0A” represents the accuracy of class 0, while “PS” refers to the precision of the predicted class 0. The symbol ↑

indicates higher values are better, while ↓ indicates the opposite. “E-F” is the short for Exact-Fun, and “E-C” is EraseClient.

cases. The mode of attack is label flipping, where one

client’s label is maliciously manipulated, resulting in a de-

mand for unlearning. From Tab. 1, it can be observed that

among the three metrics that directly measure forgetting

effects—RA, FA, and ReA—only FUSED is nearly on par

with Rrtraining. This approach maintains a low accuracy

on unlearned data while achieving a high accuracy on oth-

ers, and even demonstrates overall superiority compared to

Rrtraining, particularly in the Transformer model. It can

be concluded that FUSED effectively unlearns the specified

client knowledge while minimizing the impact on the orig-

inal knowledge. This is attributable to freezing the param-

eters of the original model and only training the unlearn-

ing adapter, thereby avoiding direct modifications to the

old knowledge and effectively reducing interference with

the existing knowledge. Similarly, the same results are ob-

served in class and sample unlearning.

Knowledge interference. To investigate the impact of

unlearning on the overlapping knowledge across clients, we

use the Cifar10 dataset, distributing 90% of the data la-

beled as 0 and all data labeled as 1 to a client that needs

to be forgotten. The remaining data, labeled from 2 to 9,

and 10% of the data labeled as 0, are randomly assigned

to other clients. After unlearning, we evaluate the accu-

racy of the knowledge unique to the unlearning client (data

labeled as 1), the accuracy of the overlapping knowledge

(data labeled as 0 from the remaining clients), and the ac-

curacy of the knowledge unique to the remaining clients

(data labeled from 2 to 9). The final results are shown in

Tab. 2. It can be observed that all methods completely for-

30667

get the knowledge unique to the forgetting client, while only

the FUSED method demonstrates improved performance on

overlapping knowledge compared to Retraining. Therefore,

FUSED can reduce knowledge interference.

Method Federaser Retrain E-F FUSED E-C

F-Acc 0.00 0.00 0.00 0.00 0.00

C-Acc 0.14 0.38 0.07 0.37 0.06

R-Acc 0.27 0.65 0.64 0.65 0.66

Table 2. “F-Acc” is the accuracy of the knowledge unique to the

unlearning client, “C-Acc” is for overlapping knowledge, and “R-

Acc” is for the knowledge unique to the remaining clients

Unlearning cost. In the unlearning process, resource

overhead is an inevitable problem. Tab. 1 primarily illus-

trates the consumption of computational and communica-

tion resources. Since the FUSED trains and transmits only

the sparse adapters, it consistently demonstrates a signifi-

cant advantage across nearly all unlearning scenarios and

datasets. Additionally, in terms of storage resources, both

Federaser and EraseClient require the retention of all client

models and the global model during each round, which

presents significant challenges regarding storage capacity.

This demand increases exponentially with the number of

clients and iterations, rendering it impractical in real-world

applications. In contrast, FUSED only requires the stor-

age of a complete global model and its adapters. More-

over, when compared to the retraining method, the retrain-

ing method achieves RA/FA values of 0.71/0.04 when data is

complete, and FUSED achieves RA/FA values of 0.67/0.05.

When we reduce the number of retraining data by half,

FUSED maintains RA/FA values of 0.65/0.03, indicating no

significant decline in unlearning performance. This sug-

gests that FUSED can achieve results comparable to retrain-

ing with less data, thereby conserving storage resources.

Privacy protection. When unlearned data is users’ pri-

vacy, even if the model shows great unlearning perfor-

mance, an attacker may still be able to discern which data

corresponds to unlearned private information and which

does not, particularly in the context of member inference

attacks. Therefore, it is crucial to evaluate the privacy leak-

age rate of the model after unlearning. The MIA values for

FUSED are generally comparable to those of the Retraining

method, and in most instances, they remain at a relatively

low level. This indicates that FUSED’s capability to miti-

gate privacy leakage is on par with that of other methods.

Ablation study. To illustrate the necessity of CLI, we

conduct an ablation study using the Cifar10 dataset, with

the experimental results presented in Fig. 3. In Fig. 3, “W/O

CLI” denotes the effect of FUSED achieved by randomly se-

lected layers. It is evident that, with the implementation of

CLI, the accuracy of remaining knowledge is higher in both

client unlearning and class unlearning scenarios. Although

the disparity is smaller in sample unlearning, it still main-

tains a comparable level. This indicates that CLI can more

accurately identify the model layers that are more sensitive

to knowledge, thereby enhancing the unlearning effect.

Accuracy
CLI

W/O CLI Remaining Data Acc
Unlearning Data Acc

Accuracy
CLI

W/O CLI Remaining Data Acc
Unlearning Data Acc

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy

CLI

W/O CLI Acc_zero
Precision

Client Unlearning

Class Unlearning

Sample Unlearning

Figure 3. Ablation study of CLI.

6. Conclusion and Discussion

Conclusion. This paper focuses on the unlearning prob-

lem in FL. To address the challenges of indiscriminate un-

learning, irreversible unlearning, and significant unlearning

costs, we propose a reversible federated unlearning method

via selective sparse adapters (FUSED). Firstly, by compar-

ing the client model with the server model, we identify crit-

ical layers to unlearn. Then, independent sparse unlearning

adapters are constructed for each unlearning layer. After

that, only the sparse adapters are retrained, achieving effi-

cient resource utilization. In this way, FUSED greatly re-

duces knowledge interference. Furthermore, independent

adapters are easy to remove to facilitate memory recov-

ery. Finally, we validate FUSED in client, sample, and class

unlearning scenarios. The results show that FUSED’s un-

learning effectiveness matches that of Retraining, surpass-

ing other baselines while significantly reducing costs.

Discussion. The proposed adapters can also serve as

knowledge editors, adjusting the model’s knowledge on dif-

ferent occasions. For instance, they can help unlearn pri-

vate information and overcome catastrophic forgetting si-

multaneously. Moreover, when the knowledge editing re-

quirements vary among clients, combinations of adapters

can enhance global generalization. However, there are some

limitations of FUSED we can not overlook, for example, it

still requires a great number of remaining data to train the

adapters. Some techniques like data compression are ex-

pected to solve this problem.
Acknowledgement. This work was supported by National
Natural Science Foundation of China (62002369) and Post-
graduate Scientific Research Innovation Project of Hunan
(CX20230075).

30668

References

[1] Thomas Baumhauer, Pascal Schöttle, and Matthias Zep-

pelzauer. Machine unlearning: Linear filtration for logit-

based classifiers. Machine Learning, 111(9):3203–3226,

2022. 2

[2] Lucas Bourtoule, Varun Chandrasekaran, Christopher A

Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang,

David Lie, and Nicolas Papernot. Machine unlearning. In

2021 IEEE Symposium on Security and Privacy, pages 141–

159. IEEE, 2021. 2

[3] Jonathan Brophy and Daniel Lowd. Machine unlearning for

random forests. In International Conference on Machine

Learning, pages 1092–1104. PMLR, 2021. 2

[4] Xiaoyu Cao, Jinyuan Jia, Zaixi Zhang, and Neil Zhenqiang

Gong. Fedrecover: Recovering from poisoning attacks in

federated learning using historical information. In 2023

IEEE Symposium on Security and Privacy, pages 1366–

1383. IEEE, 2023. 2

[5] Tianshi Che, Yang Zhou, Zijie Zhang, Lingjuan Lyu, Ji Liu,

Da Yan, Dejing Dou, and Jun Huan. Fast federated machine

unlearning with nonlinear functional theory. In International

conference on machine learning, pages 4241–4268. PMLR,

2023. 2

[6] Chong Chen, Fei Sun, Min Zhang, and Bolin Ding. Rec-

ommendation unlearning. In Proceedings of the ACM Web

Conference 2022, pages 2768–2777, 2022. 2

[7] Kongyang Chen, Zixin Wang, Bing Mi, Waixi Liu, Shaowei

Wang, Xiaojun Ren, and Jiaxing Shen. Machine unlearning

in large language models, 2024. 2

[8] Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes,

Mathias Humbert, and Yang Zhang. Graph unlearning. In

Proceedings of the 2022 ACM SIGSAC Conference on Com-

puter and Communications Security, pages 499–513, 2022.

2

[9] Somnath Basu Roy Chowdhury, Krzysztof Choromanski,

Arijit Sehanobish, Avinava Dubey, and Snigdha Chaturvedi.

Towards scalable exact machine unlearning using parameter-

efficient fine-tuning. arXiv preprint arXiv:2406.16257,

2024. 2

[10] CNN. New york times sues openai and microsoft, 2023. [On-

line; accessed: 2024-08-02]. 1

[11] Daniel L. Felps, Amelia D. Schwickerath, Joyce D.

Williams, Trung N. Vuong, Alan Briggs, Matthew Hunt,

Evan Sakmar, David D. Saranchak, and Tyler Shumaker.

Class clown: Data redaction in machine unlearning at en-

terprise scale, 2020. 2

[12] Sanjam Garg, Shafi Goldwasser, and Prashant Nalini Va-

sudevan. Formalizing data deletion in the context of the

right to be forgotten. In Annual International Conference on

the Theory and Applications of Cryptographic Techniques,

pages 373–402. Springer, 2020. 1

[13] Aditya Golatkar, Alessandro Achille, and Stefano Soatto.

Eternal sunshine of the spotless net: Selective forgetting in

deep networks. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 9304–

9312, 2020. 2

[14] Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amne-

siac machine learning. In Proceedings of the AAAI Confer-

ence on Artificial Intelligence, pages 11516–11524, 2021. 2

[15] Hanlin Gu, Gongxi Zhu, Jie Zhang, Xinyuan Zhao, Yux-

ing Han, Lixin Fan, and Qiang Yang. Unlearning during

learning: An efficient federated machine unlearning method,

2024. 2

[16] Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens

van der Maaten. Certified data removal from machine learn-

ing models, 2023. 2

[17] Shaopeng Guo, Yujie Wang, Quanquan Li, and Junjie Yan.

Dmcp: Differentiable markov channel pruning for neural

networks. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 1539–

1547, 2020. 2

[18] Anisa Halimi, Swanand Kadhe, Ambrish Rawat, and

Nathalie Baracaldo. Federated unlearning: How to effi-

ciently erase a client in fl? In International Conference on

Machine Learning. PMLR, 2022. 2, 6

[19] Dongxiao He, Youyou Wang, Jinxin Cao, Weiping Ding,

Shizhan Chen, Zhiyong Feng, Bo Wang, and Yuxiao Huang.

A network embedding-enhanced bayesian model for general-

ized community detection in complex networks. Information

Sciences, 575:306–322, 2021. 2

[20] Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, and

James Zou. Approximate data deletion from machine learn-

ing models. In International Conference on Artificial Intelli-

gence and Statistics, pages 2008–2016. PMLR, 2021. 2

[21] Alex Krizhevsky. Cifar-10 and cifar-100 datasets.

http://www.cs.toronto.edu/ kriz/cifar.html, 2009. Accessed:

2024-08-14. 6

[22] Jaehoon Lee, Lechao Xiao, Samuel S. Schoenholz, Yasaman

Bahri, Roman Novak, Jascha Sohl-Dickstein, and Jeffrey

Pennington. Wide neural networks of any depth evolve as

linear models under gradient descent. In NeurIPS, pages

8570–8581, 2019. 5

[23] Guihong Li, Hsiang Hsu, Chun-Fu Chen, and Radu Mar-

culescu. Fast-ntk: Parameter-efficient unlearning for large-

scale models. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 227–

234, 2024. 2

[24] Meng Li and Haochen Sui. Causal recommendation via ma-

chine unlearning with a few unbiased data. In AAAI 2025

Workshop on Artificial Intelligence with Causal Techniques,

2025. 2

[25] Yichen Li, Qunwei Li, Haozhao Wang, Ruixuan Li, Wen-

liang Zhong, and Guannan Zhang. Towards efficient re-

play in federated incremental learning. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 12820–12829, 2024. 1

[26] Gaoyang Liu, Xiaoqiang Ma, Yang Yang, Chen Wang, and

Jiangchuan Liu. Federated unlearning. arXiv preprint

arXiv:2012.13891, 2020. 2

[27] Gaoyang Liu, Xiaoqiang Ma, Yang Yang, Chen Wang, and

Jiangchuan Liu. Federaser: Enabling efficient client-level

data removal from federated learning models. In 2021

IEEE/ACM 29th International Symposium on Quality of Ser-

vice, pages 1–10. IEEE, 2021. 2, 6

30669

[28] Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper,

Nathalie Baracaldo, Peter Hase, Yuguang Yao, Chris Yuhao

Liu, Xiaojun Xu, Hang Li, Kush R. Varshney, Mohit Bansal,

Sanmi Koyejo, and Yang Liu. Rethinking machine unlearn-

ing for large language models, 2024. 2

[29] Yi Liu, Lei Xu, Xingliang Yuan, Cong Wang, and Bo Li. The

right to be forgotten in federated learning: An efficient real-

ization with rapid retraining. In IEEE INFOCOM 2022-IEEE

Conference on Computer Communications, pages 1749–

1758. IEEE, 2022. 1, 2

[30] Brendan McMahan, Eider Moore, Daniel Ramage, Seth

Hampson, and Blaise Aguera y Arcas. Communication-

efficient learning of deep networks from decentralized data.

In Artificial Intelligence and Statistics, pages 1273–1282.

PMLR, 2017. 1, 4

[31] Thanh Tam Nguyen, Thanh Trung Huynh, Phi Le Nguyen,

Alan Wee-Chung Liew, Hongzhi Yin, and Quoc Viet Hung

Nguyen. A survey of machine unlearning, 2022. 2

[32] Zhenwen Ren, Quansen Sun, and Dong Wei. Multiple kernel

clustering with kernel k-means coupled graph tensor learn-

ing. In Proceedings Of the AAAI Conference on Artificial

Intelligence, pages 9411–9418, 2021. 2

[33] Sebastian Schelter, Stefan Grafberger, and Ted Dunning.

Hedgecut: Maintaining randomised trees for low-latency

machine unlearning. In Proceedings of the 2021 Interna-

tional Conference on Management of Data, pages 1545–

1557, 2021. 2

[34] Rituparna Sinha, Rajat K Pal, and Rajat K De. Genseg and

mr-genseg: A novel segmentation algorithm and its parallel

mapreduce based approach for identifying genomic regions

with copy number variations. IEEE/ACM Transactions on

Computational Biology and Bioinformatics, 19(1):443–454,

2020. 2

[35] Ningxin Su and Baochun Li. Asynchronous federated un-

learning. In IEEE INFOCOM 2023-IEEE Conference on

Computer Communications, pages 1–10. IEEE, 2023. 2

[36] Ayush K Tarun, Vikram S Chundawat, Murari Mandal, and

Mohan Kankanhalli. Fast yet effective machine unlearning.

IEEE Transactions on Neural Networks and Learning Sys-

tems, 2023. 2

[37] Eduard Fosch Villaronga, Peter Kieseberg, and Tiffany Li.

Humans forget, machines remember: Artificial intelligence

and the right to be forgotten. Computer Law & Security Re-

view, 34(2):304–313, 2018. 1

[38] Junxiao Wang, Song Guo, Xin Xie, and Heng Qi. Federated

unlearning via class-discriminative pruning. In Proceedings

of the ACM Web Conference 2022, pages 622–632, 2022. 1,

2

[39] Weiqi Wang, Zhiyi Tian, Chenhan Zhang, An Liu, and Shui

Yu. Bfu: Bayesian federated unlearning with parameter self-

sharing. In Proceedings of the 2023 ACM Asia Conference

on Computer and Communications Security, pages 567–578,

2023. 2

[40] Alexander Warnecke, Lukas Pirch, Christian Wressnegger,

and Konrad Rieck. Machine unlearning of features and la-

bels, 2023. 2

[41] Chen Wu, Sencun Zhu, and Prasenjit Mitra. Federated un-

learning with knowledge distillation, 2022. 2

[42] Leijie Wu, Song Guo, Junxiao Wang, Zicong Hong, Jie

Zhang, and Yaohong Ding. Federated unlearning: Guarantee

the right of clients to forget. IEEE Network, 36(5):129–135,

2022. 2

[43] Yinjun Wu, Edgar Dobriban, and Susan Davidson. Delta-

grad: Rapid retraining of machine learning models. In In-

ternational Conference on Machine Learning, pages 10355–

10366. PMLR, 2020. 2

[44] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-

mnist: a novel image dataset for benchmarking machine

learning algorithms, 2017. 6

[45] Zuobin Xiong, Wei Li, Yingshu Li, and Zhipeng Cai. Exact-

fun: An exact and efficient federated unlearning approach. In

2023 IEEE International Conference on Data Mining, pages

1439–1444. IEEE, 2023. 6

[46] Xin Yang, Hao Yu, Xin Gao, Hao Wang, Junbo Zhang, and

Tianrui Li. Federated continual learning via knowledge fu-

sion: A survey. IEEE Transactions on Knowledge and Data

Engineering, 36(8):3832–3850, 2024. 1

[47] Kentaro Yoshioka. vision-transformers-cifar10: Train-

ing vision transformers (vit) and related models on cifar-

10. https://github.com/kentaroy47/vision-

transformers-cifar10, 2024. 6

[48] Haibo Zhang, Toru Nakamura, Takamasa Isohara, and

Kouichi Sakurai. A review on machine unlearning. SN Com-

puter Science, 4(4):337, 2023. 2

[49] Peng-Fei Zhang, Guangdong Bai, Zi Huang, and Xin-Shun

Xu. Machine unlearning for image retrieval: A generative

scrubbing approach. In Proceedings of the 30th ACM Inter-

national Conference on Multimedia, pages 237–245, 2022.

2

30670

