000 DISTRIBUTED GRADIENT DESCENT WITH MANY 001 LOCAL STEPS IN OVERPARAMETERIZED MODELS 002 003 004 Anonymous authors Paper under double-blind review 006 007 008 009 ABSTRACT 010 011 In distributed training of machine learning models, gradient descent with *local iterative steps* is a very popular method, variants of which are commonly known 012 as Local-SGD or the Federated Averaging (FedAvg). In this method, gradient 013 steps based on local datasets are taken independently in distributed compute nodes 014 to update the local models, which are then aggregated intermittently. Although 015 the existing convergence analysis suggests that with heterogeneous data, FedAvg 016 encounters quick performance degradation as the number of local steps increases, 017 it is shown to work quite well in practice, especially in the distributed training of 018 large language models. In this work we try to explain this good performance from 019 a viewpoint of implicit bias in Local Gradient Descent (Local-GD) with a large number of local steps. In overparameterized regime, the gradient descent at each 021 compute node would lead the model to a specific direction locally. We characterize the dynamics of the aggregated global model and compare it to the centralized model trained with all of the data in one place. In particular, we analyze the implicit bias of 023 gradient descent on linear models, for both regression and classification tasks. Our analysis shows that the aggregated global model converges exactly to the centralized 025 model for regression tasks, and converges (in direction) to the same feasible set as 026 centralized model for classification tasks. We further propose a Modified Local-GD 027 with a refined aggregation and theoretically show it converges to the centralized 028 model in direction for linear classification. We empirically verified our theoretical 029 findings in linear models and also conducted experiments on distributed fine-tuning of pretrained neural networks to further apply our theory. 031 032 INTRODUCTION 1 033 034

In this era of large machine learning models, distributed training is an essential part of machine learning 035 pipelines. It can happen in a data center with thousands connected compute nodes Sergeev & Del Balso (2018); Huang et al. (2019), or across several data centers and millions of mobile devices in federated 037 learning Konečný et al. (2016); Kairouz et al. (2019). In such a network, the communication cost is usually the bottleneck in the whole system. To alleviate communication burden, and also to preserve privacy to some extent, one common strategy is to perform multiple local updates before sending the 040 information to other nodes, which is called Local Gradient Descent (Local-GD) Stich (2019); Lin 041 et al. (2019). It is also a standard algorithm in federated learning, varied by partial device participation 042 and privacy constraints, and known as FedAvg McMahan et al. (2017). While local updates can reduce 043 communication cost, the number of local steps is usually considered to be small Stich (2019); Li et al. 044 (2020b). When data distributions across machines are heterogeneous, a large number of local steps would result in local iterates to diverge significantly (called client-drift), and the aggregated values to oscillate and be far away from the optimum global model. 046

However, in practical implementation of distributed training on large models, the performance of vanilla FedAvg is surprisingly good even with heterogeneous data distribution McMahan et al. (2017);
Charles et al. (2021). In fact SCAFFOLD Karimireddy et al. (2020), an algorithm designed to mitigate the effect of heterogeneity theoretically, is shown to have similar empirical performance as FedAvg
Reddi et al. (2021); Wu et al. (2023). There are some works trying to explain the effectiveness of FedAvg from different theoretical aspects, such as representation learning Collins et al. (2022), refined theoretical assumption Wang et al. (2024) etc. Also, the number of local steps can be very large in real-world systems, for example, performing 500 local steps in distributed training of large language

models (LLM) Douillard et al. (2023); Jaghouar et al. (2024). These practical experiences motivates us to consider the following question:

057 *Q: Can we establish rigorous conditions, independent of data distribution, under which Local-GD* 058 *performs well with a very large number of local steps?* 

In this work we answer this question in affirmative by considering overparameterized models on
 regression and classification tasks. Our main tool is to analyze the *implicit bias* of gradient descent to
 characterize the dynamics of aggregated models with many local steps. In a network with M compute
 nodes, the goal is to train a global model to fit in the distributed datasets:

 $\min_{w \in \mathbb{R}^d} f(w) \qquad \text{with } f(w) \equiv \frac{1}{M} \sum_{i=1}^M f_i(w|D_i), \tag{1}$ 

where  $w \in \mathbb{R}^d$  is the single model to be trained and  $f_i(w|D_i)$  is the local objective function, and  $D_i$ is the local distribution of *d*-dimensional samples and corresponding labels  $\{x_{ij}, y_{ij}\}_{i=1}^N$ .

068 To reduce the communication frequency, Local-GD chooses to do L local gradient descent steps 069 before sending the local model to a central node. The detailed algorithm of Local-GD is described in Algorithm 1 and 2. In the existing convergence analysis of Local-GD, the number of local steps L 071 should not be very large. For example, with strongly convex and smooth loss functions, the number 072 of local steps should not be larger than  $O(\sqrt{T})$  for i.i.d data Stich (2019) and non-i.i.d. data Li et al. 073 (2020b). However, such analysis is developed for general/classical models and does not consider the 074 special properties of overparameterized models. In this work we specifically focus on linear models for 075 both regression and classification tasks and take the overparameterized regime into account. That is, the 076 dimension d is larger than the total number of samples, i.e. d > MN. While modern machine learning 077 concerns primarily large nonlinear models, it is instructive to explore the intrinsic property of Local-GD in simpler linear setting and establish the connection to other areas. For example, the leading theories of deep learning, such as implicit bias of optimization algorithms, or double descent Belkin et al. (2018; 079 2019), were built for linear models first. Moreover, fine-tuning on pretrained large models has gradually become the popular paradigm in practical machine learning pipeline. It is widely used to fine-tune 081 the final linear layer or add a few linear layers to pretrained models in transfer learning Donahue et al. 082 (2014); Kornblith et al. (2019) and deployment of LLM Devlin (2018); Jiang et al. (2020). 083

As stated, to characterize the behavior of Local-GD with large number of local steps in overparameterized models, we leverage the implicit bias of gradient descent, which is an active area in theoretical explanation of modern large models Soudry et al. (2018); Gunasekar et al. (2018a); Ji & Telgarsky (2019a); Chizat & Bach (2020); Frei et al. (2024). With a very large number of local steps, the local optimization problem can be exactly solved for linear regression and classification models. In overparameterized regime, gradient descent would converge to a specific solution. After aggregation of these specific local solutions, we can characterize the dynamic of the global model and finally compare it to the centralized model trained on a collection of distributed datasets at one place.

Specifically, in linear regression minimizing a squared loss, the local models would fit to the corresponding local datasets, and converge to the solution with minimum distance to initial aggregated global model at each communication round. We can obtain the closed form of this solution and calculate the global model after aggregation. We prove that it exactly converges to the centralized model (the model trained by gradient descent if all data were in one place) as the number of rounds of communication increases.

The analysis of linear classification (halfspace learning) is more involved and proceeds according to the following steps. First, it turns out that when minimizing an exponential loss with a weakly 098 regularized term, the aggregated global model is equivalent to a model aggregated from local models obtained by solving *local max-margin* problems. Subsequently we relate the update of global model 100 aggregated from solutions of local max-margin problems to Parallel Projection Method (PPM), an 101 iterative algorithm used for finding a point in the intersection of multiple constraint sets by projecting 102 onto each constraint set in parallel Gilbert (1972); de Pierro & Iusem (1984); Combettes (1994; 1996). 103 Using properties of PPM, we can characterize the dynamics of the aggregated global model. We prove 104 that it converges to a global feasible set, which is the intersection of constraint sets in local max-margin 105 problems. The centralized model trained with all of the data also converges to the global feasible set. To further explain the similar performance obtained by global model and centralized model, we propose 106 a modified Local-GD with a different aggregation method from vanilla Local-GD (Algorithm 3). 107 We theoretically prove that the aggregated global model obtained from Modified Local-GD exactly

| 109<br>110<br>111                                                                                                                 | converges to the centralized model in direction. We show the vanilla Local-GD actually converges to the same point as the modified Local-GD experimentally. For both linear regression and classification, our results show that the aggregated global model would converge to the centralized model even with a very large number of local steps on heterogeneous data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 112<br>113                                                                                                                        | In summary, the contribution of this work is as follows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 114                                                                                                                               | • We established the theoretical performance of Local-GD with a large number of local steps in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 115                                                                                                                               | overparameterized models. We analyzed the implicit bias of Local-GD, for single communication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 116                                                                                                                               | round of linear regression, and for whole algorithmic process of classification, respectively. As far                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 117<br>118                                                                                                                        | as we know, this is the first attempt to analyze implicit bias of gradient descent in distributed setting.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 119                                                                                                                               | • We obtained closed form of the aggregated global model in linear regression and analyzed its dynam-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 120                                                                                                                               | ics. We proved that it exactly converges to the centralized model as communication rounds increase.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 121                                                                                                                               | • We related the Local-GD for linear classification to Parallel Projection Method and characterized the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 122<br>123                                                                                                                        | dynamics based on the properties of projections. We proved the aggregated global model converges to a global feasible set same as the centralized model.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 124                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 125<br>126                                                                                                                        | • We further proposed a Modified Local-GD with a different aggregation method and proved it converges exactly to the centralized model in direction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 127                                                                                                                               | • We experimentally verify our theoretical findings on synthetic datasets and real datasets with linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 128                                                                                                                               | models. We further conducted experiments on fine-tuning the final linear layer of neural networks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 129                                                                                                                               | to show the broader impact of our work.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 130                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 131                                                                                                                               | Our main technical challenge comes while analyzing classification. In linear regression, the implicit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 132                                                                                                                               | bias for a single round of communication is directly derived from the gradient on squared loss (each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 133                                                                                                                               | gradient step is on the row space of local data). In contrast, for classification we have to consider<br>the whole elegentithmic process of both Local CD and Parallel Projection Mathed and then derive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 134                                                                                                                               | the equivalence between them. Compared to the continual learning work Evron et al. (2023) where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 135                                                                                                                               | overparameterized models are handled sequentially, the challenge is that we need to handle the parallel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 137                                                                                                                               | projections happening <i>simultaneously</i> from the same initial point. Due to space limit, we give more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 138                                                                                                                               | additional references and discussion on Related Works in Appendix A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 139                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 140                                                                                                                               | Algorithm 1 LOCAL CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.77.1                                                                                                                            | Algorithm 1 LOCAL-GD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 142                                                                                                                               | Algorithm 1 LOCAL-GD.         1: Input: learning rate $\eta$ .         2: Initialize $w^0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 142<br>143                                                                                                                        | Algorithm 1 LOCAL-GD.         1: Input: learning rate $\eta$ .         2: Initialize $w_0^0$ 3: for $k=0$ to $K-1$ do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 142<br>143<br>144                                                                                                                 | Algorithm 1 LOCAL-GD.         1: Input: learning rate $\eta$ .         2: Initialize $w_0^0$ 3: for $k = 0$ to $K - 1$ do         4: The aggregator sends global model $w_0^k$ to all compute nodes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 142<br>143<br>144<br>145                                                                                                          | Algorithm 1 LOCAL-GD.         1: Input: learning rate $\eta$ .         2: Initialize $w_0^0$ 3: for $k=0$ to $K-1$ do         4: The aggregator sends global model $w_0^k$ to all compute nodes.         5: for $i=1$ to $i=M$ do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 142<br>143<br>144<br>145<br>146                                                                                                   | Algorithm 1 LOCAL-GD.         1: Input: learning rate $\eta$ .         2: Initialize $w_0^0$ 3: for $k = 0$ to $K - 1$ do         4: The aggregator sends global model $w_0^k$ to all compute nodes.         5: for $i = 1$ to $i = M$ do         6: compute node i updates local model starting from $w_0^k$ : $w_i^{k+1} = \text{LocalUpdate}(w_0^k)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 142<br>143<br>144<br>145<br>146<br>147                                                                                            | Algorithm 1 LOCAL-GD.         1: Input: learning rate $\eta$ .         2: Initialize $w_0^0$ 3: for $k = 0$ to $K - 1$ do         4: The aggregator sends global model $w_0^k$ to all compute nodes.         5: for $i = 1$ to $i = M$ do         6: compute node $i$ updates local model starting from $w_0^k$ : $w_i^{k+1} = \text{LocalUpdate}(w_0^k)$ .         7: compute node $i$ sends back the updated local model $w_i^{k+1}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 142<br>143<br>144<br>145<br>146<br>147<br>148                                                                                     | Algorithm 1 LOCAL-GD.         1: Input: learning rate $\eta$ .         2: Initialize $w_0^0$ 3: for $k=0$ to $K-1$ do         4: The aggregator sends global model $w_0^k$ to all compute nodes.         5: for $i=1$ to $i=M$ do         6: compute node $i$ updates local model starting from $w_0^k$ : $w_i^{k+1} = \text{LocalUpdate}(w_0^k)$ .         7: compute node $i$ sends back the updated local model $w_i^{k+1}$ .         8: end for         9: The second se |
| 142<br>143<br>144<br>145<br>146<br>147<br>148<br>149                                                                              | Algorithm 1 LOCAL-GD.         1: Input: learning rate $\eta$ .         2: Initialize $w_0^0$ 3: for $k = 0$ to $K - 1$ do         4: The aggregator sends global model $w_0^k$ to all compute nodes.         5: for $i = 1$ to $i = M$ do         6: compute node $i$ updates local model starting from $w_0^k$ : $w_i^{k+1} = \text{LocalUpdate}(w_0^k)$ .         7: compute node $i$ sends back the updated local model $w_i^{k+1}$ .         8: end for         9: The aggregator aggregates all the local models: $w_0^{k+1} = \frac{1}{M} \sum_{i=1}^{M} w_i^{k+1}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 142<br>143<br>144<br>145<br>146<br>147<br>148<br>149<br>150                                                                       | Algorithm 1 LOCAL-GD.         1: Input: learning rate $\eta$ .         2: Initialize $w_0^0$ 3: for $k=0$ to $K-1$ do         4: The aggregator sends global model $w_0^k$ to all compute nodes.         5: for $i=1$ to $i=M$ do         6: compute node $i$ updates local model starting from $w_0^k$ : $w_i^{k+1} = \text{LocalUpdate}(w_0^k)$ .         7: compute node $i$ sends back the updated local model $w_i^{k+1}$ .         8: end for         9: The aggregator aggregates all the local models: $w_0^{k+1} = \frac{1}{M} \sum_{i=1}^{M} w_i^{k+1}$ .         10: end for         11: Output: $w_i^K$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 142<br>143<br>144<br>145<br>146<br>147<br>148<br>149<br>150<br>151                                                                | Algorithm 1 LOCAL-GD.         1: Input: learning rate $\eta$ .         2: Initialize $w_0^0$ 3: for $k = 0$ to $K - 1$ do         4: The aggregator sends global model $w_0^k$ to all compute nodes.         5: for $i = 1$ to $i = M$ do         6: compute node $i$ updates local model starting from $w_0^k$ : $w_i^{k+1} = \text{LocalUpdate}(w_0^k)$ .         7: compute node $i$ sends back the updated local model $w_i^{k+1}$ .         8: end for         9: The aggregator aggregates all the local models: $w_0^{k+1} = \frac{1}{M} \sum_{i=1}^{M} w_i^{k+1}$ .         10: end for         11: Output: $w_0^K$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 142<br>143<br>144<br>145<br>146<br>147<br>148<br>149<br>150<br>151<br>152                                                         | Algorithm 1 LOCAL-GD.         1: Input: learning rate $\eta$ .         2: Initialize $w_0^0$ 3: for $k = 0$ to $K - 1$ do         4: The aggregator sends global model $w_0^k$ to all compute nodes.         5: for $i = 1$ to $i = M$ do         6: compute node $i$ updates local model starting from $w_0^k$ : $w_i^{k+1} = \text{LocalUpdate}(w_0^k)$ .         7: compute node $i$ sends back the updated local model $w_i^{k+1}$ .         8: end for         9: The aggregator aggregates all the local models: $w_0^{k+1} = \frac{1}{M} \sum_{i=1}^{M} w_i^{k+1}$ .         10: end for         11: Output: $w_0^K$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 142<br>143<br>144<br>145<br>146<br>147<br>148<br>149<br>150<br>151<br>152<br>153                                                  | Algorithm 1 LOCAL-GD.         1: Input: learning rate $\eta$ .         2: Initialize $w_0^0$ 3: for $k = 0$ to $K - 1$ do         4: The aggregator sends global model $w_0^k$ to all compute nodes.         5: for $i = 1$ to $i = M$ do         6: compute node $i$ updates local model starting from $w_0^k$ : $w_i^{k+1} = \text{LocalUpdate}(w_0^k)$ .         7: compute node $i$ sends back the updated local model $w_i^{k+1}$ .         8: end for         9: The aggregator aggregates all the local models: $w_0^{k+1} = \frac{1}{M} \sum_{i=1}^{M} w_i^{k+1}$ .         10: end for         11: Output: $w_0^K$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 142<br>143<br>144<br>145<br>146<br>147<br>148<br>149<br>150<br>151<br>152<br>153<br>154                                           | Algorithm 1 LOCAL-GD.1: Input: learning rate $\eta$ .2: Initialize $w_0^0$ 3: for $k=0$ to $K-1$ do4: The aggregator sends global model $w_0^k$ to all compute nodes.5: for $i=1$ to $i=M$ do6: compute node $i$ updates local model starting from $w_0^k$ : $w_i^{k+1} = \text{LocalUpdate}(w_0^k)$ .7: compute node $i$ sends back the updated local model $w_i^{k+1}$ .8: end for9: The aggregator aggregates all the local models: $w_0^{k+1} = \frac{1}{M} \sum_{i=1}^{M} w_i^{k+1}$ .10: end for11: Output: $w_0^K$ .Algorithm 2 LocalUpdate $(w_0^k)$ in general Local-GD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 142<br>143<br>144<br>145<br>146<br>147<br>148<br>149<br>150<br>151<br>152<br>153<br>154<br>155                                    | Algorithm 1 LOCAL-GD.         1: Input: learning rate $\eta$ .         2: Initialize $w_0^0$ 3: for $k = 0$ to $K - 1$ do         4: The aggregator sends global model $w_0^k$ to all compute nodes.         5: for $i = 1$ to $i = M$ do         6: compute node $i$ updates local model starting from $w_0^k$ : $w_i^{k+1} = \text{LocalUpdate}(w_0^k)$ .         7: compute node $i$ sends back the updated local model $w_i^{k+1}$ .         8: end for         9: The aggregator aggregates all the local models: $w_0^{k+1} = \frac{1}{M} \sum_{i=1}^{M} w_i^{k+1}$ .         10: end for         11: Output: $w_0^K$ .         Algorithm 2 LocalUpdate $(w_0^k)$ in general Local-GD.         1: Input: an initial point $w_0^k$ , the number of local steps $L$ , and the learning rate $\eta$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 142<br>143<br>144<br>145<br>146<br>147<br>148<br>149<br>150<br>151<br>152<br>153<br>154<br>155<br>156                             | Algorithm 1 LOCAL-GD.         1: Input: learning rate $\eta$ .         2: Initialize $w_0^0$ 3: for $k = 0$ to $K - 1$ do         4: The aggregator sends global model $w_0^k$ to all compute nodes.         5: for $i = 1$ to $i = M$ do         6: compute node $i$ updates local model starting from $w_0^k$ : $w_i^{k+1} = \text{LocalUpdate}(w_0^k)$ .         7: compute node $i$ sends back the updated local model $w_i^{k+1}$ .         8: end for         9: The aggregator aggregates all the local models: $w_0^{k+1} = \frac{1}{M} \sum_{i=1}^{M} w_i^{k+1}$ .         10: end for         11: Output: $w_0^K$ . <b>Algorithm 2</b> LocalUpdate( $w_0^k$ ) in general Local-GD.         1: Input: an initial point $w_0^k$ , the number of local steps $L$ , and the learning rate $\eta$ .         2: Initialize $w_i^{k,0} = w_0^k$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 142<br>143<br>144<br>145<br>146<br>147<br>148<br>149<br>150<br>151<br>152<br>153<br>154<br>155<br>156<br>157                      | Algorithm 1 LOCAL-GD.<br>1: Input: learning rate $\eta$ .<br>2: Initialize $w_0^0$<br>3: for $k = 0$ to $K - 1$ do<br>4: The aggregator sends global model $w_0^k$ to all compute nodes.<br>5: for $i = 1$ to $i = M$ do<br>6: compute node $i$ updates local model starting from $w_0^k$ : $w_i^{k+1} = \text{LocalUpdate}(w_0^k)$ .<br>7: compute node $i$ sends back the updated local model $w_i^{k+1}$ .<br>8: end for<br>9: The aggregator aggregates all the local models: $w_0^{k+1} = \frac{1}{M} \sum_{i=1}^{M} w_i^{k+1}$ .<br>10: end for<br>11: Output: $w_0^K$ .<br>2: Initialize $w_i^{k,0} = w_0^k$ .<br>3: for $l = 0$ to $L - 1$ do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 142<br>143<br>144<br>145<br>146<br>147<br>148<br>149<br>150<br>151<br>152<br>153<br>154<br>155<br>156<br>157<br>158<br>159        | Algorithm 1 LOCAL-GD.         1: Input: learning rate $\eta$ .         2: Initialize $w_0^0$ 3: for $k=0$ to $K-1$ do         4: The aggregator sends global model $w_0^k$ to all compute nodes.         5: for $i=1$ to $i=M$ do         6: compute node $i$ updates local model starting from $w_0^0$ : $w_i^{k+1} = \text{LocalUpdate}(w_0^k)$ .         7: compute node $i$ sends back the updated local model $w_i^{k+1}$ .         8: end for         9: The aggregator aggregates all the local models: $w_0^{k+1} = \frac{1}{M} \sum_{i=1}^{M} w_i^{k+1}$ .         10: end for         11: Output: $w_0^K$ .         Imitalize $w_i^{k,0}$ and $w_0^k$ , the number of local steps $L$ , and the learning rate $\eta$ .         2: Initialize $w_i^{k,0} = w_0^k$ .         3: for $l=0$ to $L-1$ do         4: $w_i^{k,l+1} = w_i^{k,l} - \eta \nabla f_i(w_i^{k,l})$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 142<br>143<br>144<br>145<br>146<br>147<br>148<br>149<br>150<br>151<br>152<br>153<br>154<br>155<br>156<br>157<br>158<br>159<br>160 | Algorithm 1 LOCAL-GD.<br>1: Input: learning rate $\eta$ .<br>2: Initialize $w_0^0$<br>3: for $k = 0$ to $K - 1$ do<br>4: The aggregator sends global model $w_0^k$ to all compute nodes.<br>5: for $i = 1$ to $i = M$ do<br>6: compute node $i$ updates local model starting from $w_0^k$ : $w_i^{k+1} = \text{LocalUpdate}(w_0^k)$ .<br>7: compute node $i$ sends back the updated local model $w_i^{k+1}$ .<br>8: end for<br>9: The aggregator aggregates all the local models: $w_0^{k+1} = \frac{1}{M} \sum_{i=1}^{M} w_i^{k+1}$ .<br>10: end for<br>11: Output: $w_0^K$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

# 162 2 LOCAL-GD IN LINEAR REGRESSION: A WARM-UP

# 164 2.1 SETTING

In this section we first consider linear regression in overparameterized regime. The behavior of linear
 regression is very well-understood in high-dimensional statistics; and we can clearly convey our key
 message based on this fundamental setting.

At each compute node *i*, the dataset  $S_i$  consists of N tuples of samples and their corresponding labels,  $(x,y) \in \mathbb{R}^d \times \mathbb{R}$ . We assume the label  $y_{ij}$  is generated by

 $y_{ij} = x_{ij}^T w_i^* + z_{ij}$ 

169

170

173

where  $w_i^* \in \mathbb{R}^d$  is the ground truth model at *i*-th compute node, and  $z_{ij}$  is the added noise. Denote  $X_i = [x_{i1}, x_{i2}, ..., x_{iN}]^T \in \mathbb{R}^{N \times d}$  as the data matrix at *i*-th compute node, and  $y_i = [y_{i1}, y_{i2}, ..., y_{iN}] \in \mathbb{R}^N$ as the label vector,  $z_i \in \mathbb{R}^N$  as the noise vector. In heterogeneous setting, the  $w_i^*$  can be very different to each other. Note that the convergence to centralized model does not rely on the generative model. We just make this assumption on generative model for deriving a more clear form of the aggregated global model.

Algorithm. At each round, the aggregator sends the global model  $w_0$  to all the compute nodes. Each compute node minimizes the squared loss  $f_i(w_i) = \frac{1}{2N} ||y_i - X_i w_i||^2$  by a large number of gradient descent steps *until convergence*. Then each compute node sends back the local model and the aggregator aggregates all the local models to get the updated global model. The detailed algorithm is Local-GD in Algorithm 1 with  $f_i(w_i)$  replaced in LocalUpdate (Algorithm 2). Since minimizing squared loss is a quadratic problem, it is expected to reach convergence locally with a small number of gradient descent steps.

186 187

188

195

196 197

199 200

201 202

### 2.2 IMPLICIT BIAS OF LOCAL GD IN LINEAR REGRESSION

For each local problem, when the dimension of the model is larger than the number of samples at each compute node (d > N), i.e., locally overparameterized, there are multiple solutions corresponding to zero squared loss. However, gradient descent will lead the model converge to a specific solution, which corresponds to a minimum Euclidean distance to the initial point Gunasekar et al. (2018a); Evron et al. (2022). Formally, the solution  $w_i^{k+1}$  obtained at k-th round and i-th node will converge to the solution of the optimization problem

$$\min_{i=1} ||w_i - w_0^k||^2 \quad \text{s.t.} \quad X_i w_i = y_i.$$

(2)

(3)

We can obtained the closed form solution of this optimization problem as (see Proof of Lemma 1 in Appendix C.1)

$$w_{i}^{k+1} = \left(I - X_{i}^{T}(X_{i}X_{i}^{T})^{-1}X_{i}\right)w_{0}^{k} + X_{i}^{T}(X_{i}X_{i}^{T})^{-1}y_{i}$$

$$= \left(I - X_{i}^{T}(X_{i}X_{i}^{T})^{-1}X_{i}\right)w_{0}^{k} + X_{i}^{T}(X_{i}X_{i}^{T})^{-1}X_{i}w_{i}^{*} + X_{i}^{T}(X_{i}X_{i}^{T})^{-1}z_{i}.$$

$$\tag{4}$$

203 Denote  $P_i \triangleq X_i^T (X_i X_i^T)^{-1} X_i$  and  $X_i^{\dagger} \triangleq X_i^T (X_i X_i^T)^{-1}$ . The local model can be rewritten as 204  $w_i^{k+1} = (I - P_i) w_0^k + P_i w_i^* + X_i^{\dagger} z_i$ . We observe that  $P_i$  is the projection operator to the row space 206 of  $X_i$ , and  $X_i^{\dagger}$  is the pseudo inverse of  $X_i$ . After one round of iterations, the local model is actually 207 an interpolation between the initial global model  $w_0^k$  at this round and the ground-truth model  $w_i^*$ , 208 plus a noise term. We then obtain the closed form of global model by aggregation. After many rounds 209 of communication, we can obtain the final trained global model from Local-GD.

**Lemma 1.** When the local overparameterized linear regression problems are exactly solved by gradient descent, then after K rounds of communication, the global model  $w_0^K$  obtained from Local-GD is

214 215

$$w_0^K = (I - \bar{P})^K w_0^0 + \sum_{k=0}^{K-1} (I - \bar{P})^k (\bar{Q} + \bar{Z}),$$
(5)

where  $\bar{P} = \frac{1}{M} \sum_{i=1}^{M} P_i, \bar{Q} = \frac{1}{M} \sum_{i=1}^{M} P_i w_i^*, \bar{Z} = \frac{1}{M} \sum_{i=1}^{M} X_i^{\dagger} z_i.$ 

l

216 Note that  $\bar{P}, \bar{Q}, \bar{Z}$  are constant after the data is generated. Since we only know the  $\{X_i, y_i\}_{i=1}^M$  in the 217 training process, we can also write it as 218

219

220 221 222

223

224

225

226

227

228

229 230

231

234

236 237

242

243

246

247

$$w_0^K = (I - \bar{P})^K w_0^0 + \sum_{k=0}^{K-1} (I - \bar{P})^k \bar{Y}, \tag{6}$$

where  $\bar{Y} = \frac{1}{M} \sum_{i=1}^{M} X_i^{\dagger} y_i$ . Then we can directly get the final model from the training set.

Singularity of  $\bar{P}$ . If  $\bar{P}$  is invertible, we can further simplify the form of global model. However, since  $P_i \in \mathbb{R}^{d \times d}$  is the projection operator onto row space of  $X_i$ , its rank is at most N. The  $\overline{P}$  is the average of  $P_i$ s, thus its rank is at most MN. Note that we consider the overparameterized regime both locally and globally, i.e.,  $d \gg MN$ . Then  $\bar{P}$  is singular, and the sum  $\sum_{k=0}^{K-1} (I-\bar{P})^k$  approaches KI when d becomes very large. We cannot get more properties of the final global model from (6), but we can compare it to the centralized model trained with all of the data.

2.3 CONVERGENCE TO CENTRALIZED MODEL

232 Let  $X_c = [X_1^T, ..., X_M^T]^T \in \mathbb{R}^{MN \times d}$  be the data matrix consisting of all the local data, and  $y_c = [y_1^T, ..., y_M^T]^T \in \mathbb{R}^{MN \times 1}$  be the label vector consisting of the local labels. If we train the centralized 233 model from initial point 0 with squared loss, then the gradient descent will lead the model to the 235 solution of the optimization problem

$$\min_{w} \|w\|^2 \quad \text{s.t.} \quad X_c w = y_c \tag{7}$$

238 We can write the closed form of centralized model as  $w_c = X_c^T (X_c X_c^T)^{-1} y_c$ . 239

240 Due to the constraint in problem (7), for each compute node i, we have  $X_i w_c = y_i$ . We replace  $y_i$  in 241 the local model (4), then we have

$$w_i^{k+1} - w_c = (I - P_i)(w_0^k - w_c).$$
(8)

244 The right-hand side is projecting the difference between global model and centralized model onto 245 null space of  $X_i$ . After averaging all the local models at the aggregator, we have

$$w_0^{k+1} - w_c = (I - \bar{P})(w_0^k - w_c).$$
<sup>(9)</sup>

248 In the training process the difference between global model and centralized model is iteratively 249 projected onto the null space of span of row spaces of  $X_i$ s. It implies that the difference on the span 250 of data matrix gradually decreases until zero. Based on the evolution of the difference, we can prove the following theorem: 251

**Theorem 1.** For the linear regression problem, suppose the initial point  $w_0^0$  is 0 and  $d \gg MN$ , then the global model obtained by Local-GD,  $w_0^K$ , converges to the centralized solution  $w_c$  as the number 253 of communication rounds  $K \rightarrow \infty$ . 254

255 The proof is deferred in Appendix C.2. The key step is to show the initial difference is already in the 256 data space, and no residual in the null space of row spaces of  $X_i$ s. 257

258 Due to the linearity of the regression problem, we can theoretically show the global model can exactly 259 converge to the centralized model with implicit bias on overparameterized regime. Note that the proof does not rely on the generative model and assumption on data heterogeneity. It implies that, even if 260 we use a large number of local steps to exactly solve the local problems on very heterogeneous data, 261 the performance of Local-GD is equivalent to train a model with all the data in one place. 262

263 264

265 266

267

#### LOCAL-GD IN LINEAR CLASSIFICATION: RELATION TO PPM 3

## 3.1 Setting

In this section we investigate a binary classification task with linear models. Different from the linear 268 regression problem, it is hard to obtain closed form solution on classification tasks. Thus we need 269 to develop new techniques to handle this case.

Suppose, for each compute node *i*, the dataset  $S_i$  consists of *N* tuples of samples and their corresponding labels,  $(x,y) \in \mathbb{R}^d \times \{+1,-1\}$ . Similarly, we denote  $X_i \in \mathbb{R}^{N \times d}$  as the data matrix at *i*-th compute node, and  $y_i \in \{+1,-1\}^N$  as the label vector. We do not assume the generative model in classification task, but we need an assumption of separable datasets.

**Assumption 1.** Each local dataset  $S_i$  is separable, i.e., there are non-empty local feasible sets,

$$C_i \triangleq \{ w \in \mathbb{R}^d | y_{ij} x_{ij}^T w \ge 1, \text{for } j = 1, \dots, N \},$$
(10)

and there is a non-empty global feasible set,

274

275

276

279 280

283

284

285

287 288

299

300

309 310

$$\bar{C} \triangleq \cap_{i=1}^{m} C_i \neq \emptyset. \tag{11}$$

281 This assumption makes sure that the datasets are locally and globally separable.

Algorithm. At each round, the aggregator sends the global model  $w_0$  to all the compute nodes. Each compute node minimizes an exponential loss with a weakly regularized term by many gradient descent steps *until convergence*. That is, each compute node solves the following problem:

$$\min_{w \in \mathbb{R}^d} f_i(w_i) = \sum_{j=1}^N \exp\left(-y_{ij} x_{ij}^T w\right) + \frac{\lambda}{2} \|w - w_0^k\|^2$$
(12)

where  $\lambda$  is a regularization parameter close to 0.

Then each compute node sends back the local model and the aggregator aggregates all the local models to get the updated global model. The detailed algorithm for linear classification is Local-GD in Algorithm 1 with  $f_i(w_i)$  replaced in LocalUpdate (Algorithm 2).

Regularization methods are very common in distributed learning to force the local models move not too far from global model Li et al. (2020a; 2021); T Dinh et al. (2020). Here we consider the weakly regularized term,  $\lambda \rightarrow 0$ , to give theoretical insights of Local-GD on classification tasks. Experimentally the  $\lambda$  is set to be extremely small that does not affect the minimization of exponential loss. Since the local problem is a strongly convex problem, with many local gradient descent steps it will be exactly solved.

### 3.2 IMPLICIT BIAS OF GRADIENT DESCENT IN LINEAR CLASSIFICATION

One can derive the implicit bias of classification at a single local node after a large number of local 301 steps. However, in contrast to linear regression, we cannot easily aggregate the local solutions after 302 a round of communication to a closed form. At each round, the local model is updated from the 303 previously aggregated global model, which is related to previous local updates. To mitigate this, 304 we consider the whole algorithmic process of Local-GD on classification and use another auxiliary 305 sequence of global models, denoted as  $\bar{w}_0^k, k = 0, 1, 2, \dots$  Starting from an initial point  $\bar{w}_0^0$ , the central 306 node sends global model  $\bar{w}_0^k$  to all the compute nodes at k-th iteration round. Each compute node 307 solves the following Local Max-Margin problem to obtain  $\bar{w}_{i}^{k+1}$ : 308

$$\bar{w}_i^{k+1} = \arg\min_{w \in \mathbb{R}^d} \|w - \bar{w}_0^k\| \quad \text{s.t.} \quad y_{ij} x_{ij}^T w \ge 1 \quad j = 1, 2, \dots, N.$$
(13)

Then the compute node sends the local model back. The central node averages the local models to get  $\bar{w}_0^{k+1} = \frac{1}{M} \sum_{i=1}^{M} \bar{w}_i^{k+1}$ .

We can show the solution  $w_0^K$  obtained in Local-GD converges in direction to the global model from Local Max-Margin problems  $\bar{w}_0^K$ .

**Lemma 2.** For almost all datasets sampled from a continuous distribution satisfying Assumption 1, with initialization  $w_0^0 = \bar{w}_0^0 = 0$ , we have  $w_0^k \to \ln(\frac{1}{\lambda})\bar{w}_0^k$ , and the residual  $||w_0^k - \ln(\frac{1}{\lambda})\bar{w}_0^k|| = O(k \ln \ln \frac{1}{\lambda})$ , as  $\lambda \to 0$ . It implies that at any round  $k = o\left(\frac{\ln(1/\lambda)}{\ln\ln(1/\lambda)}\right)$ ,  $w_0^k$  converges in direction to  $\bar{w}_0^k$ :

$$\lim_{\lambda \to 0} \frac{w_0^k}{\|w_0^k\|} = \frac{\bar{w}_0^k}{\|\bar{w}_0^k\|}.$$
(14)

320 321 322

319

The proof is deferred in Appendix D. The framework is similar to the continual learning work Evron et al. (2023), but we need to handle the parallel local updates for each dataset from the same initial

model and the aggregation, which is different from the sequential updates where for each dataset the
 model is trained from the previous model and there is no need to do aggregation.

Based on this equivalence between Local-GD for linear classification and Local Max-Margin scheme, we can further analyze the performance of Local-GD with a large number of local steps. Instead of a closed-form solution for the Local Max-Margin problem (13), we treat it as a projection of the aggregated global model onto a convex set  $C_i: \bar{w}_i^{k+1} = P_i(\bar{w}_0^k)$ , which is formed by the constraints in (13) and exactly the local feasible set defined in Assumption 1. Here we slightly overload the notation  $P_i$ , which was used as the projection matrix in linear regression since the readers can get a sense of the same effect of them in Local-GD. The aggregation is actually to average the local projected points:  $\bar{w}_0^{k+1} = \frac{1}{M} \sum_{i=1}^M P_i(\bar{w}_0^k)$ .

The sequence of Local Max-Margin schemes is therefore projections to local (convex) feasible sets followed by aggregation, which is the Parallel Projection Method (PPM) in literature Gilbert (1972); Combettes (1994). Using Lemma 2, we establish the relation between Local-GD and PPM: the model from Local-GD converges to the model from PPM in direction.

339 340

3.3 CONVERGENCE TO GLOBAL FEASIBLE SET

Now we use the properties of PPM to characterize the performance of Local-GD in classification.
 In Combettes (1994), the convergence of PPM has been provided for a relaxed version. The direct average considered in this work can be seen as a special case of the relaxed version, and the following lemma holds.

Lemma 3 (Theorem 1 and Proposition 8, Combettes (1994)). Suppose all the local feasible sets  $C_{i,i} = 1,2,...$  are closed and convex, and the intersection  $\bar{C}$  is not empty. Then for any initial point  $\bar{w}_{0}^{0}$ , the global model  $\bar{w}_{0}$  generated by PPM converges to a point in the global feasible set  $\bar{C}$ .

This lemma guarantees that  $\bar{w}_0^K$  will converge to the intersection of the convex sets after many rounds of iteration, however we are not sure which exact point it would converge to.

Similar to linear regression case, we also compare the global model obtained from Local-GD to the centralized model trained with all of data in one place. From the implicit bias of gradient descent on exponential-tailed loss Soudry et al. (2018), the centralized model trained with exponential loss will converge in direction to the solution of a Max-Margin problem:

 $\min_{w \in \mathbb{R}^d} \|w\| \quad \text{s.t.} \quad y_{ij} x_{ij}^T w \ge 1, \quad i = 1, 2, ..., M, \quad j = 1, 2, ..., N.$ (15)

This problem is actually the problem of hard margin support vector machine (SVM). The constraints in equation 15 include all the local datasets, and form the global feasible set  $\overline{C}$ . That is, the centralized model would converge to the minimum norm solution in global feasible set in direction.

361 Combining Lemma 2, Lemma 3 and result of centralized model, we immediately have:

**Theorem 2.** For linear classification problem with exponential loss, suppose initial point is  $w_0^0 = 0$ . The aggregated global model  $w_0^K$  obtained by Local-GD with a large number of local steps converges in direction to one point in the global feasible set  $\overline{C}$ , while the centralized model converges in direction to the minimum norm point in the same set.

The main difference from linear regression is that we cannot guarantee the global model obtained by Local-GD to converge exactly to the centralized model in classification, but show that it converges to the same global feasible set as the centralized solution. Nevertheless, in experiments the test accuracy of the Local-GD model is very similar to that of centralized model. To theoretically support that the Local-GD model converges to the centralized model, we propose a slightly Modified Local-GD by just changing the aggregation method, and showing that it converges to the centralized model exactly.

372 373

366

356 357

- 4 MODIFIED LOCAL-GD: CONVERGENCE TO CENTRALIZED MODEL
- 374 375

Previously, we established the connection between Local-GD and PPM in linear classification. In

Previously, we established the connection between Local-GD and PPM in linear classification. In Combettes (1996) it was shown that if the aggregation method is modified to incorporate the influence of the initial point  $\overline{w}_0^0$  in PPM, then the sequence generated by PPM will converge to a specific point 378 in global feasible set C with minimum distance to this initial point. Denote  $P_{c}(\cdot)$  as the projection 379 operator onto the global feasible set C. Formally we have the following lemma. 380

**Lemma 4** (Theorem 5.3, Combettes (1996)). Suppose  $\overline{C}$  is not empty. For any initial point  $\overline{w}_0^0$ , when the local models are aggregated as

$$\bar{w}_{0}^{k+1} = (1 - \alpha^{k+1})\bar{w}_{0}^{0} + \alpha^{k+1} \left(\frac{1}{M} \sum_{i=1}^{M} P_{i}(\bar{w}_{0}^{k})\right), \tag{16}$$

where  $\{\alpha^k\}$  satisfy  $(i)\lim_{k\to\infty} \alpha^k = 1, (ii)\sum_{k\geq 0}(1-\alpha^k) = \infty, (iii)\sum_{k\geq 0}|\alpha^{k+1}-\alpha^k| < \infty$ , then the global model generated by PPM will converge to the point  $P_c(\bar{w}_0^0)$ .

389 That is the sequence generated by PPM would converge to the point in global feasible set,  $\overline{C}$ , with 390 minimum distance to  $\bar{w}_0^0$ . The modified aggregation method is a linear combination of initial point and current average of local projected points. One example of the sequence  $\{\alpha^k\}$  satisfying the conditions 391 is  $\alpha^k = 1 - \frac{1}{k+1}$ . 392

393 If we start from  $\bar{w}_0^0 = 0$ , then the point  $P_c(\bar{w}_0^0)$  is exactly the minimum norm point in the global feasible 394 set. It shows the PPM can exactly converge to the minimum norm point as the centralized model. 395 Based on this result, we propose a Modified Local-GD algorithm shown in Algorithm 3, which only 396 differs from Local-GD in the aggregation method. 397

Algorithm 3 MODIFIED LOCAL-GD.

398 399 1: **Input:** learning rate  $\eta$ . 400 2: Initialize  $w_0^0$ 401 3: **for** k = 0 to K - 1 **do** The central node sends global model  $w_0^k$  to all compute nodes. 402 4: 5: for i = 1 to i = M do 403 compute node *i* updates local model starting from  $w_0^k$ :  $w_i^{k+1} = \text{LocalUpdate}(w_0^k)$ . 6: 404 compute node *i* sends back the updated local model  $w_0^{k+1}$ . 7: 405 8: end for 406 The central node aggregates all the local models:  $w_0^{k+1} = (1 - \alpha^k) w_0^0 + \alpha^k \left(\frac{1}{M} \sum_{i=1}^M w_i^k\right)$ . 9: 407 408 10: end for 11: **Output:**  $w_0^K$ . 409

411 We still need to prove a lemma analogous to Lemma 2 to establish the equivalence between Modified 412 Local-GD and Modified PPM, which is omitted here due to space limit (Please refer to Appendix E 413 and the proof is very similar to proof in Lemma 2). From the equivalence, Lemma 4, and result of 414 the centralized model, we can have the following theorem:

415 **Theorem 3.** For linear classification problem, suppose the initial point is  $w_0^0 = 0$ . Then the global 416 model  $w_0^K$  obtained by Modified Local-GD (Algorithm 3) converges in direction to the centralized 417 model obtained from (15). 418

Unlike the vanilla Local-GD, which is only guaranteed to converge to the global feasible set, the Modi-419 fied Local-GD is guaranteed to converge to the centralized model in direction. Unlike linear regression, 420 the convergence is established *in direction* since the solution on exponential loss could go to infinity. 421

422 Note that if we start from  $\bar{w}_0^0 = 0$ , the aggregation in Modified Local-GD becomes 423  $w_0^{k+1} = \frac{k}{k+1} \left( \frac{1}{M} \sum_{i=1}^M w_i^k \right)$ , which is just a *scaling* of vanilla aggregation with a parameter 424 less than 1. Thus we can see experimentally they usually converge to the same point and Modified 425 Local-GD converges slightly slower. In summary, Modified Local-GD theoretically illustrates that 426 the global model trained from Local-GD could obtain similar performance as the centralized model. 427

- 5 **EXPERIMENTS**
- 429 430

428

410

381

382

384

386

387

388

- **Linear Regression.** We simulated 10 compute nodes, each with 50 training samples. The label 431 vector  $y_i$  at *i*-th compute node is exactly generated as (2), where ground truth model  $w_i^*$  is Gaussian

432 vector with each element following  $\mathcal{N}(0,4)$ . Each ground truth model at different compute nodes 433 is independently generated, thus the datasets can be very different from each other. The data matrix 434  $X_i$  also follows Gaussian distribution, with each element being  $\mathcal{N}(0,1)$ , and  $z_i$  is a Gaussian vector 435 with  $\mathcal{N}(0,0.04)$ . In Local-GD, the number of local steps is L = 200, number of rounds is also R = 200, 436 and the learning rate  $\eta = 0.0001$ . Actually it just take a few local steps to converge locally at each 437 round, but we set a large number of local steps to show it can be large at  $O(\sqrt{T})$ , where T = L \* R is the number of total iterations. We tested the global model (G) from Local-GD on squared loss, centralized 438 model (C) trained from global dataset on squared loss, closed form of global model (G-Closed) in 439 (6), closed form of centralized model (C-Closed) as solution of problem (7). The centralized model 440 is trained 10000 steps with learning rate 0.0001. 441

Fig. 1(a) displays the difference between global model and trained centralized model, and difference between global model and closed form of global model at each round when dimension is d = 1500, which is locally and globally overparameterized. The difference between two models is  $||w_1 - w_2||/d$ . We can see the difference between global model and its closed form is always 0 during the training process, verifying the correctness of the derived closed form (6). The global model can gradually converge to the centralized model with more communication rounds.

448 Fig. 1(b) displays the difference between global model and centralized model, global model and 449 its closed form, and centralized model and its closed form, with respect to model dimension. Since it is always locally overparameterized, the difference between global model and the closed form is 450 451 always zero. The difference between global model and centralized model has an obvious peak around 500, which is the number of total samples. The phenomenon that global model converges exactly 452 to centralized model only happens when the model is sufficiently overparameterized. Fig. 1(c) shows 453 the generalization error of global model and centralized model in linear regression. Since the data 454 matrix is Gaussian, the generalization error of model w can be computed as  $\frac{1}{M}\sum_{i=1}^{M} ||w - w_i^*||^2$ . We 455 plot the generalization error divided by d. It is shown the global model and centralized model can 456 get the same performance when model is sufficiently overparameterized. 457

458 **Classification.** For linear classification, we also have 10 compute nodes, with 50 samples at each. 459 The dataset is generated as  $y_{ij} = \operatorname{sign}(x_{ij}^T w_i^*)$ , where ground truth model is  $w_i^* = w^* + z_i$ , and  $w^*$  is a 460 Gaussian vector randomly chosen,  $z_i$  is a Gaussian noise. The data matrix  $X_i$  is still a Gaussian matrix. 461 This setting makes sure the datasets across compute nodes are different from each other, meanwhile they are not totally different such that there may be a non-empty global feasible set. The global model 462 is trained exactly as Local-GD for linear classification, where the  $\lambda$  is 0.0001. Actually we can use 463 the standard logistic regression without regularization to obtain the same performance. But aligning 464 with theoretical proof, we still use exponential loss with a very weak regularization. We tested global 465 model (G), global model from Modified Local-GD (G-Mod), centralized model (C) from minimizing 466 exponential loss on all the data, centralized SVM model (S) solved from problem (15) via standard 467 scikit-learn package. Note that centralized model and SVM model are the final trained model in the 468 plots. In Local-GD, the number of local steps is L = 150, the number of communication rounds is 469 R = 120, and the learning rate is  $\eta = 0.01$ . The centralized model is trained with same learning rate 470 for 20000 steps. Since our theory claimed the convergence is established in direction, the difference 471 computed here for two models is defined after normalization  $||w_1/||w_1|| - ||w_2/||w_2|||$ .

472 Fig. 1(d) shows the difference between these models with respect to the number of rounds R when 473 dimension is d = 1500. We can see both global model and modified global model converges to the 474 centralized model in direction, and the centralized model is close to the SVM model but there is small 475 gap. Fig. 1(e) displays the difference with respect to dimension d. It is seen the difference between 476 global model and centralized model gradually decreases with larger dimensions. The modified global 477 model is almost the same as the centralized model but the gap is slightly larger since it converges slower 478 than vanilla global model with same number of rounds. Fig. 1(f) shows the difference from SVM model with dimension. The gap between the models to SVM model also decreases with larger d. Finally Fig. 479 1(g) plots the test accuracy of these models. The test datasets are also constructed by the same generation 480 of training set with different data matrix. Although the accuracy decreases with larger dimension 481 (relatively fewer samples), the performance of global models and centralized models are always similar. 482

483

Fine-Tuning of Pretrained Neural Network. We further fine-tuned the ResNet50 model pretrained
 with ImageNet dataset on CIFAR10 dataset. Only the final linear layer is trained during the process,
 while the rest of model is fixed. The 50000 samples are distributed on 10 compute nodes. For *i*-th

> 504 505

506

507

509

510

511

512

513

514

521 522

523

524

525

526

527

528



750 1000 1250 1500 1750 2000 Dimension 750 1000 1250 1500 1750 200 Dimension 500 250 250 500 (b) (c) 0.40 0.35 0.30 ž 0.25 0.20 0.15 0.10 0.05 500 1000 1500 2000 2500 3000 3500 4000 Dimension 500 1000 1500 2000 2500 3000 3500 400 Dimension (f) (e) Difference Accuracy 80 -G-C-M 70 **6**0 A 50 rugo 40 est 30 20 ÷ 10 20 30 40 Number of Rounds 20 30 40 Number of Rounds (h) (i)

Diff-G-C

15

Error-

50 60

515 Figure 1: From left to right, from up to bottom (LR: Linear Regression, LC: Linear Classification, NN: Neural 516 Network): (a) Difference between models with communication rounds in LR. (b) Difference between models with dimension in LR. (c) Generalization error with dimension in LR. (d) Difference between global model and 517 centralized model with R in LC. (e) Difference between global model and centralized model with d in LC. (f) 518 Difference from SVM model with d in LC. (g) Test Accuracy in LC. (h) Difference between global model and 519 centralized model with communication rounds in NN. (i) Test accuracy with communication rounds in NN. 520

compute node, the half of local dataset belongs to the same class, and the other half consists of rest of 9 classes evenly, which forms a heterogeneous data distribution. The centralized model is trained with the whole CIFAR10 dataset. The models are trained with cross entropy loss and SGD. The learning rate is 0.01 and the batch size is 128. The number of local steps is L=60 and number of communication rounds is R = 60. The centralized model is trained with the same learning rate for 3600 steps. We plot the difference between the linear layer and test accuracy with number of rounds in Fig. 1 (h) and (i). Again the difference is defined in direction. We can see the difference gradually decreases to a small error floor and the accuracy of global models and centralized model is very similar at last.

533

#### 6 **CONCLUSIONS**

534 In this work we analyzed the implicit bias in distributed setting, and characterized the dynamics of 535 global model trained from Local-GD with many local steps based on the implicit bias. We showed 536 that the global model can converge to centralized model for both linear regression and classification 537 tasks, providing a new perspective why Local-GD (FedAvg) works well in practice even with a large number of local steps on heterogeneous data. One potential future work is to extend the analysis of 538 Local-GD to neural network using the developed implicit bias of deeper models Chizat & Bach (2020); Gunasekar et al. (2018b); Ji & Telgarsky (2019b); Kou et al. (2024).

| 540<br>541 | References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 542        | Heinz H Bauschke and Patrick L Combettes. Convex Analysis and Monotone Operator Theory in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 543        | Hilbert Spaces. Springer, 2011.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 544        | $\mathbf{M} = \mathbf{M} + $ |
| 545        | Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need to understand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 546        | kerner learning. In <i>International Conjerence on Machine Learning</i> , pp. 341–349. PMLR, 2018.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 547        | Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 548        | practice and the classical bias-variance trade-off. Proceedings of the National Academy of Sciences,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 549        | 116(32):15849–15854, 2019.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 550        | Matias D Cattaneo, Jason M Klusowski, and Boris Shigida. On the implicit bias of adam arXiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 551        | preprint arXiv:2309.00079. 2023.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 552        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 553        | Zachary Charles, Zachary Garrett, Zhouyuan Huo, Sergei Shmulyian, and Virginia Smith. On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 554        | large-cohort training for federated learning. Advances in neural information processing systems,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 555        | 54.20401-20475, 2021.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 556        | Hong-You Chen and Wei-Lun Chao. Fedbe: Making bayesian model ensemble applicable to federated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 557        | learning. In International Conference on Learning Representations, 2021.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 558        | Langic Chizet and Francis Bach Implicit bias of gradient descent for wide two laver neural networks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 559<br>560 | trained with the logistic loss. In <i>Conference on learning theory</i> , pp. 1305–1338. PMLR, 2020.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 561        | Liam Collins, Hamed Hassani, Arvan Mokhtari, and Saniay Shakkottai. Fedayg with fine tuning:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 562        | Local updates lead to representation learning. Advances in Neural Information Processing Systems,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 563        | 35:10572–10586, 2022.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 564        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 565        | Patrick L Combettes. Inconsistent signal feasibility problems: Least-squares solutions in a product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 566        | space. IEEE Transactions on Signal Trocessing, 42(11).2955–2900, 1994.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 567        | Patrick L Combettes. The convex feasibility problem in image recovery. In Advances in imaging and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 568        | electron physics, volume 95, pp. 155–270. Elsevier, 1996.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 569        | Patrick I. Combettes Convex set theoretic image recovery by extrapolated iterations of parallel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 570<br>571 | subgradient projections. <i>IEEE Transactions on Image Processing</i> , 6(4):493–506, 1997.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 572        | Michael Crawshaw, Yajie Bao, and Mingrui Liu. Federated learning with client subsampling, data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 573        | heterogeneity, and unbounded smoothness: A new algorithm and lower bounds. Advances in Neural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 574        | Information Processing Systems, 36, 2023.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 575        | Alvaro Rodolfo de Pierro and Alfredo Noel Jusem A parallel projection method of finding a common                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 576        | point of a family of convex sets. Inst. de matemática pura e aplicada. Conselho nacional de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 577        | desenvolvimento, 1984.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 570        | Verse Der Mahammed Mahdi Kassasi sa 1 Mahada 1 Mahada 1 Mahada 1 Mahada 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 580        | ruyang Deng, Monammad Mandi Kamani, and Menrdad Mandavi. Local sgd optimizes overparam-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 500        | and Statistics np. 6840–6861 PMI R 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 582        | <i>and Statistics</i> , pp. 0010-0001.1 (1114), 2022.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 583        | Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. <i>arXiv</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 584        | preprint arXiv:1810.04805, 2018.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 585        | Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor Darrell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 586        | Decaf: A deep convolutional activation feature for generic visual recognition. In <i>International</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 587        | conference on machine learning, pp. 647–655. PMLR, 2014.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 588        | Arthur Douilland Oirmon Eana Andrai A Duay Dockie Okharania Vari Darahan Adhi ya K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 589        | Armur Doumaru, Qixuan Feng, Andrei A Kusu, Kachita Chnaparia, Yani Donchev, Adniguna Kuncoro,<br>Marc' Aurelio Ranzato, Arthur Szlam, and Jiajun Shan, Diloco: Distributed low communication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 590        | training of language models. arXiv preprint arXiv:2311.08105 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 591        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 592        | Itay Evron, Edward Moroshko, Rachel Ward, Nathan Srebro, and Daniel Soudry. How catastrophic catastrophic forgetting be in linear regression? In <i>Conference on Learning Theory</i> , pp. 4028–407 PMLR, 2022.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 593        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| 594<br>595<br>596               | Itay Evron, Edward Moroshko, Gon Buzaglo, Maroun Khriesh, Badea Marjieh, Nathan Srebro, and Daniel Soudry. Continual learning in linear classification on separable data. <i>arXiv preprint arXiv:2306.03534</i> , 2023.                                                                                                                                  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 597<br>598<br>599<br>600        | Spencer Frei, Gal Vardi, Peter Bartlett, and Nati Srebro. The double-edged sword of implicit bias: Generalization vs. robustness in relu networks. <i>Advances in Neural Information Processing Systems</i> , 36, 2024.                                                                                                                                   |
| 601<br>602                      | Peter Gilbert. Iterative methods for the three-dimensional reconstruction of an object from projections. <i>Journal of theoretical biology</i> , 36(1):105–117, 1972.                                                                                                                                                                                     |
| 603<br>604<br>605               | Daniel Goldfarb and Paul Hand. Analysis of catastrophic forgetting for random orthogonal transformation tasks in the overparameterized regime. In <i>International Conference on Artificial Intelligence and Statistics</i> , pp. 2975–2993. PMLR, 2023.                                                                                                  |
| 607<br>608<br>609               | Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in terms of optimization geometry. In <i>International Conference on Machine Learning</i> , pp. 1832–1841. PMLR, 2018a.                                                                                                                                       |
| 610<br>611                      | Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent on linear convolutional networks. <i>Advances in neural information processing systems</i> , 31, 2018b.                                                                                                                                                  |
| 612<br>613<br>614               | Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data distribution for federated visual classification. <i>arXiv preprint arXiv:1909.06335</i> , 2019.                                                                                                                                                              |
| 615<br>616<br>617               | Baihe Huang, Xiaoxiao Li, Zhao Song, and Xin Yang. Fl-ntk: A neural tangent kernel-based framework for federated learning analysis. In <i>International Conference on Machine Learning</i> , pp. 4423–4434. PMLR, 2021.                                                                                                                                   |
| 618<br>619<br>620               | Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural networks using pipeline parallelism. <i>Advances in neural information processing systems</i> , 32, 2019.                                                             |
| 621<br>622<br>623               | Sami Jaghouar, Jack Min Ong, and Johannes Hagemann. Opendiloco: An open-source framework for globally distributed low-communication training. <i>arXiv preprint arXiv:2407.07852</i> , 2024.                                                                                                                                                              |
| 624<br>625                      | Divyansh Jhunjhunwala, Shiqiang Wang, and Gauri Joshi. Fedexp: Speeding up federated averaging via extrapolation. In <i>The Eleventh International Conference on Learning Representations</i> , 2023.                                                                                                                                                     |
| 626<br>627<br>628               | Ziwei Ji and Matus Telgarsky. The implicit bias of gradient descent on nonseparable data. In <i>Conference on Learning Theory</i> , pp. 1772–1798. PMLR, 2019a.                                                                                                                                                                                           |
| 629<br>630                      | Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear networks. In <i>International Conference on Learning Representations</i> , 2019b.                                                                                                                                                                                         |
| 631<br>632<br>633<br>634<br>635 | Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. Smart:<br>Robust and efficient fine-tuning for pre-trained natural language models through principled<br>regularized optimization. In <i>Proceedings of the 58th Annual Meeting of the Association for</i><br><i>Computational Linguistics</i> , pp. 2177–2190, 2020. |
| 636<br>637<br>638               | Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances and open problems in federated learning. <i>arXiv preprint arXiv:1912.04977</i> , 2019.                                                                         |
| 639<br>640<br>641               | Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In <i>International Conference on Machine Learning</i> , pp. 5132–5143. PMLR, 2020.                                                                                   |
| 642<br>643<br>644               | Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory for local sgd on identical and heterogeneous data. In <i>International Conference on Artificial Intelligence and Statistics</i> , pp. 4519–4529. PMLR, 2020.                                                                                                                     |
| 646<br>647                      | Jakub Konečný, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and Dave Bacon. Federated learning: Strategies for improving communication efficiency. <i>arXiv preprint arXiv:1610.05492</i> , 2016.                                                                                                                              |

| 648<br>649<br>650 | Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models transfer better?<br>In <i>Proceedings of the IEEE/CVF conference on computer vision and pattern recognition</i> , pp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 651               | 2661–2671, 2019.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 652               | Yiwen Kou, Zixiang Chen, and Quanquan Gu. Implicit bias of gradient descent for two-layer relu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 653               | and leaky relu networks on nearly-orthogonal data. Advances in Neural Information Processing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 654               | Systems, 36, 2024.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 655               | Tian Li Anit Kumar Sahu Manzil Zahaar Maziar Sanjahi Amaat Talwalkar and Virginia Smith                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 656               | Federated optimization in heterogeneous networks. <i>Proceedings of Machine learning and systems</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 657               | 2:429–450, 2020a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 658               | T' = T' O' = T O' O' = T O'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 659               | through personalization. In International Conference on Machine Learning, pp. 6357–6368, DMLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 660               | 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 661               | 2021.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 662<br>663        | Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of FedAvg on non-IID data. In <i>International Conference on Learning Representations</i> , 2020b.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 664               | Sen Lin Peizhong III Yinghin Liang and Ness Shroff Theory on forgetting and generalization of con-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 665<br>666        | tinual learning. In International Conference on Machine Learning, pp. 21078–21100. PMLR, 2023.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 667               | Tao Lin, Sebastian U Stich, Kumar Kshitij Patel, and Martin Jaggi. Don't use large mini-batches, use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 668               | local SGD. In International Conference on Learning Representations, 2019.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 669               | Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera v Arcas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 670               | Communication-efficient learning of deep networks from decentralized data. In Artificial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 671               | intelligence and statistics, pp. 1273–1282. PMLR, 2017.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 672               | Mor Shnigel Nacson, Nathan Srebro, and Daniel Soudry. Stochastic gradient descent on separable data:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 673               | Exact convergence with a fixed learning rate. In <i>The 22nd International Conference on Artificial</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 674               | Intelligence and Statistics, pp. 3051–3059. PMLR, 2019.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 675               | $\mathbf{T}_{\mathbf{r}}^{\prime} = 1 \mathbf{C}_{\mathbf{r}}^{\prime} \mathbf{C} \mathbf{D}_{\mathbf{r}} + 1 \mathbf{E}_{\mathbf{r}}^{\prime} \mathbf{D}_{\mathbf{r}}^{\prime} \mathbf{C}_{\mathbf{r}}^{\prime} \mathbf{A} \mathbf{U}_{\mathbf{r}}^{\prime} \mathbf{I} \mathbf{D}_{\mathbf{r}}^{\prime} D$ |
| 676<br>677        | over-parameterized models. <i>arXiv preprint arXiv:2201.12719</i> , 2022.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 678               | Sashank J Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 679<br>680        | Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In <i>International Conference on Learning Representations</i> , 2021.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 681               | Hamza Requied Mohammed El Haniri Mohamed El Kamili and Abdellatif Kohbane. A comparative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 682               | evaluation of fedayg and per-fedayg algorithms for dirichlet distributed heterogeneous data. In 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 683<br>684        | 10th International Conference on Wireless Networks and Mobile Communications (WINCOM), pp. 1–6. IEEE, 2023.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 685               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 686               | Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep learning in tensorflow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 687               | urxiv preprint urxiv. 1802.03739, 2018.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 880               | Bingqing Song, Prashant Khanduri, Xinwei Zhang, Jinfeng Yi, and Mingyi Hong. Fedavg converges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 600               | to zero training loss linearly for overparameterized multi-layer neural networks. In <i>International</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 691               | Conjerence on Machine Learning, pp. 32304–32330. PMLR, 2023.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 692               | Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 693               | bias of gradient descent on separable data. The Journal of Machine Learning Research, 19(1):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 694               | 2822–2878, 2018.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 695               | Sebastian U Stich. Local SGD converges fast and communicates little. In International Conference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 696               | on Learning Representations, 2019.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 697               | Cont T Dinh Nauvan Tran and Josh Nauvan Demonslized federated learning with manage and lag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 698               | Advances in Neural Information Processing Systems 33:21394–21405 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 699               | 1 avances in 11 carai information 1 rocessing systems, 55.21577-21705, 2020.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 700               | Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 701               | inconsistency problem in heterogeneous federated optimization. Advances in neural information processing systems, 33:7611–7623, 2020.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| 702<br>703<br>704        | Jianyu Wang, Rudrajit Das, Gauri Joshi, Satyen Kale, Zheng Xu, and Tong Zhang. On the unreasonable effectiveness of federated averaging with heterogeneous data. <i>Transactions on Machine Learning Research</i> , 2024.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 705<br>706<br>707        | Feijie Wu, Song Guo, Zhihao Qu, Shiqi He, Ziming Liu, and Jing Gao. Anchor sampling for federated learning with partial client participation. In <i>International Conference on Machine Learning</i> , pp. 37379–37416 PMLR 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 708<br>709<br>710        | Show Street Str |
| 711<br>712<br>713<br>714 | <ul> <li>Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted sgd with faster convergence and less communication: Demystifying why model averaging works for deep learning. In <i>Proceedings of the AAAI conference on artificial intelligence</i>, pp. 5693–5700, 2019.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 715<br>716               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 717<br>718               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 719                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 720                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 721                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 722                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 723                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 724                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 726                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 727                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 728                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 729                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 730                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 731                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 732                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 733                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 734                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 730                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 737                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 738                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 739                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 740                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 741                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 742                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 743                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 744                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 745                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 740                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 748                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 749                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 750                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 751                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 752                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 753                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 754                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 755                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

# A RELATED WORK

757

758 Convergence of Local-GD. When data distribution is homogeneous, many works have been done 759 to establish convergence analysis for Local (Stochastic) GD Stich (2019); Yu et al. (2019); Khaled et al. 760 (2020). With a "properly" small number of local steps, the dominating convergence rate is not affected. 761 Further various assumptions have been made to handle data heterogeneity and develop convergence 762 analysis Li et al. (2020b); Karimireddy et al. (2020); Khaled et al. (2020); Reddi et al. (2021); Wang 763 et al. (2020); Crawshaw et al. (2023). For strongly convex and smooth loss functions, the number 764 of local steps should not be larger than  $O(\sqrt{T})$  for i.i.d data Stich (2019) and non-i.i.d. data Li et al. (2020b). However, in practice Local-GD (FedAvg) works well in many applications McMahan et al. 765 (2017); Charles et al. (2021), even in training large language models Douillard et al. (2023); Jaghouar 766 et al. (2024). In Wang et al. (2024), the authors argue that the previous theoretical assumption does not 767 align with practice and proposed a client consensus hypothesis to explain the effectiveness of FedAvg 768 in heterogeneous data. But they do not consider the impact of overparameterization on distributed 769 training. There are some works incorporating the property of zero training loss of overparameterized 770 neural networks into the conventional convergence analysis of FedAvg Huang et al. (2021); Deng 771 et al. (2022); Song et al. (2023); Qin et al. (2022). However, they do not guarantee which point FedAvg 772 can converge to. Our work is different from these works as: 1. We analyze which point the Local-GD 773 can converge to, which is a more elementary problem before obtaining the convergence rate; 2. We 774 use implicit bias as a technical tool to analyze the overparameterized FL.

775 **Implicit Bias.** Soudry et al. (2018) is the first work to show the gradient descent converges to 776 a max-margin direction on linearly separable data with a linear model and exponentially-tailed 777 loss function. Ji & Telgarsky (2019a) has provided an alternative analysis and extended this to 778 non-separable data. The theory of implicit bias has been further developed, for example, for wide 779 two-layer neural networks Chizat & Bach (2020), deep linear models Ji & Telgarsky (2019b), linear 780 convolutional networks Gunasekar et al. (2018b), two-layer ReLU networks Kou et al. (2024) etc. Beyond gradient descent, more algorithms have been considered, including gradient descent with 781 momentum Gunasekar et al. (2018a), SGD Nacson et al. (2019), Adam Cattaneo et al. (2023), AdamW 782 Xie & Li (2024). Recently, implicit bias has also been used to characterize the dynamics of continual 783 learning, on linear regression Evron et al. (2022); Goldfarb & Hand (2023); Lin et al. (2023), and linear 784 classification Evron et al. (2023). In Evron et al. (2023), gradient descent on continually learned tasks 785 is related to Projections onto Convex Sets (POCS) and shown to converge to a *sequential* max-margin 786 scheme. In our work we consider the implicit bias of gradient descent in distributed setting, which 787 is related to a different parallel projection scheme by projecting onto constraint sets *simultaneously*. 788

Parallel Projection. Parallel projection methods are a family of algorithms to find a common point 789 across multiple constraint sets by projecting onto these sets in parallel. These methods are widely 790 used in feasibility problems in signal processing and image reconstruction Bauschke & Combettes 791 (2011). The straightforward average of multiple projections is known as the simultaneous iterative 792 reconstruction technique (SIRT) in Gilbert (1972). Then de Pierro & Iusem (1984) studied the 793 convergence of PPM for a relaxed version, and Combettes (1994) further generalized the result to 794 inconsistent feasibility problems. In Combettes (1997), an extrapolated parallel projection method was 795 proposed to accelerate the convergence. We note that Jhunjhunwala et al. (2023) used this extrapolation 796 to accelerate FedAvg. However, it was just inspired by the similarity between parallel projection 797 method and FedAvg, while in this work we rigorously prove the relation between PPM and FedAvg using implicit bias of gradient descent. 798

799 800

801 802

803

# **B** ADDITIONAL EXPERIMENTS

# B.1 LINEAR CLASSIFICATION WITH DIRICHLET DISTRIBUTION

In federated learning, the Dirichlet distribution is usually used to generate heterogeneous datasets across the compute nodes Hsu et al. (2019); Chen & Chao (2021); Reguieg et al. (2023). For binary classification problem, the Dirichlet distribution  $Dir(\alpha)$  is used to unbalance the positive and negative samples. In the experiments we have 10 compute nodes. We generate 500 samples as  $y_i = sign(x_i^T w^*)$ for  $i \in [500]$  and use  $Dir(\alpha)$  to distribute the 500 samples across 10 compute nodes. Note that the number of samples at each compute node is not necessarily identical. Fig. 2 shows performance of Local-GD for linear classification with different parameter  $\alpha$  in Dirichlet distribution. The  $\lambda$  is set to



Figure 2: Local-GD on linear classification with Dirichlet distribution.

be 0.0001 and model dimension is fixed as d = 1500. The number of local steps L is 150 and number of communication rounds R is 150. The learning rate is 0.01. The centralized model is trained with the same learning rate for 22500 steps. We can see the global model and modified global model still converge to the centralized model in direction and get similar test accuracy.

## C PROOFS IN SECTION 2

C.1 PROOF OF LEMMA 1

At each compute node, the local model converges to the solution of problem

$$\min_{w_i} \|w_i - w_0^k\|^2 \quad \text{s.t.} \quad X_i w_i = y_i.$$
(17)

Using Lagrange multipliers, we can write the Lagrangian as

$$\frac{1}{2} \|w_i - w_0^k\|^2 + \beta^T (X_i w_i - y_i)$$
(18)

Setting the derivative to 0, we know the optimal  $\tilde{w}_i$  satisfies

$$\tilde{w}_i - w_0^k + X_i^T \beta = 0, \tag{19}$$

and then

$$\tilde{w}_i = w_0^k - X_i^T \beta. \tag{20}$$

Also by the constraint  $y_i = X_i \tilde{w}_i$ , we can get

$$y_i = X_i w_0^k - (X_i X_i^T) \beta.$$

$$\tag{21}$$

Since the model is overparameterized (d > N),  $X_i X_i^T \in \mathbb{R}^{d \times d}$  is invertible. Then we have

$$\beta = -(X_i X_i^T)^{-1} (y_i - X_i w_0^k).$$
<sup>(22)</sup>

Plugging the  $\beta$  back, we can get the closed form solution as

$$\tilde{w}_i = w_0^k + X_i^T (X_i X_i^T)^{-1} (y_i - X_i w_0^k).$$
(23)

We update the local model  $w_i^{k+1} = \tilde{w}_i$ .

872 We can also write the closed form solution as

$$w_i^{k+1} = w_0^k + X_i^T (X_i X_i^T)^{-1} (y_i - X_i w_0^k) = (I - X_i^T (X_i X_i^T)^{-1} X_i) w_0^k + X_i^T (X_i X_i^T)^{-1} y_i$$
(24)

If we plug in the generative model  $y_i = X_i w_i^* + z_i$ , then the solution is

$$w_{i}^{k+1} = (I - X_{i}^{T} (X_{i} X_{i}^{T})^{-1} X_{i}) w_{0}^{k} + X_{i}^{T} (X_{i} X_{i}^{T})^{-1} X_{i} w_{i}^{*} + X_{i}^{T} (X_{i} X_{i}^{T})^{-1} z_{i}$$
  
=  $(I - P_{i}) w_{0}^{k} + P_{i} w_{i}^{*} + X_{i}^{\dagger} z_{i}.$  (25)

where  $P_i = X_i^T (X_i X_i^T)^{-1} X_i$  is the projection operator to the row space of  $X_i$ , and  $X_i^{\dagger} = X_i^T (X_i X_i^T)^{-1}$  is the pseudo inverse of  $X_i$ . It is an interpolation between the initial global model  $w_0^k$  and the local true model  $w_i^*$ , plus a noise term.

After aggregating all the local models, the global model is

$$w_0^{k+1} = \frac{1}{m} \sum_{i=1}^m (I - P_i) w_0^k + \frac{1}{m} \sum_{i=1}^m P_i w_i^* + \frac{1}{m} \sum_{i=1}^m X_i^\dagger z_i$$
  
=  $(I - \bar{P}) w_0^k + \bar{Q} + \bar{Z},$  (26)

where  $\bar{P} = \frac{1}{m} \sum_{i=1}^{m} P_i, \bar{Q} = \sum_{i=1}^{m} P_i w_i^*, \bar{Z} = \frac{1}{m} \sum_{i=1}^{m} X_i^{\dagger} z_i.$ 

After K rounds of communication, the global model is

$$w_0^K = (I - \bar{P})^K w_0^0 + \sum_{k=0}^{K-1} (I - \bar{P})(\bar{Q} + \bar{Z}).$$
(27)

If we start from  $w_0^0 = 0$ , then the solution will converge to  $\sum_{k=0}^{K-1} (I - \bar{P})(\bar{Q} + \bar{Z})$ .

C.2 PROOF OF THEOREM 1

901 We know the difference between global model and centralized model is iteratively projected onto the 902 null space of span of row spaces of  $X_i$ s: 

$$w_0^{k+1} - w_c = (I - \bar{P})(w_0^k - w_c).$$
<sup>(28)</sup>

We can formally describe it as follows. Since the problem is overparameterized globally, we can assume each  $X_i$  has full rank N. We apply singular value decomposition (SVD) to  $X_i$  as  $X_i = U_i \Sigma_i V_i^T$ , where  $U_i \in \mathbb{R}^{N \times N}, V_i \in \mathbb{R}^{d \times N}$ . Then  $P_i = X_i^T (X_i X_i^T)^{-1} X_i = V_i V_i^T$ , which is the projection matrix to the row space of  $X_i$ .

910 We apply eigenvalue decomposition on  $\overline{P}$  to get  $\overline{P} = Q\Sigma Q^T$ , where  $Q \in \mathbb{R}^{d \times n'}$  and n' is the rank of 911  $\overline{P}$ . It satisfies  $N \le n' \le MN$ . Since  $\overline{P}$  is a linear combination of  $P_i$ s, the space of column space of 912 Q is the space spanned by all the vectors  $v_{ij}, i=1,...,M, j=1,...,N$ .

914 We also construct a matrix  $Q' \in \mathbb{R}^{d \times (d-n')}$ , which consists of orthonomal vectors perpendicular to 915 Q. We can project the difference onto column space of Q and Q' respectively.

 $Q^{T}(w_{0}^{k+1}-w_{c}) = Q^{T}(I-Q\Sigma Q^{T})(w_{0}^{k}-w_{c}) = (I-\Sigma)Q^{T}(w_{0}^{k}-w_{c})$  $Q'^{T}(w_{0}^{k+1}-w_{c}) = Q'^{T}(I-Q\Sigma Q^{T})(w_{0}^{k}-w_{c}) = Q'^{T}(w_{0}^{k}-w_{c})$ (29)

After K rounds of communication, we can decomposite  $w_0^K - w_c$  into two parts:

$$w_0^K - w_c = QQ^T (w_0^K - w_c) + Q'Q'^T (w_0^K - w_c).$$
(30)

Then we can obtain

$$\begin{split} & w_0^K - w_c = QQ^T(w_0^K - w_c) + Q'Q'^T(w_0^K - w_c) \\ & = Q(I - \Sigma)^K Q^T(w_0^0 - w_c) + Q'Q'^T(w_0^0 - w_c). \end{split}$$

It shows the initial difference on the column space of Q continues to decrease until zero if K is sufficiently large. And the initial difference on the null space of Q remains constant.

To show the difference  $w_0^K - w_c$  goes to zero entirely, we just need to choose an initial point such that initial difference is on the column space of Q. When we choose  $w_0^0 = 0$ , the initial difference is  $w_c$ itself. Moreover, the centralized solution  $w_c = X_c^T (X_c X_c^T)^{-1} y_c$  exactly lies in the data space spanned by vectors  $\{v_{ij}\}_{i=1,j=1}^{M,N}$  since it is a linear combination of columns of  $X_c^T$ . So if we start from  $w_0^0 = 0$ , then  $w_0^K - w_c$  will go to zero when K is sufficiently large.

# D PROOFS IN SECTION 3

In the proofs of linear classification, for ease of notation, we redefine the samples  $y_{ij}x_{ij}$  to  $x_{ij}$  to subsume the labels.

### D.1 PROOFS OF LEMMA 2

We assume  $\|w_0^k - \ln(\frac{1}{\lambda})\overline{w}_0^k\| = O(k \ln \ln \frac{1}{\lambda})$ . In this case, since  $\ln \frac{1}{\lambda}$  grows faster, when  $\lambda \to 0$ , we can have  $\lim_{\lambda \to 0} \frac{w_0^k}{\|w_0^k\|} = \frac{\overline{w}_0^k}{\|\overline{w}_0^k\|}$  for any k at order  $O\left(\frac{\ln(1/\lambda)}{\ln\ln(1/\lambda)}\right)$ . We will prove it by induction. We define global and local residuals as  $r^k = w_0^k - \ln(\frac{1}{\lambda})\overline{w}_0^k$  and  $r_i^k = w_i^k - \ln(\frac{1}{\lambda})\overline{w}_i^k$ .

When k = 0, since  $w_0^0 = \bar{w}_0^0 = 0$ ,  $r_i^0 = 0$  and the assumption trivially holds.

When  $k \ge 1$ , we have

$$\|r^{k}\| = \left\|w_{0}^{k} - \ln(\frac{1}{\lambda})\bar{w}_{0}^{k}\right\| = \frac{1}{M} \left\|\sum_{i=1}^{M} w_{i}^{k} - \ln(\frac{1}{\lambda})\bar{w}_{i}^{k}\right\|$$
$$\leq \frac{1}{M} \sum_{i=1}^{M} \left\|w_{i}^{k} - \ln(\frac{1}{\lambda})\bar{w}_{i}^{k}\right\| = \frac{1}{M} \sum_{i=1}^{M} \|r_{i}^{k}\|.$$
(31)

where the inequality is triangle inequality. We then focus on the local residual  $r_i^k$ . We choose an O(1) vector  $\tilde{w}_i^k$  and a sign  $s_i^k \in \{-1,+1\}$  to show

$$\begin{aligned} \|r_i^k\| &= \left\|w_i^k - \left[\left(\ln(\frac{1}{\lambda}) + s_i^k \ln\ln(\frac{1}{\lambda})\right)\bar{w}_i^k + \tilde{w}_i^k\right] + s_i^k \ln\ln(\frac{1}{\lambda})\bar{w}_i^k + \tilde{w}_i^k\right\| \\ &\leq \left\|w_i^k - \left[\left(\ln(\frac{1}{\lambda}) + s_i^k \ln\ln(\frac{1}{\lambda})\right)\bar{w}_i^k + \tilde{w}_i^k\right]\right\| + \ln\ln(\frac{1}{\lambda})\|\bar{w}_i^k\| + \|\tilde{w}_i^k\| \end{aligned}$$
(32)

Recall the  $w_i^k$  is the solution of optimization problem

$$\operatorname{argmin}_{w_i} f_i(w_i) = \sum_{j=1}^{N} \exp\left(-x_{ij}^T w_i\right) + \frac{\lambda}{2} \|w_i - w_0^{k-1}\|^2,$$
(33)

and the loss function  $f_i(w_i)$  is a  $\lambda$ -strongly convex function. Thus we have

970  
971 
$$\|w_i^k - w\| \le \frac{1}{\lambda} \|\nabla f_i(w)\|, \quad \text{for any } w.$$
(34)

972 Then back to 32, we have

$$\left\|r_{i}^{k}\right\| \leq \underbrace{\frac{1}{\lambda} \left\|\nabla f_{i}\left[\left(\ln\left(\frac{1}{\lambda}\right) + s_{i}^{k}\ln\ln\left(\frac{1}{\lambda}\right)\right)\bar{w}_{i}^{k} + \tilde{w}_{i}^{k}\right]\right\|}_{\|A_{i}\|} + \ln\ln\left(\frac{1}{\lambda}\right)\|\bar{w}_{i}^{k}\| + \|\tilde{w}_{i}^{k}\|.$$
(35)

Next we need to show the first term  $A_i$  is at  $O((k-1)\ln\ln(\frac{1}{\lambda}))$ , and also since  $\|\bar{w}_i^k\|$  and  $\|\tilde{w}_i^k\|$  are O(1) vectors, then  $\|r_i^k\|$  is at order  $O(k \ln\ln(\frac{1}{\lambda}))$ . After averaging,  $\|r^k\|$  is also at order  $O(k \ln\ln(\frac{1}{\lambda}))$ . This confirms the assumption made for induction.

Now we focus on the term  $A_i$ . The gradient of function  $f_i(w)$  is

$$\nabla f_i(w_i) = \sum_j -x_{ij} \exp(-x_{ij}^T w_i) + \lambda(w_i - w_0^{k-1}).$$
(36)

The term  $A_i$  is

$$\begin{aligned} A_{i} &= \frac{1}{\lambda} \nabla f_{i} \left[ \left( \ln(\frac{1}{\lambda}) + s_{i}^{k} \ln\ln(\frac{1}{\lambda}) \right) \bar{w}_{i}^{k} + \tilde{w}_{i}^{k} \right] \\ &= -\frac{1}{\lambda} \sum_{j} x_{ij} \exp\left( x_{ij}^{T} \ln\left( \lambda \ln^{-s_{i}^{k}}(\frac{1}{\lambda}) \right) \bar{w}_{i}^{k} \right) \exp\left( -x_{ij}^{T} \tilde{w}_{i}^{k} \right) + \left( \ln(\frac{1}{\lambda}) + s_{i}^{k} \ln\ln(\frac{1}{\lambda}) \right) \bar{w}_{i}^{k} + \tilde{w}_{i}^{k} - w_{0}^{k-1} \\ &= -\frac{1}{\lambda} \sum_{j} x_{ij} \left( \lambda \ln^{-s_{i}^{k}}(\frac{1}{\lambda}) \right)^{x_{ij}^{T} \bar{w}_{i}^{k}} \exp\left( -x_{ij}^{T} \tilde{w}_{i}^{k} \right) + \left( \ln(\frac{1}{\lambda}) + s_{i}^{k} \ln\ln(\frac{1}{\lambda}) \right) \bar{w}_{i}^{k} + \tilde{w}_{i}^{k} - w_{0}^{k-1}. \end{aligned}$$
(37)

Then we define the set of support vectors as  $S_i^k = \{x_{ij} | x_{ij}^T \bar{w}_i^k = 1\}$ . Recall that we assume  $r^{k-1} = w_0^{k-1} - \ln(\frac{1}{\lambda}) \bar{w}_0^{k-1}$  is at order  $O((k-1) \ln \ln(\frac{1}{\lambda}))$ . We can obtain

$$A_{i} = -\frac{1}{\lambda} \left( \lambda \ln^{-s_{i}^{k}} (\frac{1}{\lambda}) \right)^{1} \sum_{x_{ij} \in S_{i}^{k}} x_{ij} \exp(-x_{ij}^{T} \tilde{w}_{i}^{k}) - \frac{1}{\lambda} \sum_{x_{ij} \notin S_{i}^{k}} x_{ij} \left( \lambda \ln^{-s_{i}^{k}} (\frac{1}{\lambda}) \right)^{x_{ij}^{T} \tilde{w}_{i}^{k}} \exp(-x_{ij}^{T} \tilde{w}_{i}^{k}) \\ + \ln(\frac{1}{\lambda}) (\bar{w}_{i}^{k} - \bar{w}_{0}^{k-1}) - r^{k-1} + s_{i}^{k} \ln\ln(\frac{1}{\lambda}) \bar{w}_{i}^{k} + \tilde{w}_{i}^{k} \\ = -\ln^{-s_{i}^{k}} (\frac{1}{\lambda}) \sum_{x_{ij} \in S_{i}^{k}} x_{ij} \exp(-x_{ij}^{T} \tilde{w}_{i}^{k}) - \sum_{x_{ij} \notin S_{i}^{k}} x_{ij} \lambda^{x_{ij}^{T} \bar{w}_{i}^{k} - 1} \left( \ln(\frac{1}{\lambda}) \right)^{-s_{i}^{k} x_{ij}^{T} \bar{w}_{i}^{k}} \exp(-x_{ij}^{T} \tilde{w}_{i}^{k}) \\ + \ln(\frac{1}{\lambda}) (\bar{w}_{i}^{k} - \bar{w}_{0}^{k-1}) - r^{k-1} + s_{i}^{k} \ln\ln(\frac{1}{\lambda}) \bar{w}_{i}^{k} + \tilde{w}_{i}^{k}.$$

$$(38)$$

By the triangle inequality, we have

$$\|A_{i}\| \leq \underbrace{\left\| \ln(\frac{1}{\lambda})(\bar{w}_{i}^{k} - \bar{w}_{0}^{k-1}) - \ln^{-s_{i}^{k}}(\frac{1}{\lambda}) \sum_{x_{ij} \in S_{i}^{k}} x_{ij} \exp(-x_{ij}^{T} \tilde{w}_{i}^{k}) \right\|}_{B_{1}} \\ + \underbrace{\left\| \sum_{x_{ij} \notin S_{i}^{k}} x_{ij} \lambda^{x_{ij}^{T} \bar{w}_{i}^{k} - 1} \left( \ln(\frac{1}{\lambda}) \right)^{-s_{i}^{k} x_{ij}^{T} \bar{w}_{i}^{k}} \exp(-x_{ij}^{T} \tilde{w}_{i}^{k}) \right\|}_{B_{2}} \right.$$

We just need to show  $B_1$  and  $B_2$  approach to 0 then  $||A_i||$  can approach to  $O(k \ln \ln(\frac{1}{\lambda}))$ .

We divide it into two cases.

(39)

 $+\underbrace{\|\boldsymbol{r}^{k-1}\|}_{O((k-1))\ln\ln(\frac{1}{\lambda}))} + \ln\ln(\frac{1}{\lambda})\underbrace{\|\bar{\boldsymbol{w}}_i^k\|}_{O(1)} + \underbrace{\|\tilde{\boldsymbol{w}}_i^k\|}_{O(1)}.$ 

1. When  $\bar{w}_i^k = P(\bar{w}_0^{k-1}) \neq \bar{w}_0^{k-1}$ , meaning  $\bar{w}_0^{k-1}$  is not in the convex set  $C_i$ . In this case we choose  $s_i^k = -1$  then 

1029  
1030  
1031
$$B_1 = \left\| \ln(\frac{1}{\lambda})(\bar{w}_i^k - \bar{w}_0^{k-1}) - \ln(\frac{1}{\lambda}) \sum_{x_{ij} \in S_i^k} x_{ij} \exp(-x_{ij}^T \tilde{w}_i^k) \right\|_{1}$$

 $\| \lambda' \sum_{x_{ij} \in S_{i}^{k}} u_{ij} \exp(-x_{ij}^{k}) \\ = \ln(\frac{1}{\lambda}) \left\| (\bar{w}_{i}^{k} - \bar{w}_{0}^{k-1}) - \sum_{x_{ij} \in S_{i}^{k}} x_{ij} \exp(-x_{ij}^{T} \tilde{w}_{i}^{k}) \right\|.$ 

We now want to choose  $\tilde{w}_i^k$  to make  $B_1$  as 0. Since  $\bar{w}_i^k$  is the solution of SVM problem (13), by the KKT condition of SVM problem, it can be written as

$$\bar{w}_{i}^{k} = \bar{w}_{0}^{k-1} + \sum_{x_{ij} \in S_{i}^{k}} \beta_{ij} x_{ij}$$
(41)

(40)

(46)

where  $\beta_{ij}$  is the dual variable corresponding to  $x_{ij}$  in the set of support vectors. Thus we want to choose  $\tilde{w}_i^k$  as 

> $\sum_{x_{ij} \in S_i^k} \exp(-x_{ij}^T \tilde{w}_i^k) x_{ij} = \sum_{x_{ij} \in S_i^k} \beta_{ij} x_{ij}.$ (42)

We can prove such a  $\tilde{w}_i^k$  almost surely exists in Lemma 5. 

For the term  $B_2$ , since  $\lim_{\lambda \to 0} \lambda^{c-1} \ln^c(\frac{1}{\lambda}) \to 0$  for any constant c > 1, and  $x_{ij}^T \bar{w}_i^k - 1 > 0$  for any  $x_{ij}$ being not a support vector, then we can see 

$$B_2 = \left\| \sum_{x_{ij} \notin S_i^k} x_{ij} \lambda^{x_{ij}^T \bar{w}_i^k - 1} \left( \ln(\frac{1}{\lambda}) \right)^{x_{ij}^T \bar{w}_i^k} \exp(-x_{ij}^T \tilde{w}_i^k) \right\| \xrightarrow{\lambda \to 0} 0.$$
(43)

Here we choose  $\tilde{w}_i^k$  and  $s_i^k$  to make  $B_1 = 0$  and  $B_2 \rightarrow 0$ . 

2. When  $\bar{w}_i^k = P(\bar{w}_0^{k-1}) = \bar{w}_0^{k-1}$ , meaning  $\bar{w}_0^{k-1}$  is already in the convex set  $C_i$ . Then  $\bar{w}_i^k - \bar{w}_0^{k-1} = 0$ . In this case we choose  $\tilde{w}_i^k = 0$  and  $s_i^k = +1$ . We can have 

$$B_1 = \ln^{-1}\left(\frac{1}{\lambda}\right) \left\| \sum_{x_{ij} \in S_i^k} x_{ij} \right\| \xrightarrow{\lambda \to 0}, \tag{44}$$

since  $\ln^{-1}(\frac{1}{\lambda}) \xrightarrow{\lambda \to 0} 0$  and  $\left\| \sum_{x_{ij} \in S_i^k} x_{ij} \right\|$  is O(1). 

And since  $x_{ij}^T \bar{w}_i^k - 1 > 0$  for any  $x_{ij}$  being not a support vector, we have 

$$B_2 = \left\| \sum_{x_{ij} \notin S_i^k} x_{ij} \lambda^{x_{ij}^T \bar{w}_i^k - 1} \left( \ln(\frac{1}{\lambda}) \right)^{-x_{ij}^T \bar{w}_i^k} \right\| \xrightarrow{\lambda \to 0} 0, \tag{45}$$

where  $\lambda_{i_j}^{x_{i_j}^T \bar{w}_i^k - 1} \xrightarrow{\lambda \to 0} 0$  and  $\left( \ln(\frac{1}{\lambda}) \right)^{-x_{i_j}^T \bar{w}_i^k} \xrightarrow{\lambda \to 0} 0$ . Thus we choose  $\tilde{w}_i^k$  and  $s_i^k$  to make  $B_1 \to 0$  and  $B_2 \rightarrow 0.$ 

Plugging 39 back into 35, we can obtain 

1074  
1075  
1076  
1077  

$$\|r_i^k\| \le \|A_i^k\| + \ln\ln(\frac{1}{\lambda}) \|\bar{w}_i^k\| + \|\tilde{w}_i^k\| \\ \le B_1 + B_2 + 2\ln\ln(\frac{1}{\lambda}) \|\bar{w}_i^k\| + 2\|\tilde{w}_i^k\| + \|r^{k-1}\|$$

$$1077 \qquad \qquad -\underbrace{-1+2}_{\rightarrow 0} + \underbrace{-1+2}_{\rightarrow 0} + \underbrace{$$

1079 
$$\leq 2 \ln \ln(\frac{1}{\lambda}) \|\bar{w}_i^k\| + 2 \|\tilde{w}_i^k\| + \|r^{k-1}\|.$$

By the assumption  $||r^{k-1}|| = O((k-1)\ln\ln(\frac{1}{\lambda}))$  and  $||\bar{w}_i^k|| = O(1)$ ,  $||\tilde{w}_i^k|| = O(1)$ , we have  $||r_i^k|| = O(k \ln\ln(\frac{1}{\lambda}))$ .

From 31, we finally obtain

1084

1095

1100 1101 1102

1106 1107

1110 1111

$$\|r^{k}\| \le \frac{1}{M} \|r^{k}_{i}\| = O(k \ln \ln(\frac{1}{\lambda})),$$
(47)

which confirms our assumption. Then we have  $\lim_{\lambda \to 0} \frac{w_0^k}{\|w_0^k\|} = \frac{\bar{w}_0^k}{\|\bar{w}_0^k\|}$  for any k at order  $o\left(\frac{\ln(1/\lambda)}{\ln\ln(1/\lambda)}\right)$ .

# 1089 D.2 PROOFS OF AUXILIARY LEMMAS

1091 **Lemma 5.** For the sequence  $\{\bar{w}_0^k\}$  generated by sequential SVM problems 13 and aggregations, 1092 and for almost all datasets sampled from M continuous distributions, the unique dual solution 1093  $\beta_i^k \in \mathbb{R}^{|S_i| \times 1}$  satisfying the KKT conditions of SVM problem 13 has non-zero elements. Then there 1094 exists  $\tilde{w}_i^k$  satisfying  $X_{S_i} \tilde{w}_i^k = -\ln \beta_i^k$ .

For almost all datasets, a hyperplane can be determined by d points. Thus there are at most d support vectors and the set of support vectors is linearly independent.

1099 *Proof.* By the KKT condition of SVM problem, we can write the solution as

$$\bar{w}_{i}^{k} = \bar{w}_{0}^{k-1} + \sum_{x_{ij} \in S_{i}} \beta_{ij}^{k} x_{ij} = \bar{w}_{0}^{k-1} + X_{S_{i}}^{T} \beta_{i}^{k}.$$

$$(48)$$

where  $X_{S_i} \in \mathbb{R}^{|S_i| \times d}$  is the data matrix with all the support vectors, and  $\beta_i^k \in \mathbb{R}^{|S_i| \times 1}$  is the dual variable vector. Thus we can obtain

$$\beta_i^k = \left(X_{S_i} X_{S_i}^T\right)^{-1} X_{S_i} (\bar{w}_i^k - \bar{w}_0^{k-1}) = \left(X_{S_i} X_{S_i}^T\right)^{-1} \mathbf{1}_{S_i} - \left(X_{S_i} X_{S_i}^T\right)^{-1} X_{S_i} \bar{w}_0^{k-1}, \quad (49)$$

where  $X_{S_i} X_{S_i}^T$  is invertible since  $X_{S_i}$  has full row rank  $|S_i|$ , and the second equality is from  $X_{S_i} \bar{w}_i^k = \mathbf{1}_{S_i}$  with  $\mathbf{1}_{S_i} \in \mathbb{R}^{|S_i| \times 1}$  being all one vector. Plugging  $\beta_i^k$  back, we have

$$\bar{w}_{i}^{k} = \left[I - X_{S_{i}}^{T} \left(X_{S_{i}} X_{S_{i}}^{T}\right)^{-1} X_{S_{i}}\right] \bar{w}_{0}^{k-1} + X_{S_{i}}^{T} \left(X_{S_{i}} X_{S_{i}}^{T}\right)^{-1} \mathbf{1}_{S_{i}}.$$
(50)

1112 After averaging, the global model is

$$\bar{w}_{0}^{k} = \left[I - \frac{1}{M} \sum_{i=1}^{M} X_{S_{i}}^{T} \left(X_{S_{i}} X_{S_{i}}^{T}\right)^{-1} X_{S_{i}}\right] \bar{w}_{0}^{k-1} + \frac{1}{M} \sum_{i=1}^{M} X_{S_{i}}^{T} \left(X_{S_{i}} X_{S_{i}}^{T}\right)^{-1} \mathbf{1}_{S_{i}}.$$

1115 1116 1117

1124

1128

1129

1114

It implies  $\bar{w}_0^k$  is a rational function in the components of  $X_1, X_2, ..., X_M$ , and also  $\beta_i^k$  is also a rational function in the components of data matrices. So its entries can be expressed as  $\beta_{ij}^k = p_{ij}^k(X_1, X_2, ..., X_M)/q_{ij}^k(X_1, X_2, ..., X_M)$  for some polynomials  $p_{ij}^k, q_{ij}^k$ . Note that  $\beta_{ij}^k = 0$ only if  $p_{ij}^k(X_1, X_2, ..., X_M) = 0$ , and the components of  $X_1, X_2, ..., X_M$  must constitute a root of polynomial  $p_{ij}^k$ . However, the root of any polynomial has measure zero, unless the polynomial is the zero polynomial, i.e.,  $p_{ij}^k(X_1, X_2, ..., X_M) = 0$  for any  $X_1, X_2, ..., X_M$ .

Next we need to show  $p_{ij}^k$  cannot be zero polynomials. To do this, we just need to construct a specific X<sub>1</sub>,X<sub>2</sub>,...,X<sub>M</sub> where the  $p_{ij}^k$  is not zero polynomial. Denote  $e_i \in \mathbb{R}^d$  as the *i*-th standard unit vector, and  $v_1, v_2, ..., v_M$  be the number of support vectors at M compute nodes. We construct the datasets as

$$X_i = r_i [e_1, e_2, \dots, e_{v_i}]^T$$
, for all *i*. (52)

(51)

where  $r_i$  are positive constants that will be chosen later. For these datasets, the set of support vector is dataset itself, i.e.,  $X_{S_i} = X_i$ . We can calculate

1132  
1133 
$$X_{i}X_{i}^{T} = r_{i}^{2}I_{v_{i}}, X_{i}^{T}X_{i} = r_{i}^{2}\begin{bmatrix}I_{v_{i}} & \mathbf{0}\\\mathbf{0} & \mathbf{0}_{(d-v_{i})\times(d-v_{i})}\end{bmatrix}, X_{i}^{T}\mathbf{1}_{S_{i}} = r_{i}\begin{bmatrix}\mathbf{1}_{v_{i}}\\\mathbf{0}_{d-v_{i}}\end{bmatrix}$$
(53)

Thus we have  

$$\vec{w}_{i}^{k} = \left(I_{d} - \begin{bmatrix} I_{u} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}_{(d-n_{i}) \times (d-n_{i})} \end{bmatrix}\right) \vec{w}_{0}^{k-1} + \frac{1}{r_{i}} \begin{bmatrix} \mathbf{1}_{u_{i}} \\ \mathbf{0}_{d-n_{i}} \end{bmatrix}.$$
(54)  
After averaging, the global model in 51 becomes  

$$\vec{w}_{0}^{k} = \begin{bmatrix} 0 & \ddots & 0 \\ a_{1} & \ddots & a_{n_{max} - n_{min}} \\ \vdots & \vdots & \vdots \end{bmatrix} \vec{w}_{0}^{k-1} + \left( \frac{b_{1}}{\vdots} \\ \frac{b_{1}}{b_{2}} \\ \frac{b_{1$$

because the maximum value of  $a_j$  is  $\frac{M-1}{M}$  and the maximum value of  $b_j$  is  $\frac{1}{M} \sum_{i=1}^{M} \frac{1}{r_i^2}$ .

1190 Thus we require

$$\sum_{i=1}^{M} \frac{1}{r_i} < \frac{1}{1 - \left(\frac{M-1}{M}\right)^{k-1}}.$$
(60)

1195 Since  $\left(\frac{M-1}{M}\right)^{k-1} \to 0$  when  $k \to \infty$ , we only require the left-hand side is less than the lower bound of right-hand side:

$$\sum_{i=1}^{M} \frac{1}{r_i} < 1.$$
 (61)

Therefore we can choose  $r_i = M + 1$  to make it happen.

Then we can obtain  $\beta_{ij}^k > 0$  holds for any support vector  $x_{ij}$  and any round k. And the  $\tilde{w}_i^k$  simply satisfies  $X_{S_i} \tilde{w}_i^k = -\ln \beta_i^k$ .

#### 1206 E LEMMA AND PROOFS IN SECTION 4

Here we provide a lemma of Modified Local-GD similar to Lemma 2 of vanilla Local-GD.

**Lemma 6.** For almost all datasets sampled from a continuous distribution satisfying Assumption 1, we train the global model  $w_0$  from Modified Local-GD in Algorithm 3 and  $\bar{w}_0$  from Modified PPM. The parameter is chosen as  $\alpha^k = 1 - \frac{1}{k+1}$ . With initialization  $w_0^0 = \bar{w}_0^0 = 0$ , we have  $w_0^k \rightarrow \ln(\frac{1}{\lambda})\bar{w}_0^k$ , and the residual  $\|w_0^k - \ln(\frac{1}{\lambda})\bar{w}_0^k\| = O(k \ln \ln \frac{1}{\lambda})$ , as  $\lambda \rightarrow 0$ . It implies that at any round  $k = o\left(\frac{\ln(1/\lambda)}{\ln\ln(1/\lambda)}\right)$ ,  $w_0^k$  converges in direction to  $\bar{w}_0^k$ :

$$\lim_{\lambda \to 0} \frac{w_0^k}{\|w_0^k\|} = \frac{\bar{w}_0^k}{\|\bar{w}_0^k\|}.$$
(62)

*Proof.* With initialization  $w_0^0 = \bar{w}_0^0 = 0$ , the Modified Local-GD is just a scaling of vanilla Local-GD: 

$$w_0^{k+1} = \frac{k}{k+1} \frac{1}{M} \sum_{i=1}^{M} w_i^{k+1}.$$
(63)

Also, the Modified PPM is a scaling of vanilla PPM:  $\bar{w}_0^{k+1} = \frac{k}{k+1} \frac{1}{M} \sum_{i=1}^{M} \bar{w}_i^{k+1}$ .

When  $k \ge 1$ , we can know the residual between Modified Local-GD and Modified PPM is

$$\|r^{k}\| = \left\|w_{0}^{k} - \ln(\frac{1}{\lambda})\bar{w}_{0}^{k}\right\| = \frac{k}{k+1}\frac{1}{M}\left\|\sum_{i=1}^{M}w_{i}^{k} - \ln(\frac{1}{\lambda})\bar{w}_{i}^{k}\right\|$$
$$\leq \frac{1}{M}\sum_{i=1}^{M}\left\|w_{i}^{k} - \ln(\frac{1}{\lambda})\bar{w}_{i}^{k}\right\| = \frac{1}{M}\sum_{i=1}^{M}\|r_{i}^{k}\|.$$
(64)

1234 Then we can follow the same process in the proof of Lemma 2 to obtain

$$\|r^{k}\| \le \frac{1}{M} \|r_{i}^{k}\| = O(k \ln \ln(\frac{1}{\lambda})),$$
 (65)

1238 As a result we have  $\lim_{\lambda \to 0} \frac{w_0^k}{\|w_0^k\|} = \frac{\bar{w}_0^k}{\|\bar{w}_0^k\|}$ .