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ABSTRACT

In distributed training of machine learning models, gradient descent with local
iterative steps is a very popular method, variants of which are commonly known
as Local-SGD or the Federated Averaging (FedAvg). In this method, gradient
steps based on local datasets are taken independently in distributed compute nodes
to update the local models, which are then aggregated intermittently. Although
the existing convergence analysis suggests that with heterogeneous data, FedAvg
encounters quick performance degradation as the number of local steps increases,
it is shown to work quite well in practice, especially in the distributed training of
large language models. In this work we try to explain this good performance from
a viewpoint of implicit bias in Local Gradient Descent (Local-GD) with a large
number of local steps. In overparameterized regime, the gradient descent at each
compute node would lead the model to a specific direction locally. We characterize
the dynamics of the aggregated global model and compare it to the centralized model
trained with all of the data in one place. In particular, we analyze the implicit bias of
gradient descent on linear models, for both regression and classification tasks. Our
analysis shows that the aggregated global model converges exactly to the centralized
model for regression tasks, and converges (in direction) to the same feasible set as
centralized model for classification tasks. We further propose a Modified Local-GD
with a refined aggregation and theoretically show it converges to the centralized
model in direction for linear classification. We empirically verified our theoretical
findings in linear models and also conducted experiments on distributed fine-tuning
of pretrained neural networks to further apply our theory.

1 INTRODUCTION

In this era of large machine learning models, distributed training is an essential part of machine learning
pipelines. It can happen in a data center with thousands connected compute nodes Sergeev & Del Balso
(2018); Huang et al. (2019), or across several data centers and millions of mobile devices in federated
learning Konečnỳ et al. (2016); Kairouz et al. (2019). In such a network, the communication cost is
usually the bottleneck in the whole system. To alleviate communication burden, and also to preserve
privacy to some extent, one common strategy is to perform multiple local updates before sending the
information to other nodes, which is called Local Gradient Descent (Local-GD) Stich (2019); Lin
et al. (2019). It is also a standard algorithm in federated learning, varied by partial device participation
and privacy constraints, and known as FedAvg McMahan et al. (2017). While local updates can reduce
communication cost, the number of local steps is usually considered to be small Stich (2019); Li et al.
(2020b). When data distributions across machines are heterogeneous, a large number of local steps
would result in local iterates to diverge significantly (called client-drift), and the aggregated values
to oscillate and be far away from the optimum global model.

However, in practical implementation of distributed training on large models, the performance of
vanilla FedAvg is surprisingly good even with heterogeneous data distribution McMahan et al. (2017);
Charles et al. (2021). In fact SCAFFOLD Karimireddy et al. (2020), an algorithm designed to mitigate
the effect of heterogeneity theoretically, is shown to have similar empirical performance as FedAvg
Reddi et al. (2021); Wu et al. (2023). There are some works trying to explain the effectiveness of
FedAvg from different theoretical aspects, such as representation learning Collins et al. (2022), refined
theoretical assumption Wang et al. (2024) etc. Also, the number of local steps can be very large in
real-world systems, for example, performing 500 local steps in distributed training of large language
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models (LLM) Douillard et al. (2023); Jaghouar et al. (2024). These practical experiences motivates
us to consider the following question:

Q: Can we establish rigorous conditions, independent of data distribution, under which Local-GD
performs well with a very large number of local steps?

In this work we answer this question in affirmative by considering overparameterized models on
regression and classification tasks. Our main tool is to analyze the implicit bias of gradient descent to
characterize the dynamics of aggregated models with many local steps. In a network with M compute
nodes, the goal is to train a global model to fit in the distributed datasets:

min
w∈Rd

f(w) with f(w)≡ 1

M

M∑
i=1

fi(w|Di), (1)

where w∈Rd is the single model to be trained and fi(w|Di) is the local objective function, and Di

is the local distribution of d-dimensional samples and corresponding labels {xij ,yij}Nj=1.

To reduce the communication frequency, Local-GD chooses to do L local gradient descent steps
before sending the local model to a central node. The detailed algorithm of Local-GD is described
in Algorithm 1 and 2. In the existing convergence analysis of Local-GD, the number of local steps L
should not be very large. For example, with strongly convex and smooth loss functions, the number
of local steps should not be larger than O(

√
T ) for i.i.d data Stich (2019) and non-i.i.d. data Li et al.

(2020b). However, such analysis is developed for general/classical models and does not consider the
special properties of overparameterized models. In this work we specifically focus on linear models for
both regression and classification tasks and take the overparameterized regime into account. That is, the
dimension d is larger than the total number of samples, i.e. d>MN . While modern machine learning
concerns primarily large nonlinear models, it is instructive to explore the intrinsic property of Local-GD
in simpler linear setting and establish the connection to other areas. For example, the leading theories
of deep learning, such as implicit bias of optimization algorithms, or double descent Belkin et al. (2018;
2019), were built for linear models first. Moreover, fine-tuning on pretrained large models has gradually
become the popular paradigm in practical machine learning pipeline. It is widely used to fine-tune
the final linear layer or add a few linear layers to pretrained models in transfer learning Donahue et al.
(2014); Kornblith et al. (2019) and deployment of LLM Devlin (2018); Jiang et al. (2020).

As stated, to characterize the behavior of Local-GD with large number of local steps in overparam-
eterized models, we leverage the implicit bias of gradient descent, which is an active area in theoretical
explanation of modern large models Soudry et al. (2018); Gunasekar et al. (2018a); Ji & Telgarsky
(2019a); Chizat & Bach (2020); Frei et al. (2024). With a very large number of local steps, the
local optimization problem can be exactly solved for linear regression and classification models. In
overparameterized regime, gradient descent would converge to a specific solution. After aggregation
of these specific local solutions, we can characterize the dynamic of the global model and finally
compare it to the centralized model trained on a collection of distributed datasets at one place.

Specifically, in linear regression minimizing a squared loss, the local models would fit to the correspond-
ing local datasets, and converge to the solution with minimum distance to initial aggregated global model
at each communication round. We can obtain the closed form of this solution and calculate the global
model after aggregation. We prove that it exactly converges to the centralized model (the model trained
by gradient descent if all data were in one place) as the number of rounds of communication increases.

The analysis of linear classification (halfspace learning) is more involved and proceeds according
to the following steps. First, it turns out that when minimizing an exponential loss with a weakly
regularized term, the aggregated global model is equivalent to a model aggregated from local models
obtained by solving local max-margin problems. Subsequently we relate the update of global model
aggregated from solutions of local max-margin problems to Parallel Projection Method (PPM), an
iterative algorithm used for finding a point in the intersection of multiple constraint sets by projecting
onto each constraint set in parallel Gilbert (1972); de Pierro & Iusem (1984); Combettes (1994; 1996).
Using properties of PPM, we can characterize the dynamics of the aggregated global model. We prove
that it converges to a global feasible set, which is the intersection of constraint sets in local max-margin
problems. The centralized model trained with all of the data also converges to the global feasible set. To
further explain the similar performance obtained by global model and centralized model, we propose
a modified Local-GD with a different aggregation method from vanilla Local-GD (Algorithm 3).
We theoretically prove that the aggregated global model obtained from Modified Local-GD exactly
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converges to the centralized model in direction. We show the vanilla Local-GD actually converges to
the same point as the modified Local-GD experimentally. For both linear regression and classification,
our results show that the aggregated global model would converge to the centralized model even with
a very large number of local steps on heterogeneous data.

In summary, the contribution of this work is as follows:

• We established the theoretical performance of Local-GD with a large number of local steps in
overparameterized models. We analyzed the implicit bias of Local-GD, for single communication
round of linear regression, and for whole algorithmic process of classification, respectively. As far
as we know, this is the first attempt to analyze implicit bias of gradient descent in distributed setting.

• We obtained closed form of the aggregated global model in linear regression and analyzed its dynam-
ics. We proved that it exactly converges to the centralized model as communication rounds increase.

• We related the Local-GD for linear classification to Parallel Projection Method and characterized the
dynamics based on the properties of projections. We proved the aggregated global model converges
to a global feasible set same as the centralized model.

• We further proposed a Modified Local-GD with a different aggregation method and proved it
converges exactly to the centralized model in direction.

• We experimentally verify our theoretical findings on synthetic datasets and real datasets with linear
models. We further conducted experiments on fine-tuning the final linear layer of neural networks
to show the broader impact of our work.

Our main technical challenge comes while analyzing classification. In linear regression, the implicit
bias for a single round of communication is directly derived from the gradient on squared loss (each
gradient step is on the row space of local data). In contrast, for classification we have to consider
the whole algorithmic process of both Local-GD and Parallel Projection Method and then derive
the equivalence between them. Compared to the continual learning work Evron et al. (2023) where
overparameterized models are handled sequentially, the challenge is that we need to handle the parallel
projections happening simultaneously from the same initial point. Due to space limit, we give more
additional references and discussion on Related Works in Appendix A.

Algorithm 1 LOCAL-GD.
1: Input: learning rate η.
2: Initialize w0

0
3: for k=0 to K−1 do
4: The aggregator sends global model wk

0 to all compute nodes.
5: for i=1 to i=M do
6: compute node i updates local model starting from wk

0 : wk+1
i =LocalUpdate(wk

0 ).
7: compute node i sends back the updated local model wk+1

i .
8: end for
9: The aggregator aggregates all the local models: wk+1

0 = 1
M

∑M
i=1w

k+1
i .

10: end for
11: Output: wK

0 .

Algorithm 2 LocalUpdate(wk
0 ) in general Local-GD.

1: Input: an initial point wk
0 , the number of local steps L, and the learning rate η.

2: Initialize wk,0
i =wk

0 .
3: for l=0 to L−1 do
4: wk,l+1

i =wk,l
i −η∇fi(w

k,l
i ).

5: end for
6: Output: LocalUpdate(wk

0 ) :=wk,L
i .
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2 LOCAL-GD IN LINEAR REGRESSION: A WARM-UP

2.1 SETTING

In this section we first consider linear regression in overparameterized regime. The behavior of linear
regression is very well-understood in high-dimensional statistics; and we can clearly convey our key
message based on this fundamental setting.

At each compute node i, the dataset Si consists of N tuples of samples and their corresponding labels,
(x,y)∈Rd×R. We assume the label yij is generated by

yij=xT
ijw

∗
i +zij (2)

where w∗
i ∈Rd is the ground truth model at i-th compute node, and zij is the added noise. Denote

Xi=[xi1,xi2,...,xiN ]T ∈RN×d as the data matrix at i-th compute node, andyi=[yi1,yi2,...,yiN ]∈RN

as the label vector, zi∈RN as the noise vector. In heterogeneous setting, the w∗
i can be very different

to each other. Note that the convergence to centralized model does not rely on the generative model.
We just make this assumption on generative model for deriving a more clear form of the aggregated
global model.

Algorithm. At each round, the aggregator sends the global model w0 to all the compute nodes.
Each compute node minimizes the squared loss fi(wi) =

1
2N ∥yi −Xiwi∥2 by a large number of

gradient descent steps until convergence. Then each compute node sends back the local model and
the aggregator aggregates all the local models to get the updated global model. The detailed algorithm
is Local-GD in Algorithm 1 with fi(wi) replaced in LocalUpdate (Algorithm 2). Since minimizing
squared loss is a quadratic problem, it is expected to reach convergence locally with a small number
of gradient descent steps.

2.2 IMPLICIT BIAS OF LOCAL GD IN LINEAR REGRESSION

For each local problem, when the dimension of the model is larger than the number of samples at each
compute node (d>N ), i.e., locally overparameterized, there are multiple solutions corresponding to
zero squared loss. However, gradient descent will lead the model converge to a specific solution, which
corresponds to a minimum Euclidean distance to the initial point Gunasekar et al. (2018a); Evron
et al. (2022). Formally, the solution wk+1

i obtained at k-th round and i-th node will converge to the
solution of the optimization problem

min
wi

∥wi−wk
0∥2 s.t. Xiwi=yi. (3)

We can obtained the closed form solution of this optimization problem as (see Proof of Lemma 1 in
Appendix C.1)

wk+1
i =

(
I−XT

i (XiX
T
i )

−1Xi

)
wk

0+XT
i (XiX

T
i )

−1yi (4)

=
(
I−XT

i (XiX
T
i )

−1Xi

)
wk

0+XT
i (XiX

T
i )

−1Xiw
∗
i +XT

i (XiX
T
i )

−1zi.

Denote Pi ≜ XT
i (XiX

T
i )

−1Xi and X†
i ≜ XT

i (XiX
T
i )

−1. The local model can be rewritten as
wk+1

i = (I−Pi)w
k
0 +Piw

∗
i +X†

i zi. We observe that Pi is the projection operator to the row space
of Xi, and X†

i is the pseudo inverse of Xi. After one round of iterations, the local model is actually
an interpolation between the initial global model wk

0 at this round and the ground-truth model w∗
i ,

plus a noise term. We then obtain the closed form of global model by aggregation. After many rounds
of communication, we can obtain the final trained global model from Local-GD.

Lemma 1. When the local overparameterized linear regression problems are exactly solved by gradient
descent, then after K rounds of communication, the global model wK

0 obtained from Local-GD is

wK
0 =(I−P̄ )Kw0

0+

K−1∑
k=0

(I−P̄ )k(Q̄+Z̄), (5)

where P̄ = 1
M

∑M
i=1Pi,Q̄= 1

M

∑M
i=1Piw

∗
i ,Z̄= 1

M

∑M
i=1X

†
i zi.
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Note that P̄ ,Q̄,Z̄ are constant after the data is generated. Since we only know the {Xi,yi}Mi=1 in the
training process, we can also write it as

wK
0 =(I−P̄ )Kw0

0+

K−1∑
k=0

(I−P̄ )kȲ , (6)

where Ȳ = 1
M

∑M
i=1X

†
i yi. Then we can directly get the final model from the training set.

Singularity of P̄ . If P̄ is invertible, we can further simplify the form of global model. However, since
Pi∈Rd×d is the projection operator onto row space of Xi, its rank is at most N. The P̄ is the average
of Pis, thus its rank is at most MN . Note that we consider the overparameterized regime both locally
and globally, i.e., d≫MN . Then P̄ is singular, and the sum

∑K−1
k=0 (I−P̄ )k approaches KI when

d becomes very large. We cannot get more properties of the final global model from (6), but we can
compare it to the centralized model trained with all of the data.

2.3 CONVERGENCE TO CENTRALIZED MODEL

Let Xc = [XT
1 , ... , X

T
M ]T ∈ RMN×d be the data matrix consisting of all the local data, and

yc=[yT1 ,...,y
T
M ]T ∈RMN×1 be the label vector consisting of the local labels. If we train the centralized

model from initial point 0 with squared loss, then the gradient descent will lead the model to the
solution of the optimization problem

min
w

∥w∥2 s.t. Xcw=yc (7)

We can write the closed form of centralized model as wc=XT
c (XcX

T
c )

−1yc.

Due to the constraint in problem (7), for each compute node i, we have Xiwc=yi. We replace yi in
the local model (4), then we have

wk+1
i −wc=(I−Pi)(w

k
0−wc). (8)

The right-hand side is projecting the difference between global model and centralized model onto
null space of Xi. After averaging all the local models at the aggregator, we have

wk+1
0 −wc=(I−P̄ )(wk

0−wc). (9)

In the training process the difference between global model and centralized model is iteratively
projected onto the null space of span of row spaces of Xis. It implies that the difference on the span
of data matrix gradually decreases until zero. Based on the evolution of the difference, we can prove
the following theorem:

Theorem 1. For the linear regression problem, suppose the initial point w0
0 is 0 and d≫MN , then

the global model obtained by Local-GD, wK
0 , converges to the centralized solution wc as the number

of communication rounds K→∞.

The proof is deferred in Appendix C.2. The key step is to show the initial difference is already in the
data space, and no residual in the null space of row spaces of Xis.

Due to the linearity of the regression problem, we can theoretically show the global model can exactly
converge to the centralized model with implicit bias on overparameterized regime. Note that the proof
does not rely on the generative model and assumption on data heterogeneity. It implies that, even if
we use a large number of local steps to exactly solve the local problems on very heterogeneous data,
the performance of Local-GD is equivalent to train a model with all the data in one place.

3 LOCAL-GD IN LINEAR CLASSIFICATION: RELATION TO PPM

3.1 SETTING

In this section we investigate a binary classification task with linear models. Different from the linear
regression problem, it is hard to obtain closed form solution on classification tasks. Thus we need
to develop new techniques to handle this case.

5
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Suppose, for each compute node i, the dataset Si consists of N tuples of samples and their
corresponding labels, (x,y)∈Rd×{+1,−1}. Similarly, we denote Xi ∈RN×d as the data matrix
at i-th compute node, and yi∈{+1,−1}N as the label vector. We do not assume the generative model
in classification task, but we need an assumption of separable datasets.
Assumption 1. Each local dataset Si is separable, i.e., there are non-empty local feasible sets,

Ci≜{w∈Rd| yijxT
ijw≥1,for j=1,...,N}, (10)

and there is a non-empty global feasible set,

C̄≜∩m
i=1Ci ̸=∅. (11)

This assumption makes sure that the datasets are locally and globally separable.

Algorithm. At each round, the aggregator sends the global model w0 to all the compute nodes. Each
compute node minimizes an exponential loss with a weakly regularized term by many gradient descent
steps until convergence. That is, each compute node solves the following problem:

min
w∈Rd

fi(wi)=

N∑
j=1

exp
(
−yijx

T
ijw
)
+
λ

2
∥w−wk

0∥2 (12)

where λ is a regularization parameter close to 0.

Then each compute node sends back the local model and the aggregator aggregates all the local
models to get the updated global model. The detailed algorithm for linear classification is Local-GD
in Algorithm 1 with fi(wi) replaced in LocalUpdate (Algorithm 2).

Regularization methods are very common in distributed learning to force the local models move not
too far from global model Li et al. (2020a; 2021); T Dinh et al. (2020). Here we consider the weakly
regularized term,λ→0, to give theoretical insights of Local-GD on classification tasks. Experimentally
theλ is set to be extremely small that does not affect the minimization of exponential loss. Since the local
problem is a strongly convex problem, with many local gradient descent steps it will be exactly solved.

3.2 IMPLICIT BIAS OF GRADIENT DESCENT IN LINEAR CLASSIFICATION

One can derive the implicit bias of classification at a single local node after a large number of local
steps. However, in contrast to linear regression, we cannot easily aggregate the local solutions after
a round of communication to a closed form. At each round, the local model is updated from the
previously aggregated global model, which is related to previous local updates. To mitigate this,
we consider the whole algorithmic process of Local-GD on classification and use another auxiliary
sequence of global models, denoted as w̄k

0 ,k=0,1,2,.... Starting from an initial point w̄0
0 , the central

node sends global model w̄k
0 to all the compute nodes at k-th iteration round. Each compute node

solves the following Local Max-Margin problem to obtain w̄k+1
i :

w̄k+1
i =arg min

w∈Rd
∥w−w̄k

0∥ s.t. yijx
T
ijw≥1 j=1,2,...,N. (13)

Then the compute node sends the local model back. The central node averages the local models to
get w̄k+1

0 = 1
M

∑M
i=1w̄

k+1
i .

We can show the solution wK
0 obtained in Local-GD converges in direction to the global model from

Local Max-Margin problems w̄K
0 .

Lemma 2. For almost all datasets sampled from a continuous distribution satisfying Assumption 1, with
initialization w0

0= w̄0
0=0, we have wk

0 → ln
(
1
λ

)
w̄k

0 , and the residual ∥wk
0−ln

(
1
λ

)
w̄k

0∥=O(klnln 1
λ ),

as λ→0. It implies that at any round k=o
(

ln(1/λ)
lnln(1/λ)

)
, wk

0 converges in direction to w̄k
0 :

lim
λ→0

wk
0

∥wk
0∥

=
w̄k

0

∥w̄k
0∥

. (14)

The proof is deferred in Appendix D. The framework is similar to the continual learning work Evron
et al. (2023), but we need to handle the parallel local updates for each dataset from the same initial

6
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model and the aggregation, which is different from the sequential updates where for each dataset the
model is trained from the previous model and there is no need to do aggregation.

Based on this equivalence between Local-GD for linear classification and Local Max-Margin scheme,
we can further analyze the performance of Local-GD with a large number of local steps. Instead
of a closed-form solution for the Local Max-Margin problem (13), we treat it as a projection of the
aggregated global model onto a convex set Ci: w̄k+1

i =Pi(w̄
k
0 ), which is formed by the constraints in

(13) and exactly the local feasible set defined in Assumption 1. Here we slightly overload the notation
Pi, which was used as the projection matrix in linear regression since the readers can get a sense of
the same effect of them in Local-GD. The aggregation is actually to average the local projected points:
w̄k+1

0 = 1
M

∑M
i=1Pi(w̄

k
0 ).

The sequence of Local Max-Margin schemes is therefore projections to local (convex) feasible sets
followed by aggregation, which is the Parallel Projection Method (PPM) in literature Gilbert (1972);
Combettes (1994). Using Lemma 2, we establish the relation between Local-GD and PPM: the model
from Local-GD converges to the model from PPM in direction.

3.3 CONVERGENCE TO GLOBAL FEASIBLE SET

Now we use the properties of PPM to characterize the performance of Local-GD in classification.
In Combettes (1994), the convergence of PPM has been provided for a relaxed version. The direct
average considered in this work can be seen as a special case of the relaxed version, and the following
lemma holds.

Lemma 3 (Theorem 1 and Proposition 8, Combettes (1994)). Suppose all the local feasible sets
Ci,i=1,2,... are closed and convex, and the intersection C̄ is not empty. Then for any initial point w̄0

0 ,
the global model w̄0 generated by PPM converges to a point in the global feasible set C̄.

This lemma guarantees that w̄K
0 will converge to the intersection of the convex sets after many rounds

of iteration, however we are not sure which exact point it would converge to.

Similar to linear regression case, we also compare the global model obtained from Local-GD to the
centralized model trained with all of data in one place. From the implicit bias of gradient descent on
exponential-tailed loss Soudry et al. (2018), the centralized model trained with exponential loss will
converge in direction to the solution of a Max-Margin problem:

min
w∈Rd

∥w∥ s.t. yijx
T
ijw≥1, i=1,2,...,M, j=1,2,...,N. (15)

This problem is actually the problem of hard margin support vector machine (SVM). The constraints
in equation 15 include all the local datasets, and form the global feasible set C̄. That is, the centralized
model would converge to the minimum norm solution in global feasible set in direction.

Combining Lemma 2, Lemma 3 and result of centralized model, we immediately have:

Theorem 2. For linear classification problem with exponential loss, suppose initial point is w0
0=0.

The aggregated global model wK
0 obtained by Local-GD with a large number of local steps converges

in direction to one point in the global feasible set C̄, while the centralized model converges in direction
to the minimum norm point in the same set.

The main difference from linear regression is that we cannot guarantee the global model obtained by
Local-GD to converge exactly to the centralized model in classification, but show that it converges to
the same global feasible set as the centralized solution. Nevertheless, in experiments the test accuracy
of the Local-GD model is very similar to that of centralized model. To theoretically support that the
Local-GD model converges to the centralized model, we propose a slightly Modified Local-GD by
just changing the aggregation method, and showing that it converges to the centralized model exactly.

4 MODIFIED LOCAL-GD: CONVERGENCE TO CENTRALIZED MODEL

Previously, we established the connection between Local-GD and PPM in linear classification. In
Combettes (1996) it was shown that if the aggregation method is modified to incorporate the influence
of the initial point w̄0

0 in PPM, then the sequence generated by PPM will converge to a specific point

7
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in global feasible set C̄ with minimum distance to this initial point. Denote Pc(·) as the projection
operator onto the global feasible set C̄. Formally we have the following lemma.
Lemma 4 (Theorem 5.3, Combettes (1996)). Suppose C̄ is not empty. For any initial point w̄0

0 , when
the local models are aggregated as

w̄k+1
0 =(1−αk+1)w̄0

0+αk+1

(
1

M

M∑
i=1

Pi(w̄
k
0 )

)
, (16)

where {αk} satisfy (i)limk→∞αk=1,(ii)
∑

k≥0(1−αk)=∞,(iii)
∑

k≥0|αk+1−αk|<∞, then the
global model generated by PPM will converge to the point Pc(w̄

0
0).

That is the sequence generated by PPM would converge to the point in global feasible set, C̄, with
minimum distance to w̄0

0 . The modified aggregation method is a linear combination of initial point and
current average of local projected points. One example of the sequence {αk} satisfying the conditions
is αk=1− 1

k+1 .

If we start from w̄0
0=0, then the point Pc(w̄

0
0) is exactly the minimum norm point in the global feasible

set. It shows the PPM can exactly converge to the minimum norm point as the centralized model.
Based on this result, we propose a Modified Local-GD algorithm shown in Algorithm 3, which only
differs from Local-GD in the aggregation method.

Algorithm 3 MODIFIED LOCAL-GD.
1: Input: learning rate η.
2: Initialize w0

0
3: for k=0 to K−1 do
4: The central node sends global model wk

0 to all compute nodes.
5: for i=1 to i=M do
6: compute node i updates local model starting from wk

0 : wk+1
i =LocalUpdate(wk

0 ).
7: compute node i sends back the updated local model wk+1

0 .
8: end for
9: The central node aggregates all the local models: wk+1

0 =(1−αk)w0
0+αk

(
1
M

∑M
i=1w

k
i

)
.

10: end for
11: Output: wK

0 .

We still need to prove a lemma analogous to Lemma 2 to establish the equivalence between Modified
Local-GD and Modified PPM, which is omitted here due to space limit (Please refer to Appendix E
and the proof is very similar to proof in Lemma 2). From the equivalence, Lemma 4, and result of
the centralized model, we can have the following theorem:
Theorem 3. For linear classification problem, suppose the initial point is w0

0 =0. Then the global
model wK

0 obtained by Modified Local-GD (Algorithm 3) converges in direction to the centralized
model obtained from (15).

Unlike the vanilla Local-GD, which is only guaranteed to converge to the global feasible set, the Modi-
fied Local-GD is guaranteed to converge to the centralized model in direction. Unlike linear regression,
the convergence is established in direction since the solution on exponential loss could go to infinity.

Note that if we start from w̄0
0 = 0, the aggregation in Modified Local-GD becomes

wk+1
0 = k

k+1

(
1
M

∑M
i=1w

k
i

)
, which is just a scaling of vanilla aggregation with a parameter

less than 1. Thus we can see experimentally they usually converge to the same point and Modified
Local-GD converges slightly slower. In summary, Modified Local-GD theoretically illustrates that
the global model trained from Local-GD could obtain similar performance as the centralized model.

5 EXPERIMENTS

Linear Regression. We simulated 10 compute nodes, each with 50 training samples. The label
vector yi at i-th compute node is exactly generated as (2), where ground truth model w∗

i is Gaussian
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vector with each element following N (0,4). Each ground truth model at different compute nodes
is independently generated, thus the datasets can be very different from each other. The data matrix
Xi also follows Gaussian distribution, with each element being N (0,1), and zi is a Gaussian vector
with N (0,0.04). In Local-GD, the number of local steps is L=200, number of rounds is also R=200,
and the learning rate η = 0.0001. Actually it just take a few local steps to converge locally at each
round, but we set a large number of local steps to show it can be large at O(

√
T ), where T =L∗R is the

number of total iterations. We tested the global model (G) from Local-GD on squared loss, centralized
model (C) trained from global dataset on squared loss, closed form of global model (G-Closed) in
(6), closed form of centralized model (C-Closed) as solution of problem (7). The centralized model
is trained 10000 steps with learning rate 0.0001.

Fig. 1(a) displays the difference between global model and trained centralized model, and difference
between global model and closed form of global model at each round when dimension is d=1500,
which is locally and globally overparameterized. The difference between two models is ∥w1−w2∥/d.
We can see the difference between global model and its closed form is always 0 during the training
process, verifying the correctness of the derived closed form (6). The global model can gradually
converge to the centralized model with more communication rounds.

Fig. 1(b) displays the difference between global model and centralized model, global model and
its closed form, and centralized model and its closed form, with respect to model dimension. Since
it is always locally overparameterized, the difference between global model and the closed form is
always zero. The difference between global model and centralized model has an obvious peak around
500, which is the number of total samples. The phenomenon that global model converges exactly
to centralized model only happens when the model is sufficiently overparameterized. Fig. 1(c) shows
the generalization error of global model and centralized model in linear regression. Since the data
matrix is Gaussian, the generalization error of model w can be computed as 1

M

∑M
i=1∥w−w∗

i ∥2. We
plot the generalization error divided by d. It is shown the global model and centralized model can
get the same performance when model is sufficiently overparameterized.

Classification. For linear classification, we also have 10 compute nodes, with 50 samples at each.
The dataset is generated as yij=sign(xT

ijw
∗
i ), where ground truth model is w∗

i =w∗+zi, and w∗ is a
Gaussian vector randomly chosen, zi is a Gaussian noise. The data matrix Xi is still a Gaussian matrix.
This setting makes sure the datasets across compute nodes are different from each other, meanwhile
they are not totally different such that there may be a non-empty global feasible set. The global model
is trained exactly as Local-GD for linear classification, where the λ is 0.0001. Actually we can use
the standard logistic regression without regularization to obtain the same performance. But aligning
with theoretical proof, we still use exponential loss with a very weak regularization. We tested global
model (G), global model from Modified Local-GD (G-Mod), centralized model (C) from minimizing
exponential loss on all the data, centralized SVM model (S) solved from problem (15) via standard
scikit-learn package. Note that centralized model and SVM model are the final trained model in the
plots. In Local-GD, the number of local steps is L=150, the number of communication rounds is
R=120, and the learning rate is η=0.01. The centralized model is trained with same learning rate
for 20000 steps. Since our theory claimed the convergence is established in direction, the difference
computed here for two models is defined after normalization ∥w1/∥w1∥−w2/∥w2∥∥.

Fig. 1(d) shows the difference between these models with respect to the number of rounds R when
dimension is d=1500. We can see both global model and modified global model converges to the
centralized model in direction, and the centralized model is close to the SVM model but there is small
gap. Fig. 1(e) displays the difference with respect to dimension d. It is seen the difference between
global model and centralized model gradually decreases with larger dimensions. The modified global
model is almost the same as the centralized model but the gap is slightly larger since it converges slower
than vanilla global model with same number of rounds. Fig. 1(f) shows the difference from SVM model
with dimension. The gap between the models to SVM model also decreases with larger d. Finally Fig.
1(g) plots the test accuracy of these models. The test datasets are also constructed by the same generation
of training set with different data matrix. Although the accuracy decreases with larger dimension
(relatively fewer samples), the performance of global models and centralized models are always similar.

Fine-Tuning of Pretrained Neural Network. We further fine-tuned the ResNet50 model pretrained
with ImageNet dataset on CIFAR10 dataset. Only the final linear layer is trained during the process,
while the rest of model is fixed. The 50000 samples are distributed on 10 compute nodes. For i-th
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Figure 1: From left to right, from up to bottom (LR: Linear Regression, LC: Linear Classification, NN: Neural
Network): (a) Difference between models with communication rounds in LR. (b) Difference between models
with dimension in LR. (c) Generalization error with dimension in LR. (d) Difference between global model and
centralized model with R in LC. (e) Difference between global model and centralized model with d in LC. (f)
Difference from SVM model with d in LC. (g) Test Accuracy in LC. (h) Difference between global model and
centralized model with communication rounds in NN. (i) Test accuracy with communication rounds in NN.

compute node, the half of local dataset belongs to the same class, and the other half consists of rest of
9 classes evenly, which forms a heterogeneous data distribution. The centralized model is trained with
the whole CIFAR10 dataset. The models are trained with cross entropy loss and SGD. The learning rate
is 0.01 and the batch size is 128. The number of local steps is L=60 and number of communication
rounds is R=60. The centralized model is trained with the same learning rate for 3600 steps. We
plot the difference between the linear layer and test accuracy with number of rounds in Fig. 1 (h) and
(i). Again the difference is defined in direction. We can see the difference gradually decreases to a
small error floor and the accuracy of global models and centralized model is very similar at last.

6 CONCLUSIONS

In this work we analyzed the implicit bias in distributed setting, and characterized the dynamics of
global model trained from Local-GD with many local steps based on the implicit bias. We showed
that the global model can converge to centralized model for both linear regression and classification
tasks, providing a new perspective why Local-GD (FedAvg) works well in practice even with a large
number of local steps on heterogeneous data. One potential future work is to extend the analysis of
Local-GD to neural network using the developed implicit bias of deeper models Chizat & Bach (2020);
Gunasekar et al. (2018b); Ji & Telgarsky (2019b); Kou et al. (2024).

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Heinz H Bauschke and Patrick L Combettes. Convex Analysis and Monotone Operator Theory in
Hilbert Spaces. Springer, 2011.

Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need to understand
kernel learning. In International Conference on Machine Learning, pp. 541–549. PMLR, 2018.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning
practice and the classical bias–variance trade-off. Proceedings of the National Academy of Sciences,
116(32):15849–15854, 2019.

Matias D Cattaneo, Jason M Klusowski, and Boris Shigida. On the implicit bias of adam. arXiv
preprint arXiv:2309.00079, 2023.

Zachary Charles, Zachary Garrett, Zhouyuan Huo, Sergei Shmulyian, and Virginia Smith. On
large-cohort training for federated learning. Advances in neural information processing systems,
34:20461–20475, 2021.

Hong-You Chen and Wei-Lun Chao. Fedbe: Making bayesian model ensemble applicable to federated
learning. In International Conference on Learning Representations, 2021.

Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks
trained with the logistic loss. In Conference on learning theory, pp. 1305–1338. PMLR, 2020.

Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Fedavg with fine tuning:
Local updates lead to representation learning. Advances in Neural Information Processing Systems,
35:10572–10586, 2022.

Patrick L Combettes. Inconsistent signal feasibility problems: Least-squares solutions in a product
space. IEEE Transactions on Signal Processing, 42(11):2955–2966, 1994.

Patrick L Combettes. The convex feasibility problem in image recovery. In Advances in imaging and
electron physics, volume 95, pp. 155–270. Elsevier, 1996.

Patrick L Combettes. Convex set theoretic image recovery by extrapolated iterations of parallel
subgradient projections. IEEE Transactions on Image Processing, 6(4):493–506, 1997.

Michael Crawshaw, Yajie Bao, and Mingrui Liu. Federated learning with client subsampling, data
heterogeneity, and unbounded smoothness: A new algorithm and lower bounds. Advances in Neural
Information Processing Systems, 36, 2023.

Alvaro Rodolfo de Pierro and Alfredo Noel Iusem. A parallel projection method of finding a common
point of a family of convex sets. Inst. de matemática pura e aplicada, Conselho nacional de
desenvolvimento . . . , 1984.

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Local sgd optimizes overparam-
eterized neural networks in polynomial time. In International Conference on Artificial Intelligence
and Statistics, pp. 6840–6861. PMLR, 2022.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor Darrell.
Decaf: A deep convolutional activation feature for generic visual recognition. In International
conference on machine learning, pp. 647–655. PMLR, 2014.

Arthur Douillard, Qixuan Feng, Andrei A Rusu, Rachita Chhaparia, Yani Donchev, Adhiguna Kuncoro,
Marc’Aurelio Ranzato, Arthur Szlam, and Jiajun Shen. Diloco: Distributed low-communication
training of language models. arXiv preprint arXiv:2311.08105, 2023.

Itay Evron, Edward Moroshko, Rachel Ward, Nathan Srebro, and Daniel Soudry. How catastrophic can
catastrophic forgetting be in linear regression? In Conference on Learning Theory, pp. 4028–4079.
PMLR, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Itay Evron, Edward Moroshko, Gon Buzaglo, Maroun Khriesh, Badea Marjieh, Nathan Srebro,
and Daniel Soudry. Continual learning in linear classification on separable data. arXiv preprint
arXiv:2306.03534, 2023.

Spencer Frei, Gal Vardi, Peter Bartlett, and Nati Srebro. The double-edged sword of implicit bias:
Generalization vs. robustness in relu networks. Advances in Neural Information Processing Systems,
36, 2024.

Peter Gilbert. Iterative methods for the three-dimensional reconstruction of an object from projections.
Journal of theoretical biology, 36(1):105–117, 1972.

Daniel Goldfarb and Paul Hand. Analysis of catastrophic forgetting for random orthogonal
transformation tasks in the overparameterized regime. In International Conference on Artificial
Intelligence and Statistics, pp. 2975–2993. PMLR, 2023.

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in
terms of optimization geometry. In International Conference on Machine Learning, pp. 1832–1841.
PMLR, 2018a.

Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent
on linear convolutional networks. Advances in neural information processing systems, 31, 2018b.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Baihe Huang, Xiaoxiao Li, Zhao Song, and Xin Yang. Fl-ntk: A neural tangent kernel-based
framework for federated learning analysis. In International Conference on Machine Learning, pp.
4423–4434. PMLR, 2021.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural
networks using pipeline parallelism. Advances in neural information processing systems, 32, 2019.

Sami Jaghouar, Jack Min Ong, and Johannes Hagemann. Opendiloco: An open-source framework
for globally distributed low-communication training. arXiv preprint arXiv:2407.07852, 2024.

Divyansh Jhunjhunwala, Shiqiang Wang, and Gauri Joshi. Fedexp: Speeding up federated averaging
via extrapolation. In The Eleventh International Conference on Learning Representations, 2023.

Ziwei Ji and Matus Telgarsky. The implicit bias of gradient descent on nonseparable data. In
Conference on Learning Theory, pp. 1772–1798. PMLR, 2019a.

Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear networks. In
International Conference on Learning Representations, 2019b.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. Smart:
Robust and efficient fine-tuning for pre-trained natural language models through principled
regularized optimization. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 2177–2190, 2020.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances
and open problems in federated learning. arXiv preprint arXiv:1912.04977, 2019.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pp. 5132–5143. PMLR, 2020.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory for local sgd on identical
and heterogeneous data. In International Conference on Artificial Intelligence and Statistics, pp.
4519–4529. PMLR, 2020.
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A RELATED WORK

Convergence of Local-GD. When data distribution is homogeneous, many works have been done
to establish convergence analysis for Local (Stochastic) GD Stich (2019); Yu et al. (2019); Khaled et al.
(2020). With a “properly” small number of local steps, the dominating convergence rate is not affected.
Further various assumptions have been made to handle data heterogeneity and develop convergence
analysis Li et al. (2020b); Karimireddy et al. (2020); Khaled et al. (2020); Reddi et al. (2021); Wang
et al. (2020); Crawshaw et al. (2023). For strongly convex and smooth loss functions, the number
of local steps should not be larger than O(

√
T ) for i.i.d data Stich (2019) and non-i.i.d. data Li et al.

(2020b). However, in practice Local-GD (FedAvg) works well in many applications McMahan et al.
(2017); Charles et al. (2021), even in training large language models Douillard et al. (2023); Jaghouar
et al. (2024). In Wang et al. (2024), the authors argue that the previous theoretical assumption does not
align with practice and proposed a client consensus hypothesis to explain the effectiveness of FedAvg
in heterogeneous data. But they do not consider the impact of overparameterization on distributed
training. There are some works incorporating the property of zero training loss of overparameterized
neural networks into the conventional convergence analysis of FedAvg Huang et al. (2021); Deng
et al. (2022); Song et al. (2023); Qin et al. (2022). However, they do not guarantee which point FedAvg
can converge to. Our work is different from these works as: 1. We analyze which point the Local-GD
can converge to, which is a more elementary problem before obtaining the convergence rate; 2. We
use implicit bias as a technical tool to analyze the overparameterized FL.

Implicit Bias. Soudry et al. (2018) is the first work to show the gradient descent converges to
a max-margin direction on linearly separable data with a linear model and exponentially-tailed
loss function. Ji & Telgarsky (2019a) has provided an alternative analysis and extended this to
non-separable data. The theory of implicit bias has been further developed, for example, for wide
two-layer neural networks Chizat & Bach (2020), deep linear models Ji & Telgarsky (2019b), linear
convolutional networks Gunasekar et al. (2018b), two-layer ReLU networks Kou et al. (2024) etc.
Beyond gradient descent, more algorithms have been considered, including gradient descent with
momentum Gunasekar et al. (2018a), SGD Nacson et al. (2019), Adam Cattaneo et al. (2023), AdamW
Xie & Li (2024). Recently, implicit bias has also been used to characterize the dynamics of continual
learning, on linear regression Evron et al. (2022); Goldfarb & Hand (2023); Lin et al. (2023), and linear
classification Evron et al. (2023). In Evron et al. (2023), gradient descent on continually learned tasks
is related to Projections onto Convex Sets (POCS) and shown to converge to a sequential max-margin
scheme. In our work we consider the implicit bias of gradient descent in distributed setting, which
is related to a different parallel projection scheme by projecting onto constraint sets simultaneously.

Parallel Projection. Parallel projection methods are a family of algorithms to find a common point
across multiple constraint sets by projecting onto these sets in parallel. These methods are widely
used in feasibility problems in signal processing and image reconstruction Bauschke & Combettes
(2011). The straightforward average of multiple projections is known as the simultaneous iterative
reconstruction technique (SIRT) in Gilbert (1972). Then de Pierro & Iusem (1984) studied the
convergence of PPM for a relaxed version, and Combettes (1994) further generalized the result to
inconsistent feasibility problems. In Combettes (1997), an extrapolated parallel projection method was
proposed to accelerate the convergence. We note that Jhunjhunwala et al. (2023) used this extrapolation
to accelerate FedAvg. However, it was just inspired by the similarity between parallel projection
method and FedAvg, while in this work we rigorously prove the relation between PPM and FedAvg
using implicit bias of gradient descent.

B ADDITIONAL EXPERIMENTS

B.1 LINEAR CLASSIFICATION WITH DIRICHLET DISTRIBUTION

In federated learning, the Dirichlet distribution is usually used to generate heterogeneous datasets
across the compute nodes Hsu et al. (2019); Chen & Chao (2021); Reguieg et al. (2023). For binary
classification problem, the Dirichlet distribution Dir(α) is used to unbalance the positive and negative
samples. In the experiments we have 10 compute nodes. We generate 500 samples as yi=sign(xT

i w
∗)

for i ∈ [500] and use Dir(α) to distribute the 500 samples across 10 compute nodes. Note that the
number of samples at each compute node is not necessarily identical. Fig. 2 shows performance of
Local-GD for linear classification with different parameter α in Dirichlet distribution. The λ is set to
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Figure 2: Local-GD on linear classification with Dirichlet distribution.

be 0.0001 and model dimension is fixed as d=1500. The number of local steps L is 150 and number
of communication rounds R is 150. The learning rate is 0.01. The centralized model is trained with
the same learning rate for 22500 steps. We can see the global model and modified global model still
converge to the centralized model in direction and get similar test accuracy.

C PROOFS IN SECTION 2

C.1 PROOF OF LEMMA 1

At each compute node, the local model converges to the solution of problem

min
wi

∥wi−wk
0∥2 s.t. Xiwi=yi. (17)

Using Lagrange multipliers, we can write the Lagrangian as
1

2
∥wi−wk

0∥2+βT (Xiwi−yi) (18)

Setting the derivative to 0, we know the optimal w̃i satisfies

w̃i−wk
0+XT

i β=0, (19)

and then

w̃i=wk
0−XT

i β. (20)

Also by the constraint yi=Xiw̃i, we can get

yi=Xiw
k
0−(XiX

T
i )β. (21)
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Since the model is overparameterized (d>N ), XiX
T
i ∈Rd×d is invertible. Then we have

β=−(XiX
T
i )

−1(yi−Xiw
k
0 ). (22)

Plugging the β back, we can get the closed form solution as

w̃i=wk
0+XT

i (XiX
T
i )

−1(yi−Xiw
k
0 ). (23)

We update the local model wk+1
i = w̃i.

We can also write the closed form solution as

wk+1
i =wk

0+XT
i (XiX

T
i )

−1(yi−Xiw
k
0 )

=
(
I−XT

i (XiX
T
i )

−1Xi

)
wk

0+XT
i (XiX

T
i )

−1yi (24)

If we plug in the generative model yi=Xiw
∗
i +zi, then the solution is

wk+1
i =

(
I−XT

i (XiX
T
i )

−1Xi

)
wk

0+XT
i (XiX

T
i )

−1Xiw
∗
i +XT

i (XiX
T
i )

−1zi

=(I−Pi)w
k
0+Piw

∗
i +X†

i zi. (25)

where Pi = XT
i (XiX

T
i )

−1Xi is the projection operator to the row space of Xi, and
X†

i = XT
i (XiX

T
i )

−1 is the pseudo inverse of Xi. It is an interpolation between the initial
global model wk

0 and the local true model w∗
i , plus a noise term.

After aggregating all the local models, the global model is

wk+1
0 =

1

m

m∑
i=1

(I−Pi)w
k
0+

1

m

m∑
i=1

Piw
∗
i +

1

m

m∑
i=1

X†
i zi

=(I−P̄ )wk
0+Q̄+Z̄, (26)

where P̄ = 1
m

∑m
i=1Pi,Q̄=

∑m
i=1Piw

∗
i ,Z̄= 1

m

∑m
i=1X

†
i zi.

After K rounds of communication, the global model is

wK
0 =(I−P̄ )Kw0

0+

K−1∑
k=0

(I−P̄ )(Q̄+Z̄). (27)

If we start from w0
0=0, then the solution will converge to

∑K−1
k=0 (I−P̄ )(Q̄+Z̄).

C.2 PROOF OF THEOREM 1

We know the difference between global model and centralized model is iteratively projected onto the
null space of span of row spaces of Xis:

wk+1
0 −wc=(I−P̄ )(wk

0−wc). (28)

We can formally describe it as follows. Since the problem is overparameterized globally, we can assume
each Xi has full rank N . We apply singular value decomposition (SVD) to Xi as Xi = UiΣiV

T
i ,

where Ui∈RN×N ,Vi∈Rd×N . Then Pi=XT
i (XiX

T
i )

−1Xi=ViV
T
i , which is the projection matrix

to the row space of Xi.

We apply eigenvalue decomposition on P̄ to get P̄ =QΣQT , where Q∈Rd×n′
and n′ is the rank of

P̄ . It satisfies N ≤n′≤MN . Since P̄ is a linear combination of Pis, the space of column space of
Q is the space spanned by all the vectors vij ,i=1,...,M,j=1,...,N .

We also construct a matrix Q′ ∈Rd×(d−n′), which consists of orthonomal vectors perpendicular to
Q. We can project the difference onto column space of Q and Q′ respectively.

QT (wk+1
0 −wc)=QT (I−QΣQT )(wk

0−wc)=(I−Σ)QT (wk
0−wc)

Q′T (wk+1
0 −wc)=Q′T (I−QΣQT )(wk

0−wc)=Q′T (wk
0−wc) (29)
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After K rounds of communication, we can decomposite wK
0 −wc into two parts:

wK
0 −wc=QQT (wK

0 −wc)+Q′Q′T (wK
0 −wc). (30)

Then we can obtain

wK
0 −wc=QQT (wK

0 −wc)+Q′Q′T (wK
0 −wc)

=Q(I−Σ)KQT (w0
0−wc)+Q′Q′T (w0

0−wc).

It shows the initial difference on the column space of Q continues to decrease until zero if K is
sufficiently large. And the initial difference on the null space of Q remains constant.

To show the difference wK
0 −wc goes to zero entirely, we just need to choose an initial point such that

initial difference is on the column space of Q. When we choose w0
0 =0, the initial difference is wc

itself. Moreover, the centralized solution wc=XT
c (XcX

T
c )

−1yc exactly lies in the data space spanned
by vectors {vij}M,N

i=1,j=1 since it is a linear combination of columns of XT
c . So if we start from w0

0=0,
then wK

0 −wc will go to zero when K is sufficiently large.

D PROOFS IN SECTION 3

In the proofs of linear classification, for ease of notation, we redefine the samples yijxij to xij to
subsume the labels.

D.1 PROOFS OF LEMMA 2

We assume ∥wk
0−ln( 1λ )w̄

k
0∥=O(klnln 1

λ ). In this case, since ln 1
λ grows faster, when λ→0, we can

have limλ→0
wk

0

∥wk
0∥

=
w̄k

0

∥w̄k
0∥

for any k at order o
(

ln(1/λ)
lnln(1/λ)

)
. We will prove it by induction. We define

global and local residuals as rk=wk
0−ln( 1λ )w̄

k
0 and rki =wk

i −ln( 1λ )w̄
k
i .

When k=0, since w0
0= w̄0

0=0, r0i =0 and the assumption trivially holds.

When k≥1, we have

∥rk∥=
∥∥∥∥wk

0−ln(
1

λ
)w̄k

0

∥∥∥∥= 1

M

∥∥∥∥∥
M∑
i=1

wk
i −ln(

1

λ
)w̄k

i

∥∥∥∥∥
≤ 1

M

M∑
i=1

∥∥∥∥wk
i −ln(

1

λ
)w̄k

i

∥∥∥∥= 1

M

M∑
i=1

∥rki ∥. (31)

where the inequality is triangle inequality. We then focus on the local residual rki . We choose an O(1)
vector w̃k

i and a sign ski ∈{−1,+1} to show∥∥rki ∥∥=∥∥∥∥wk
i −
[(

ln(
1

λ
)+ski lnln(

1

λ
)

)
w̄k

i +w̃k
i

]
+ski lnln(

1

λ
)w̄k

i +w̃k
i

∥∥∥∥
≤
∥∥∥∥wk

i −
[(

ln(
1

λ
)+ski lnln(

1

λ
)

)
w̄k

i +w̃k
i

]∥∥∥∥+lnln(
1

λ
)∥w̄k

i ∥+∥w̃k
i ∥ (32)

Recall the wk
i is the solution of optimization problem

argmin
wi

fi(wi)=

N∑
j=1

exp
(
−xT

ijwi

)
+
λ

2
∥wi−wk−1

0 ∥2, (33)

and the loss function fi(wi) is a λ-strongly convex function. Thus we have

∥wk
i −w∥≤ 1

λ
∥∇fi(w)∥, for any w. (34)
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Then back to 32, we have∥∥rki ∥∥≤ 1

λ

∥∥∥∥∇fi

[(
ln(

1

λ
)+ski lnln(

1

λ
)

)
w̄k

i +w̃k
i

]∥∥∥∥︸ ︷︷ ︸
∥Ai∥

+lnln(
1

λ
)∥w̄k

i ∥+∥w̃k
i ∥. (35)

Next we need to show the first term Ai is at O((k−1)lnln( 1λ )), and also since ∥w̄k
i ∥ and ∥w̃k

i ∥ are
O(1) vectors, then ∥rki ∥ is at order O(klnln( 1λ )). After averaging, ∥rk∥ is also at order O(klnln( 1λ )).
This confirms the assumption made for induction.

Now we focus on the term Ai. The gradient of function fi(w) is

∇fi(wi)=
∑
j

−xijexp(−xT
ijwi)+λ(wi−wk−1

0 ). (36)

The term Ai is

Ai=
1

λ
∇fi

[(
ln(

1

λ
)+ski lnln(

1

λ
)

)
w̄k

i +w̃k
i

]
=− 1

λ

∑
j

xijexp

(
xT
ij ln

(
λln−ski (

1

λ
)

)
w̄k

i

)
exp(−xT

ijw̃
k
i )+

(
ln(

1

λ
)+ski lnln(

1

λ
)

)
w̄k

i +w̃k
i −wk−1

0

=− 1

λ

∑
j

xij

(
λln−ski (

1

λ
)

)xT
ijw̄

k
i

exp(−xT
ijw̃

k
i )+

(
ln(

1

λ
)+ski lnln(

1

λ
)

)
w̄k

i +w̃k
i −wk−1

0 . (37)

Then we define the set of support vectors as Sk
i = {xij |xT

ijw̄
k
i = 1}. Recall that we assume

rk−1=wk−1
0 −ln( 1λ )w̄

k−1
0 is at order O((k−1)lnln( 1λ )). We can obtain

Ai=− 1

λ

(
λln−ski (

1

λ
)

)1 ∑
xij∈Sk

i

xijexp(−xT
ijw̃

k
i )−

1

λ

∑
xij /∈Sk

i

xij

(
λln−ski (

1

λ
)

)xT
ijw̄

k
i

exp(−xT
ijw̃

k
i )

+ln(
1

λ
)(w̄k

i −w̄k−1
0 )−rk−1+ski lnln(

1

λ
)w̄k

i +w̃k
i

=−ln−ski (
1

λ
)
∑

xij∈Sk
i

xijexp(−xT
ijw̃

k
i )−

∑
xij /∈Sk

i

xijλ
xT
ijw̄

k
i −1

(
ln(

1

λ
)

)−ski x
T
ijw̄

k
i

exp(−xT
ijw̃

k
i )

+ln(
1

λ
)(w̄k

i −w̄k−1
0 )−rk−1+ski lnln(

1

λ
)w̄k

i +w̃k
i . (38)

By the triangle inequality, we have

∥Ai∥≤

∥∥∥∥∥∥ln( 1λ )(w̄k
i −w̄k−1

0 )−ln−ski (
1

λ
)
∑

xij∈Sk
i

xijexp(−xT
ijw̃

k
i )

∥∥∥∥∥∥︸ ︷︷ ︸
B1

+

∥∥∥∥∥∥
∑

xij /∈Sk
i

xijλ
xT
ijw̄

k
i −1

(
ln(

1

λ
)

)−ski x
T
ijw̄

k
i

exp(−xT
ijw̃

k
i )

∥∥∥∥∥∥︸ ︷︷ ︸
B2

+ ∥rk−1∥︸ ︷︷ ︸
O((k−1)lnln( 1

λ ))

+lnln(
1

λ
)∥w̄k

i ∥︸ ︷︷ ︸
O(1)

+∥w̃k
i ∥︸ ︷︷ ︸

O(1)

. (39)

We just need to show B1 and B2 approach to 0 then ∥Ai∥ can approach to O(klnln( 1λ )).

We divide it into two cases.
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1. When w̄k
i =P (w̄k−1

0 ) ̸= w̄k−1
0 , meaning w̄k−1

0 is not in the convex set Ci. In this case we choose
ski =−1 then

B1=

∥∥∥∥∥∥ln( 1λ )(w̄k
i −w̄k−1

0 )−ln(
1

λ
)
∑

xij∈Sk
i

xijexp(−xT
ijw̃

k
i )

∥∥∥∥∥∥
=ln(

1

λ
)

∥∥∥∥∥∥(w̄k
i −w̄k−1

0 )−
∑

xij∈Sk
i

xijexp(−xT
ijw̃

k
i )

∥∥∥∥∥∥. (40)

We now want to choose w̃k
i to make B1 as 0. Since w̄k

i is the solution of SVM problem (13), by the
KKT condition of SVM problem, it can be written as

w̄k
i = w̄k−1

0 +
∑

xij∈Sk
i

βijxij (41)

where βij is the dual varible corresponding to xij in the set of support vectors. Thus we want to choose
w̃k

i as ∑
xij∈Sk

i

exp(−xT
ijw̃

k
i )xij=

∑
xij∈Sk

i

βijxij . (42)

We can prove such a w̃k
i almost surely exists in Lemma 5.

For the term B2, since limλ→0λ
c−1lnc( 1λ )→0 for any constant c>1, and xT

ijw̄
k
i −1>0 for any xij

being not a support vector, then we can see

B2=

∥∥∥∥∥∥
∑

xij /∈Sk
i

xijλ
xT
ijw̄

k
i −1

(
ln(

1

λ
)

)xT
ijw̄

k
i

exp(−xT
ijw̃

k
i )

∥∥∥∥∥∥ λ→0−−−→0. (43)

Here we choose w̃k
i and ski to make B1=0 and B2→0.

2. When w̄k
i =P (w̄k−1

0 )= w̄k−1
0 , meaning w̄k−1

0 is already in the convex set Ci. Then w̄k
i −w̄k−1

0 =0.
In this case we choose w̃k

i =0 and ski =+1. We can have

B1=ln−1(
1

λ
)

∥∥∥∥∥∥
∑

xij∈Sk
i

xij

∥∥∥∥∥∥ λ→0−−−→, (44)

since ln−1( 1λ )
λ→0−−−→0 and

∥∥∥∑xij∈Sk
i
xij

∥∥∥ is O(1).

And since xT
ijw̄

k
i −1>0 for any xij being not a support vector, we have

B2=

∥∥∥∥∥∥
∑

xij /∈Sk
i

xijλ
xT
ijw̄

k
i −1

(
ln(

1

λ
)

)−xT
ijw̄

k
i

∥∥∥∥∥∥ λ→0−−−→0, (45)

where λxT
ijw̄

k
i −1 λ→0−−−→0 and

(
ln( 1λ )

)−xT
ijw̄

k
i λ→0−−−→0. Thus we choose w̃k

i and ski to make B1→0 and
B2→0.

Plugging 39 back into 35, we can obtain

∥rki ∥≤∥Ak
i ∥+lnln(

1

λ
)∥w̄k

i ∥+∥w̃k
i ∥

≤B1+B2︸ ︷︷ ︸
→0

+2lnln(
1

λ
)∥w̄k

i ∥+2∥w̃k
i ∥+∥rk−1∥

≤2lnln(
1

λ
)∥w̄k

i ∥+2∥w̃k
i ∥+∥rk−1∥. (46)
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By the assumption ∥rk−1∥ = O((k − 1) ln ln( 1λ )) and ∥w̄k
i ∥ = O(1), ∥w̃k

i ∥ = O(1), we have
∥rki ∥=O(klnln( 1λ )).

From 31, we finally obtain

∥rk∥≤ 1

M
∥rki ∥=O(klnln(

1

λ
)), (47)

which confirms our assumption. Then we have limλ→0
wk

0

∥wk
0∥

=
w̄k

0

∥w̄k
0∥

for any k at order o
(

ln(1/λ)
lnln(1/λ)

)
.

D.2 PROOFS OF AUXILIARY LEMMAS

Lemma 5. For the sequence {w̄k
0} generated by sequential SVM problems 13 and aggregations,

and for almost all datasets sampled from M continuous distributions, the unique dual solution
βk
i ∈R|Si|×1 satisfying the KKT conditions of SVM problem 13 has non-zero elements. Then there

exists w̃k
i satisfying XSi

w̃k
i =−lnβk

i .

For almost all datasets, a hyperplane can be determined by d points. Thus there are at most d support
vectors and the set of support vectors is linearly independent.

Proof. By the KKT condition of SVM problem, we can write the solution as

w̄k
i = w̄k−1

0 +
∑

xij∈Si

βk
ijxij= w̄k−1

0 +XT
Si
βk
i . (48)

where XSi ∈ R|Si|×d is the data matrix with all the support vectors, and βk
i ∈ R|Si|×1 is the dual

variable vector. Thus we can obtain

βk
i =
(
XSi

XT
Si

)−1
XSi

(w̄k
i −w̄k−1

0 )=
(
XSi

XT
Si

)−11Si
−
(
XSi

XT
Si

)−1
XSi

w̄k−1
0 , (49)

where XSiX
T
Si

is invertible since XSi has full row rank |Si|, and the second equality is from
XSi

w̄k
i =1Si

with 1Si
∈R|Si|×1 being all one vector. Plugging βk

i back, we have

w̄k
i =
[
I−XT

Si

(
XSi

XT
Si

)−1
XSi

]
w̄k−1

0 +XT
Si

(
XSi

XT
Si

)−11Si
. (50)

After averaging, the global model is

w̄k
0 =

[
I− 1

M

M∑
i=1

XT
Si

(
XSi

XT
Si

)−1
XSi

]
w̄k−1

0 +
1

M

M∑
i=1

XT
Si

(
XSi

XT
Si

)−11Si
. (51)

It implies w̄k
0 is a rational function in the components of X1, X2, ... , XM , and also βk

i is also
a rational function in the components of data matrices. So its entries can be expressed as
βk
ij = pkij(X1,X2, ... ,XM )/qkij(X1,X2, ... ,XM ) for some polynomials pkij ,q

k
ij . Note that βk

ij = 0

only if pkij(X1,X2, ... ,XM ) = 0, and the components of X1,X2, ... ,XM must constitute a root of
polynomial pkij . However, the root of any polynomial has measure zero, unless the polynomial is the
zero polynomial, i.e., pkij(X1,X2,...,XM )=0 for any X1,X2,...,XM .

Next we need to show pkij cannot be zero polynomials. To do this, we just need to construct a specific
X1,X2,...,XM where the pkij is not zero polynomial. Denote ei∈Rd as the i-th standard unit vector,
and v1,v2,...,vM be the number of support vectors at M compute nodes. We construct the datasets as

Xi=ri[e1,e2,...,evi ]
T , for all i. (52)

where ri are positive constants that will be chosen later. For these datasets, the set of support vector
is dataset itself, i.e., XSi =Xi. We can calculate

XiX
T
i =r2i Ivi , X

T
i Xi=r2i

[
Ivi 0
0 0(d−vi)×(d−vi)

]
, XT

i 1Si
=ri

[
1vi

0d−vi

]
(53)
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Thus we have

w̄k
i =

(
Id−

[
Ivi 0
0 0(d−vi)×(d−vi)

])
w̄k−1

0 +
1

ri

[
1vi

0d−vi

]
. (54)

After averaging, the global model in 51 becomes

w̄k
0 =



0
. . .

0
a1

. . .
avmax−vmin

1
. . .

1


︸ ︷︷ ︸

A

w̄k−1
0 +


b1
...

bvmax

0d−vmax


︸ ︷︷ ︸

b

. (55)

where aj ∈{ 1
M , 2

M ,...,M−1
M } is a constant in the range (0,1), bj= 1

M

∑
i∈Bj

1
ri

is a positive constant and

Bj ∈ [M ] is a set consisting of some compute nodes. Note that A and b are fixed in the iterations and
A is a diagonal matrix.

By recursively applying w̄k
0 =Aw̄k−1

0 +b, due to w̄0
0=0, we can obtain

w̄k
0 =
(
I+A+A2+···+Ak−1

)
b. (56)

Since A is diagonal, the summation is

k−1∑
j=0

Aj=



1
. . .

1 ∑k−1
j=0a

j
1

. . . ∑k−1
j=0a

j
vmax−vmin

k
. . .

k


(57)

Recall that

βk
i =
(
XiX

T
i

)−11vi−
(
XiX

T
i

)−1
Xiw̄

k−1
0

=
1

r2i
1vi−

1

r2i
(w̄k−1

0 )vi =
1

r2i

(
1vi−(w̄k−1

0 )vi
)
. (58)

where (w̄k−1
0 )vi is the vector with first vi elements of w̄k−1

0 .

We need every element of βk
i to be positive, so that we require every element of (w̄k−1

0 )vi is less than
1. Then it holds for any i-th compute node, thus we require every element of (w̄k−1

0 )vmax
is less than

1. Since w̄k−1
0 =

(∑k−2
j=0A

j
)
b, the largest value of (w̄k−1

0 )vmax
satisfies

(w̄k−1
0 )largest≤

k−2∑
j=0

(
M−1

M

)j

× 1

M

M∑
i=1

1

r2i

=M

(
1−
(
M−1

M

)k−1
)
∗ 1

M

M∑
i=1

1

r2i
(59)
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because the maximum value of aj is M−1
M and the maximum value of bj is 1

M

∑M
i=1

1
r2i

.

Thus we require

M∑
i=1

1

ri
<

1

1−
(
M−1
M

)k−1
. (60)

Since
(
M−1
M

)k−1→0 when k→∞, we only require the left-hand side is less than the lower bound
of right-hand side:

M∑
i=1

1

ri
<1. (61)

Therefore we can choose ri=M+1 to make it happen.

Then we can obtain βk
ij > 0 holds for any support vector xij and any round k. And the w̃k

i simply
satisfies XSi

w̃k
i =−lnβk

i .

E LEMMA AND PROOFS IN SECTION 4

Here we provide a lemma of Modified Local-GD similar to Lemma 2 of vanilla Local-GD.
Lemma 6. For almost all datasets sampled from a continuous distribution satisfying Assumption 1,
we train the global model w0 from Modified Local-GD in Algorithm 3 and w̄0 from Modified PPM. The
parameter is chosen as αk=1− 1

k+1 . With initialization w0
0= w̄0

0=0, we have wk
0 → ln

(
1
λ

)
w̄k

0 , and

the residual ∥wk
0−ln

(
1
λ

)
w̄k

0∥=O(klnln 1
λ ), as λ→0. It implies that at any round k=o

(
ln(1/λ)
lnln(1/λ)

)
,

wk
0 converges in direction to w̄k

0 :

lim
λ→0

wk
0

∥wk
0∥

=
w̄k

0

∥w̄k
0∥

. (62)

Proof. With initialization w0
0= w̄0

0=0, the Modified Local-GD is just a scaling of vanilla Local-GD:

wk+1
0 =

k

k+1

1

M

M∑
i=1

wk+1
i . (63)

Also, the Modified PPM is a scaling of vanilla PPM: w̄k+1
0 = k

k+1
1
M

∑M
i=1w̄

k+1
i .

When k≥1, we can know the residual between Modified Local-GD and Modified PPM is

∥rk∥=
∥∥∥∥wk

0−ln(
1

λ
)w̄k

0

∥∥∥∥= k

k+1

1

M

∥∥∥∥∥
M∑
i=1

wk
i −ln(

1

λ
)w̄k

i

∥∥∥∥∥
≤ 1

M

M∑
i=1

∥∥∥∥wk
i −ln(

1

λ
)w̄k

i

∥∥∥∥= 1

M

M∑
i=1

∥rki ∥. (64)

Then we can follow the same process in the proof of Lemma 2 to obtain

∥rk∥≤ 1

M
∥rki ∥=O(klnln(

1

λ
)), (65)

As a result we have limλ→0
wk

0

∥wk
0∥

=
w̄k

0

∥w̄k
0∥

.
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