

# 000 001 CGDDI: CONTROLLABLE GENERATION OF DIVERSE 002 DERMATOLOGICAL IMAGERY FOR FAIR AND EFFICIENT 003 MALIGNANCY CLASSIFICATION 004 005

006 **Anonymous authors**  
007 Paper under double-blind review  
008  
009  
010  
011

## ABSTRACT

013 Skin diseases impact the lives of millions of people around the world from different  
014 backgrounds and ethnicities. Therefore, accurate diagnosis in the dermatological  
015 domain requires focused work toward fairness in different skin-toned populations.  
016 However, a significant lack of expertly annotated dermatological images, especially  
017 those describing underrepresented skin tones and rare diseases, slows progress  
018 toward broadly accurate models and clear fairness metrics. In this work, we in-  
019 troduce **Controllable Generation of Diverse Dermatological Imagery (cgDDI)**, a  
020 method capable of (1) synthesizing pixel-perfect in-distribution healthy samples,  
021 (2) lesion-mapping extremely rare lesions onto novel skin-tone combinations with-  
022 out training and (3) efficient high-fidelity parametric generation with as few as 10  
023 training samples. Our approach is controllable via learned disease-specific prompts  
024 or skin tone descriptors, either visually or textually, allowing for selection of key  
025 sensitive attributes. We leverage cgDDI to grow a 656 real-image dataset by more  
026 than 400 $\times$ . The resulting skin-tone-balanced dataset enables the development of  
027 accurate classification systems along with significant improvement on essential  
028 fairness metrics. Malignancy classification experiments on the Diverse Dermatol-  
029 ogy Images (DDI) benchmark shows our method reaches competitive performance  
030 (86.4% accuracy) when trained exclusively on our synthetic data and state-of-the-  
031 art performance (90.9% accuracy) when fine-tuned on real data. Additionally, we  
032 achieve leading metrics for Predictive Quality Disparity, Demographic Disparity,  
033 Equality of Opportunity as well as equitable generative image quality measure-  
034 ments for underrepresented skin-tones and rare diseases. We publish code, model  
035 weights, and generated datasets at <https://anonymous.4open.science/r/ControllableGenDDI> in support of further research in this direction.  
036

## 1 INTRODUCTION

038 Achieving fairness in medical artificial intelligence (AI) requires addressing fundamental challenges in  
039 data generation for domains with severe data scarcity and demographic imbalances. Dermatological  
040 AI exemplifies these challenges: existing datasets suffer from limited expert annotations, poor  
041 representation of darker skin tones, and extreme rarity of certain conditions (Daneshjou et al., 2021).  
042 While generative models offer a potential solution, current approaches require large training sets  
043 (Akrout et al., 2024; Ktena et al., 2024), do not cover the full skin-tone spectrum (Wang et al.,  
044 2024), or ignore extremely rare diseases (Sagers et al., 2022). We present a novel hybrid generation  
045 framework that addresses these limitations through complementary parametric and non-parametric  
046 approaches, achieving data-efficient synthesis while maintaining fairness across populations.  
047

048 Skin diseases affect millions globally, with expert diagnosis accuracy being 4% lower for darker-  
049 skinned patients (Groh et al., 2024) and 3 billion people lacking adequate dermatological care  
050 (Coustasse et al., 2019). Early detection of skin cancers significantly increases survival rates (Balch  
051 et al., 2009), yet the average wait time exceeds 38 days in the United States alone (Tsang & Resneck,  
052 2006). While AI systems have shown promise in skin lesion classification (Winkler et al., 2023;  
053 Esteva et al., 2017), a survey of 70 dermatological AI studies found less than 25% included ethnicity  
and only 10% included skin-tone descriptors (Daneshjou et al., 2021). These disparities stem from  
technical challenges our method directly addresses:



Figure 1: **cgDDI framework**. We generate dermatological synthetics in a controllable manner. First original images, masks and prompts create **healthy synthetics**. These are used to create **lesion-mapped synthetics** from real image donors, as prior preservation, and as semantic prompts. Additionally, we learn disease-specific concepts to train a latent diffusion model from which **semantic synthetics** are sampled. Finally, cgDDI is aggregated and used to learn **fair classification** networks. Abbreviation: “M.N.” shortens Melanocytic Nevi.

- **Data Scarcity:** Expertly annotated medical imagery is often limited and costly to acquire due to privacy concerns, the rarity of the disease, and the availability of medical professionals and some prior work retains these datasets for internal use only (Akrout et al., 2024; Ktena et al., 2024).
- **Uneven Distribution:** The real-world distribution of various skin lesions is naturally imbalanced. This disparity is further complicated when considering skin-tone balance, especially since existing datasets are predominantly collected from light-skinned populations (Groh et al., 2021).
- **Morphology and Demographics:** The morphology of the disease and general appearance can differ between individuals due to factors such as ethnicity, sex, or age (Adelekun et al., 2020). Skin lesions naturally manifest in different areas of the body (e.g., face, back, leg, etc.), making the collection of real-world datasets covering the full distribution difficult.

Simultaneously, the size of the dataset is not the only important dimension to consider when addressing scarcity; a dataset may be large but lack sufficient population, lesion, and morphological diversity, potentially leading to poor generalization (Daneshjou et al., 2022b). These factors limit the ability of the research community to develop fair and generalized models. We present a novel hybrid generation framework that addresses fundamental challenges in synthesizing fair and diverse medical imagery under extreme data constraints. Our key methodological contributions include:

- **cgDDI Framework:** A method capable of dermatological image generation in a controllable manner, allowing for selection of key sensitive attributes (e.g., disease, skin-tone, etc.) or conditioned on input images for nuanced semantic control (e.g. body-part, markings, ruler, etc.). Single-sample observations are effectively augmented non-parametrically via lesion-mapping while more common cases are efficiently learned using prior preservation loss, leveraging healthy samples as regularization. The framework is visualized in Figure 1.
- **cgDDI Dataset:** We synthesize a dataset containing three distinct data types, namely: healthy (lesion-less), lesion-mapped (from real donor images), and semantic (conditioned on learned disease and skin tone features) synthetics. Each sample is accompanied by



Figure 2: **cgDDI Dataset**. The first row shows real samples used for prompting. The second row contains a novel lesion from a donor sample transplanted onto the prompt image. Third and fourth rows contain sampled synthetics, conditioned on the prompt image, a novel target disease (**malignant** or **benign**), and a target skin-tone (light, medium, or dark). Abbreviations: “S.” shortens “Squamous”, “B.” shortens “Basal”.

rich metadata including full captions, generation parameters, skin tone, condition, and malignancy. Our dataset is balanced across populations by growing a dataset of 656 real image bases by more than  $400\times$ . A sample of cgDDI images are visualized on Figure 2.

- **Classification and Generative Fairness:** We measure the diagnostic quality of our data by training a malignancy classifier and evaluating various fairness metrics against real data. When training purely on our synthetic data, we achieve the competitive performance of 86.4% overall accuracy. After fine-tuning on a small portion of real data, we achieve leading performance at 90.9% overall accuracy. In both training settings, fairness metrics improve over prior work and ablate generative fairness by method and skin-tone.
- **Open Datasets, Models, and Code:** We fully release all training code, models, and datasets containing 266,136 new synthetic images of three types, alongside metadata including skin tone, disease, textual captions, and other descriptors to encourage further fairness research.

## 2 RELATED WORK

**Real Datasets** There are two main branches of dermatological datasets: dermoscopic (Tschandl, 2018; Hernández-Pérez et al., 2024), which requires a dermatoscope magnifier, and macroscopic (Groh et al., 2021; Daneshjou et al., 2022b), which are more similar to naked eye observations. We focus our work on the latter domain, as it is more likely the type of imaging encountered in first-pass clinical practice in low-resource environments. Further, we consider datasets that contain skin tone descriptors, as these descriptors are necessary for fairness evaluation.

The macroscopic dataset most commonly cited when training and evaluating fairness in dermatological AI is Fitzpatrick17k (F17k), primarily due to its relatively large size of around 17,000

162  
163  
164 **Table 1: Synthetic dermatological datasets.**  
165  
166

| Method               | Training Data | Fairness Metrics | FST Coverage | Controllable <i>n</i> Diseases | Total Size | Dataset Availability |
|----------------------|---------------|------------------|--------------|--------------------------------|------------|----------------------|
| Sagers et al. (2022) | F17k          | FST Acc.         | I-VI         | 3                              | 192        | Private              |
| Sagers et al. (2023) | F17k, DDI     | FST Acc.         | I-VI         | 9                              | 459k       | Published            |
| Akrout et al. (2024) | Private       | None             | None         | 6                              | 180k       | Private              |
| Ktena et al. (2024)  | Private*      | FST Gap          | I-VI         | 27                             | 50k        | Private              |
| Wang et al. (2024)   | F17k          | FST Acc.         | I-II, V-VI   | 7                              | 7.6k       | Private              |
| <b>cgDDI (ours)</b>  | DDI           | Multiple         | I-VI         | 13                             | 266k       | Published            |

173 \*We note Ktena et al. (2024) training data can be made available for non-commercial use upon  
174 request, payment of administrative fees, and legal compliance.

175  
176 samples. However, it suffers from skin tone imbalance, with 3.6 times more light than dark-skinned  
177 samples, and is annotated mainly by non-experts, leading to over 30% disease-label noise (Groh et al.,  
178 2021). Moreover, conditions determined without biopsy and histopathological evidence might lead  
179 to unreliable ground truth (Daneshjou et al., 2022a). Recent crowd-sourced datasets such as SCIN  
180 (Jeong et al., 2024), while balanced, share this limitation. The DDI dataset (Daneshjou et al., 2022b),  
181 on the other hand, is fully biopsy-confirmed and verified by two board-certified dermatologists. It  
182 provides supervised Fitzpatrick-scale (FST) (Fitzpatrick, 1988) scores for skin tones in all images,  
183 categorizing skin tones into light (I-II), medium (III-IV), or dark (V-VI), and is relatively balanced in  
184 skin tone. In addition, sDDI (Carrión & Norouzi, 2023) contributes human-annotated segmentation  
185 masks for a subset of DDI images. However, the primary limitations of DDI are its small size of  
186 656 total samples (334 of which have mask annotations in sDDI) and naturally-occurring disease  
187 imbalance.

188  
189 **Generative Approaches** To address the challenges of small medical datasets, generative methods  
190 have been explored. Specifically, the success of Generative Adversarial Networks (GANs) (Goodfel-  
191 low et al., 2020) and Diffusion Models (DMs) (Dhariwal & Nichol, 2021) has led to their use in the  
192 synthesis of photorealistic dermatology imagery (Wang et al., 2024; Akrout et al., 2024). Controlla-  
193 bility is a key aspect in these generation tasks as it allows for the reconstruction of sensitive attributes  
194 (e.g., disease, skin tone, etc.), which is an area where GANs have struggled (Qin et al., 2020). DMs,  
195 on the other hand, pre-trained for image generation conditioned with textual information, have been  
196 shown to be controllable in the dermatological domain (Sagers et al., 2023), with textual inversion  
197 (Gal et al., 2023) leading to increased controllability (Wang et al., 2024). Yet, these frameworks have  
198 not been shown to be effective across the full range of skin tones or under a large number of disease  
199 conditions with various frequencies. DMs have also dominated the inpainting task (Razzhigaev et al.,  
200 2023), leading to inpainting and out-painting of dermatological data (Sagers et al., 2023).

201  
202 **Synthetic Datasets** We survey recent datasets created by controllable DMs and summarize their  
203 attributes in Table 1. Some related works do not use public training data (Akrout et al., 2024), and  
204 many do not publish their generated data (Sagers et al., 2022; Akrout et al., 2024; Ktena et al., 2024;  
205 Wang et al., 2024). Two have incomplete coverage of the skin-tone range (Akrout et al., 2024; Wang  
206 et al., 2024), and all collect only basic fairness metrics (per skin tone accuracy or performance gap).  
207 We note that training on F17k (Groh et al., 2021) can lead to a seemingly high visual quality due to  
208 its larger size, but diseases and skin tone representations could be noisy due to unreliable ground  
209 truth as cited earlier. Each approach has explicitly learned to generate a distinct number of conditions,  
210 often determined by the availability of training data.

211  
212 **Classification Methods and Fairness** Dermatological classification frameworks, previously studied  
213 using Convolutional Neural Network (CNNs) (Han et al., 2020), have adopted Vision Transformer  
214 (ViT) (Dosovitskiy et al., 2020) or DMs based approaches (Carrión & Norouzi, 2023), leading to  
215 increased performance. One commonality between ViTs, Large Vision Models (LVMs), or high-  
216 fidelity generative methods is that they often require large amounts of data to train effectively (Moon  
217 et al., 2022), a common limitation in the medical fairness domain. Recent studies have established  
218 the state-of-the-art malignancy classification under DDI both in terms of accuracy and fairness by

216 leveraging contrastive disentanglement (Du et al., 2023) and patch alignment (Aayushman et al.,  
 217 2024) for efficient learning. Critically, these studies include a collection of informative fairness  
 218 metrics. We build upon these recent works by training from scratch purely on our synthetic data, then  
 219 fine-tuning on real data and computing the same metrics, which we discuss in the following sections.  
 220

### 221 3 CGDDI FRAMEWORK AND DATA

224 Our framework generates three complementary types of synthetic dermatological imagery through  
 225 a sequential pipeline. Starting with DDI as the base dataset (Subsection 3.1), we develop a latent  
 226 diffusion inpainting pipeline (Subsection 3.2) to remove lesions from healthy skin samples while  
 227 preserving original skin tone and image context. Although healthy skin imagery may appear readily  
 228 available, to our knowledge, there is no dataset with dermatologist-verified skin tone labels collected  
 229 in a setting analogous to that of diseased samples. These healthy synthetics are ideal for multiple  
 230 purposes: as recipient canvases for our non-parametric lesion mapping algorithm (Subsection 3.3),  
 231 which places real lesion observations onto healthy skin, and as prior preservation anchors for our  
 232 parametric semantic generation approach (Subsection 3.4). We generate 309 healthy, 80,427 lesion-  
 233 mapped, and 185,400 semantic synthetic images. We design a protocol to verify and triage generated  
 234 data via manual review and ablation, dropping between 7% and 22% of synthetics depending on the  
 235 method. Full details of the review criteria and final skin-tone balance are included in the Appendix.  
 236 The modular design allows each method to address different data scarcity scenarios: the lack of  
 237 clinical-quality baselines, extremely rare conditions, and parametric generation that scales efficiently  
 238 for cases with limited but sufficient training examples.

#### 239 3.1 BASE DATA

240 We exclusively leverage DDI in our experiments as it is biopsy and dermatologist confirmed, both in  
 241 terms of condition and skin tone, which avoids noise in our training process. DDI includes a range of  
 242 rare, common, benign, and malignant skin lesions across all skin tones. The images were captured  
 243 under variable conditions with standard RGB cameras, representative of the first-pass examination. In  
 244 total, the dataset contains 656 samples, 171 malignant and 485 benign. There are 78 unique disease  
 245 labels, some of which are closely related or sub-groups of each other, which we join together to a total  
 246 of 65 unique disease categories, as is common in some previous work (Tschandl, 2018). We call the  
 247 dataset with 65 disease categories “Joined DDI” and detail our grouping reasoning in the Appendix.  
 248 After joining, 25 diseases are represented by a single observation, 27 contain 2-10 samples, and 13  
 249 diseases are captured by more than 10 observations. This becomes our base dataset.

#### 251 3.2 LATENT DIFFUSION INPAINTING

253 To convert DDI into healthy samples, we perform inpainting using the frozen UNet denoiser (1.22  
 254 B parameters) and MoVQGAN decoder (67 M parameters) (Razhigaev et al., 2023), guiding the  
 255 generation via positive “*A close-up clinical photograph of healthy, smooth, normal human skin*” and  
 256 negative “*Bad anatomy, deformed, lesion, ugly, disfigured, illness, hole, transparent, eye*” prompts,  
 257 which avoids artifacts common when using these methods. We ablate on different prompts and prompt  
 258 structures, or generation without prompts, which led to artifacts that we discuss in the Appendix.  
 259 We determine the precise regions of the lesion (and the marker, if present) to inpaint using semantic  
 260 segmentation masks. Finally, we apply a light Gaussian blur to the lesion and marker masks to ensure  
 261 a smoother transition to healthy skin. This method is visualized in Figure 1 color-coded as green.

262 **Healthy Synthetics** For masking, we elect to use sDDI as it is human-verified and delineates the  
 263 skin, ruler, marker, and lesion boundaries. However, our framework is compatible with accurate  
 264 out-of-the-box segmentation algorithm output masks, as shown on Section A.1. Out of a possible  
 265 334 samples (number of masks), we keep 309 healthy synthetics, discarding 25 samples (7%) after  
 266 human review. This review excludes any images that exhibit unnatural artifacts, as detailed in the  
 267 Appendix. We observe realistic lesion-less reconstruction of the normal expected skin under lesion  
 268 or marker-covered regions, preserving the skin tone of the input sample, hair coverage, and body  
 269 location. This ensures that all other original descriptors remain accurate. The results are shown in  
 Figure 3, with additional examples in the Appendix.



Figure 3: **Human-verified healthy synthetic imagery.** Our inpainting framework removes the target lesion (and any marks made by the marker, if present). We observe lesion-less reconstruction robust to hair, lesion morphology, or location, which ensures skin tone descriptors remain accurate. These clinical-setting healthy samples are later leveraged toward lesion-mapped and semantic synthetic images.

### 3.3 LESION MAPPING ALGORITHM

Mapping existing lesion observations from one sample to another relaxes the need to learn an accurate distribution of disease appearance and morphology, which is useful when there is not enough training data, such as in the case of rare diseases. However, non-parametric approaches risk placing lesions out of bounds, in differing lighting conditions, or with unnatural appearance.

Our lesion mapping algorithm alleviates these concerns by editing sDDI masks by joining previously “lesion” or “marker” class areas into healthy skin segments, matching our healthy synthetics. By avoiding any background or ruler sections, we explicitly determine valid locations on which a lesion can be placed. An additional padding parameter determines the minimum distance from mask edges a lesion edge must lie, which helps avoid mapping lesions onto the curvature of body parts like arms, legs, or fingers. Finally, size, rotation, and position parameters can be set or left at random. This algorithm is visualized in Figure 1, color-coded gray.

**Lesion-mapped Synthetics** For each healthy image, we iterate on all DDI samples with sDDI masks (donors). We dilate, then apply a light Gaussian blur to the disease mask area before mapping it onto the healthy sample. We determine a random location with padding (10 pixels from the edge). If the padding algorithm does not find enough room to place the lesion mask (as can be the case for large lesions mapped to narrow body sections), we skip it and move on to the next donor. Given 309 synthetic healthy images, 334 sDDI masks, we generate a total of 80,427 lesion-mapped samples. This total is controllable as the loop could be run multiple times with different parameters. The results are shown in the second row of Figure 2, with more examples in the Appendix.

### 3.4 PARAMETRIC GENERATION

When sufficient per-disease data is available, learned approaches for photorealistic generation and fine-grain control can be trained with high performance. As our base data is small, efficient fine-tuning algorithms and pre-trained models become our starting point. We begin by learning disease-specific tokens through textual inversion (Gal et al., 2023). These special tokens are injected into prompts used to fine-tune the latent DM backbone (Rombach et al., 2022) via Low-Rank Adaptation (LoRA) for parameter-efficient learning (Hu et al., 2022). However, unlike prior work, we cover the full spectrum of skin tones, train on the smaller but more accurate Joined DDI base data, learn a greater number of unique diseases, and leverage healthy synthetics towards Prior Preservation Loss (PPL).

PPL was introduced in (Ruiz et al., 2023) to address two major issues with fine-tuning DMs: forgetting semantic knowledge (drift) and reduced output diversity. Semantic drift is the decreasing ability of the network to generate class data for which a target instance belongs to (in our case, “an image of eczema” is the class while “an image of eczema on dark skin” is an instance). Reduced output diversity, in our case, can limit the generation of the target from novel viewpoints, body location, skin



Figure 4: (Left) Number of observations per disease and skin-tone distribution in DDI. (Right) Semantic sampling factor per disease and skin-tone applied to balance the distribution up to a target number of samples (4,635 total per disease). “New” indicates that no sample of that class originally existed in DDI; cgDDI synthesized novel views up to the total balance target.

tones, etc. Recent work has found that PPL acts as a regularizer, enabling more faithful generation in comparison to textual inversion (Zeng et al., 2024) alone. We use our healthy synthetics as PPL, encouraging accurate generation with less risk of overfitting. This process is visualized in Figure 1, color-coded as purple.

**Semantic Synthetics** Since the number of samples needed to achieve quality results using our design is not clear a priori, we ablate the number of images needed to achieve viable quality generation. We do this by training on diseases in Joined DDI with two or more samples. We keep 10% of the available data per-disease (or at minimum 1 sample) for testing. At generation time, let:

$$H = \{h_i\}_{i=1}^{309}, \quad D = \{d_j\}_{j=1}^{40}, \quad S = \{s_k\}_{k=1}^3 \quad (1)$$

denote our sets of healthy images, diseases, and skin tones. For each triple  $(h_i, d_j, s_k)$  we draw  $R = 5$  independent semantic samples via:

$$x_{i,j,k}^{(r)} = f_{\theta,j} \left( h_i, \underbrace{\text{“An image of } S_{*,j} \text{ on a } s_k\text{-toned individual”}}_{\text{textual prompt}} ; \alpha, \beta, t \right) \quad (2)$$

where  $f_{\theta,j}$  is the disease-specific DM,  $S_{*,j}$  is the special token learned by inversion,  $\alpha$  the strength factor between conditioning and pure generation,  $\beta$  being the guidance scale, and  $t$  the number of inference steps. Optionally, we can append “with a ruler” to the textual prompt in order to encourage a measurement overlay.

The total semantic synthetic images sampled is  $|H| \times |D| \times |S| \times R = 185,400$ , resulting in a balanced sampling of 1,545 samples per skin tone, per disease. We empirically observe around 10 samples to be the minimum in order to train viable generators, but publish all imagery (along with the number of training samples) for further study. The results are shown on rows 3 and 4 of Figure 2. The 13 conditions with more than 10 training samples are shown on the left side of Figure 4 with a visualization of the sampling factor needed for balanced semantic synthetics on the right. Additional discussion on training efficiency and detailed parameter settings can be found in the Appendix.

## 4 CLASSIFICATION AND FAIRNESS

We evaluate the quality of our synthetic data through malignancy classification experiments evaluated on real data. For classifier design, we follow the contrastive disentanglement approach from (Du

378 Table 2: **Malignancy Classification and Fairness Performance.** Abbreviations: “R.” denotes real  
 379 data, “S.” denotes synthetic data, “R. + S.” denotes a combination of both.  
 380

| 381<br>Method    | 382<br>Accuracy (%) $\pm$ Std-dev. |                |                |                | 383<br>Fairness $\pm$ Std-dev. |                 |                |
|------------------|------------------------------------|----------------|----------------|----------------|--------------------------------|-----------------|----------------|
|                  | 384<br>Mean                        | 385<br>Light   | 386<br>Medium  | 387<br>Dark    | 388<br>PQD                     | 389<br>DPM      | 390<br>EOM     |
| Baseline (R.)    | 82.4 $\pm$ 1.5                     | 83.3 $\pm$ 1.0 | 74.6 $\pm$ 5.7 | 89.7 $\pm$ 2.2 | 77.0 $\pm$ 1.9                 | 75.2 $\pm$ 13.3 | 58.7 $\pm$ 4.3 |
| FairDisCo (R.)   | 83.8 $\pm$ 0.4                     | 88.6 $\pm$ 0.1 | 71.7 $\pm$ 2.2 | 92.0 $\pm$ 2.8 | 78.0 $\pm$ 4.5                 | 72.8 $\pm$ 12.0 | 63.7 $\pm$ 3.5 |
| PatchAlign (R.)  | 87.4 $\pm$ 1.2                     | 89.6 $\pm$ 2.6 | 80.3 $\pm$ 5.7 | 92.3 $\pm$ 1.3 | 86.9 $\pm$ 6.1                 | 74.9 $\pm$ 12.0 | 69.6 $\pm$ 1.7 |
| Exp. 1 (S. only) | 86.4 $\pm$ 1.0                     | 88.9 $\pm$ 1.5 | 84.1 $\pm$ 2.6 | 86.0 $\pm$ 1.8 | 94.6 $\pm$ 3.1                 | 82.0 $\pm$ 9.7  | 81.9 $\pm$ 2.8 |
| Exp. 2 (R. + S.) | 90.9 $\pm$ 1.3                     | 93.3 $\pm$ 2.2 | 86.4 $\pm$ 4.1 | 93.0 $\pm$ 1.0 | 92.5 $\pm$ 2.5                 | 68.8 $\pm$ 11.3 | 86.6 $\pm$ 1.9 |

391 et al., 2023) with the patch-alignment improvements in (Aayushman et al., 2024). Keeping the same  
 392 classifier design and training method allows us to directly measure the benefit of our generation  
 393 framework and synthesized data. We evaluate on the same DDI benchmark as (Du et al., 2023;  
 394 Aayushman et al., 2024), and report the same fairness metrics, which we formalize next.

#### 395 4.1 CLASSIFICATION FAIRNESS METRICS

396 The fairness metrics used in our evaluation are: Predictive Quality Disparity (PQD), Demographic  
 397 Disparity Metric (DPM), and Equality of Opportunity Metric (EOM). In brief, PQD measures the  
 398 prediction quality difference between each skin tone group as a “best vs worst” ratio measurement,  
 399 similar to IR. DPM computes the percentage diversities of positive outcomes for each skin tone group  
 400 and increases as we reach similar positive prediction rates across populations. EOM measures true  
 401 positive rate consistency and increases as skin tone groups have similar true positive rates. Formally:

$$402 \quad \text{PQD} = \frac{\min_{k \in S} \text{acc}_k}{\max_{k \in S} \text{acc}_k} \quad \text{DPM} = \frac{1}{|\mathcal{C}|} \sum_{c \in \mathcal{C}} \frac{\min_{k \in S} p(\hat{y} = c \mid s = k)}{\max_{k \in S} p(\hat{y} = c \mid s = k)} \quad (3, 4)$$

$$403 \quad \text{EOM} = \frac{1}{|\mathcal{C}|} \sum_{c \in \mathcal{C}} \frac{\min_{k \in S} p(\hat{y} = c \mid y = c, s = k)}{\max_{k \in S} p(\hat{y} = c \mid y = c, s = k)} \quad (5)$$

411 Where  $\mathcal{C} = \{\text{benign, malignant}\}$ ,  $y$  is the ground truth and  $\hat{y}$  is the model prediction.

#### 412 4.2 MALIGNANCY CLASSIFICATION

413 We run two experiments: *Experiment 1*: Training purely on synthetic data generated by the cgDDI  
 414 framework, and *Experiment 2*: Training on synthetic data and then fine-tuning on a subset of real  
 415 DDI data. Evaluations for both experiments are performed on holdout test sets of real DDI images.  
 416 This is visualized in Figure 1, color coded as red. In order to avoid data leaks, we exclude training  
 417 on synthetics that were conditioned on samples found in the testing set. We also avoid semantic  
 418 synthetics generated with  $\leq 10$  training samples.

419 We find that *Experiment 1* (training on synthetic cgDDI data) achieves a mean accuracy similar to the  
 420 prior methods from (Du et al., 2023; Aayushman et al., 2024), while improving in fairness metrics. In  
 421 *Experiment 2* (training on synthetic data and fine-tuning on real images), we achieve higher accuracy  
 422 across all skin tone categories. Results of both experiments are shown in Table 2.

423 As stated in (Aayushman et al., 2024), EOM is the most important fairness metric, and *Experiment 2*  
 424 achieves the highest EOM score among all the baseline methods, followed by *Experiment 1*. This  
 425 improvement in the EOM metric demonstrates the essential role of using synthetically generated  
 426 data from cgDDI in the training regimen. We also observed that the PQD metric is slightly lower in  
 427 *Experiment 2* than in *Experiment 1*, as the real-data performance gains appear to be greater for light  
 428 and dark skin tones than for medium. This could be due to disease imbalances found in the real data.  
 429 While DPM decreases in *Experiment 2*, we note that metric can increase with false positives, as noted  
 430 by (Aayushman et al., 2024).

432 Table 3: **Left:** classification accuracy by rarity. **Right:** generative quality by skin tone.  
433

| Disease Commonality | Exp. 1 (S) Accuracy (%) | Exp. 2 (S+R) Accuracy (%) | Skin Tone | FID $\downarrow$ | KID $\downarrow$ | LPIPS $\downarrow$ |
|---------------------|-------------------------|---------------------------|-----------|------------------|------------------|--------------------|
| Common (>10)        | 85.05                   | 91.59                     | Light     | 103.45           | 0.039            | 0.715              |
| Rare (3–10)         | 94.74                   | 89.47                     | Medium    | 88.41            | 0.032            | 0.741              |
| V. Rare (1–2)       | 83.33                   | 83.33                     | Dark      | 108.07           | 0.016            | 0.734              |
|                     |                         |                           | Max/Min   | 1.22             | 2.41             | 1.04               |

440  
441 4.2.1 DISEASE RARITY PERFORMANCE  
442443 To understand how synthetic augmentation impacts diseases with varying training data availability,  
444 we stratify classification performance by disease frequency. We define common diseases as those  
445 represented by more than 10 observations (107 test cases), rare as between 3 and 10 (19 test cases),  
446 and very rare as between 1 and 2 (6 test cases).  
447448 We observe that fine-tuning on real data improves the common case, slightly reduces the rare case,  
449 and has no impact on the very rare case. As discussed, our synthetic dataset contains significantly  
450 more observations of rare diseases compared to base DDI, while the intricacies and imbalance of real  
451 data encourage the model to improve the common case (leading to a higher mean accuracy) as shown  
452 on Table 3 (Left). Notably, our lesion-mapping approach enables augmentation for single-sample  
453 diseases, maintaining competitive accuracy even for conditions with minimal training data.  
454455 4.3 GENERATIVE FAIRNESS METRICS  
456457 While classification fairness metrics demonstrate improved equity in malignancy diagnosis, we  
458 additionally evaluate whether our generation methods maintain quality parity across skin tones. We  
459 compute Fréchet Inception Distance (FID) (Heusel et al., 2017), Kernel Inception Distance (KID)  
460 (Binkowski et al., 2018), and Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018)  
461 between cgDDI and held-out real DDI images.  
462463 All three metrics demonstrate reasonable stability across skin tones, with low dispersion for FID  
464 ( $\sigma = 8.39$ , max/min ratio = 1.22) and LPIPS ( $\sigma = 0.011$ , max/min ratio = 1.04). KID shows the  
465 largest relative spread ( $\sigma = 0.010$ , max/min = 2.41), but the absolute differences are small, so the  
466 practical impact is limited. Each metric slightly favors a different tone (FID: Medium best, KID:  
467 Dark best, LPIPS: Light best), indicating no systematic advantage for any population. This is shown  
468 in Table 3 (Right). We further ablate these metrics per generative method in the Appendix, along  
469 with additional visual examples that reinforce generative fairness across populations.  
470

## 5 CONCLUSION

471  
472 We present cgDDI, a novel hybrid generation framework that solves the technical challenge of synthe-  
473 sizing fair and diverse dermatological imagery under extreme data constraints. A key contribution in  
474 combining non-parametric lesion mapping (enabling  $300\times$  augmentation of single-sample diseases)  
475 with parametric generation (achieving high-fidelity synthesis from just 10 samples). Additionally,  
476 the method is capable of generating in-distribution healthy images which are later leveraged through  
477 the pipeline. This approach maintains quality parity across skin tones while providing fine-grained  
478 semantic control for both common and rare diseases.  
479480 The method effectiveness is validated through large data synthesis and extensive experiments: models  
481 trained purely on our synthetic data achieve competitive accuracy, and state-of-the-art when fine-tuned  
482 on real data. Additionally we measure generative fairness with low disparity between skin-tones and  
483 strong performance for very rare diseases. By successfully growing a small but clean medical base  
484 dataset, we demonstrate careful algorithmic design can overcome severe data bias and limitations in  
485 medical AI and potentially other data-constrained domains. We further discuss generalizability in  
the Appendix, noting that while we leverage DDI due to its unique properties, all components of our  
design are applicable to other datasets.  
486

## ETHICS STATEMENT

**Human subjects, privacy, and de-identification:** Our experiments utilize de-identified (no faces, tattoos, or other Personally Identifiable Information (PII)), biopsy-confirmed macroscopic clinical photographs with dermatologist-provided skin-tone labels within DDI, collected under Stanford IRB protocols 36050 and 61146. We do not collect new human-subjects data. Manual review and discard criteria for synthetics was performed by two researchers in the Medical AI field (paper authors) with the following demographics: one hispanic latino man and one middle-eastern woman.

**Fairness and potential bias:** The central motivation is improving equity in dermatological AI: cgDDI explicitly balances across Fitzpatrick I–VI and augments extremely rare conditions. We quantify generative quality across tones and evaluate classifier fairness with tone-stratified metrics. Residual risks include distributional shift and synthetic artifacts that could differentially impact subgroups; we mitigate via human triage, mask-quality protocols, and stratified analyses.

**Artifacts:** We do not distribute clinical images, we release only our original artifacts: synthesized data, models and code under CC BY-NC. Fine-tuned checkpoints are allowed to be re-parametrized. Our usage terms restrict unethical use. We provide contact/takedown mechanisms. Our work is transformative non-commercial research use; we welcome coordination with data stewards to ensure ongoing compliance. Shared croissant metadata includes all relevant Responsible AI fields.

**Dual-use and clinical use:** Synthetic medical images could be misused for deceptive content or overconfident automated diagnosis. We provide safeguards: clear labeling of synthetic data and strict intended-use terms. No clinical deployment is claimed.

**Conflicts of interest and sponsorship:** No conflicts or external sponsors influenced this research.

Our work aims to democratize access to fair dermatological AI research, particularly benefiting under-resourced communities where algorithmic fairness is most critical. We emphasize that synthetic data should augment, not replace, real datasets and classification systems should augment, not replace, clinician validation.

## REPRODUCIBILITY STATEMENT

We ensure full reproducibility through comprehensive resource release and documentation.

**Code and Models:** Complete implementation available on <https://anonymous.4open.science/r/ControllableGenDDI> including: all generation pipelines with hyperparameters, training scripts for textual inversion and LoRA fine-tuning, classification architecture from prior work (Aayushman et al., 2024), 65 disease-specific pre-trained model weights. Note that models are to be released upon publication given difficulties in anonymization, however we provide the necessary information to recover these weights.

**Data:** We share 266,136 synthetic images on a anonymous bucket linked in <https://anonymous.4open.science/r/ControllableGenDDI> with complete metadata (skin tone, disease, generation method, prompts) and croissant file. A more formal and organized repository will be shared upon acceptance.

**Experimental Setup:** Five-fold cross-validation using random seeds from (Aayushman et al., 2024). Hardware specifications: NVIDIA L4 24GB GPUs, Intel Xeon CPUs, 53GB RAM, Software environment: Ubuntu 22.04.4, CUDA 12.4, Python 3.11.12. Full details available in the Appendix.

**Evaluation:** Fairness metrics computation code provided. Segmentation masks from sDDI (Carrión & Norouzi, 2023) required to replicate healthy generation. All experiments are reproducible using provided code and specified dependencies.

**Specifications:** All relevant sampling parameters, hyper-parameters, algorithmic settings and details needed to replicate our results are within the manuscript, appendix or attached code repository.

540 REFERENCES  
541

542 Aayushman, Hemanth Gaddey, Vidhi Mittal, Manisha Chawla, and Gagan Raj Gupta. PatchAlign:Fair  
543 and Accurate Skin Disease Image Classification by Alignment with Clinical Labels. *arXiv (Cornell*  
544 *University)*, 9 2024. doi: 10.48550/arxiv.2409.04975. URL <http://arxiv.org/abs/2409.04975>.

545 Ademide Adelekun, Ginikanwa Onyekaba, and Jules B. Lipoff. Skin color in dermatology textbooks:  
546 An updated evaluation and analysis. *Journal of the American Academy of Dermatology*, 84, 04  
547 2020. doi: 10.1016/j.jaad.2020.04.084.

548 Mohamed Akroud, Bálint Gyepesi, Péter Holló, Adrienn Poór, Blága Kincső, Stephen Solis, Katrina  
549 Cirone, Jeremy Kawahara, Dekker Slade, Latif Abid, Máté Kovács, and István Fazekas. Diffusion-  
550 based data augmentation for skin disease classification: Impact across original medical datasets  
551 to fully synthetic images. In Anirban Mukhopadhyay, Ilkay Oksuz, Sandy Engelhardt, Dajiang  
552 Zhu, and Yixuan Yuan (eds.), *Deep Generative Models*, pp. 99–109, Cham, 2024. Springer Nature  
553 Switzerland. ISBN 978-3-031-53767-7.

554 Charles M. Balch, Jeffrey E. Gershenwald, Seng-Jaw Soong, John F. Thompson, Michael B.  
555 Atkins, David R. Byrd, Antonio C. Buzaid, Alistair J. Cochran, Daniel G. Coit, Shouluan  
556 Ding, Alexander M. Eggermont, Keith T. Flaherty, Phyllis A. Gimotty, John M. Kirkwood,  
557 Kelly M. McMasters, Martin C. Mihm, Donald L. Morton, Merrick I. Ross, Arthur J. Sober, and  
558 Vernon K. Sondak. Final version of 2009 AJCC Melanoma Staging and Classification. *Journal*  
559 *of Clinical Oncology*, 27(36):6199–6206, 11 2009. doi: 10.1200/jco.2009.23.4799. URL  
560 <https://doi.org/10.1200/jco.2009.23.4799>.

561 Mikolaj Binkowski, Danica J. Sutherland, Michael Arbel, and Arthur Gretton. Demystifying  
562 MMD GANs. *International Conference on Learning Representations*, 1 2018. URL  
563 <http://discovery.ucl.ac.uk/id/eprint/10062884/>.

564 Nicolas Carion, Laura Gustafson, Yuan-Ting Hu, Shoubhik Debnath, Ronghang Hu, Didac Suris,  
565 Chaitanya Ryali, Kalyan Vasudev Alwala, Haitham Khedr, Andrew Huang, Jie Lei, Tengyu  
566 Ma, Baishan Guo, Arpit Kalla, Markus Marks, Joseph Greer, Meng Wang, Peize Sun, Roman  
567 Rädle, Triantafyllos Afouras, Effrosyni Mavroudi, Katherine Xu, Tsung-Han Wu, Yu Zhou,  
568 Liliane Momeni, Rishi Hazra, Shuangrui Ding, Sagar Vaze, Francois Porcher, Feng Li, Siyuan  
569 Li, Aishwarya Kamath, Ho Kei Cheng, Piotr Dollár, Nikhila Ravi, Kate Saenko, Pengchuan  
570 Zhang, and Christoph Feichtenhofer. Sam 3: Segment anything with concepts, 2025. URL  
571 <https://arxiv.org/abs/2511.16719>.

572 Héctor Carrión and Narges Norouzi. FEDD – Fair, Efficient, and diverse diffusion-based lesion  
573 segmentation and malignancy Classification. *arXiv (Cornell University)*, 1 2023. doi: 10.48550/  
574 arxiv.2307.11654. URL <https://arxiv.org/abs/2307.11654>.

575 Alberto Coustasse, Raghav Sarkar, Bukola Abodunde, Brandon J. Metzger, and Chelsea M. Slater.  
576 Use of teledermatology to improve dermatological access in rural areas. *Telemedicine and e-Health*,  
577 25:1022–1032, 11 2019. doi: 10.1089/tmj.2018.0130.

578 Roxana Daneshjou, Mary P. Smith, Mary D. Sun, Veronica Rotemberg, and James Zou. Lack of trans-  
579 parency and potential bias in artificial intelligence data sets and algorithms. *JAMA Dermatology*,  
580 157, 09 2021. doi: 10.1001/jamadermatol.2021.3129.

581 Roxana Daneshjou, Catarina Barata, Brigid Betz-Stablein, M. Emre Celebi, Noel Codella, Marc  
582 Combalia, Pascale Gutierrez, David Gutman, Allan Halpern, Brian Helba, Harald Kittler, Kivanc  
583 Kose, Konstantinos Liopyris, Josep Malvehy, Han Seung Seog, H. Peter Soyer, Eric R. Tkaczyk,  
584 Philipp Tschandl, and Veronica Rotemberg. Checklist for evaluation of image-based artificial  
585 intelligence reports in dermatology. *JAMA Dermatology*, 158:90, 01 2022a. doi: 10.1001/  
586 jamadermatol.2021.4915.

587 Roxana Daneshjou, Kailas Vodrahalli, Roberto A. Novoa, Melissa Jenkins, Weixin Liang, Veronica  
588 Rotemberg, Justin Ko, Susan M. Swetter, Elizabeth E. Bailey, Olivier Gevaert, Pritam Mukherjee,  
589 Michelle Phung, Kiana Yekrang, Bradley Fong, Rachna Sahasrabudhe, Johan A. C. Allerup, Utako  
Okata-Karigane, James Zou, and Albert S. Chiou. Disparities in dermatology ai performance on a  
diverse, curated clinical image set. *Science Advances*, 8, 08 2022b. doi: 10.1126/sciadv.abq6147.

594 Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis. *NIPS*, 06 2021.  
 595

596 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas  
 597 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,  
 598 and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at  
 599 Scale. *arXiv (Cornell University)*, 1 2020. doi: 10.48550/arxiv.2010.11929. URL <https://arxiv.org/abs/2010.11929>.  
 600

601 Siyi Du, Ben Hers, Nourhan Bayasi, Ghassan Hamarneh, and Rafeef Garbi. Fairdisco: Fairer ai in  
 602 dermatology via disentanglement contrastive learning. *Lecture Notes in Computer Science*, 13804:  
 603 185–202, 2023. doi: 10.1007/978-3-031-25069-9\_13.

604 Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M. Swetter, Helen M. Blau, and  
 605 Sebastian Thrun. Dermatologist-level classification of skin cancer with deep neural networks.  
 606 *Nature*, 542:115–118, 01 2017. doi: 10.1038/nature21056.

607 T. B. Fitzpatrick. The validity and practicality of sun-reactive skin types i through vi. *Archives of  
 608 Dermatology*, 124:869–871, 06 1988. doi: 10.1001/archderm.124.6.869.

609 Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit Haim Bermano, Gal Chechik, and  
 610 Daniel Cohen-or. An image is worth one word: Personalizing text-to-image generation using  
 611 textual inversion. In *The Eleventh International Conference on Learning Representations*, 2023.  
 612 URL <https://openreview.net/forum?id=NAQvF08TcyG>.  
 613

614 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,  
 615 Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the  
 616 ACM*, 63(11):139–144, 10 2020. doi: 10.1145/3422622. URL <https://doi.org/10.1145/3422622>.  
 617

618 Matthew Groh, Caleb Harris, Luis Soenksen, Felix Lau, Rachel Han, Aerin Kim, Arash Koochek,  
 619 and Omar Badri. Evaluating deep neural networks trained on clinical images in dermatology with  
 620 the Fitzpatrick 17k dataset. *CVPRW*, 04 2021.

621 Matthew Groh, Omar Badri, Roxana Daneshjou, Arash Koochek, Caleb Harris, Luis R. Soenksen,  
 622 P. Murali Doraiswamy, and Rosalind Picard. Deep learning-aided decision support for diagnosis  
 623 of skin disease across skin tones. *Nature Medicine*, 30(2):573–583, 2 2024. doi: 10.1038/s41591-023-02728-3.  
 624

625 Seung Seog Han, Ilwoo Park, Sung Eun Chang, Woohyung Lim, Myoung Shin Kim, Gyeong Hun  
 626 Park, Je Byeong Chae, Chang Hun Huh, and Jung-Im Na. Augmented intelligence dermatology:  
 627 Deep neural networks empower medical professionals in diagnosing skin cancer and predicting  
 628 treatment options for 134 skin disorders. *Journal of Investigative Dermatology*, 140:1753–1761,  
 629 09 2020. doi: 10.1016/j.jid.2020.01.019.

630 Carlos Hernández-Pérez, Marc Combalia, Sebastian Podlipnik, Noel C. F. Codella, Veronica  
 631 Rotemberg, Allan C. Halpern, Ofer Reiter, Cristina Carrera, Alicia Barreiro, Brian Helba,  
 632 Susana Puig, Veronica Vilaplana, and Josep Malvehy. BCN20000: Dermoscopic lesions  
 633 in the wild. *Scientific Data*, 11(1), 6 2024. doi: 10.1038/s41597-024-03387-w. URL  
 634 <https://doi.org/10.1038/s41597-024-03387-w>.  
 635

636 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. GANs  
 637 trained by a two Time-Scale update rule converge to a local Nash equilibrium. *arXiv (Cornell  
 638 University)*, 30:6626–6637, 1 2017. URL <https://arxiv.org/pdf/1706.08500.pdf>.  
 639

640 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,  
 641 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International  
 642 Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=nZeVKeFYf9>.  
 643

644 Yejin Jeong, Mike Schaekermann, and Steven Lin. Crowdsourcing dermatology images with google  
 645 search ads: Creating a real-world skin condition dataset for ai development. *The Annals of  
 646 Family Medicine*, 22(Supplement 1), 2024. ISSN 1544-1709. doi: 10.1370/afm.22.s1.6186. URL  
 647 [https://www.annfammed.org/content/22/Supplement\\_1/6186](https://www.annfammed.org/content/22/Supplement_1/6186).

648 Ira Ktena, Olivia Wiles, Isabela Albuquerque, Sylvestre-Alvise Rebuffi, Ryutaro Tanno, Abhijit Guha  
 649 Roy, Shekoofeh Azizi, Danielle Belgrave, Pushmeet Kohli, Taylan Cemgil, Alan Karthikesalingam,  
 650 and Sven Gowal. Generative models improve fairness of medical classifiers under distribution  
 651 shifts. *Nature Medicine*, 30(4):1166–1173, 4 2024. doi: 10.1038/s41591-024-02838-6. URL  
 652 <https://doi.org/10.1038/s41591-024-02838-6>.

653 Taehong Moon, Moonseok Choi, Gayoung Lee, Jung-Woo Ha, Juho Lee, AI Kaist, Naver AI  
 654 Lab, and Aitrics. Fine-tuning diffusion models with limited data. 2022. URL <https://api.semanticscholar.org/CorpusID:261711978>.

655 Zhiwei Qin, Zhao Liu, Ping Zhu, and Yongbo Xue. A GAN-based image synthesis method for  
 656 skin lesion classification. *Computer Methods and Programs in Biomedicine*, 195:105568, 5 2020.  
 657 doi: 10.1016/j.cmpb.2020.105568. URL <https://doi.org/10.1016/j.cmpb.2020.105568>.

658 Anton Razzhigaev, Arseniy Shakhmatov, Anastasia Maltseva, Vladimir Arkhipkin, Igor Pavlov, Ilya  
 659 Ryabov, Angelina Kuts, Alexander Panchenko, Andrey Kuznetsov, and Denis Dimitrov. Kandinsky:  
 660 an Improved Text-to-Image Synthesis with Image Prior and Latent Diffusion. *arXiv (Cornell University)*, 1 2023. doi: 10.48550/arxiv.2310.03502. URL <https://arxiv.org/abs/2310.03502>.

661 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-  
 662 Resolution Image Synthesis with Latent Diffusion Models. 2022 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 10674–10685, 6 2022. doi: 10.1109/cvpr52688.2022.01042. URL <https://doi.org/10.1109/cvpr52688.2022.01042>.

663 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aber-  
 664 man. DreamBooth: Fine Tuning Text-to-Image diffusion models for Subject-Driven Generation.  
 665 2022 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 22500–  
 666 22510, 6 2023. doi: 10.1109/cvpr52729.2023.02155. URL <https://doi.org/10.1109/cvpr52729.2023.02155>.

667 Luke W. Sagers, James A. Diao, Luke Melas-Kyriazi, Matthew Groh, Pranav Rajpurkar, Adewole S.  
 668 Adamson, Veronica Rotemberg, Roxana Daneshjou, and Arjun K. Manrai. Augmenting medical  
 669 image classifiers with synthetic data from latent diffusion models. *arXiv (Cornell University)*, 1  
 670 2023. doi: 10.48550/arxiv.2308.12453. URL <https://arxiv.org/abs/2308.12453>.

671 Luke William Sagers, James A Diao, Matthew Groh, Pranav Rajpurkar, Adewole Adamson, and  
 672 Arjun Kumar Manrai. Improving dermatology classifiers across populations using images generated  
 673 by large diffusion models. In *NeurIPS 2022 Workshop on Synthetic Data for Empowering ML  
 674 Research*, 2022. URL <https://openreview.net/forum?id=Vzdbjtz6Tys>.

675 Matthew W. Tsang and Jack S. Resneck. Even patients with changing moles face long dermatology  
 676 appointment wait-times: A study of simulated patient calls to dermatologists. *Journal of the  
 677 American Academy of Dermatology*, 55:54–58, 07 2006. doi: 10.1016/j.jaad.2006.04.001.

678 Philipp Tschandl. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of  
 679 common pigmented skin lesions, 2018. URL <https://doi.org/10.7910/DVN/DBW86T>.

680 Janet Wang, Yunsung Chung, Zhengming Ding, and Jihun Hamm. From Majority to Minority: A  
 681 diffusion-based augmentation for underrepresented groups in skin lesion analysis. *arXiv (Cornell  
 682 University)*, 6 2024. doi: 10.48550/arxiv.2406.18375. URL <https://arxiv.org/abs/2406.18375>.

683 Julia K. Winkler, Andreas Blum, Katharina Kom moss, Alexander Enk, Ferdinand Toberer, Albert  
 684 Rosenberger, and Holger A. Haenssle. Assessment of diagnostic performance of dermatologists  
 685 cooperating with a convolutional neural network in a prospective clinical study. *JAMA Dermatology*,  
 686 159(6):621, 5 2023. doi: 10.1001/jamadermatol.2023.0905. URL <https://doi.org/10.1001/jamadermatol.2023.0905>.

687 Yan Zeng, Masanori Suganuma, and Takayuki Okatani. An improved method for personalizing  
 688 diffusion models. *arXiv (Cornell University)*, 7 2024. doi: 10.48550/arxiv.2407.05312. URL  
 689 <https://arxiv.org/abs/2407.05312>.

702 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable  
703 effectiveness of deep features as a perceptual metric. In *CVPR*, 2018.  
704  
705  
706  
707  
708  
709  
710  
711  
712  
713  
714  
715  
716  
717  
718  
719  
720  
721  
722  
723  
724  
725  
726  
727  
728  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
740  
741  
742  
743  
744  
745  
746  
747  
748  
749  
750  
751  
752  
753  
754  
755



Figure 5: **Fitzpatrick17k Algorithmic Masking and Healthy Sampling.** We expand our work to other datasets which may not include lesion and skin masks. Masks are generated using an off-the-shelf segmentation model.

## APPENDIX

### A ADDITIONAL DATASET VALIDATION

We discuss additional real datasets relevant to our study in Section 2, particularly, Fitzpatrick17k (F17k) as the macroscopic dataset most commonly cited when training and evaluating fairness in dermatological AI. However, we note F17k is skin-tone unbalanced, annotated by non-experts without biopsy or histopathological evidence, leading to more than 30% label noise Groh et al. (2021). To evaluate the generalizability of our method and to demonstrate mask-free processing, while reducing these concerns, we run the full cgDDI framework on a verified subset of F17k Groh et al. (2024).

This dataset totals 364 samples: 143 light-skinned, 113 medium-skinned and 108 dark-skinned. The samples cover eight main diseases: atopic dermatitis, cutaneous T-cell lymphoma, dermatomyositis, lichen planus, lyme disease, pityriasis rosea, pityriasis rubra pilaris and secondary syphilis. Only cutaneous T-cell lymphoma is malignant and overlaps with DDI. We begin processing this data by generating masks with an off-the-shelf segmentation algorithm.

#### A.1 AUTOMATED SEGMENTATION MASKS

When processing the DDI dataset, we elect to leverage pre-made expert-verified segmentation masks Carrión & Norouzi (2023) as they are readily available for this dataset. However, when processing other datasets, this sort of additional information may not be included. We mention in Section 3.2 that our framework is compatible with algorithmically generated masks, and, in this section we demonstrate this functionality by leveraging the Segment Anything 3 (SAMv3) model Carion et al. (2025). We elect this model as a generalist segmentation algorithm proof-of-concept, we acknowledge other methods, particularly those tailored toward dermatology, might perform equally or better.

#### A.2 HEALTHY SYNTHETICS: F17K

We perform a segmentation inference pass tasking SAMv3 with predicting “rash” areas with a confidence cutoff of 0.35. Subsequently we input these masks into Section 3.2 of our framework as-is, outputting healthy F17k synthetics which will serve toward the rest of our pipeline. As with DDI, we manually verify all generated healthy samples and keep those passing the discard criteria outlined in Section H.1. After review, 46 verified healthy samples are kept: 21 light-skinned, 16 medium-skinned and 9 dark-skinned. This discard rate is higher than for DDI, we believe this is due



Figure 6: **Fitzpatrick17k Semantic and Lesion-Mapped Synthetics.** Semantic sampling captures the intricacies differentiating these two related diseases as we LoRA fine-tune separate models per-disease while mapping extends the views for each real lesion.

to imperfect masks leading to a larger number artifacts. Results for this and Section A.1 are shown on Figure 5.

### A.3 LESION-MAPPED SYNTHETICS: F17K

We perform a second segmentation inference pass tasking SAMv3 with delineating the “skin” area of our synthetic healthy samples with a confidence cutoff of 0.35. The aforementioned lesion masks and these new skin masks are passed into Section 3.3 of our pipeline as-is. The discard criteria described in Section H.2 is applied (46.9% discard rate), leading to 1,124 new lesion-mapped synthetics: 529 light-skinned, 373 medium-skinned, 222 dark-skinned samples. The larger imbalance observed here is largely due to F17k skin-tone distribution and the resulting healthy synthetic output distribution.

### A.4 SEMANTIC SYNTHETICS: F17K

We now randomly sample 85% of the verified F17k dataset to learn text-inversion tokens for each of the conditions, then fine-tune generative models using LoRA and prior preservation via healthy synthetics following Section 3.4. The remaining 15% of the data is hold-out for classifier testing, and is balanced across skin-tones. Relevant to the minimum training data and discard criteria outlined on Section H.3, all 8 main conditions in F17k contain more than 10 training samples. We then sample 690 (46 healthy images x 3 skin tones x 5 samples) semantic synthetics per condition, for a 5,520 total new images equally split across skin-tones (1,840 each). Results for this and Section A.3 are shown on Figure 6.

### A.5 CLASSIFICATION FAIRNESS: F17K

We repeat classification experiments using the PatchAlign Aayushman et al. (2024) method described in Section 4 and compute the fairness metrics shown on Section 4.1. These experiments are tested on the held-out F17k data described above. We first train a baseline model, utilizing the same classifier algorithm and training parameters on real data (specifically, the 85% used above for training the generative models). This baseline method reaches 86.0% classification accuracy. We then train from the same initialization but purely on F17k lesion-mapped and semantic synthetics, achieving 88.4% mean accuracy (up 2.4%), with a rise in medium skin-tone accuracy which is offset by lower dark-skin accuracy with fairness metrics being relatively close. We then take this checkpoint and fine-tune on real data, we observe mean accuracy rises another 2.3% to 90.7% and leading or tied per skin-tone accuracy for all skin-tones. PQD also is also highest here and while DPM is lower than the baseline method, Aayushman et al. (2024) argues that PQD is the most important metric while DPM can be skewed by false positives as discussed on the main text. These results are shown on Table 4.

## B CROSS-DATASET VALIDATION

In this section, we emphasize cross-data framework compatibility by mapping and sampling synthetics using combination inputs from both F17k and DDI datasets.

864 Table 4: F17k-trained models evaluated on the F17k test set. Baseline is trained on real data.  
865

| 866 <b>Setting</b>     | 867 <b>Method</b> | 868 <b>Acc</b> | 869 <b>Light</b> | 870 <b>Med</b> | 871 <b>Dark</b> | 872 <b>PQD</b> | 873 <b>DPM</b> | 874 <b>EOM</b> |
|------------------------|-------------------|----------------|------------------|----------------|-----------------|----------------|----------------|----------------|
| 875 <b>F17k → F17k</b> | Baseline          | 86.0%          | 86.7%            | 82.4%          | <b>90.9%</b>    | 0.906          | <b>0.455</b>   | 0.500          |
|                        | Synth Only        | 88.4%          | 86.7%            | <b>94.1%</b>   | 81.8%           | 0.869          | 0.441          | 0.500          |
|                        | Synth + Real      | <b>90.7%</b>   | 86.7%            | <b>94.1%</b>   | <b>90.9%</b>    | <b>0.921</b>   | 0.441          | 0.500          |

886 Figure 7: **Bidirectional Lesion-Mapping**. We leverage our method as-is to map lesions from one  
887 dataset to the other and vice versa.  
888889 **B.1 CROSS-DATASET LESION MAPPING**  
890891 We demonstrate lesion-mapping generalizability through bidirectional cross-dataset synthesis, in this  
892 case, we show effective mapping of lesions from DDI to F17k and vice versa. This does not require  
893 additional processing or changes other than swapping the directory of source and target samples. The  
894 resulting synthetics are visualized on Figure 7. The resulting totals after discard criteria outlined on  
895 Section H.2 is shown on Table 5. Given that DDI is more balanced per skin-tone we see a closer  
896 distribution when mapping to it compared to F17k.  
897898 Table 5: Cross-dataset Lesion-Mapping  
899

| 900 <b>Direction</b>           | 901 <b>Total</b> | 902 <b>Light</b> | 903 <b>Medium</b> | 904 <b>Dark</b> |
|--------------------------------|------------------|------------------|-------------------|-----------------|
| 905 DDI lesions → F17k healthy | 906 13,822       | 907 6,593        | 908 4,267         | 909 2,962       |
| 910 F17k lesions → DDI healthy | 911 9,394        | 912 3,103        | 913 3,272         | 914 3,019       |

915 **B.2 CROSS-DATASET SEMANTIC GENERATION**  
916917 Similarly, we leverage the previously trained generative models and sample new synthetics using the  
918 cross-dataset healthy images as image prompts. Note that these models are not re-trained (as there is  
919 little disease overlap between datasets) but simply re-prompted with new image samples. Table 6  
920 displays the total number of new semantic synthetics. As skin-tone sampling here is controlled via  
921 textual prompts we are able to equally sample across target skin-tones.  
922923 **B.3 CROSS-DATASET CLASSIFICATION EXPERIMENTS**  
924925 In order to exhaustively test the cross-dataset classification capabilities of individually and in-  
926 combination trained models, we run extensive experiments detailing the overall accuracy, per skin-  
927 tone accuracy and fairness metrics for various configurations, keeping the base classifier we have  
928 used through the paper based on Aayushman et al. (2024).  
929

918  
919  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
970  
971  
Table 6: Cross-dataset Semantic Sampling

| Configuration                       | Total Images | Per Skin Tone |
|-------------------------------------|--------------|---------------|
| F17k diseases + DDI healthy prompts | 37,080       | 12,360        |
| DDI diseases + F17k healthy prompts | 8,970        | 2,990         |

Table 7 shows the performance of F17k-trained models on fully unseen DDI data and DDI-based model performance on fully unseen F17k data. Note that when testing a DDI trained model on F17k or vice versa the little overlap between diseases might mean the model has not generalized well to unseen disease classes. This leads to the first F17k baseline classifier obtaining higher accuracy but lower fairness metrics. When training on DDI synthetics however, the richer, larger, balanced and more diverse set of synthetics generalize significantly better to unseen F17k data.

Table 7: Cross-dataset transfer performance, a model is trained on one dataset then evaluated on the other’s test set. Baseline model is trained solely on real data.

| Setting    | Method       | Acc          | Light        | Med          | Dark         | PQD          | DPM          | EOM          |
|------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| F17k → DDI | Baseline     | <b>79.6%</b> | <b>64.3%</b> | <b>82.2%</b> | <b>87.5%</b> | 0.735        | 0.500        | 0.500        |
|            | Synth Only   | 74.3%        | 57.1%        | 77.8%        | 82.5%        | 0.693        | 0.604        | 0.440        |
|            | Synth + Real | 75.2%        | <b>64.3%</b> | 80.0%        | 77.5%        | <b>0.804</b> | <b>0.678</b> | <b>0.703</b> |
| DDI → F17k | Baseline     | 60.5%        | 66.7%        | 47.1%        | 72.7%        | 0.647        | 0.515        | 0.526        |
|            | Synth Only   | <b>74.4%</b> | <b>80.0%</b> | <b>70.6%</b> | 72.7%        | <b>0.882</b> | 0.556        | <b>0.613</b> |
|            | Synth + Real | 69.8%        | 73.3%        | 76.5%        | 54.5%        | 0.713        | <b>0.664</b> | 0.388        |

#### B.4 AGGREGATED CROSS-DATASET TRAINING

We also train on a mixed collection of both datasets, baseline using only real data, using purely synthetics and also fine-tuning those checkpoints on real imagery. Table 8 presents the complete aggregated results. We train on the full combination of DDI and F17k synthetics, including within-dataset lesion-mapped and semantic samples as well as cross-dataset variants from Tables 5 and 6, then fine-tune on the aggregated real training data from both sources. We observe the synthetics and real data generally outperform other settings, highlighting the value of data augmentation using our methods.

Table 8: Aggregated cross-dataset performance. Baseline model is trained on mixed real data.

| Setting    | Method       | Acc          | Light        | Med          | Dark          | PQD          | DPM          | EOM          |
|------------|--------------|--------------|--------------|--------------|---------------|--------------|--------------|--------------|
| Mix → F17k | Baseline     | 86.0%        | 86.7%        | 88.2%        | 81.8%         | <b>0.927</b> | <b>0.471</b> | 0.500        |
|            | Synth Only   | 86.1%        | <b>93.3%</b> | 88.2%        | 72.7%         | 0.779        | 0.378        | <b>0.750</b> |
|            | Synth + Real | <b>93.0%</b> | <b>93.3%</b> | 88.2%        | <b>100.0%</b> | 0.882        | 0.378        | 0.500        |
| Mix → DDI  | Baseline     | 83.2%        | 75.0%        | 82.2%        | 90.0%         | 0.833        | <b>0.679</b> | 0.784        |
|            | Synth Only   | 79.7%        | 71.4%        | 84.4%        | 80.0%         | 0.846        | 0.436        | <b>0.833</b> |
|            | Synth + Real | <b>86.7%</b> | <b>82.1%</b> | <b>84.4%</b> | <b>92.5%</b>  | <b>0.888</b> | 0.600        | 0.750        |

#### C F17K ADDITIONAL EXPERIMENTS DISCUSSION

The cross-dataset experiments demonstrate several key properties of the cgDDI framework.

**Pre-made segmentation masks are not necessary.** We observe out-of-the-box segmentation algorithms are capable of fair and accurate masks which are then directly compatible with the cgDDI framework. Using pixel-perfect and verified masks might lead to a lower discard rate but this trade-off is likely worth it for the scalability of algorithmically generated masking.

972     **Effective cross-dataset transfer.** Lesion-mapping algorithms and generative models can be effec-  
 973     tively leveraged cross datasets, leading to higher diversity synthetics which lead to improved classifier  
 974     performance downstream. For example, training exclusively on real F17k data we achieve 86.0%  
 975     accuracy, adding synthetics from our method raises this metric to 90.7% while finally mixing in DDI  
 976     synthetics achieves 93.0%.

977     **Improved fairness through dataset aggregation.** We observe the leading PQD score includes our  
 978     synthetics in five out of six experiments. The only exception being a large mix of real training data  
 979     which highlights the persistent value of clean, high-quality real samples.

980     **Knowledge transfer despite minimal disease overlap.** Only one condition (cutaneous T-cell  
 981     lymphoma) appears in both DDI and the verified F17k subset. Nevertheless, cross-dataset training  
 982     improves performance on both benchmarks, suggesting the model learns generalizable features about  
 983     skin lesion appearance rather than dataset-specific patterns.

## 985     D APPlicability to Additional Datasets

987     Our framework’s design principles are dataset-agnostic and applicable to any medical imaging domain  
 988     with segmentation masks:

### 990     D.1 Component Transferability

- 992     • **Inpainting Pipeline:** Compatible with any medical images where lesion removal is mean-  
 993     ingful (dermatology, ophthalmology, radiology)
- 994     • **Lesion Mapping:** Generalizes to any scenario requiring transplantation of pathological  
 995     regions between images
- 996     • **Parametric Generation:** Standard diffusion fine-tuning applicable to any labeled collection  
 997     with  $\geq 10$  samples

### 999     D.2 Domain-Specific Considerations

1000     While we validate on dermatology due to its unique fairness challenges and data availability, adapta-  
 1001     tion to other domains requires:

- 1003     1. Segmentation masks (manual or automated via SAM/DINO)
- 1004     2. Fairness-relevant metadata (demographics, equipment type, acquisition parameters)
- 1005     3. Domain expertise for quality assessment

### 1008     D.3 DDI Selection

1009     We selected DDI over other datasets due to their (1) lack of biopsy confirmation leading to unreliable  
 1010     ground truth (F17k), (2) absence of dermatologist-verified skin-tone labels (SCIN) needed for fairness  
 1011     evaluation, (3) the dermoscopic setting being relatively unrepresentative of clinical practice in very  
 1012     low resource communities (HAM1000) (4) the ready availability of segmentation masks for DDI  
 1013     (sDDI) and (5) computational constraints preventing exhaustive cross-dataset experiments within  
 1014     the review period. Due to these limitations growing the complexity of further experiments on other  
 1015     datasets, we leave these experiments as future work.

## 1017     E DDI Preparation and Grouping

1019     This section details our dataset preparation process, including the grouping methodology for disease  
 1020     categories and the mask annotation protocol.

### 1022     E.1 Joined-DDI Category Grouping

1024     In our main manuscript, we mention consolidating 78 unique disease labels in the original DDI  
 1025     dataset into 65 unique disease categories in what we call “Joined DDI.” This grouping was performed  
 based on histopathological similarity, diagnostic similarities, and standard dermatological practice.

1026 For example, several variants of Basal Cell Carcinoma (BCC) were grouped into a single BCC  
 1027 category, including basal-cell-carcinoma, basal-cell-carcinoma-superficial, and basal-cell-carcinoma-  
 1028 nodular. Similarly, different types of melanoma (melanoma-in-situ, melanoma-acral-lentiginous,  
 1029 nodular-melanoma) were consolidated into a single melanoma category, while maintaining distinc-  
 1030 tions between fundamentally different malignancies. Table 9 shows representative examples of our  
 1031 grouping strategy.

1032  
 1033 Table 9: Representative examples of disease grouping from original DDI labels to Joined DDI  
 1034 categories

| Original DDI Labels                     | Joined DDI Category        |
|-----------------------------------------|----------------------------|
| basal-cell-carcinoma                    |                            |
| basal-cell-carcinoma-superficial        | basal cell carcinoma       |
| basal-cell-carcinoma-nodular            |                            |
| melanoma-in-situ                        |                            |
| melanoma-acral-lentiginous              | melanoma                   |
| nodular-melanoma-(nm)                   |                            |
| melanoma                                |                            |
| squamous-cell-carcinoma-in-situ         |                            |
| squamous-cell-carcinoma                 | squamous cell carcinoma    |
| squamous-cell-carcinoma-keratoacanthoma |                            |
| mycosis-fungoides                       |                            |
| subcutaneous-t-cell-lymphoma            | cutaneous T-cell lymphoma  |
| seborrheic-keratosis-irritated          |                            |
| seborrheic-keratosis                    | seborrheic keratosis       |
| melanocytic-nevi                        |                            |
| dysplastic-nevus                        | nevus                      |
| verruca-vulgaris                        |                            |
| wart                                    | verruca vulgaris           |
| benign-keratosis                        |                            |
| inverted-follicular-keratosis           | benign keratosis           |
| atypical-spindle-cell-nevus-of-reed     |                            |
| pigmented-spindle-cell-nevus-of-reed    | spindle cell nevus of Reed |

1058 Our disease grouping strategy reduced the number of unique disease categories while preserving  
 1059 clinically relevant distinctions. This approach provided more samples per category for training our  
 1060 generative models while maintaining the diagnostic utility of the dataset. The complete mapping  
 1061 includes 78 original DDI disease labels consolidated into 65 Joined DDI categories, with the remaining  
 1062 categories having a one-to-one mapping between original and joined labels.

## E.2 MASK ANNOTATIONS

1063 Our work builds upon the segmentation masks from sDDI (Carrión & Norouzi, 2023), which provide  
 1064 pixel-level annotations for four classes: skin, lesion, ruler, and marker. We applied the following  
 1065 post-processing steps to these masks to prepare them for our generation pipeline:

- 1066 • **Boundary refinement:** To ensure smooth transitions in the inpainting process, we applied a  
 1067 dilation operation followed by Gaussian blur to the target mask boundaries.
- 1068 • **Mask consolidation for healthy synthetics:** We merged lesion and marker classes into a  
 1069 single “skin” as the original lesion and marker were removed and replaced with normal skin  
 1070 during our inpaiting process.
- 1071 • **Valid mask area:** The lesion mapping algorithm, calculates “valid region” masks by  
 1072 identifying skin-only regions where lesions could be realistically placed, with or without  
 1073 padding. This avoids placing lesions on top of the ruler area, for example.

1074 In order to have the sDDI (Carrión & Norouzi, 2023) mask fit the image data, we also need to use the  
 1075 image pre-processing technique from that work. It mainly involves cropping DDI images into square  
 1076 shape, more detail can be found on (Carrión & Norouzi, 2023).



Figure 8: **Ablation of inpainting prompts.** We observe anatomically incorrect generation of healthy samples if we do not include terms like “healthy, smooth normal” as guidance on the positive prompt (left). Similarly, excluding terms from the negative prompt like “hole, transparent” (center) or “eye” (right) yield artifacts.

## F GENERATIVE FAIRNESS ABLATIONS

### F.1 CONTRIBUTION OF GENERATION METHODS

We evaluate the individual contribution of each generation method to classification performance by training models on different subsets of cgDDI.

Table 10: Ablation study: Classification performance using different synthetic data subsets.

| Training Data           | Mean Acc. | Light | Medium | Dark |
|-------------------------|-----------|-------|--------|------|
| Real DDI only           | 82.4      | 83.3  | 74.6   | 89.7 |
| Healthy + Lesion-mapped | 81.2      | 82.1  | 78.4   | 82.9 |
| Semantic only           | 84.7      | 86.3  | 82.5   | 85.2 |
| All cgDDI (Exp. 1)      | 86.4      | 88.9  | 84.1   | 86.0 |

Training solely on healthy and lesion-mapped synthetics slightly reduces overall performance compared to training solely on DDI (-1.2% mean accuracy) however it does increase the medium skin-tone performance. We believe this is likely due the limited appearance distribution of non-lesion image features (body location, lighting conditions, skin-tone, etc) and the still relative imbalance bias originating from the base dataset toward medium skin-tone in the lesion-mapped synthetics. Semantic synthetics, however, provide strong individual contribution (+2.3% mean accuracy) and a positive boost across all skin-tones, likely due to parametric learning of disease-specific features. The combination of all three methods yields the best overall performance, growing the training distribution and validating our multi-pronged approach. These results are shown on Table 10.

1134  
1135

## F.2 GENERATIVE QUALITY BY METHOD

1136  
1137  
1138

We provide detailed quality metrics for each generation method in the same way as in the main text via Fréchet Inception Distance (FID), Kernel Inception Distance (KID) and Learned Perceptual Image Patch Similarity (LPIPS). We now discuss performance per generative method:

1139  
1140  
1141  
1142  
1143

**Lesion-mapped (non-parametric):** This method achieves the strongest distributional alignment, with the best mean FID (79.73) and best mean KID (0.003). Its LPIPS (0.698) matches Healthy data. Variability across tones is moderate (FID  $\sigma = 12.28$ ; KID  $\sigma = 0.002$ ), consistent with the methods design for rare diseases.

1144  
1145  
1146  
1147  
1148

**Healthy:** These metrics come in second in FID (mean 102.48) and KID (mean 0.010), while LPIPS is strong (0.698), matching Lesion-mapped in perceptual similarity. Tone-wise variability is modest for KID ( $\sigma = 0.001$ ) and larger for FID ( $\sigma = 13.35$ ), suggesting broadly similar behavior across tones with some room to improve distributional alignment.

1149  
1150  
1151  
1152  
1153

**Semantic (parametric):** This approach shows the most tone consistency on FID ( $\sigma = 4.10$ ) but has the weakest absolute FID (mean 130.52) and KID (mean 0.054). LPIPS is higher (0.746) than the other methods, indicating lower perceptual similarity. Semantic generation shows consistency across tones, despite being fully parametric while having the largest divergence from the base dataset as a learned and sampled approach.

1154  
1155  
1156  
1157

Detailed results are shown on Table 11. These metrics complement our classification fairness results in Tables 2, 3 and the visual qualitative results throughout the paper. Additionally, this supports cgDDI maintains equitable generation quality across populations.

1158  
1159

Table 11: FID, KID, and LPIPS scores stratified by generation method and skin tone.

| Metric  | Method        | Light  | Medium | Dark   | $\sigma$ |
|---------|---------------|--------|--------|--------|----------|
| FID ↓   | Healthy       | 94.02  | 92.11  | 121.33 | 13.35    |
|         | Lesion-mapped | 72.75  | 69.46  | 96.99  | 12.28    |
|         | Semantic      | 134.67 | 124.94 | 131.95 | 4.10     |
| KID ↓   | Healthy       | 0.012  | 0.008  | 0.010  | 0.001    |
|         | Lesion-mapped | 0.005  | 0.003  | 0.001  | 0.002    |
|         | Semantic      | 0.055  | 0.069  | 0.037  | 0.013    |
| LPIPS ↓ | Healthy       | 0.703  | 0.692  | 0.700  | 0.005    |
|         | Lesion-mapped | 0.703  | 0.692  | 0.698  | 0.005    |
|         | Semantic      | 0.738  | 0.756  | 0.743  | 0.008    |

1171

1172

## G SYNTHETIC DATA GENERATION DETAILS

1174  
1175  
1176  
1177

This section provides detailed information about our three synthetic image generation approaches: latent diffusion inpainting, non-parametric lesion mapping, and parametric semantic generation.

1178  
1179  
1180

Table 12: **Dataset Skin-Tone Imbalance.** We measure imbalance ratio for different datasets, defined on Equation 3, where a perfectly balanced dataset has a ratio of 1.

| Skin-Tone       | Existing Real Datasets |       |             | cgDDI   |            |             |
|-----------------|------------------------|-------|-------------|---------|------------|-------------|
|                 | F17k                   | SCIN  | DDI         | Healthy | Lesion-map | Semantic    |
| Light (I-II)    | 7,755                  | 730   | 208         | 97      | 25,726     | 61,800      |
| Medium (III-IV) | 6,089                  | 1,088 | 241         | 114     | 30,392     | 61,800      |
| Dark (V-VI)     | 2,168                  | 357   | 207         | 98      | 24,309     | 61,800      |
| Imbalance Ratio | 3.58                   | 3.05  | <u>1.16</u> | 1.18    | 1.25       | <b>1.00</b> |

1188 G.1 SKIN-TONE BALANCE  
11891190 To ensure cgDDI does not over- or under-represent any particular skin tone, we measure the Imbalance  
1191 Ratio (IR), defined as:

1192 
$$\text{IR} = \frac{\max_{k \in S} n_k}{\min_{k \in S} n_k}, \quad (3)$$
  
1193

1194 where  $n_k$  is the number of samples of skin-tone  $k$ . A perfectly balanced set has an IR of 1, with larger  
1195 values indicating an increasing skew. We find a higher imbalance in the larger crowd-sourced datasets  
1196 F17k (Groh et al., 2021) and SCIN (Jeong et al., 2024), with DDI (Daneshjou et al., 2022b) being  
1197 the most balanced real dataset. We confirm our sampling methods have not caused a significantly  
1198 increased imbalance compared to DDI and improves upon other real datasets as shown on Table 12.  
11991200 G.2 DESCRIPTORS  
12011202 We record and share metadata for all samples. Each row contains the output image, text caption  
1203 description, synthetic type (healthy, lesion-mapped, semantic), prompt image ID, ruler (if used),  
1204 textual prompt disease, malignancy, and skin tone (if used), whether the generator was trained, and  
1205 finally, the number of training samples.1206 G.3 LATENT DIFFUSION INPAINTING: HEALTHY SYNTHETICS  
12071208 Our inpainting leverages the UNet denoiser (1.22B parameters) and MoVQGAN decoder (67M  
1209 parameters) from (Razhigaev et al., 2023). The generation process can be formalized as:  
1210

1211 
$$x_{\text{healthy}} = h_{\theta}(x_{\text{original}}, m, p_{\text{pos}}, p_{\text{neg}}) \quad (7)$$
  
1212

1213 where  $x_{\text{original}}$  is the original DDI image,  $m$  is the binary mask indicating areas to be inpainted (lesion  
1214 or marker from sDDI (Carrión & Norouzi, 2023)),  $p_{\text{pos}}$  is the positive prompt guiding healthy skin  
1215 generation,  $p_{\text{neg}}$  is the negative prompt preventing artifacts,  $h_{\theta}$  is the inpainting model with parameters  
1216  $\theta$ ,  $x_{\text{healthy}}$  is the resulting healthy synthetic image.  
12171218 We experimented with various prompt templates to optimize inpainting quality. Figure 8 shows the  
1219 different prompt combinations tested and their effects on the generated images.  
12201221 Our optimal positive prompt was “A close-up clinical photograph of healthy, smooth, normal human  
1222 skin” and negative prompt was “Bad anatomy, deformed, lesion, ugly, disfigured, illness, hole,  
1223 transparent, eye.” This combination provided the best balance of realistic skin texture while avoiding  
1224 common generation artifacts.1225 For mask processing, we applied a dilation with kernel size 5, followed by Gaussian blur with  $\sigma = 2.0$   
1226 to ensure smooth transitions between inpainted and original regions.  
12271228 G.4 NON-PARAMETRIC LESION-MAPPING ALGORITHM  
12291230 Our lesion mapping approach transfers lesions from source images to healthy synthetic images while  
1231 preserving realism and anatomical context. The process can be mathematically described as:  
1232

1233 
$$x_{\text{mapped}} = g(x_{\text{healthy}}, x_{\text{donor}}, m_{\text{lesion}}, m_{\text{valid}}, l, p, s, r) \quad (8)$$
  
1234

1235 where  $x_{\text{healthy}}$  is the healthy synthetic image,  $x_{\text{donor}}$  is the source image containing the lesion,  $m_{\text{lesion}}$   
1236 is the lesion mask from the donor image,  $m_{\text{valid}}$  is the valid region mask for the healthy image,  $l$  is  
1237 coordinate location of the lesion placement,  $p$  is the padding parameter,  $s$  is a lesion scaling multiplier,  
1238  $r$  is a rotation parameter,  $g$  is the mapping function,  $x_{\text{mapped}}$  is the resulting lesion-mapped synthetic  
1239 image.1240 We set the following parameters:  
1241

- $l$  – we allow the coordinate location of the mapped lesion to be determined at random given  
the padding  $p$  constraint.

- 1242 •  $p$  – we set the padding parameter to 10 pixels. This means the edge of the lesion mask must  
1243 be placed at a minimum of pixels from the edge of the valid skin mask.
- 1244 •  $s$  – we set the scaling multiplier to 1.0, meaning no up or down-scaling was applied. We  
1245 will investigate in the future how to best represent the scale range of particular diseases in  
1246 order to best leverage this parameter.
- 1247 •  $r$  – we set the rotation parameter to zero degrees, meaning no rotation was applied. We  
1248 noticed large rotations impact the natural appearance of the synthetic with relation to  
1249 lighting, future work intends to automatically optimize the rotation in relation to real-world  
1250 illumination.

## 1252 G.5 PARAMETRIC SEMANTIC GENERATION VIA TEXTUAL INVERSION & LoRA

1254 Our parametric generation approach learns disease-specific concepts through textual inversion and  
1255 fine-tunes the latent diffusion model via Low-Rank Adaptation (LoRA). The process is formalized as:

$$1257 \quad S_{*,j} = \text{TextualInversion}(D_j, \phi) \quad (9)$$

$$1259 \quad \theta_j = \text{LoRAFineTuning}(\theta, D_j, S_{*,j}, x_{\text{healthy}}) \quad (10)$$

$$1260 \quad x_{i,j,k}^{(r)} = f_{\theta_j}(h_i, \text{"An image of } S_{*,j} \text{ on a } s_k\text{-toned individual"; } \alpha, \beta, t) \quad (2)$$

1262 where  $D_j$  is the set of training images for disease  $j$ ,  $\phi$  are the parameters of the text encoder,  $S_{*,j}$  is  
1263 the learned special token for disease. For fine-tuning  $j$ ,  $\theta$  are the base model parameters,  $\theta_j$  are the  
1264 LoRA-adapted parameters for disease  $j$ . Sampling is finally done with  $h_i$  as the  $i$ -th healthy synthetic  
1265 image,  $s_k$  is the  $k$ -th skin tone,  $\alpha$  is the strength factor,  $\beta$  is the guidance scale,  $t$  is the number of  
1266 inference steps,  $x_{i,j,k}^{(r)}$  is the  $r$ -th semantic synthetic sample for healthy image  $i$ , disease  $j$ , and skin  
1267 tone  $k$ .

1268 We set the following parameters:

- 1270 •  $\alpha$  – we set the strength factor to 0.725, we observe setting  $\alpha$  much lower than 7.0 to struggle  
1271 at guiding generation towards the prompted skin tone.
- 1272 •  $\beta$  – we set the guidance scale to 8.75.
- 1273 •  $t$  we set the number of inference steps to 100.

## 1275 G.6 TRAINING HYPERPARAMETERS

1278 We discuss our training hyperparameters here, which can also be found on the code repository. As the  
1279 inpainting pipeline is frozen it does not necessitate training hyperparameters. The lesion mapping  
1280 algorithm is non-parametric, so it does not require hyperparameters.

### 1281 G.6.1 TEXTUAL INVERSION

1283 For textual inversion, we set batch size to 4, maximum training steps to 500, learning rate to  $5.0e^{-4}$ ,  
1284 initializer token set to “skin” and training is done at “fp16” precision. We do not leverage learning  
1285 rate warm-up and we set a constant learning rate schedule.

### 1286 G.6.2 LoRA FINE-TUNING

1288 For LoRA fine-tuning, we set batch size to 16, sampling batch size is also set to 16, we set one step  
1289 of gradient accumulation, maximum training steps to 750, learning rate to  $5.0e^{-6}$ , we point to our  
1290 healthy images as class images and training is done at “fp16” precision. We do not leverage learning  
1291 rate warm-up and we set a constant learning rate schedule.

## 1293 G.7 ABLATIONS ON DATA EFFICIENCY

1294 To determine the minimum number of real samples needed for effective generation, we conducted  
1295 ablation studies on the relationship between training sample size and generation quality via visual



Figure 9: **Data Efficiency Ablation.** We randomly sample three subsets of semantic synthetics equally between target skin tones. We observe increasing quality with increasing training data noting better human anatomy, increasingly realistic rulers, lesion quality and instruction following.

observation of random generative subsets. Figure 9 shows generation results with varying numbers of training samples.

Our findings indicate that generation quality improves significantly up to approximately 10 samples, after which gains become more incremental. We specifically note improvement in human anatomy, valid clinical rulers, lesion morphology (with the isolation of the target disease, instead of generating multiple lesions), and instruction following. Thus we determine our approach is effective with as few as 10 real training samples per disease class.

## H REVIEW PROTOCOL AND DISCARD CRITERIA

To evaluate the quality of our synthetic images, we establish a review protocol. The review was conducted by the paper authors who have previous experience in dermatological AI research.



Figure 10: Accepted Healthy Synthetics. Further visualization of samples who passed our review protocol.



Figure 11: Accepted Lesion-Mapped Synthetics. Further visualization of samples that passed algorithmic constraints.

## H.1 HEALTHY SYNTHETICS

As there are a maximum possible 334 synthetics for this type, it was viable to manually review the full-set of images.

The discard criteria is as follows:

1. Original lesion remains present.
2. Unrealistic skin texture.
3. Incorrect skin tone.
4. Generative artifacts (unexpected holes, eyes, lighting, etc).

After review, we keep 309 healthy synthetics, discarding 25 (or 7%) of possible samples. Some illustrations of images that would trigger a discard appear on Figure 8 with accepted samples shown on Figure 10.

1404 **H.2 LESION-MAPPED SYNTHETICS**  
1405

1406 Since we generate 80,427 lesion-mapped synthetics, a manual review of the full set was not possible.  
 1407 We did however, algorithmically eliminate any output images that did not meet the padding criteria of  
 1408 10 pixels, which should avoid strange placements and lighting, as previously mentioned. Given 309  
 1409 synthetic healthy images, 334 sDDI masks and a single iteration loop, following the description given  
 1410 on Section 3.3, it is possible to generate 103,206 synthetics. However, the algorithmic constraint  
 1411 discards 22,779 samples (or 22%) of possible samples. We show additional lesion-mapped samples,  
 1412 along with their real donors, on Figure 11.

1413 **H.3 SEMANTIC SYNTHETICS**  
1414

1415 As we generate 185,400 semantic synthetics, a manual review of the full set was not possible.  
 1416 However, we ablate generation quality for random subsets of data along with their corresponding  
 1417 amount of training data. We observe that at around 10 training samples, image quality becomes  
 1418 viable. This is visualized on Figure 9.

1419 Some observations of synthetics with fewer than 10 training samples include:  
1420

- 1421 1. Unrealistic skin texture.
- 1422 2. Anatomical inconsistencies.
- 1423 3. Unrealistic or unnatural patterns in lesion appearance or placement.
- 1424 4. Ruler or other generative artifacts.
- 1425 5. Poor instruction following.

1426 Given this criteria, do not include semantic synthetics produced with  $\leq 10$  training samples on our  
 1427 classification experiments. This means that out of 185,400 samples, we include 60,255 (or about  
 1428 33%) in the classification experiments. We do however publish all semantic synthetics regardless of  
 1429 their original number of training samples for further research and evaluation.

1430 **I CLASSIFICATION EXPERIMENTS**  
1431

1432 This section provides detailed information about our classification experiments, including model  
 1433 architecture, training hyperparameters, data splitting strategy, fairness metrics computation, and  
 1434 statistical analysis.

1435 **I.1 MODEL ARCHITECTURE AND TRAINING HYPERPARAMETERS**  
1436

1437 For our classification experiments, we followed the contrastive disentanglement approach from (Du  
 1438 et al., 2023) with the patch-alignment improvements in (Aayushman et al., 2024). The classifier  
 1439 architecture consists of a Vision Transformer (ViT-B/16) pre-trained on ImageNet-21k.

1440 In terms of hyperparamters, we follow (Aayushman et al., 2024). Adam optimizer with learning rate  
 1441  $1e^{-4}$ , with a linear decay scheduler at step size 2 and a decay factor of 0.8. Batch size is set to 32 and  
 1442 train for a total of 20 epochs.

1443 For Experiment 2 (fine-tuning on real data), we used a lower learning rate of  $1e^{-5}$  and trained for an  
 1444 additional 20 epochs with early stopping.

1445 The baseline model (referred to as “Baseline” in Table 2) uses a pre-trained ResNet-18 as the feature  
 1446 extractor and only cross-entropy loss on the final labels for optimization, following the approach  
 1447 described in (Aayushman et al., 2024). We compare our method with this baseline as well as with  
 1448 FairDisCo (Du et al., 2023).

1449 **I.2 DATA SPLITS AND LEAKAGE PREVENTION**  
1450

1451 To ensure valid evaluation and prevent data leakage, we carefully designed our experimental setup.  
 1452 For all experiments, we followed the same 80/20 train/test split ratio as used in previous work (Du  
 1453

1458 et al., 2023; Aayushman et al., 2024) when evaluating on the DDI dataset, enabling direct comparison  
 1459 with baseline methods.

1460 For Experiment 1 (training exclusively on synthetic data), we utilized synthetic images from our  
 1461 cgDDI dataset, ensuring no overlap with test images from the real DDI dataset. This is accomplished  
 1462 by removing any lesion-mapped synthetics which are generated from image donors present on the test  
 1463 set (as split by the (Aayushman et al., 2024) seeds). Furthermore, we remove any semantic synthetic  
 1464 which was generated with target disease and healthy image prompt which together reconstruct an  
 1465 image which is present on the test set.

1466 For Experiment 2 (fine-tuning on real data), we first trained the model on our synthetic cgDDI dataset,  
 1467 then fine-tuned it on the real DDI training set. The model was evaluated on the same real DDI test set  
 1468 as in Experiment 1 and as (Aayushman et al., 2024).

1470 **I.3 STATISTICAL SIGNIFICANCE**

1471 To assess the statistical robustness of our results, and to directly compare against (Aayushman et al.,  
 1472 2024) we performed five experiments with different train/test split seeds. These are taken directly  
 1473 from (Aayushman et al., 2024) code repository and are ['S36', 'S37', 'S38', 'S39', 'S40'] which we  
 1474 believe to be seeds 36, 37, 38, 39 and 40. We calculated mean performance and standard deviation  
 1475 for each metric. The standard deviations reported in Table 2 reflect the variation across these splits.

1476 **J ETHICS, BROADER IMPACTS AND SAFEGUARDS**

1477 This section discusses ethical considerations, broader societal impacts, and safeguards related to our  
 1478 work.

1479 **J.1 IRB APPROVAL AND DE-IDENTIFICATION PROTOCOL**

1480 This work builds exclusively on the publicly available DDI dataset (Daneshjou et al., 2022b), which  
 1481 was collected under Stanford IRB protocol numbers 36050 and 61146. All clinical images in the  
 1482 original dataset were de-identified following a strict protocol that removed all personally identifiable  
 1483 information (PII), including faces, tattoos, and unique identifiers.

1484 No new human subjects were enrolled for this study, so no additional IRB approval was required. Our  
 1485 synthetic data generation further enhances privacy by creating artificial images that do not directly  
 1486 correspond to any real individual patient.

1487 **J.2 TRANSFORMATIVE USE**

1488 To contextualize the transformative nature of our generation, we compare FID scores between simple  
 1489 augmentations and cgDDI methods against base DDI:

1490 Table 13: FID scores comparing augmentation methods. cgDDI produces substantially different  
 1491 distributions than simple modifications.

| Method              | FID $\downarrow$ |
|---------------------|------------------|
| Duplication         | 0.0              |
| Color Edits         | 3.8              |
| Contrast            | 7.3              |
| Rotation            | 17.3             |
| Random Cropping     | 23.0             |
| Gaussian Noise      | 32.1             |
| cgDDI Lesion-mapped | 79.7             |
| cgDDI Healthy       | 102.5            |
| cgDDI Semantic      | 130.5            |

1512 The significantly larger FID scores ( $\geq 79.7$ ) demonstrate that cgDDI creates substantially novel  
 1513 imagery rather than simple modifications, supporting the transformative nature of our contribution.  
 1514

1515 **J.3 BROADER IMPACTS DISCUSSION**

1516  
 1517 We believe our cgDDI framework has several potential positive societal impacts:  
 1518

1519 1. Improved healthcare equity: By enabling the development of more fair and accurate derma-  
 1520 tological AI systems, our work could help reduce healthcare disparities affecting underrep-  
 1521 resented populations.

1522 2. Enhanced medical education: Synthetic images can be used for medical education, providing  
 1523 dermatologists and other healthcare providers with exposure to diverse presentations of skin  
 1524 conditions.

1525 3. Reduced privacy risks: Synthetic data can reduce the need for collecting and sharing sensitive  
 1526 patient images, mitigating privacy concerns.  
 1527

1528 However, potential negative impacts include:  
 1529

1530 1. Misuse of synthetic data: If not properly disclosed, synthetic images could be misrepresented  
 1531 as real clinical data.

1532 2. Over-reliance on synthetic data: Exclusive training on synthetic data might not capture all  
 1533 the nuances present in real clinical scenarios.

1534 3. Unrealistic expectations: Improvements in AI performance on synthetic data might not  
 1535 translate directly to real-world clinical settings without careful validation.  
 1536

1537 We believe negative risks can be mitigated with further improvement of our models via additional  
 1538 training and validation.  
 1539

1540 **J.4 SAFEGUARDS AND LICENSING**

1541 To mitigate potential risks and ensure responsible use of our work, we have implemented the following  
 1542 safeguards:  
 1543

- 1544 • Clear documentation: We provide comprehensive documentation about the synthetic nature  
 1545 of our dataset and its intended use.
- 1546 • Data statements: Each synthetic image is accompanied by metadata clearly identifying it as  
 1547 synthetic and specifying the generation method.
- 1548 • Open licensing: We release our code, models, and dataset under the Apache 2.0 license,  
 1549 enabling broad access with attribution.
- 1550 • Ethical guidelines: We will include usage guidelines that encourage responsible application  
 1551 in research and educational contexts.

1552 All resources are available at <https://anonymous.4open.science/r/ControllableGenDDI> with appropriate documentation and licensing information.  
 1553

1554 **K LIMITATIONS**

1555 While our experiments demonstrate cgDDI improves classification performance and fairness while  
 1556 lowering dataset size limitations, extremely-efficient parametric training and generation (fewer than  
 1557 10 samples) remains an open challenge in the vision community, and more so toward medical AI. We  
 1558 identify promising directions further reduction:  
 1559

- 1560 • **Few-shot adaptation:** Techniques like Model-Agnostic Meta-Learning (MAML) could  
 1561 potentially reduce requirements to 3-5 samples

- **Further prompt engineering:** Advanced prompt design might enable zero-shot generation for unseen diseases, such as explicitly describing in natural language visual features associated with particularly rare morphologies
- **Cross-disease transfer:** Learning shared disease characteristics could enable better generalization

We leave systematic investigation of these approaches as future work, noting that our non-parametric lesion mapping already enables augmentation from single samples. Additionally, our approach provides generative control via prompting. However, instruction following is strongly influenced by sampling hyperparameters. Our parameter selection, while informed by preliminary experiments, was not exhaustively optimized due to computational costs. Finally, while we manually and algorithmically review generated samples, incorporating dermatologist review across all our subsets would measure dataset quality and provide information for filtering.

## L REPRODUCIBILITY AND COMPUTE RESOURCES

This section provides detailed information about the computational resources and environment used for our experiments to facilitate reproducibility.

### L.1 HARDWARE AND GPU USAGE

All experiments were conducted using the following hardware:

- GPU: NVIDIA L4 24GB
- CPU: Intel Xeon @ 2.20GHz
- RAM: 53GB
- Storage: 112.6GB

The approximate compute time for each component was:

- Healthy synthetic generation: 2.5 GPU hours
- Lesion mapping: 30 CPU hours
- Textual inversion training: 45 GPU hours
- LoRA fine-tuning: 30 GPU hours
- Semantic synthetic generation: 250 GPU days
- Classification experiments: 10 GPU hours

The total compute resources used for this project amounted to approximately 6,000 GPU hours which we split across multiple compute instances.

### L.2 SOFTWARE ENVIRONMENT

Our implementation used the following software environment:

- Operating System: Ubuntu 22.04.4 LTS
- CUDA: 12.4
- Python: 3.11.12

In terms of packages, we leverage Google Colab pre-installed libraries. All additional dependencies and version information are documented in our code repository.

1620 L.3 CODE AND DATA ACCESS  
16211622 All code, models, and datasets are publicly available at:  
16231624 <https://anonymous.4open.science/r/ControllableGenDDI>  
16251626 The repository includes:  
16271628 

- 1629 • Source code for all components of the cgDDI framework
- 1630 • Pre-trained model weights for textual inversion and LoRA adaptations
- 1631 • Full synthetic dataset with metadata
- 1632 • Documentation on usage and reproduction

  
1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673