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Abstract

Multi-agent reinforcement learning (MARL) re-
mains difficult to scale to many agents. Recent
MARL using Mean Field Control (MFC) provides
a tractable and rigorous approach to otherwise
difficult cooperative MARL. However, the strict
MFC assumption of many independent, weakly-
interacting agents is too inflexible in practice. We
generalize MFC to instead simultaneously model
many similar and few complex agents – as Major-
Minor Mean Field Control (M3FC). Theoretically,
we give approximation results for finite agent con-
trol, and verify the sufficiency of stationary poli-
cies for optimality together with a dynamic pro-
gramming principle. Algorithmically, we propose
Major-Minor Mean Field MARL (M3FMARL)
for finite agent systems instead of the limiting sys-
tem. The algorithm is shown to approximate the
policy gradient of the underlying M3FC MDP. Fi-
nally, we demonstrate its capabilities experimen-
tally in various scenarios. We observe a strong
performance in comparison to state-of-the-art pol-
icy gradient MARL methods.

1. Introduction
Recent successes of reinforcement learning (RL) (Vinyals
et al., 2019; Schrittwieser et al., 2020; Ouyang et al., 2022)
motivate the search for techniques for the multi-agent case,
referred to as multi-agent reinforcement learning (MARL).
Due to the high complexity of multi-agent control (Bernstein
et al., 2002; Daskalakis et al., 2009), exploiting problem
structure is important for scalable MARL. In this work,
we consider systems with many agents interacting through
aggregated information of all agents – the mean field (MF).
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Mean field control for MARL. Dynamical control and
behavior in systems with many agents is the subject of stud-
ies in mean field games (MFG) (Huang et al., 2006; Lasry
and Lions, 2007) and mean field control (MFC) (Nourian
et al., 2012; Bensoussan et al., 2013; Carmona et al., 2023b).
Such aggregated interaction models simplify MARL in
the limit of infinite agents, whenever agents interact only
through their empirical distribution. The simplification pro-
vides a problem complexity that is independent of the exact
number of agents. The result is tractability, by avoiding oth-
erwise exponentially large joint state-action spaces (Zhang
et al., 2021). This has led to scalable control based on
MFC (Gu et al., 2023; Carmona et al., 2023b). And in-
deed, in applications such aggregation is commonly found
on some level, e.g., in chemical reaction networks for ag-
gregate molecule mass (Anderson and Kurtz, 2011), related
mass-action epidemics models (Kiss et al., 2017), or traffic
where congestion depends on the number of travelling cars
(Cabannes et al., 2022), to name just a few. See also epi-
demics control (Dunyak and Caines, 2021), drone swarms
(Shiri et al., 2019), self organization (Carmona et al., 2023a),
and many more financial (Carmona, 2020) or engineering
scenarios (Djehiche et al., 2017).

Limitations of standard MFC. However, the strict as-
sumption of only minor agents – i.e. independent, homoge-
neous agents that can be summarized by their distribution
(MF) – limits applicability. In practice, systems often con-
sist of more than homogeneous agents, and hence one must
extend standard MFC towards major agents or environment
states that are not aggregated. For instance, in modelling car
traffic on road networks (Cabannes et al., 2022; Wu et al.,
2023), when considering only the distribution of cars (minor
agents) on the network, one cannot model major agents or
environment states, such as traffic lights or the road condi-
tions respectively. Another example is given by the logistics
scenario in Figure 1 and in the experiments, where many
drones on a moving truck collect many packages.

For this purpose, a first step in the continuous-time MFG
literature is to consider common noise (Carmona et al.,
2016; Perrin et al., 2020), in order to relax the uncondi-
tional independence of minor agents. Some more recent
works consider such common noise also in discrete-time
MFC (Carmona et al., 2023b; Bäuerle, 2023; Motte and
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Figure 1. Logistics example: Many drones are modelled as minor
agent MF, while truck and package destinations are modelled by a
major agent. (See Foraging problem in Section 4.1)

Pham, 2022; 2023), or equivalently, global environment
states (Mondal et al., 2023). Essentially, this extension al-
lows MFC to also model random environment effects such
as the arrival of new packages in the logistics example (Fig-
ure 1). Carmona et al. (2023b) provide a reformulation of
MARL into single-agent RL and consider algorithms for the
resulting Markov decision process (MDP). Bäuerle (2023)
give approximation theorems and approximate optimality
in the finite system by the limiting MFC solution with com-
mon noise, and Motte and Pham (2022; 2023) quantify the
rates of convergence explicitly. See also Table 1 for a brief
comparison between existing works. In comparison, for
the common noise setting, we contribute a new approxima-
tion analysis of MFC-based MARL algorithms, where in
contrast to prior work, we learn directly with finite agents.

More importantly however, a second contribution is to con-
sider major agents. Major agents generalize common noise
or environmental states, and take actions that have a non-

negligible effect on the system. So far, major agents have
only been considered in continuous-time, non-cooperative
MFGs (Nourian and Caines, 2013; Şen and Caines, 2014;
Caines and Kizilkale, 2016; Şen and Caines, 2016). To the
best of our knowledge, no such discrete-time, cooperative
framework has been formulated yet. In this work, we inves-
tigate such a framework and associated MARL algorithms.

Contribution. Existing MFC cannot model general agents
and many aggregated agents simultaneously. In essence,
we generalize the solution spaces of single-agent RL and
MFC-based MARL – frameworks for cooperative MARL
as depicted in Figure 2. This provides both tractability for
many aggregated agents and generality for arbitrary gen-
eral agents. Our contribution is briefly summarized into (i)
formulating the first discrete-time MFC model with major
agents, together with establishing its theoretical properties;
(ii) providing a MFC-based MARL algorithm, which in
contrast to prior work learns on the finite problem of inter-
est; and (iii) we perform a significant empirical evaluation,
also obtaining positive comparisons of MFC-based MARL
against state of the art, whereas prior works on MFC were
limited to verifying algorithms on one or two examples.

Figure 2. Our M3FC-based MARL generalizes MFC-based MARL
and standard single-agent RL in the solution space of general
MARL solutions, reducing the otherwise combinatorial nature of
MARL (Zhang et al., 2021) to a tractable but still general setting.

Table 1. A comparison of recent related works and a subset of their results on discrete-time MFC.
prop. chaos: propagation of chaos; opt. policy: existence of optimal (stationary) policies; common noise: presence thereof; non-finite:
non-finite state-actions, e.g. compact; major agent: presence thereof; RL: RL algorithm (+: learns / is analyzed on finite MARL problems).

Ref. prop. chaos opt. policy common noise non-finite major agent RL

Carmona et al. (2023b) ✗ ✓ ✓ ✓ ✗ ✓

Gu et al. (2021; 2023) ✓ ✓ ✗ ✗ ✗ ✓

Bäuerle (2023) ✓ ✓ ✓ ✓ ✗ ✗

Mondal et al. (2022; 2023) ✓ ✗ ✓ ✗ ✗ ✓

Motte and Pham (2022; 2023) ✓ ✓ ✓ ✓ ✗ ✗

our work ✓ ✓ ✓ ✓ ✓ ✓+
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2. Major-Minor Mean Field Control
To begin, in this section we extend standard MFC by mod-
elling the presence of a major agent. The generalization to
more than one major agent is straightforward. This leads to
our discrete-time major-minor MFC (M3FC) model. Over-
all, we obtain a formulation that allows standard MARL
handling of major agents, while tractably handling many
minor agents via MFC-based techniques.

Notation: By EX we denote conditional expectations given
X . The space of probability measures P(X ) on compact
metric spaces X is equipped with the 1-Wasserstein dis-
tance, unless noted otherwise (Villani, 2009). Note com-
pactness of P(X ) on compact X by Prokhorov’s theo-
rem (Billingsley, 2013). Hence, we sometimes use the
uniformly (not Lipschitz) equivalent metric dΣ(µ, µ

′) :=∑∞
m=1 2

−m|
∫
fm d(µ−µ′)|, for some sequence of continu-

ous fm : X → [−1, 1] (Parthasarathy, 2005, Theorem 6.6).

2.1. Finite-Agent System

Consider N (minor) agents i ∈ [N ] := {1, . . . , N} with
compact metric state and action spaces X , U , equipped with
random states and actions xi,N

t and ui,N
t at times t ∈ N,

where initial states xi,N
0 ∼ µ0(x

i,N
0 ) are independently

sampled from some initial distribution µ0 ∈ P(X ). In ad-
dition to standard MFC, we also consider a single major
agent, though the framework can be extended to multiple.
Consider major agent state and action spaces, X 0, U0 and
state-actions x0,N

t , u0,N
t , with the major agent formally in-

dexed by i = 0. Given all actions, the agent states evolve
according to kernels p, p0 depending on (i) the agent’s own
state-actions, (ii) the major state-actions, and (iii) the empir-
ical MF, i.e. the P(X )-valued empirical state distribution
µN
t := 1

N

∑N
i=1 δxi,N

t
. This means that minor agents affect

other agents only at rate 1
N . In practice, we identify minor

agents as all agents that matter through their MF µN
t . Any

remaining agents are major, such that the problem-specific
stratification into major and minor agents is always possible.

By symmetry, the system state at any time t is therefore
entirely given by (x0,N

t , µN
t ). Accordingly, in MFC we

share policies between all minor agents. We consider time-
variant policies π ∈ Π, π0 ∈ Π0 from some classes of major
and minor policies Π, Π0 that depend on an agent’s own
state and (x0,N

t , µN
t ) at all times t. Overall, for all i ∈ [N ]

and t ∈ N, the finite MFC system follows

ui,N
t ∼ πt(u

i,N
t | xi,N

t , x0,N
t , µN

t ), (1a)

u0,N
t ∼ π0

t (u
0,N
t | x0,N

t , µN
t ), (1b)

xi,N
t+1 ∼ p(xi,N

t+1 | xi,N
t , ui,N

t , x0,N
t , u0,N

t , µN
t ), (1c)

x0,N
t+1 ∼ p0(x0,N

t+1 | x0,N
t , u0,N

t , µN
t ) . (1d)

The goal is then to maximize the infinite-horizon discounted

objective JN (π, π0) := E
[∑∞

t=0 γ
tr(x0,N

t , u0,N
t , µN

t )
]

over minor and major policies (π, π0), with discount γ ∈
(0, 1) and reward function r : P(X ) → R. While an opti-
mal behavior could be learned using standard MARL policy
gradient methods, for improved tractability we introduce the
following M3FC model in the case of many minor agents.
Remark 1. The model is as expressive as in existing MFC
(Mondal et al., 2022; Gu et al., 2023), as it also includes
(i) joint state-action MFs νt ∈ P(X × U), by splitting
time steps in two and defining new states in X ∪X ×U , (ii)
average rewards over all agents, and (iii) random rewards rit
by r(µN

t ) ≡ 1
N

∑N
i=1 E[rit | x

i,N
t , µN

t ]. A finite horizon is
handled analogously (without optimal stationary policies).

2.2. Mean Field Control Limit

By introducing the MF limit, we obtain a large, more
tractable subclass of cooperative multi-agent control prob-
lems, which may otherwise suffer from the curse of many
agents (combinatorial joint state-action space (Zhang et al.,
2021)). We introduce the MF limit by formally taking
N → ∞: The finite-agent control problem is replaced
by a higher-dimensional single-agent MDP – the M3FC
MDP. By symmetry, we summarize minor agents into their
probability law, the MF µt ≡ L(xi,N

t ) ∈ P(X ). It replaces
its empirical analogue µN

t by a law of large numbers (LLN).
Thus, by definition, the MF µt evolves forward as

µt+1 = T (x0
t , u

0
t , µt, µt ⊗ πt(µt))

=

∫∫
p(· | x, u, x0

t , u
0
t , µt)πt(du | x, µt)µt(dx), (2)

with πt(µt) := πt(· | ·, µt), product measures ht ≡
µt ⊗ πt(µt) of measure µt and kernel πt(µt) on X × U ,
and deterministic dynamics for the MF, T (x0, u0, µ, h) :=∫∫

p(· | x, u, x0, u0, µ)h(dx, du).

Therefore, the state of the limiting system consists only of
the MF µt, major state x0

t and actions ht ≡ µt ⊗ πt(µt).
As a result, we obtain the limiting M3FC MDP

ht ∼ π̂t(ht | x0
t , µt), (3a)

u0
t ∼ π0

t (u
0
t | x0

t , µt), (3b)

µt+1 = T (x0
t , u

0
t , µt, ht), (3c)

x0
t+1 ∼ p0(x0

t+1 | x0
t , u

0
t , µt) (3d)

with objective J(π̂, π0) = E
[∑∞

t=0 γ
tr(x0

t , u
0
t , µt)

]
and

transition dynamics for the MF T (x0, u0, µ, h) :=
∫∫

p(· |
x, u, x0, u0, µ)h(dx, du). Here, we identify µt ⊗ πt(µt) ≡
ht ∈ H(µt) in the compact set H(µ) ⊆ P(X × U) of
desired joint state-action distributions with first marginal µ
as part of the action of the M3FC MDP.

In other words, the action of the M3FC MDP is (ht, u
0
t )

where ht replaces all the minor agent actions by a LLN.
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M3FC
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Figure 3. The dynamics (1) as a probabilistic graphical model, with
actions in grey (inputs omitted for readability). Diamonds denote
deterministic functions. M3FC abstracts minor agents i ∈ [N ] by
a LLN, considering only their MF as variables in the dotted box.

Accordingly, minor agent policies are replaced by MFC
policies π̂ mapping from current µt to desired state-action
distribution ht. The limiting M3FC model abstracts away
all the minor agents in the finite system, and considers only
the MF and the major agents, as visualized in Figure 3. The
reason for writing joint ht is mostly technical, as for deter-
ministic π̂, we write πt = Φ(π̂t) to reobtain agent policies
µt-a.e. uniquely by disintegration (Kallenberg, 2017) of
ht = π̂t(µt) into µt ⊗ π′

t with decision rule π′
t ∈ P(U)X

and using πt(µt) ≡ π′
t. Inversely, any π ∈ Π is represented

in the MFC MDP by deterministic π̂t = Φ−1(π)t = µt⊗πt.

Remark 2. Strictly speaking, in finite-agent control one
jointly selects actions (u0,N

t , u1,N
t , . . . , uN,N

t ) given joint
states (x0,N

t , x1,N
t , . . . , xN,N

t ). But intuitively, (i) joint
states reduce to (x0,N

t , µN
t ), while (ii) joint actions are

replaced by the LLN and sampling actions. Optimality of
MFC solutions over larger classes of heterogeneous or joint
policies is plausible, but to the best of our knowledge, gen-
eral result are still limited. See also Appendix Q.

For the unfamiliar reader, in Appendix B we recap basic
deterministic MFC without major agents or common noise.
There, we recap Lipschitz approximation theorems and dy-
namic programming principles in compact spaces.

Common noise and global states. In the classical sense
(Perrin et al., 2020; Motte and Pham, 2022), common noise
is given by random noise ϵ0t ∼ pϵ(ϵ

0
t ) sampled from a fixed

distribution pϵ, and affects all minor agents at once, xi,N
t+1 ∼

p(xi,N
t+1 | xi,N

t , ui,N
t , ϵ0t , µ

N
t ). This allows to model systems

with stochastic MFs and inter-agent correlation, and has
added difficulty to the theoretical analysis (Carmona et al.,
2016). Of similar interest are also “major” global states
x0,N
t , which need not be sampled from fixed distributions

but evolve dynamically (for MFC with finite global states,
see e.g. Mondal et al. (2023)).

Both common noise and global states are contained in the

M3FC model by using a trivial major agent without actions.
We also note that, in general, common noise is equivalent
to global states, as global states can be integrated into the
minor state conditioned on the common noise. However,
for computational purposes the separation of global states
and minor agent states can be helpful, as the simplex P(X )
over minor states can be kept smaller for methods based on
discretization of the simplex.

2.3. Dynamic Programming

As a first step, it is well known that stationary (time-
independent) policies suffice for optimality in infinite-
horizon discounted MDPs. In the following, this property is
also verified for the M3FC MDP. For the following technical
results, we assume standard Lipschitz conditions (Gu et al.,
2021; Mondal et al., 2022; Pásztor et al., 2023).

Assumption 1. The transition kernels p, p0 and rewards r
are Lipschitz with constants Lp, Lp0 , Lr.

Assumption 1 is true, e.g., in finite spaces if transition matrix
entries of P are Lipschitz in the |X |-dimensional MF vector.
The sufficiency of stationary policies is obtained by the
dynamic programming principle, which can also be used
to compute exact optimal policies in the M3FC MDP. We
use the value function V ∗ as the fixed point of the Bellman
equation, V ∗(x0, µ) = max(h,u0)∈H(µ)×U0 r(x0, u0, µ) +
γEy0∼p0(y0|x0,u0,µ)V

∗(y0, T (x0, u0, µ, h)).

Theorem 1. Under Assumption 1, there exist opti-
mal stationary, deterministic policies π̂, π0 for the
M3FC MDP (3) by choosing (π̂(x0, µ), π0(x0, µ)) from
the maximizers of argmax(h,u0)∈H(µ)×U0 r(x0, u0, µ) +

γEy0∼p0(y0|x0,u0,µ)V
∗(y0, T (x0, u0, µ, h)).

Remark 3. We obtain existence of optimal deterministic
stationary minor and major policies π̂, π0 via optimal joint
policies π̃ ≡ π̂ ⊗ π0, (ht, u

0
t ) ∼ π̃((ht, u

0
t ) | x0

t , µt).

The results follow from classical MDP theory (Hernández-
Lerma and Lasserre, 2012). Thus, we may solve M3FC
problems through the DPP, or approximately by using policy
gradients with stationary policies for the M3FC MDP, which
has naturally continuous actions.

2.4. Finite Agent Convergence

To show the approximate optimality of M3FC solutions,
we first obtain propagation of chaos (Sznitman, 1991) –
convergence of empirical MFs to the limiting MF. The result
theoretically backs the reduction of multi-agent control to
single-agent MDPs, as there is no loss of optimality in
the finite problem by considering the M3FC problem. We
assume standard Lipschitz conditions on policies (Gu et al.,
2021; Mondal et al., 2022; Pásztor et al., 2023).

Assumption 2. The classes of policies Π, Π0 are equi-
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Lipschitz sets of policies, i.e. there exists LΠ > 0 such that
for all t and π ∈ Π, πt ∈ P(U)X×P(X ) is LΠ-Lipschitz,
and similarly for major policies π0 ∈ Π0.

We note that Lipschitz policies are natural, as we usually
parametrize policies in a Lipschitz manner; in particular,
neural networks allow Lipschitz analysis (Pásztor et al.,
2023; Herrera et al., 2023; Araujo et al., 2023). The result is
that the limiting system approximates large finite systems.

Theorem 2. Fix any family of equi-Lipschitz functions F ⊆
RX 0×U0×P(X ) with shared Lipschitz constant LF . Under
Assumptions 1 and 2, (x0,N

t , u0,N
t , µN

t ) converges weakly
to (x0

t , u
0
t , µt), uniformly over f ∈ F , (π, π0) ∈ Π × Π0,

π̂ = Φ−1(π) at all times t ∈ N,

sup
f,π,π0

∣∣∣E [f(x0,N
t , u0,N

t , µN
t )− f(x0

t , u
0
t , µt)

]∣∣∣→ 0. (4)

Further, the convergence rate is O(1/
√
N) if |X | < ∞.

The above motivates M3FC by the following near optimal-
ity result of M3FC MDP solutions in the finite system, as it
suffices to optimize over stationary M3FC policies.

Corollary 1. Under Assumptions 1 and 2, opti-
mal deterministic M3FC MDP policies (π̂∗, π0∗) ∈
argmax(π̂,π0) J(π̂, π

0) with Φ(π̂∗) ∈ Π yield ε-optimal
(Φ(π̂∗), π0∗) with ε → 0 as N → ∞ in the finite system,
JN (Φ(π̂∗), π0∗) ≥ sup(π,π0)∈Π×Π0 JN (π, π0)− ε.

Therefore, one may solve difficult finite-agent MARL by
detouring over the corresponding M3FC MDP as depicted in
Figure 4, reducing to an MDP of a complexity independent
of the number of agents N , which we solve in Section 3.

3. Major-Minor Mean Field MARL
As indicated in the prequel and in Figure 2, MARL via
M3FC generalizes both single-agent RL and MARL via
MFC in the searched policy solution space. Therefore, in
M3FC one only optimizes over a tractable, smaller solution
space of a single minor and major policy Π,Π0. At the same
time, the framework is highly general and handles arbitrary
major agents with many minor agents simultaneously. The
reduction of MARL problems to a fixed-complexity single-
agent M3FC MDP is the key. In this section, we develop
MARL algorithms based on the M3FC framework.

N -minor agent control M3FC

Optimal N -minor agent control M3FC policy

optimize (intractable)

N→∞

optimize

approx.

Figure 4. Approximation of intractable N -agent control by M3FC
(blue path), the solution of which is near-optimal for large N .

Recalling the motivation of MFC, it is crucial to find
tractable sample-based MARL techniques for both complex
problems where other methods fail, and for problems where
we have no access to the dynamics or reward model. Relat-
ing to the former, RL has been applied before to solve MFC
given that we know the MFC model equations (Carmona
et al., 2023b; Pásztor et al., 2023; Mondal et al., 2022).
However, regarding the latter, we should instead use the
MFC formalism to give rise to novel MARL algorithms.

While literature usually focused analysis on the former, in
our work we analyze the proposed algorithm not on limit-
ing M3FC MDPs, but on the more interesting finite M3FC
system. In particular, if the M3FC MDP is known, one can
instantiate finite systems of any size for training. We con-
sider the following perspective: By Theorem 2, the M3FC
MDP is approximated well by the finite system. Therefore,
we solve the limiting M3FC MDP by applying our proposed
algorithm directly to finite M3FC systems.

Since we know by Theorem 1 that stationary policy suffice,
we solve the M3FC MDP (3) using stationary policies and
single-agent RL techniques but on its finite multi-agent in-
stance (1), the combination of which we aptly refer to as
Major-Minor Mean Field MARL (M3FMARL). The result
is Algorithm 1, where we directly apply RL to multi-agent
systems (1) by observing next states (x0,N

t+1, µ
N
t+1) and re-

wards rNt := r(x0,N
t , u0,N

t , µN
t ). The algorithm can be

understood as a kind of hierarchical algorithm, as M3FC
MDP actions specify behavior for all minor agents at once.

3.1. M3FC-based Policy Gradients

The proposed algorithm is theoretically motivated. As
shown in the following, finite-agent policy gradients (PG)
estimate the true limiting M3FC MDP PG. First, note that
finite state-actions X ,U lead to continuous M3FC MDP
actions H(µ), while continuous X ,U even yield infinite-
dimensional H(µ). Therefore, we have at least continuous

Algorithm 1 M3FMARL
1: for n = 0, 1, . . . do
2: for t = 0, . . . , Blen − 1 do
3: Sample M3FC action from RL policy, i.e.

ut ≡ (u0,N
t , π′

t) ∼ π̃θ(· | x0,N
t , µN

t ).
4: for i = 1, . . . , N do
5: Sample i-th minor action ui,N

t ∼ π′
t(· | xi,N

t ).
6: end for
7: Execute {u0,N

t , u1,N
t , . . .} for next reward rNt ,

state (x0,N
t+1, µ

N
t+1) and termination dt+1 ∈ {0, 1}.

8: end for
9: Perform an update (on policy π̃θ) using transitions

B = ((x0,N
t , µN

t ), ut, r
N
t , dt+1, (x

0,N
t+1, µ

N
t+1))t≥0.

10: end for
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MDPs, complicating value-based learning.

For this reason, we mainly consider PG methods to solve
M3FC-type MARL problems. We parametrize M3FC MDP
solutions via RL policies π̃θ with parameters θ, outputting
ξ ∈ Ξ from some compact parameter space Ξ with a Lips-
chitz map Γ(ξ) = π′

t to LΠ-Lipschitz minor agent decision
rules π′

t (formally, ht = µt ⊗ π′
t). Assuming the Lipschitz-

ness of the policy network and its gradient in all arguments,
on which there has been a great number of recent literature
(see e.g. Herrera et al. (2023); Araujo et al. (2023) and
references therein), we formulate Assumption 3.

Assumption 3. The parameter map Γ, joint policy π̃θ and
log-gradient ∇θ log π̃

θ (or gradient ∇θπ̃
θ) are LΓ, Lπ̃,

L∇π̃-Lipschitz and uniformly bounded.

Then, we can apply the PG theorem (Sutton et al., 1999) for
the M3FC MDP. The M3FC MDP (3) essentially substitutes
many-agent systems (1), which are natural approximations
of the M3FC MDP by Theorem 2. Therefore, we show
that M3FMARL (Algorithm 1) – single-agent PG on the
multi-agent M3FC system – approximates the true PG of the
limiting M3FC MDP, in the case of many minor agents. In
other words, M3FMARL solves MARL by approximately
solving the single-agent M3FC MDP using policy gradients.

Theorem 3. Under Assumptions 1, 2 and 3, the approximate
PG of joint policy π̃θ computed on the finite M3FC system
(1) in Algorithm 1 uniformly tends to the true PG of the
M3FC MDP (3), as N → ∞.

Importantly, the underlying MDP complexity is independent
of the number of minor agents. Therefore, we expect Algo-
rithm 1 to perform well in M3FC-type problems, possibly
compared to straightforward MARL where each agent is
handled separately. Intuitively, for many agents, the reward
signal for any single agent can become uninformative: A co-
operative, “averaged” reward remains almost unaffected by
a single agent’s actions. This well-known credit assignment
issue is therefore solved by the hierarchical structure of
M3FC, as credit is assigned to M3FC actions, which affect
all minor agents at once and hence receive aggregated credit.
Another advantage is that MFC profits from any advances
in single-agent RL.

3.2. Implementation Details

We use the proximal policy optimization (PPO) algorithm
(Schulman et al., 2017) to obtain a M3FC policy πRL, in-
stantiating the major minor mean field PPO (M3FPPO) al-
gorithm as an instance of M3FMARL, Algorithm 1. Other
PG algorithms (A2C, leading to M3FA2C) are also com-
pared in our experiments. We parametrize MFs in P(X ) and
joint distributions in H(µN

t ). In practice, for finite X , U , the
parametrization of P(X ) is immediate by finite-dimensional
vectors µN

t ∈ P(X ). For M3FC actions, consider – in addi-

tion to the major agent action – the matrix ξ ∈ [−1, 1]X×U ,
which is mapped to probabilities of minor actions in any mi-
nor state π′

t(u | x) := Z−1(ξxu+1+ϵ), for small ϵ = 10−10

and normalizer Z. For continuous X , U , we instead partition
X into M bins and represent µN

t as a histogram, mapping
ξ ∈ [−1, 1]M×2 to diagonal Gaussian means and standard
deviations, µXi

∈ U , σXi
∈ [ϵ, 0.25+ϵ], for each of M bins

Xi ⊆ X . Major actions u0,N
t are categorical or diagonal

Gaussian as usual. For large X ,U , one could also consider
kernel-based parametrizations (Cui et al., 2024).

We use two hidden layers of 256 nodes and tanh activations
for the neural networks of the policies. The neural network
policy outputs parameters of a diagonal Gaussian over the
major action u0 and matrices U as discussed above. In the
discrete Beach scenario below, the neural network instead
outputs a categorical distribution using a final softmax layer.
We used no GPUs and around 300,000 CPU core hours on
Intel Xeon Platinum 9242 CPUs. Optimal transport costs
are computed using POT (Flamary et al., 2021). Our M3FC
MDP implementation follows the gym interface (Brockman
et al., 2016), while the implementation of multi-agent RL
as in the following fulfills RLlib interfaces (Liang et al.,
2018). The RL implementations in our work are based on
MARLlib 1.0 (Hu et al., 2023a) (MIT license), which uses
RLlib 1.8 (Liang et al., 2018) (Apache-2.0 license) with
hyperparameters in Table 3, and otherwise default settings.

3.3. Comparison to MARL

The M3FMARL algorithm falls into the paradigm of central-
ized training with decentralized execution (CTDE) (Zhang
et al., 2021), as we sample a single central M3FC MDP ac-
tion during training, but enable decentralized execution by
sampling π′

t separately on each agent instead. For instance,
when converged to a deterministic M3FC policy (of which
an optimal one is guaranteed to exist by Theorem 1), the
M3FC action is always trivially equal for all agents.

Since we also consider continuous minor agent action spaces
in our experiments, we compare against PG methods for
MARL. In particular, we firstly consider Independent PPO
(IPPO), as PPO with independent learning (Tan, 1993) and
parameter sharing (Gupta et al., 2017), and secondly also
Multi-Agent PPO (MAPPO) with centralized critics. The
latter has repeatedly shown strong state-of-the-art perfor-
mance in cooperative MARL (de Witt et al., 2020; Pa-
poudakis et al., 2021; Yu et al., 2022). We also separate
major and minor agent policies for improved performance
of IPPO / MAPPO. For comparison, we use the same ob-
servations for the policy input as in M3FMARL. The policy
network architectures match, and the same PPO implemen-
tation and hyperparameters are shared with M3FPPO in
Table 3. Minor agents are additionally allowed to observe
their own states. More details can be found in Appendix R.
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4. Experiments
In this section, we demonstrate the performance of M3FPPO
on illustrative, practical problems. Unless noted otherwise,
we use M = 49 bins (M = 7 in Potential), train for around
24 hours, and train M3FPPO on the finite-agent system (1)
with N = 300 minor agents unless noted otherwise (similar
results for less agents in Appendix R). Full descriptions and
additional experiments and discussions are in Appendix R.

4.1. Problems

To verify the usefulness of M3FMARL whenever the M3FC
model (1) is accurate, we consider 5 benchmark tasks that
fulfill the M3FC modelling assumptions. To begin, the sim-
ple two Gaussian (2G) problem has no major agent and is
equipped with a time-dependent major state: A periodic,
time-variant mixture of two Gaussians µ∗

t – the major state
– is noisily observed analogously to µN

t via M = 49 bins.
Minor agents should then track the mixture distribution over
time, which can find application for example in UAV-based
cellular coverage of dynamic users (Mozaffari et al., 2016).
In the Formation problem, we extend such formation con-
trol with major agents. In addition to 2G, one added major
agent tracks a moving target. Meanwhile, minor agents
instead track a formation around the dynamic major agent,
see e.g. Yang et al. (2021) for applications. The Beach
bar process is a studied classic (Arthur, 1994; Perrin et al.,
2020), where minor agents minimize their distances to a bar
and additionally avoid crowded areas. Here, the bar moves
on a discrete torus. The Foraging problem is archetypal of
swarm intelligence (Brambilla et al., 2013), and has agents
forage randomly generated foraging areas. In particular,
we can consider the logistics scenario depicted in Figure 1,
where a major package truck moves in a restricted space

(roads) while minor drones collect packages for urban parcel
delivery (Marinelli et al., 2018). Drones fill up at package
“foraging” areas, and unload near the major agent. Lastly, in
the Potential problem, minor agents can generate a poten-
tial landscape, the gradient of which pushes the major agent
– e.g., a large object affected by magnetic active matter (Jin
and Zhang, 2021) – to be delivered to a variable target.

4.2. Evaluation

In Figure 5, we see that M3FPPO learning is stable, as
M3FPPO reduces hard-to-analyze MARL to single-agent
RL, avoiding pathologies of MARL such as non-stationarity
of multi-agent learning, or the combinatorial complexity
over numbers of agents. In Figure 6, we find similar suc-
cess in directly training M3FPPO for small N instead of
transferring from high N . We conclude that M3FPPO re-
mains applicable even with as few as 5 agents. M3FPPO
usually compares well against its A2C variant (M3FA2C)
and IPPO / MAPPO, see Table 2 and Appendix R.2. Mean-
while, IPPO / MAPPO under the same hyperparameters
as M3FPPO (large batch sizes, see Table 3) can be more
unstable and lead to worse results, see Figure 7.

Qualitative behavior. In Figure 8, we observe success-
fully trained behavior in Beach and Foraging: In Beach,
M3FPPO learns to accumulate up to 70% of agents on the
bar, as more agents on the space lead to a suboptimal reduc-
tion in rewards. In Foraging, we find that agents successfully
deplete foraging areas shown in the bottom left, moving on
afterwards. Further, M3FPPO successfully learns to form
mixtures of Gaussians in 2G, a Gaussian around a moving
major agent successfully tracking its target in Formation,
and similar success in pushing the major agent towards its
target in Potential, see Appendix R.3.
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Figure 5. Training curves (mean episode return) of M3FPPO (red), with shaded standard deviation, and maximum (blue) over all three
trials (two for Foraging). (a) 2G; (b) Formation; (c) Beach; (d) Foraging; (e) Potential.

Table 2. Comparison of mean episode returns between best trained policies of standard MARL and M3FMARL methods on a system with
N = 20 agents (± 95% confidence interval, for a number of episodes as in Figure 9).

Problem IPPO MAPPO M3FA2C M3FPPO
2G -43.9 ± 1.1 -26.0 ± 0.5 -30.6 ± 0.6 -22.2 ± 0.56

Formation -51.1 ± 2.4 -101.1 ± 7.1 -79.2 ± 3.1 -63.9 ± 4.2
Beach -350.3 ± 3.4 -342.9 ± 4.7 -424.8 ± 5.5 -303.5 ± 3.4

Foraging 735.3 ± 46.4 803.9 ± 54.6 1398.0 ± 57.1 1479.4 ± 36.3
Potential -27.1 ± 1.4 -26.7 ± 1.7 -50.4 ± 5.5 -31.3 ± 1.3
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Figure 6. Training curves (mean episode return vs. time steps) of M3FPPO, trained on the finite systems with N ∈ {5, 10, 20}. (a) 2G;
(b) Formation; (c) Beach; (d) Foraging; (e) Potential.
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Figure 7. Comparing IPPO / MAPPO vs. asymptotic results of M3FPPO (MF, ours), as in Figure 5 (no maxima, N = 20).

Quantitative support of theory. In Figure 9, we transfer
the trained M3FPPO policy to N = 2, . . . , 50, comparing
against the performance in the limit (N = 500). As N
grows, the performance converges to the limit, supporting
Theorem 2 and Corollary 1. Any sufficiently large system
has the same limiting performance as predicted by the theory.
We thus have empirical support for scalability, and also
transferability between varying numbers of minor agents.

Comparison to MARL. Comparing Figures 5, 7 and Ta-
ble 2, we see that (i) by experience sharing, standard MARL
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Figure 8. Qualitative visualization of M3FC in Beach (a-d), For-
aging (e-h). (a-d): empirical MF, major agent & target in green;
(e-h): blue / green triangle: major agent / target; green / red dots:
less- / more-than-half encumbered minor agents; purple: current
foraging areas.

can be more sample-efficient, as each step gives N samples
instead of just one; and (ii) M3FPPO matches or outper-
forms IPPO and MAPPO, despite having significantly less
control over minor agent actions: All minor agents in a
bin (with similar minor agent states) use the same action
distributions, which suffices for strong results.

Decentralized execution. Lastly, decentralized execution
by agent-wise randomization – i.e. sampling M3FC actions
per agent instead of a single shared, correlated M3FC action
– has little to no effect, and can even marginally improve
performance, see e.g., Beach in Figure 9(c). Figure 9 verifies
the performance of M3FMARL as a CTDE method.

5. Conclusion and Discussion
We have proposed a generalization of MDPs and MFC,
enabling tractable state-of-the-art MARL on general many-
agent systems, with both theoretical and empirical support.
Beyond the current model and its optimality guarantees,
one could work on extended optimality conjectures in Ap-
pendix Q, refined approximations (Gast and Van Houdt,
2018), and local interactions (Qu et al., 2020b). Algorith-
mically, M3FC MDP actions H(µ) could move beyond
binning X to gain performance, e.g. via kernels (Cui et al.,
2024). Lastly, one may try to quantify convergence to the
rate O(1/

√
N) for non-finite X , as the current proof would

need hard-to-verify or unrealistic dΣ-Lipschitzness.
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Figure 9. Mean episode return of M3FC policy in finite systems as in Figure 5 over (a-c) 100, (d) 300 or (e) 500 trials (95% confidence
interval shaded). MF: CE, N = 500; CE / DE: centralized / decentralized execution.
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A. Related Work
In this section, we provide additional context on related works. Since the introduction of MFGs in continuous and discrete
time (Huang et al., 2006; Lasry and Lions, 2007; Saldi et al., 2018), MFGs have been studied in various forms, ranging
from partially observed systems (Saldi et al., 2019; Şen and Caines, 2019) over learning-based solutions (Guo et al., 2019;
Perrin et al., 2020; Cui and Koeppl, 2021; Guo et al., 2022; Pérolat et al., 2022; Perrin et al., 2022; Yardim et al., 2023) on
graphs (Caines and Huang, 2019; Tchuendom et al., 2021; Cui and Koeppl, 2022; Hu et al., 2023b) to considering correlated
equilibria (Muller et al., 2021; Campi and Fischer, 2022; Bonesini et al., 2022).

While many works focus on non-cooperative settings with self-interested agents, this can run counter to the goal of
engineering many-agent behavior, e.g., achieving cooperative behavior in swarms of drones. Instead, we focus on the related
setting of cooperative MFC (Pham and Wei, 2018; Gu et al., 2023; Mondal et al., 2022), see also work on differential
(Carmona and Delarue, 2018), static (Sanjari and Yüksel, 2020), or discrete-time deterministic MFC (Gast and Gaujal,
2011). For the unfamiliar reader, we point towards many extensive surveys on the topic of mean field systems (Bensoussan
et al., 2013; Carmona and Delarue, 2018; Laurière et al., 2022).

In general comparison, another well-known line of mean field MARL (Yang et al., 2018; Ganapathi Subramanian et al.,
2020; 2021; Subramanian et al., 2022) focuses on approximating the influence of other agents on any particular agent by
their average actions. Relatedly, some MARL algorithms introduce approximations over agent neighborhoods based on
exponential decay (Qu et al., 2020b;a; Liu et al., 2022). In contrast, MFC assumes dependence on the entire distribution of
agents and not, e.g., pairwise terms for each neighbor, per agent.

B. Deterministic Mean Field Control
In the following, we provide proofs that were omitted in the main text. To begin, in this section we recap standard deter-
ministic MFC. Here, our general proof technique is introduced. It generalizes to the M3FC case and allows approximation
properties and dynamic programming principles beyond finite spaces and Lipschitz continuity assumptions in compact
spaces, for MFC models under simple continuity. In standard MFC, we have the model without major agents,

ui,N
t ∼ πt(u

i,N
t | xi,N

t , µN
t ), (5)

xi,N
t+1 ∼ p(xi,N

t+1 | xi,N
t , ui,N

t , µN
t ) (6)

while in the limit, we have the MF evolution

µt+1 = T (µt, µt ⊗ πt(µt)) :=

∫∫
p(· | x, u, µt)πt(du | x, µt)µt(dx) (7)

and MFC system

ht ∼ π̂t(ht | µt), µt+1 = T (µt, ht) (8)

with objective J(π̂) = E [
∑∞

t=0 γ
tr(µt)].

Dynamic Programming and Propagation of Chaos We may solve the hard finite-agent system (5) near-optimally by
instead solving the MFC MDP, allowing direct application of single-agent RL to the MFC MDP with approximate optimality
in large systems. Mild continuity assumptions are required.

Assumption B.1. The transition kernel p and reward r are continuous.

Assumption B.2. The considered class of policies Π is equi-Lipschitz, i.e. there exists LΠ > 0 such that for all t and π ∈ Π,
πt ∈ P(U)X×P(X ) is LΠ-Lipschitz.

We note that Assumption B.1 holds true in studied finite spaces, if each transition matrix entry of P is continuous in the
|X |-dimensional MF vector on the simplex (but not necessarily Lipschitz as in (Gu et al., 2021; Mondal et al., 2022), the
conditions of which we relax for deterministic MFC).

We show a dynamic programming principle (Hernández-Lerma and Lasserre, 2012) to solve for and show existence of
a deterministic, stationary optimal policy via the value function V ∗ as the fixed point of the Bellman equation V ∗(µ) =
maxh∈H(µ) r(µ) + γV ∗(T (µ, h)).
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Theorem B.1. Under Assumptions B.1, there exists an optimal stationary, deterministic policy π̂ for (8), with π̂(µ) ∈
argmaxh∈H(µ) r(µ) + γV ∗(T (µ, h)).

This DPP can be used for computing solutions or to show optimality of stationary policies and existence of an optimum.
Next, we show propagation of chaos (Sznitman, 1991). Here, prior proof techniques (Gu et al., 2021; Mondal et al., 2022)
are extended by our approach from finite to general compact spaces.
Theorem B.2. Fix any family of equicontinuous functions F ⊆ RP(X ). Under Assumptions B.1 and B.2, the em-
pirical MF converges weakly, uniformly over f ∈ F , π ∈ Π, π̂ = Φ−1(π), to the limiting MF at all times t ∈ N,
supπ∈Π supf∈F

∣∣E [f(µN
t )
]
− E [f(µt)]

∣∣→ 0.

Importantly, propagation of chaos allows one to show approximate optimality of MFC policies in the large finite control
problem, which is of practical relevance for solving many-agent problems.
Corollary B.1. Under Assumptions B.1 and B.2, an optimal deterministic MFC policy π∗ ∈ argmaxπ̂ J(π̂) yields ε-optimal
finite-agent policy Φ(π∗) ∈ Π, JN (Φ(π∗)) ≥ supπ∈Π JN (π)− ε, with ε → 0 as N → ∞.

C. Continuity of MF dynamics
First, we find continuity of the MFC dynamics T , which is used in the following proofs.
Lemma C.1. Under Assumption B.1, we have T (µn, νn) → T (µ, ν) whenever (µn, νn) → (µ, ν),

Proof. To show T (µn, νn) → T (µ, ν), consider any Lipschitz and bounded f with Lipschitz constant Lf , then∣∣∣∣∫ f d(T (µn, νn)− T (µ, ν))

∣∣∣∣
=

∣∣∣∣∫∫∫ f(x′)p(dx′ | x, u, µn)νn(dx,du)−
∫∫∫

f(x′)p(dx′ | x, u, µ)ν(dx, du)
∣∣∣∣

≤
∫∫ ∣∣∣∣∫ f(x′)p(dx′ | x, u, µn)−

∫
f(x′)p(dx′ | x, u, µ)

∣∣∣∣ νn(dx, du)
+

∣∣∣∣∫∫∫ f(x′)p(dx′ | x, u, µ)(νn(dx, du)− ν(dx,du))

∣∣∣∣
≤ sup

x∈X ,u∈U
LfW1(p(· | x, u, µn), p(· | x, u, µ))

+

∣∣∣∣∫∫∫ f(x′)p(dx′ | x, u, µ)(νn(dx, du)− ν(dx,du))

∣∣∣∣→ 0

for the first term by 1-Lipschitzness of f
Lf

and Assumption B.1 (with compactness implying the uniform continuity), and for
the second by νn → ν and from continuity by the same argument of (x, u) 7→

∫∫
f(x′)p(dx′ | x, u, µ).

D. Proof of Theorem B.1
Proof. The MFC MDP fulfills (Hernández-Lerma and Lasserre, 2012), Assumption 4.2.1. Here, we use (Hernández-Lerma
and Lasserre, 2012), Condition 3.3.4(b1) instead of (b2), see also alternatively (Hernández-Lerma and Muñoz de Ozak,
1992).

More specifically, for (Hernández-Lerma and Lasserre, 2012), Assumption 4.2.1(a), the cost function −r is continuous by
Assumption B.1, therefore also bounded by compactness of P(X ), and finally also inf-compact on the state-action space of
the MFC MDP, since for any µ ∈ P(X ) the set {h ∈ H(µ) | −r(µ) ≤ c} is trivially given by H(µ) whenever −r(µ) ≤ c,
and ∅ otherwise. Here, we show that H(µ) ⊆ P(X × U) is a closed subset of the compact space P(X × U) and therefore
also compact. Note first that two measures µ, µ′ ∈ P(X ) are equal if and only if for all continuous and bounded f we have∫
f dµ =

∫
f dµ′, see e.g. (Billingsley, 2013), Theorem 1.3.

Therefore, as H(µ) is defined by its first marginal µ, H(µ) can be written as an intersection

H(µ) =
⋂

f∈Cb(X )

{
h ∈ P(X × U)

∣∣∣∣ ∫ f ⊗ 1dh =

∫
f dµ

}
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of closed sets: Since h 7→
∫
f ⊗ 1dh is continuous, its preimage of the closed set {

∫
f dµ} is closed. Here, ⊗ denotes the

tensor product of f with the function 1 equal one, i.e. f ⊗ 1 is the map (x, u) 7→ f(x).

Similarly, for (Hernández-Lerma and Lasserre, 2012), Assumption 4.2.1(b), the transition dynamics T are weakly continuous,
as for any (µn, νn) → (µ, ν) ∈ P(X ) × P(X × U) we have T (µn, νn) → T (µ, ν) by Lemma C.1 and therefore∫
f dδT (µn,νn) = f(T (µn, νn)) → f(T (µ, ν)) =

∫
f dδT (µ,ν) for any continuous and bounded f : P(X ) → R.

Furthermore, the MFC MDP fulfills (Hernández-Lerma and Lasserre, 2012), Assumption 4.2.2 by boundedness of r from
Assumption B.1. Therefore, the desired statement follows from (Hernández-Lerma and Lasserre, 2012), Theorem 4.2.3.

E. Proof of Theorem B.2
Proof. Note that we can also show the slightly stronger L1 convergence statement with the absolute value inside of the
expectation, supπ∈Π supf∈F E

[∣∣f(µN
t )− f(µt)

∣∣] → 0, but since this statement is only true for deterministic MFC, we
avoid it here to later extend our proof directly to M3FC.

The statement supπ∈Π supf∈F
∣∣E [f(µN

t )
]
− E [f(µt)]

∣∣→ 0 is shown inductively over t ≥ 0. At time t = 0, it holds by
the weak LLN argument, see also the first term below. Assuming the statement at time t, then for time t+ 1 we have

sup
π∈Π

sup
f∈F

∣∣E [f(µN
t+1)− f(µt+1)

]∣∣
≤ sup

π∈Π
sup
f∈F

∣∣E [f(µN
t+1)− f(T (µN

t , µN
t ⊗ πt(µ

N
t )))

]∣∣ (9)

+ sup
π∈Π

sup
f∈F

∣∣E [f(T (µN
t , µN

t ⊗ πt(µ
N
t )))− f(µt+1)

]∣∣ . (10)

For the first term (9), first note that by compactness of P(X ), F is uniformly equicontinuous, and hence admits a non-
decreasing, concave (as in (DeVore and Lorentz, 1993), Lemma 6.1) modulus of continuity ωF : [0,∞) → [0,∞) where
ωF (x) → 0 as x → 0 and |f(µ)− f(ν)| ≤ ωF (W1(µ, ν)) for all f ∈ F .

We also have uniform equicontinuity of F with respect to the space (P(X ), dΣ) instead of (P(X ),W1), as the identity map
id : (P(X ), dΣ) → (P(X ),W1) is uniformly continuous (as both dΣ and W1 metrize the topology of weak convergence,
and P(X ) is compact), and therefore there exists a modulus of continuity ω̃ for the identity map such that for any
µ, ν ∈ (P(X ), dΣ), by the prequel

|f(µ)− f(ν)| ≤ ωF (W1(idµ, id ν)) ≤ ωF (ω̃(dΣ(µ, ν)))

with ω̃F := ωF ◦ ω̃, which can be replaced by its least concave majorant (again as in (DeVore and Lorentz, 1993),
Lemma 6.1).

Therefore, by Jensen’s inequality, for (9) we obtain∣∣E [f(µN
t+1)− f(T (µN

t , µN
t ⊗ πt(µ

N
t )))

]∣∣
≤ E

[
ω̃F (dΣ(µ

N
t+1, T (µ

N
t , µN

t ⊗ πt(µ
N
t ))))

]
≤ ω̃F

(
E
[
dΣ(µ

N
t+1, T (µ

N
t , µN

t ⊗ πt(µ
N
t )))

])
irrespective of π, f via concavity of ω̃F . Introducing for readability xN

t ≡ {xi,N
t }i∈[N ], we then obtain

E
[
dΣ(µ

N
t+1, T (µ

N
t , µN

t ⊗ πt(µ
N
t )))

]
=

∞∑
m=1

2−m E
[∣∣∣∣∫ fm d(µN

t+1 − T (µN
t , µN

t ⊗ πt(µ
N
t )))

∣∣∣∣]
≤ sup

m≥1
E
[
ExN

t

[∣∣∣∣∫ fm d(µN
t+1 − T (µN

t , µN
t ⊗ πt(µ

N
t )))

∣∣∣∣]] ,
and by the following weak LLN argument, for the squared term and any fm

ExN
t

[∣∣∣∣∫ fm d(µN
t+1 − T (µN

t , µN
t ⊗ πt(µ

N
t )))

∣∣∣∣]2
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= ExN
t

[∣∣∣∣∣ 1N
N∑
i=1

(
fm(xi,N

t+1)− ExN
t

[
fm(xi,N

t+1)
])∣∣∣∣∣
]2

≤ ExN
t

∣∣∣∣∣ 1N
N∑
i=1

(
fm(xi,N

t+1)− ExN
t

[
fm(xi,N

t+1)
])∣∣∣∣∣

2


=
1

N2

N∑
i=1

ExN
t

[(
fm(xi,N

t+1)− ExN
t

[
fm(xi,N

t+1)
])2]

≤ 4

N
→ 0

by bounding |fm| ≤ 1, as the cross-terms are zero by conditional independence of xi,N
t+1 given xN

t . By the prequel, the term
(9) hence converges to zero.

For the second term (10), we have

sup
π∈Π

sup
f∈F

∣∣E [f(T (µN
t , µN

t ⊗ πt(µ
N
t )))− f(µt+1)

]∣∣
= sup

π∈Π
sup
f∈F

∣∣E [f(T (µN
t , µN

t ⊗ πt(µ
N
t )))− f(T (µt, µt ⊗ πt(µt)))

]∣∣
≤ sup

π∈Π
sup
g∈G

∣∣E [g(µN
t )− g(µt)

]∣∣→ 0

by the induction assumption, where we defined g = f ◦ T̃πt from the class G of equicontinuous functions with modulus of
continuity ωG := ωF ◦ ωT , where ωT denotes the uniform modulus of continuity of µt 7→ T̃πt(µt) := T (µt, µt ⊗ πt(µt)))
over all policies π. Here, this equicontinuity of {T̃πt}π∈Π follows from Lemma C.1 and the equicontinuity of functions
µt 7→ µt ⊗ πt(µt) due to uniformly Lipschitz Π as we show in the following, completing the proof by induction:

Consider µn → µ ∈ P(X ), then we have

sup
π∈Π

W1(µn ⊗ πt(µn), µ⊗ πt(µ))

= sup
π∈Π

sup
∥f ′∥Lip≤1

∣∣∣∣∫ f ′ d(µn ⊗ πt(µn)− µ⊗ πt(µ))

∣∣∣∣
≤ sup

π∈Π
sup

∥f ′∥Lip≤1

∣∣∣∣∫∫ f ′(x, u)(πt(du | x, µn)− πt(du | x, µ))µn(dx)

∣∣∣∣
+ sup

π∈Π
sup

∥f ′∥Lip≤1

∣∣∣∣∫∫ f ′(x, u)πt(du | x, µ)(µn(dx)− µ(dx))

∣∣∣∣
where for the first term

sup
π∈Π

sup
∥f ′∥Lip≤1

∣∣∣∣∫∫ f ′(x, u)(πt(du | x, µn)− πt(du | x, µ))µn(dx)

∣∣∣∣
≤ sup

π∈Π
sup

∥f ′∥Lip≤1

∫ ∣∣∣∣∫ f ′(x, u)(πt(du | x, µn)− πt(du | x, µ))
∣∣∣∣µn(dx)

≤ sup
π∈Π

sup
∥f ′∥Lip≤1

sup
x∈X

∣∣∣∣∫ f ′(x, u)(πt(du | x, µn)− πt(du | x, µ))
∣∣∣∣

= sup
π∈Π

sup
x∈X

W1(πt(· | x, µn), πt(· | x, µ))

≤ LΠW1(µn, µ) → 0

by Assumption B.2, and similarly for the second by first noting 1-Lipschitzness of x 7→
∫ f ′(x,u)

LΠ+1 πt(du | x, µ), as for y ̸= x∣∣∣∣∫ f ′(y, u)

LΠ + 1
πt(du | y, µ)−

∫
f ′(x, u)

LΠ + 1
πt(du | x, µ)

∣∣∣∣
16
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≤
∣∣∣∣∫ f ′(y, u)− f ′(x, u)

LΠ + 1
πt(du | y, µ)

∣∣∣∣+ ∣∣∣∣∫ f ′(x, u)

LΠ + 1
(πt(du | y, µ)− πt(du | x, µ))

∣∣∣∣
≤ 1

LΠ + 1
d(y, x) +

1

LΠ + 1
W1(πt(· | y, µ), πt(· | x, µ))

≤
(

1

LΠ + 1
+

LΠ

LΠ + 1

)
d(x, y) (11)

with 1
LΠ+1 + LΠ

LΠ+1 = 1 ≤ 1, and therefore again

sup
π∈Π

sup
∥f ′∥Lip≤1

∣∣∣∣∫∫ f ′(x, u)πt(du | x, µ)(µn(dx)− µ(dx))

∣∣∣∣
= sup

π∈Π
sup

∥f ′∥Lip≤1

(LΠ + 1)

∣∣∣∣∫∫ f ′(x, u)

LΠ + 1
πt(du | x, µ)(µn(dx)− µ(dx))

∣∣∣∣
≤ (LΠ + 1)W1(µn, µ) → 0.

This completes the proof by induction.

F. Proof of Corollary B.1
Proof. First, we show that from uniform convergence in Theorem B.2, the finite-agent objectives converge uniformly to the
MFC limit.

Lemma F.1. Under Assumptions B.1 and B.2, the finite-agent objective converges uniformly to the MFC limit,

sup
π∈Π

∣∣JN (π)− J(Φ−1(π))
∣∣→ 0. (12)

Proof. For any ε > 0, choose time T ∈ N such that
∑∞

t=T γt E
∣∣[r(µN

t )− r(µt)
]∣∣ ≤ γT

1−γ maxµ 2|r(µ)| < ε
2 . By

Theorem B.2,
∑T−1

t=0 γt E
∣∣[r(µN

t )− r(µt)
]∣∣ < ε

2 for sufficiently large N . The result follows. ■

The approximate optimality of MFC solutions in the finite system follows immediately: By Lemma F.1, we have

JN (Φ(π∗))− sup
π∈Π

JN (π) = inf
π∈Π

(JN (π∗)− JN (π))

≥ inf
π∈Π

(JN (Φ(π∗))− J(π∗)) + inf
π∈Π

(J(π∗)− J(Φ−1(π))) + inf
π∈Π

(J(Φ−1(π))− JN (π))

≥ −ε

2
+ 0− ε

2
= −ε

for sufficiently large N , where the second term is zero by optimality of π∗ in the MFC problem.

G. Stochastic Mean Field Control with Common Noise and Major States
For convenience, we also restate the results for MFC with major states, or common noise. We have the finite MFC system
with major states

ui,N
t ∼ πt(u

i,N
t | xi,N

t , x0,N
t , µN

t ), (13a)

xi,N
t+1 ∼ p(xi,N

t+1 | xi,N
t , ui,N

t , x0,N
t , µN

t ), x0,N
t+1 ∼ p0(x0,N

t+1 | x0,N
t , µN

t ) (13b)

and objective JN (π) = E
[∑∞

t=0 γ
tr(x0,N

t , µN
t )
]

analogous to (5), with the corresponding limiting MFC MDP with major
states analogous to (8),

ht ∼ π̂t(ht | x0
t , µt), µt+1 = T (x0

t , µt, ht), x0
t+1 ∼ p0(x0

t+1 | x0
t , µt) (14)

with objective J(π̂) = E
[∑∞

t=0 γ
tr(x0

t , µt)
]
, where T (x0, µ, h) :=

∫∫
p(· | x, u, x0, µ)h(dx, du).

17
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Assumption G.1. The transition kernels p, p0 and rewards r are Lipschitz continuous with constants Lp, Lp0 , Lr.
Assumption G.2. The class of policies Π are equi-Lipschitz, i.e. there exists LΠ > 0 such that for all t and π ∈ Π,
πt ∈ P(U)X×P(X ) is LΠ-Lipschitz.
Theorem G.1. Under Assumption G.1, there exists an optimal stationary, deterministic policy π̂ for the MFC MDP (14)
by choosing π̂(x0, µ) from the maximizers of argmaxh∈H(µ) r(x

0, µ) + γEy0∼p0(y0|x0,µ)V
∗(y0, T (x0, µ, h)), with V ∗

the unique fixed point of the Bellman equation V ∗(x0, µ) = maxh∈H(µ) r(x
0, µ) + γEy0∼p0(y0|x0,µ)V

∗(y0, T (x0, µ, h))
(value function).
Theorem G.2. Fix any family of equi-Lipschitz functions F ⊆ RX 0×P(X ) with shared Lipschitz constant LF for all f ∈ F .
Under Assumption G.1, the random variable (x0,N

t , µN
t ) converges weakly, uniformly over F , Π, to (x0

t , µt) at all times
t ∈ N,

sup
π∈Π

sup
f∈F

∣∣∣E [f(x0,N
t , µN

t )− f(x0
t , µt)

]∣∣∣→ 0. (15)

Corollary G.1. Under Assumptions G.1 and G.2, optimal deterministic MFC policies π∗ ∈ argmaxπ J(π) result in
ε-optimal policies Φ(π∗) in the finite-agent problem with ε → 0 as N → ∞,

JN (Φ(π∗)) ≥ sup
π∈Π

JN (π)− ε. (16)

The proofs and interpretation are directly analogous to the M3FC case and the following proofs, by leaving out the major
agent actions, or alternatively using the M3FC results with a trivial singleton major action space, |U0| = 1.

H. Proof of Theorem 1
Proof. The proof is analogous to Appendix D by first showing the continuity of T (proof further below).

Lemma H.1. Under Assumption 1, for any sequence (x0
n, u

0
n, µn, νn) → (x0, u0, µ, ν) ∈ X 0 × U0 × P(X )× P(X × U),

we have T (x0
n, u

0
n, µn, νn) → T (x0, u0, µ, ν).

For (Hernández-Lerma and Lasserre, 2012), Assumption 4.2.1(a), the cost function −r is continuous by Assumption 1,
therefore also bounded by compactness of X 0 × P(X ), and finally also inf-compact on the state-action space of the
M3FC MDP, since for any (x0, µ) ∈ X 0 × P(X ) the set {(h, u0) ∈ H(µ) × U0 | −r(x0, u0, µ) ≤ c} is given by
H(µ)× r̃−1((−∞, c]), where we defined r̃(u0) := −r(x0, u0, µ). Note that H(µ) is compact by the same argument as in
Appendix D, while r̃ is continuous by Assumption 1 and therefore its preimage of the closed set (−∞, c] is compact.

For (Hernández-Lerma and Lasserre, 2012), Assumption 4.2.1(b), consider any continuous and bounded f : X 0×P(X ) → R.
The continuity is uniform by compactness. Hence, supx′∈X 0 |f(x′, µ′

n)− f(x′, µ′)| → 0 as µ′
n → µ′ ∈ P(X ). Thus,

whenever (x0
n, u

0
n, µn, νn) → (x0, u0, µ, ν) ∈ X 0 × U0 × P(X )× P(X × U), we have∣∣∣∣∫∫ f(x′, µ) δT∗

n
(dµ′) p0(dx′ | x0

n, u
0
n, µn)−

∫∫
f(x′, µ) δT∗(dµ′) p0(dx′ | x0, u0, µ)

∣∣∣∣
=

∣∣∣∣∫ f(x′, T ∗
n) p

0(dx′ | x0
n, u

0
n, µn)−

∫
f(x′, T ∗) p0(dx′ | x0, u0, µ)

∣∣∣∣
≤
∣∣∣∣∫ f(x′, T ∗

n) p
0(dx′ | x0

n, u
0
n, µn)−

∫
f(x′, T ∗) p0(dx′ | x0

n, u
0
n, µn)

∣∣∣∣
+

∣∣∣∣∫ f(x′, T ∗) p0(dx′ | x0
n, u

0
n, µn)−

∫
f(x′, T ∗) p0(dx′ | x0, u0, µ)

∣∣∣∣
≤ sup

x′∈X 0

|f(x′, T ∗
n)− f(x′, T ∗)|

+

∣∣∣∣∫ f̃(x′) p0(dx′ | x0
n, u

0
n, µn)−

∫
f̃(x′) p0(dx′ | x0, u0, µ)

∣∣∣∣→ 0

for the first term by the prequel where T ∗
n := T (x0

n, u
0
n, µn, νn) → T ∗ := T (x0, u0, µ, ν) by Lemma H.1, and for the

second term by applying Assumption 1 to f̃(x′) := f(x′, T ∗). This shows weak continuity of the dynamics.

Furthermore, the M3FC MDP fulfills (Hernández-Lerma and Lasserre, 2012), Assumption 4.2.2 by boundedness of r from
Assumption 1. Therefore, the desired statement follows from (Hernández-Lerma and Lasserre, 2012), Theorem 4.2.3.
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I. Proof of Lemma H.1
Proof. To show T (x0

n, u
0
n, µn, νn) → T (x0, u0, µ, ν), consider any Lipschitz and bounded f with Lipschitz constant Lf ,

then ∣∣∣∣∫ f d(T (x0
n, u

0
n, µn, νn)− T (x0, u0, µ, ν))

∣∣∣∣
=

∣∣∣∣∫∫∫ f(x′)
(
p(dx′ | x, u, x0

n, u
0
n, µn)νn(dx,du)− p(dx′ | x, u, x0, u0, µ)ν(dx, du)

)∣∣∣∣
≤
∫∫ ∣∣∣∣∫ f(x′)p(dx′ | x, u, x0

n, u
0
n, µn)−

∫
f(x′)p(dx′ | x, u, x0, u0, µ)

∣∣∣∣ νn(dx, du)
+

∣∣∣∣∫∫∫ f(x′)p(dx′ | x, u, x0, u0, µ)(νn(dx, du)− ν(dx,du))

∣∣∣∣
≤ sup

x∈X ,u∈U
LfW1(p(· | x, u, x0

n, u
0
n, µn), p(· | x, u, x0, u0, µ))

+

∣∣∣∣∫∫∫ f(x′)p(dx′ | x, u, x0, u0, µ)(νn(dx, du)− ν(dx,du))

∣∣∣∣→ 0

for the first term by 1-Lipschitzness of f
Lf

and Assumption 1 (with compactness implying the uniform continuity), and for
the second by νn → ν and continuity of (x, u) 7→

∫∫
f(x′)p(dx′ | x, u, x0, u0, µ) by the same argument.

J. Proof of Theorem 2

Proof. The statement supf,π,π0

∣∣∣E [f(x0,N
t , u0,N

t , µN
t )− f(x0

t , u
0
t , µt)

]∣∣∣ is shown inductively over t ≥ 0. At time t = 0,
it holds by the weak LLN argument, see also the first term below. Assuming the statement at time t, then for time t+ 1 we
have

sup
(π,π0)∈Π×Π0

sup
f∈F

∣∣∣E [f(x0,N
t+1, u

0,N
t+1, µ

N
t+1)− f(x0

t+1, u
0
t+1, µt+1)

]∣∣∣
≤ sup

π,π0

sup
f∈F

∣∣∣E [f(x0,N
t+1, u

0,N
t+1, µ

N
t+1)− f(x0,N

t+1, u
0,N
t+1, µ̂

N
t+1)

]∣∣∣ (17)

+ sup
π,π0

sup
f∈F

∣∣∣E [f(x0,N
t+1, u

0,N
t+1, µ̂

N
t+1)− f(x0

t+1, u
0
t+1, µt+1)

]∣∣∣ (18)

where for readability, we again write πt(x
0
t , µt) := πt(· | ·, x0

t , µt) and introduce the random variable

µ̂N
t+1 := T (x0,N

t , u0,N
t , µN

t , µN
t ⊗ πt(x

0,N
t , µN

t )).

By compactness of X 0 × U0 × P(X ), F is uniformly equicontinuous, and hence admits a non-decreasing, concave (as in
(DeVore and Lorentz, 1993), Lemma 6.1) modulus of continuity ωF : [0,∞) → [0,∞) where ωF (x) → 0 as x → 0 and
|f(x, u, µ)− f(x′, u′, ν)| ≤ ωF (d(x, x

′) + d(u, u′) +W1(µ, ν)) for all f ∈ F , and analogously there exists such ω̃F with
respect to (P(X ), dΣ) instead of (P(X ),W1) as in Appendix E.

For the first term (17), let xN
t ≡ {xi,N

t }i∈[N ]. Then, by the weak LLN argument,

sup
π,π0

sup
f∈F

∣∣∣E [f(x0,N
t+1, u

0,N
t+1, µ

N
t+1)− f(x0,N

t+1, u
0,N
t+1, µ̂

N
t+1)

]∣∣∣
≤ sup

π,π0

E
[
ω̃F (dΣ(µ

N
t+1, µ̂

N
t+1))

]
≤ sup

π,π0

ω̃F

( ∞∑
m=1

2−m E
[∣∣µN

t+1(fm)− µ̂N
t+1(fm)

∣∣])

≤ sup
π,π0

ω̃F

(
sup
m≥1

E
[
Eβt

[∣∣µN
t+1(fm)− µ̂N

t+1(fm)
∣∣]])
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= sup
π,π0

ω̃F

(
sup
m≥1

E

[
Eβt

[∣∣∣∣∣ 1N
N∑
i=1

(
fm(xi,N

t+1)− Eβt

[
fm(xi,N

t+1)
])∣∣∣∣∣
]])

≤ sup
π,π0

ω̃F

sup
m≥1

E

Eβt

∣∣∣∣∣ 1N
N∑
i=1

(
fm(xi,N

t+1)− Eβt

[
fm(xi,N

t+1)
])∣∣∣∣∣

2
1/2


= sup

π,π0

ω̃F

sup
m≥1

(
1

N2

N∑
i=1

E
[
Eβt

[(
fm(xi,N

t+1)− Eβt

[
fm(xi,N

t+1)
])2]])1/2


≤ ω̃F

(
2√
N

)
→ 0 (19)

for βt := (x0,N
t , u0,N

t , xN
t ) by bounding |fm| ≤ 1, as the cross-terms disappear.

For the second term (18), by noting µ̂N
t+1 = T (x0,N

t , u0,N
t , µN

t , µN
t ⊗ πt(x

0,N
t , µN

t )), we have

sup
π,π0

sup
f∈F

∣∣∣E [f(x0,N
t+1, u

0,N
t+1, µ̂

N
t+1)− f(x0

t+1, u
0
t+1, µt+1)

]∣∣∣
= sup

π,π0

sup
f∈F

∣∣∣∣E [∫∫ f(x′, u′, µ̂N
t+1)π

0
t (du

′ | x′, µN
t+1)p

0(dx′ | x0,N
t , u0,N

t , µN
t )

−
∫∫

f(x′, u′, µt+1)π
0
t (du

′ | x′, µt+1)p
0(dx′ | x0

t , u
0
t , µt)

]∣∣∣∣
≤ sup

π,π0

sup
f∈F

E
[
sup
x′

∣∣∣∣∫ f(x′, u′, µ̂N
t+1)(π

0
t (du

′ | x′, µN
t+1)− π0

t (du
′ | x′, µ̂N

t+1))

∣∣∣∣] (20)

+ sup
π,π0

sup
g∈G

∣∣∣E [g(x0,N
t , u0,N

t , µN
t )− g(x0

t , u
0
t , µt)

]∣∣∣ (21)

and analyze each term separately, where we defined the function g : X 0 × U0 × P(X ) as

g(x0, u0, µ) :=

∫∫
f(x′, u′, T ∗)π0

t (du
′ | x′, T ∗)p0(dx′ | x0, u0, µ)

from the class G of such functions for any policies π, π0, where T ∗ := T (x0, u0, µ, µ⊗ πt(x
0, µ)).

For (20), defining a modulus of continuity ω̃Π0 for Π0 as for F , we have

sup
π,π0

sup
f∈F

E
[
sup
x′

∣∣∣∣∫ f(x′, u′, µ̂N
t+1)(π

0
t (du

′ | x′, µN
t+1)− π0

t (du
′ | x′, µ̂N

t+1))

∣∣∣∣]
≤ sup

π,π0

E
[
LF sup

x′
W1(π

0
t (· | x′, µN

t+1), π
0
t (· | x′, µ̂N

t+1))

]
≤ sup

π,π0

E
[
LF ω̃Π0(dΣ(µ

N
t+1, µ̂

N
t+1))

]
≤ LF ω̃Π0

(
2√
N

)
→ 0.

Lastly, for (21), we first note that the class G of functions is equi-Lipschitz.

Lemma J.1. Under Assumptions 1 and 2, the map (x0, u0, µ) 7→ T (x0, u0, µ, µ ⊗ πt(x
0, µ)) is Lipschitz with constant

LT := (2LΠ + 1) · (Lp + (Lp + 1)LΠ + (Lp + LΠ + 1)).

Lemma J.2. Under Assumptions 1 and 2, for any equi-Lipschitz F with constant LF , the function class G is equi-Lipschitz
with constant LG := (LFLT + LFLΠ0LT + LFLΠLp0).

Therefore, for (21), we have

sup
π,π0

sup
g∈G

∣∣∣E [g(x0,N
t , u0,N

t , µN
t )− g(x0

t , u
0
t , µt)

]∣∣∣→ 0
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by the induction assumption over the class G of equi-Lipschitz functions, completing the proof by induction. The existence
of independent optimal π, π0 follows from Remark 3. This completes the proof.

For finite minor states, we can quantify the convergence rate more precisely as O(1/
√
N), since the two metrizations dΣ

and W1 are then Lipschitz equivalent and the above moduli of continuity simply become a multiplication with the Lipschitz
constant, so for convenience we simply use the L1 distance. The convergence in the first term (17) is immediate by the weak
LLN

sup
π,π0

sup
f∈F

∣∣∣E [f(x0,N
t+1, u

0,N
t+1, µ

N
t+1)− f(x0,N

t+1, u
0,N
t+1, µ̂

N
t+1)

]∣∣∣
≤ sup

π,π0

Lf E

[∑
x∈X

∣∣µN
t+1(x)− µ̂N

t+1(x)
∣∣]

= sup
π,π0

Lf

∑
x∈X

E

[
E

[∣∣∣∣∣ 1N
N∑
i=1

1x(x
i,N
t+1)− E

[
1

N

N∑
i=1

1x(x
i,N
t+1)

∣∣∣∣∣ x0,N
t , u0,N

t , µN
t

]∣∣∣∣∣
∣∣∣∣∣ x0,N

t , u0,N
t , µN

t

]]

≤ Lf |X |
√

4

N
,

and for the second term (18) we again use the induction assumption, completing the proof.

K. Proof of Lemma J.1
Proof. First note Lipschitz continuity of (x0, µ) 7→ µ ⊗ πt(x

0, µ) as in Appendix E, as for any (x0
∗, µ∗), (x

0, µ) ∈
X 0 × P(X ), then

sup
π∈Π

W1(µ∗ ⊗ πt(x
0
∗, µ∗), µ⊗ πt(x

0, µ))

= sup
π∈Π

sup
∥f ′∥Lip≤1

∣∣∣∣∫ f ′ d(µ∗ ⊗ πt(x
0
∗, µ∗)− µ⊗ πt(x

0, µ))

∣∣∣∣
≤ sup

π∈Π
sup

∥f ′∥Lip≤1

∣∣∣∣∫∫ f ′(x, u)(πt(du | x, x0
∗, µ∗)− πt(du | x, x0, µ))µ∗(dx)

∣∣∣∣
+ sup

π∈Π
sup

∥f ′∥Lip≤1

∣∣∣∣∫∫ f ′(x, u)πt(du | x, x0, µ)(µ∗(dx)− µ(dx))

∣∣∣∣
where for the first term

sup
π∈Π

sup
∥f ′∥Lip≤1

∣∣∣∣∫∫ f ′(x, u)(πt(du | x, x0
∗, µ∗)− πt(du | x, x0, µ))µ∗(dx)

∣∣∣∣
≤ sup

π∈Π
sup

∥f ′∥Lip≤1

∫ ∣∣∣∣∫ f ′(x, u)(πt(du | x, x0
∗, µ∗)− πt(du | x, x0, µ))

∣∣∣∣µ∗(dx)

≤ sup
π∈Π

sup
∥f ′∥Lip≤1

sup
x∈X

∣∣∣∣∫ f ′(x, u)(πt(du | x, x0
∗, µ∗)− πt(du | x, x0, µ))

∣∣∣∣
= sup

π∈Π
sup
x∈X

W1(πt(· | x, x0
∗, µ∗), πt(· | x, x0, µ))

≤ LΠd((x
0
∗, µ∗), (x

0, µ))

by Assumption 2, and similarly for the second by noting 1-Lipschitzness of x 7→
∫ f ′(x,u)

LΠ+1 πt(du | x, x0, µ), as before in
(11), and therefore again

sup
π∈Π

sup
∥f ′∥Lip≤1

∣∣∣∣∫∫ f ′(x, u)πt(du | x, x0, µ)(µ∗(dx)− µ(dx))

∣∣∣∣
= sup

π∈Π
sup

∥f ′∥Lip≤1

(LΠ + 1)

∣∣∣∣∫∫ f ′(x, u)

LΠ + 1
πt(du | x, x0, µ)(µ∗(dx)− µ(dx))

∣∣∣∣
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≤ (LΠ + 1)W1(µ∗, µ).

Hence, the map (x0, u0, µ) 7→ µ⊗ πt(x
0, µ) is Lipschitz with constant (2LΠ + 1).

As a result, the entire map (x0, u0, µ) 7→ T (x0, u0, µ, µ⊗ πt(x
0, µ) is Lipschitz, since for any

W1(T (x
0
∗, u

0
∗, µ∗, µ∗ ⊗ πt(x

0
∗, µ∗)), T (x

0, u0, µ, µ⊗ πt(x
0, µ))

= sup
∥f ′∥Lip≤1

∣∣∣∣∫∫∫ f ′(x′)p(dx′ | x, u, x0
∗, u

0
∗, µ∗)πt(du | x, x0

∗, µ∗)µ∗(dx)

−
∫∫∫

f ′(x′)p(dx′ | x, u, x0, u0, µ)πt(du | x, x0, µ)µ(dx)

∣∣∣∣
≤ sup

∥f ′∥Lip≤1

sup
(x,u)∈X×U

∣∣∣∣∫ f ′(x′)(p(dx′ | x, u, x0
∗, u

0
∗, µ∗)− p(dx′ | x, u, x0, u0, µ))

∣∣∣∣
+ sup

∥f ′∥Lip≤1

sup
x∈X

∣∣∣∣∫∫ f ′(x′)p(dx′ | x, u, x0, u0, µ)(πt(du | x, x0
∗, µ∗)− πt(du | x, x0, µ))

∣∣∣∣
+ sup

∥f ′∥Lip≤1

∣∣∣∣∫∫∫ f ′(x′)p(dx′ | x, u, x0, u0, µ)πt(du | x, x0, µ)(µ∗(dx)− µ(dx))

∣∣∣∣
≤ sup

(x,u)∈X×U
W1(p(· | x, u, x0

∗, u
0
∗, µ∗), p(· | x, u, x0, u0, µ))

+ sup
x∈X

(Lp + 1)W1(πt(· | x, x0
∗, µ∗), πt(· | x, x0, µ))

+ sup
(x,u)∈X×U

(Lp + LΠ + 1)W1(µ∗, µ)

≤ (Lp + (Lp + 1)LΠ + (Lp + LΠ + 1))︸ ︷︷ ︸
L∗

d((x0
∗, u

0
∗, µ∗), (x

0, u0, µ))

with Lipschitz constant LT := (2LΠ + 1) · L∗ from Assumptions 1 and 2, using the same argument as in (11).

L. Proof of Lemma J.2
Proof. For any g ∈ G, for any (x0

∗, u
0
∗, µ∗), (x

0, u0, µ) ∈ X 0 × U0 × P(X ), let T∗ := T (x0
∗, u

0
∗, µ∗, µ∗ ⊗ πt(x

0
∗, µ∗)) and

T ∗ := T (x0, u0, µ, µ⊗ πt(x
0, µ)) for brevity. We have∣∣g(x0

∗, u
0
∗, µ∗)− g(x0, u0, µ)

∣∣
=

∣∣∣∣∫∫ f(x′, u′, T∗)π
0
t (du

′ | x′, T∗)p
0(dx′ | x0

∗, u
0
∗, µ∗)

−
∫∫

f(x′, u′, T ∗)π0
t (du

′ | x′, T ∗)p0(dx′ | x0, u0, µ)

∣∣∣∣
≤ sup

x′,u′
|f(x′, u′, T∗)− f(x′, u′, T ∗)| (22)

+ sup
x′

∣∣∣∣∫ f(x′, u′, T ∗)(π0
t (du

′ | x′, T∗)− π0
t (du

′ | x′, T ∗))

∣∣∣∣ (23)

+

∣∣∣∣∫∫ f(x′, u′, T ∗)π0
t (du

′ | x′, T ∗)(p0(dx′ | x0
∗, u

0
∗, µ∗)− p0(dx′ | x0, u0, µ))

∣∣∣∣ . (24)

By Lemma J.1, for (22) we obtain

sup
x′,u′

∣∣f(x′, u′, T (x0
∗, u

0
∗, µ∗, µ∗ ⊗ πt(x

0
∗, µ∗)))− f(x′, u′, T (x0, u0, µ, µ⊗ πt(x

0, µ)))
∣∣

≤ LFLT d((x
0
∗, u

0
∗, µ∗), (x

0, u0, µ)).
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Similarly for (23), by Assumption 2 we analogously have

sup
x′

∣∣∣∣∫ f(x′, u′, T (x0, u0, µ, µ⊗ πt(x
0, µ)))

(π0
t (du

′ | x′, T (x0
∗, u

0
∗, µ∗, µ∗ ⊗ πt(x

0
∗, µ∗)))− π0

t (du
′ | x′, T (x0, u0, µ, µ⊗ πt(x

0, µ))))
∣∣

≤ LFW1(π
0
t (· | x′, T (x0

∗, u
0
∗, µ∗, µ∗ ⊗ πt(x

0
∗, µ∗))), π

0
t (·′ | x′, T (x0, u0, µ, µ⊗ πt(x

0, µ)))

≤ LFLΠ0LT d((x
0
∗, u

0
∗, µ∗), (x

0, u0, µ)).

Lastly, for (24), as before in (11), by Assumption 1 and 2 we have again∣∣∣∣∫∫ f(x′, u′, T (x0, u0, µ, µ⊗ πt(x
0, µ)))π0

t (du
′ | x′, T (x0, u0, µ, µ⊗ πt(x

0, µ)))

(p0(dx′ | x0
∗, u

0
∗, µ∗)− p0(dx′ | x0, u0, µ))

∣∣
≤ LFLΠW1(p

0(· | x0
∗, u

0
∗, µ∗), p

0(· | x0, u0, µ))

≤ LFLΠLp0d((x0
∗, u

0
∗, µ∗), (x

0, u0, µ)).

Therefore, G is equi-Lipschitz with Lipschitz constant (LFLT + LFLΠ0LT + LFLΠLp0).

M. Proof of Corollary 1
Proof. As in Lemma F.1, for any ε > 0, choose time T ∈ N such that

∞∑
t=T

γt
∣∣∣E [r(x0,N

t , u0,N
t , µN

t )− r(x0
t , u

0
t , µt)

]∣∣∣ ≤ γT

1− γ
max
µ

2|r(µ)| < ε

2
.

By Theorem 2,

T−1∑
t=0

γt
∣∣∣E [r(x0,N

t , u0,N
t , µN

t )− r(x0
t , u

0
t , µt)

]∣∣∣ < ε

2

for sufficiently large N . Therefore, sup(π,π0)∈Π×Π0

∣∣JN (π, π0)− J(Φ−1(π), π0)
∣∣→ 0.

As a result, we have

JN (Φ(π̂∗), π0∗)− sup
(π,π0)∈Π×Π0

JN (π, π0) = inf
(π,π0)∈Π×Π0

(JN (Φ(π̂∗), π0∗)− JN (π, π0))

≥ inf
(π,π0)∈Π×Π0

(JN (Φ(π̂∗), π0∗)− J(π̂∗, π0∗))

+ inf
(π,π0)∈Π×Π0

(J(π̂∗, π0∗)− J(π, π0))

+ inf
(π,π0)∈Π×Π0

(J(π, π0)− JN (π, π0))

≥ −ε

2
+ 0− ε

2
= −ε

for sufficiently large N , where the second term is zero by optimality of (π̂∗, π0∗) in the M3FC problem.

N. Proof of Theorem 3
First, for completeness we give the finite M3FC system equations under the assumed Lipschitz parametrization for joint
stationary M3FMARL policies1 π̃θ used during centralized training with correlated minor agent actions, as

u0,N
t , ξNt ∼ π̃θ(u0,N

t , ξNt | x0,N
t , µN

t ), π′N
t = Γ(ξNt ), ui,N

t ∼ π′N
t (ui,N

t | xi,N
t ),

1Note that deterministic joint policies π̃θ (e.g. at convergence, or if using deterministic policy gradients (Silver et al., 2014)) are
equivalent to using separate deterministic minor and major policies in (1), see also Remark 3.
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xi,N
t+1 ∼ p(xi,N

t+1 | xi,N
t , ui,N

t , x0,N
t , u0,N

t , µN
t ), x0,N

t+1 ∼ p0(x0,N
t+1 | x0,N

t , u0,N
t , µN

t ),

as well as the limiting M3FC MDP under such parametrization as

u0
t , ξt ∼ π̃θ(u0

t , ξt | x0
t , µt), π′

t = Γ(ξt), ht = µt ⊗ π′
t,

µt+1 = T (x0
t , u

0
t , µt, ht), x0

t+1 ∼ p0(x0
t+1 | x0

t , u
0
t , µt).

Then, by Sutton et al. (1999), the exact policy gradient for the limiting M3FC MDP is given as

∇θJ(π̃
θ) =

∞∑
t=T

γt E
[
Qθ(x0

t , µt, u
0
t , ξt)∇θ log π̃

θ(u0
t , ξt | x0

t , µt)
]

under the action-value function

Qθ(x0, µ, u0, ξ) = E

[ ∞∑
t=0

γtr(x0
t , u

0
t , µt)

∣∣∣∣∣ x0
0 = x0, µ0 = µ, u0

0 = u0, ξ0 = ξ

]
,

while the approximation for the policy gradient on the finite M3FC system is given instead by

∇̂θJ(π̃
θ) =

∞∑
t=T

γt E
[
Q̂θ(x0,N

t , µN
t , u0,N

t , ξNt )∇θ log π̃
θ(u0,N

t , ξNt

∣∣∣ x0,N
t , µN

t )
]

and the finite-agent action-values

Q̂θ(x0, µ, u0, ξ) = E

[ ∞∑
t=0

γtr(x0,N
t , u0,N

t , µN
t )

∣∣∣∣∣ x0,N
0 = x0, µ0 = µ, u0,N

0 = u0, ξN0 = ξ

]
,

which are obtained, e.g., by on-policy samples and using critic estimates. Note that here, the conditional expectations are
given by redefining the systems (1) and (3) with the values conditioned upon.

We then show that the approximation of the policy gradient is good for large systems, i.e.∥∥∥∇̂θJ(π̃
θ)−∇θJ(π̂

θ)
∥∥∥→ 0 (25)

as N → ∞, uniformly over all current policy parameters θ.

Proof of Theorem 3. We use the following lemmas in the proof of Theorem 3, for which the proofs are given below.

Proposition N.1. Propagation of chaos holds for the M3FC systems with parameterized actions as in Theorem 2, i.e. under
Assumptions 1, 2 and 3, for any equi-Lipschitz family F , at all times t ∈ N uniformly,

sup
f,π,π0

∣∣∣E [f(x0,N
t , u0,N

t , µN
t )− f(x0

t , u
0
t , µt)

]∣∣∣→ 0. (26)

Proposition N.2. Under Assumptions 1 and 2, the approximate action-values converge uniformly, Q̂θ → Qθ as N → ∞.

As a result, we obtain∥∥∥∇̂θJ(π̃
θ)−∇θJ(π̂

θ)
∥∥∥

=

∥∥∥∥∥
∞∑
t=0

γt E
[
Q̂θ(x0,N

t , µN
t , u0,N

t , ξNt )∇θ log π̃
θ(u0,N

t , ξNt | x0,N
t , µN

t )−Qθ(x0
t , µt, u

0
t , ξt)∇θ log π̃

θ(u0
t , ξt | x0

t , µt)
]∥∥∥∥∥

≤
∥∥∥∥∥

∞∑
t=0

γt E
[(

Q̂θ(x0,N
t , µN

t , u0,N
t , ξNt )−Qθ(x0,N

t , µN
t , u0,N

t , ξNt )
)
∇θ log π̃

θ(u0,N
t , ξNt | x0,N

t , µN
t )
]∥∥∥∥∥
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+

∥∥∥∥∥
∞∑
t=T

γt E
[
Qθ(x0,N

t , µN
t , u0,N

t , ξNt )∇θ log π̃
θ(u0,N

t , ξNt | x0,N
t , µN

t )−Qθ(x0
t , µt, u

0
t , ξt)∇θ log π̃

θ(u0
t , ξt | x0

t , µt)
]∥∥∥∥∥

+

∥∥∥∥∥
T−1∑
t=0

γt E
[
Qθ(x0,N

t , µN
t , u0,N

t , ξNt )∇θ log π̃
θ(u0,N

t , ξNt | x0,N
t , µN

t )−Qθ(x0
t , µt, u

0
t , ξt)∇θ log π̃

θ(u0
t , ξt | x0

t , µt)
]∥∥∥∥∥

for any T , such that the first term disappears by Assumption 3 uniformly bounding ∇θ log π̃
θ and Proposition N.2. Note

that we bounded ∇θ log π̃
θ here, but we can also assume bounded gradients ∇θπ̃

θ instead, e.g. (27).

For the second term, we similarly uniformly bound ∇θ log π̃
θ by Assumption 3 and Q by Assumption 1, then choose T

sufficiently large.

Finally, for the last term, we note that we can write the difference as∥∥∥∥∥
T−1∑
t=0

γt E
[
Qθ(x0,N

t , µN
t , u0,N

t , ξNt )∇θ log π̃
θ(u0,N

t , ξNt | x0,N
t , µN

t )−Qθ(x0
t , µt, u

0
t , ξt)∇θ log π̃

θ(u0
t , ξt | x0

t , µt)
]∥∥∥∥∥

=

∥∥∥∥∥
T−1∑
t=0

γt E

[ ∞∑
t′=0

γt E
[
r(x0′

t′ , u
0′
t′ , µ

′
t′)
∣∣∣ x0′

0 = x0,N
t , µ′

0 = µN
t , u0′

0 = u0,N
t , ξ′0 = ξNt

]
∇θ log π̃

θ(u0,N
t , ξNt | x0,N

t , µN
t )

−
∞∑
t=0

γt E
[
r(x0′

t′ , u
0′
t′ , µ

′
t′)
∣∣ x0′

0 = x0
t , µ

′
0 = µt, u

0′
0 = u0

t , ξ
′
0 = ξt

]
∇θ log π̃

θ(u0
t , ξt | x0

t , µt)

]∥∥∥∥∥
≤
∥∥∥∥∥
T−1∑
t=0

γt E

[ ∞∑
t′=T ′

γt E
[
r(x0′

t′ , u
0′
t′ , µ

′
t′)
∣∣∣ x0′

0 = x0,N
t , µ′

0 = µN
t , u0′

0 = u0,N
t , ξ′0 = ξNt

]
∇θ log π̃

θ(u0,N
t , ξNt | x0,N

t , µN
t )

−
∞∑

t=T ′

γt E
[
r(x0′

t′ , u
0′
t′ , µ

′
t′)
∣∣ x0′

0 = x0
t , µ

′
0 = µt, u

0′
0 = u0

t , ξ
′
0 = ξt

]
∇θ log π̃

θ(u0
t , ξt | x0

t , µt)

]∥∥∥∥∥
+

∥∥∥∥∥∥
T−1∑
t=0

γt E

T ′−1∑
t′=0

γt E
[
r(x0′

t′ , u
0′
t′ , µ

′
t′)
∣∣∣ x0′

0 = x0,N
t , µ′

0 = µN
t , u0′

0 = u0,N
t , ξ′0 = ξNt

]
∇θ log π̃

θ(u0,N
t , ξNt | x0,N

t , µN
t )

−
T ′−1∑
t=0

γt E
[
r(x0′

t′ , u
0′
t′ , µ

′
t′)
∣∣ x0′

0 = x0
t , µ

′
0 = µt, u

0′
0 = u0

t , ξ
′
0 = ξt

]
∇θ log π̃

θ(u0
t , ξt | x0

t , µt)

∥∥∥∥∥∥
where we write the conditional M3FC system and random variables in the inner expectation with a prime, bounding again
the former terms by choosing sufficiently large T ′ and using Assumptions 1 and 3, while for the latter terms we use
Proposition N.1 on the functions

f(x0, µ) =

∫∫
E
[
r(x0′

t′ , u
0′
t′ , µ

′
t′)
∣∣ x0′

0 = x0, µ0 = µ, u0′
0 = u0, ξ′0 = ξ

]
∇θπ̃

θ(u0, ξ | x0, µ)d(u0, ξ) (27)

for all t′, which are uniformly Lipschitz by Assumptions 1 and 3. This completes the proof.

O. Proof of Proposition N.1
Proof. The proof is exactly analogous to the proof of Theorem 2, except that instead of using Lipschitz constants of
x0
t , u

0
t , µt, ht 7→ T (x0

t , u
0
t , µt, ht), one uses Lipschitz constants of x0

t , u
0
t , µt, ξt 7→ T (x0

t , u
0
t , µt, µt ⊗ Γ(ξt)) via the

additional Assumption 3 on top of Assumptions 1 and 2.

P. Proof of Proposition N.2

Proof. To show Q̂θ → Qθ as N → ∞ uniformly, it suffices to prove pointwise convergence due to compact support.

Therefore, fix any x0, µ, u0, ξ. The convergence follows as in Corollary 1, from showing at any time t that

sup
f∈F

∣∣E [f(x0
t , u

0
t , µt)

∣∣ x0
0 = x0, µ0 = µ, u0

0 = u0, ξ0 = ξ
]
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−E
[
f(x0,N

t , u0,N
t , µN

t )
∣∣∣ x0,N

0 = x0,N , µ0 = µ, u0,N
0 = u0, ξN0 = ξ

]∣∣∣→ 0

over any equi-Lipschitz family of functions F , and applying for f = r (using the set F of Lr-Lipschitz functions) by
Assumption 1.

The statement is shown by considering time t = 0, and then by induction for any t ≥ 1. At time t = 0, the statement follows
from the weak LLN as in Theorem 2. For any subsequent times, we similarly have

sup
f∈F

∣∣E [f(x0
t+1, u

0
t+1, µt+1)

∣∣ x0
0 = x0, µ0 = µ, u0

0 = u0, ξ0 = ξ
]

−E
[
f(x0,N

t+1, u
0,N
t+1, µ

N
t+1)

∣∣∣ x0,N
0 = x0,N , µ0 = µ, u0,N

0 = u0, ξN0 = ξ
]∣∣∣

≤ sup
f∈F

∣∣E [f(x0
t+1, u

0
t+1, µt+1)

∣∣ x0
0 = x0, µ0 = µ, u0

0 = u0, ξ0 = ξ
]

−E
[
f(x0,N

t+1, u
0,N
t+1, T (x

0,N
t , u0,N

t , µN
t , µN

t ⊗ Γ(ξNt )))
∣∣∣ x0,N

0 = x0,N , µ0 = µ, u0,N
0 = u0, ξN0 = ξ

]∣∣∣
+ sup

f∈F

∣∣∣E [f(x0,N
t+1, u

0,N
t+1, T (x

0,N
t , u0,N

t , µN
t , µN

t ⊗ Γ(ξNt )))
∣∣∣ x0,N

0 = x0,N , µ0 = µ, u0,N
0 = u0, ξN0 = ξ

]
−E

[
f(x0,N

t+1, u
0,N
t+1, µ

N
t+1)

∣∣∣ x0,N
0 = x0,N , µ0 = µ, u0,N

0 = u0, ξN0 = ξ
]∣∣∣ .

As in Theorem 2, the latter term is bounded by induction assumption, using uniform Lipschitzness of the dynamics,
x0
t , u

0
t , µt, ξt 7→ T (x0

t , u
0
t , µt, µt ⊗ Γ(ξt)) via Assumptions 2 and 3, while the former term is bounded as usual by the weak

LLN. This completes the proof.

Q. Extended MFC Optimalities
Intuitively, in large MF systems governed by dynamics of the form (1), almost all information of the joint state
(x0,N

t , x1,N
t , . . . , xN,N

t ) is contained in (x0,N
t , µN

t ), while heterogeneous policies should by LLN be replaceable by a
shared one. To fully complete the theory of MFC, it is therefore interesting to establish the optimality of the considered MF
policies over arbitrary other policies acting on the joint state (x0,N

t , x1,N
t , . . . , xN,N

t ).

It seems plausible that it would be possible to extend optimality (Corollary 1) over larger classes of policies in the
finite system. In particular, at least for finite state-action spaces, (i) any joint-state policy π(du | x0,N

t , x1,N
t , . . . , xN,N

t )
might in the limit be replaced by an averaged policy π̄(du | x0, µ) :=

∑
xN∈XN : 1

N

∑
i δxi,N =µ π(du | x0, xN ) under

some exchangeability of agents; (ii) any optimal policy π outputting joint actions for all agents might be replaced by
an independent but identical policy for each agent, as in the limit all information is contained in the joint state-action
distribution, any of which may be approximated increasingly closely by LLN; and (iii) heterogeneous policies for each minor
agent π1, . . . , πN might similarly be replaced by some averaged policy π̄(π1, . . . , πN ), averaging the action distributions in
any specific state over the proportion of agent likelihoods in that state.

Showing such results would allow us to conclude that the policy classes Π are natural and sufficient in MF systems, including
MFC and also the competitive MFGs, as more general or heterogeneous policies will not perform much better. A result
related to (iii) has been shown for static cases (Sanjari and Yüksel, 2020; Cui et al., 2021) and more recently in MFC and its
two-team generalizations (Guan et al., 2024).

R. Experimental Details
Here, we give details omitted in the main text. For code, see https://github.com/tudkcui/M3FC-MARL.

R.1. Problem Details

In this section, we give details to the problems considered in this work. We omit the superscript N for readability.

2G. In the 2G problem, we formally let X = [−2, 2]2, U = [−1, 1]2, X 0 = {0, 1, . . . 49} according to (13). We allow
noisy movement of minor agents following the Gaussian law

p(xi
t+1 | xi

t, u
i
t) = N

(
xi
t+1

∣∣∣∣ xi
t + vmax

ui
t

max(1, ∥ui
t∥2)

,diag(σ2, σ2)

)
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Table 3. Shared hyperparameter configurations for all algorithms.

Symbol Name Value

γ Discount factor 0.99
λ GAE lambda 1
β KL coefficient 0.03
ϵ Clip parameter 0.2
lr Learning rate 0.00005

Blen Training batch size 24000
blen Mini-batch size 4000

NSGD Gradient steps per training batch 8

for some maximum speed vmax = 0.2, noise covariance σ2 = 0.03 and projecting back actions u with norm larger than 1,
with the additional modification that agent positions are clipped back into X whenever the agents move out of bounds.

We then consider a time-variant mixture of two Gaussians

µ∗
t :=

1 + cos(2πt/50)

2
N
(
e1,diag(σ

2
∗, σ

2
∗)
)
+

1− cos(2πt/50)

2
N
(
−e1,diag(σ

2
∗, σ

2
∗)
)

for unit vector e1 and covariance σ2
∗ = 0.05, i.e. we have a period of 50 time steps, and let the major state follow the clock

dynamics p0(x0 + 1 mod 50 | x0, µ) = 1.

The goal of minor agents is to minimize the Wasserstein metric Ŵ1 under the squared Euclidean distance,

Ŵ1(µ, µ
′) := inf

γ∈Γ(µ,µ′)

{∫
∥x− y∥22γ(dx, dy)

}
defined over all couplings Γ(µ, µ′) with first and second marginals µ, µ′ (which is strictly speaking not a metric but an
optimal transportation cost, since the squared Euclidean distance fails the triangle inequality), between their empirical
distribution and the desired mixture of Gaussians

r(x0
t , µt) = −Ŵ1(µt, µ

∗
t )

which is computed numerically by the empirical distance, sampling 300 samples from µ∗
t .

The initialization of minor agents is uniform, i.e. µ0 = Unif(X ), and x0
0 = 0. For sake of simulation, we define the episode

length T = 100 after which a new episode starts.

Formation. The Formation problem is an extension of the 2G problem, where instead X 0 = X × X and U0 = U , the
major agent follows the same dynamics as the minor agents, and movements are noise-free, i.e. σ2 = 0. The major agent
state x0

t = (x̂0
t , x

∗
t ) here contains both the major agent position x̂0

t and its target position x∗
t . The desired minor agent

distribution is centered around the major agent

µ∗
t := N

(
x̂0
t ,diag(σ

2
∗, σ

2
∗)
)

with covariance σ2
∗ = 0.3, and is also observed by agents as in 2G via binning. Additionally, the major agent should follow

a random target x∗
t following discretized Ornstein-Uhlenbeck dynamics

x∗
t+1 ∼ N

(
0.95x∗

t ,diag(σ
2
targ, σ

2
targ)

)
with σ2

targ = 0.02. Thus, similar to 2G, the reward function becomes

r(x0
t , u

0
t , µt) = −∥x̂0

t − x∗
t ∥2 − Ŵ1(µt, µ

∗
t ).

The initialization of agents is uniform, while the target starts around zero, i.e. µ0 = Unif(X ) and µ0
0 = Unif(X ) ⊗

N
(
0,diag(σ2

targ, σ
2
targ)

)
. For sake of simulation, we define the episode length T = 100 after which a new episode starts.
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Beach Bar Process. In the discrete beach bar process, we consider a discrete torus X = {0, 1, . . . , 4}2, X 0 = X ×X and
actions U = U0 = {(0, 0), (−1, 0), (0,−1), (1, 0), (0, 1)} indicating movement in any of the four cardinal directions. The
major agent state x0

t = (x̂0
t , x

∗
t ) here contains both the major agent position x̂0

t and its target position x∗
t . In other words,

the dynamics follow

x̂0
t+1 = x̂0

t + u0
t mod (5, 5), xi

t+1 = xi
t + ui

t mod (5, 5).

The target position follows a random walk on the torus

x∗
t+1 ∼ x∗

t + ϵtUnif((−1, 0), (0,−1), (1, 0), (0, 1)) mod (5, 5)

with walking probability ϵt ∼ Bernoulli(0.2), uniformly in any direction.

The costs are then given by the average toroidal distance d (the L1 “wrap-around” distance on the torus) between the major
agent and its target, the average distance between major and minor agents, and the crowdedness of agents

r(x0
t , u

0
t , µt) = −0.5d(x0

t , x
∗
t )− 2.5

∫
d(x, x0

t )µt(dx)− 6.25

∫
µt(x)µt(dx).

The initialization of agents is uniform, while the target starts at zero, i.e. µ0 = Unif(X ) and µ0
0 = Unif(X )⊗ δ(0,0). For

sake of simulation, we define the episode length T = 200 after which a new episode starts.

For the neural network policy, we use a one-hot encoding of major states as input, i.e. the concatenation of two 5-dimensional
one-hot vectors for the major agent position x̂0

t and its target position x∗
t respectively.

Foraging. In the Foraging problem, we formally define X = [−2, 2]2 × [0, 1], U = [−1, 1]2 = U0 and X 0 = ([−2, 2]×
[−2,−1])×⋃5

n=0

(
[−2, 2]2 × [0, 1.5]

)n
. The minor agent states xi

t = (x̂i
t, x̃

i
t) here contain their positions x̂i

t ∈ [−2, 2]2

and encumbrance (or inversely, free cargo space) x̂i
t ∈ [0, 1]. Meanwhile, the major agent state x0

t = (x̂0
t , x

env
t ) here

contains both the major agent position x̂0
t restricted to [−2, 2]× [−2,−1], and the current environment state xenv

t . Here, the
minor and major agents move as in Formation, though with different maximum velocities for minor agents vmax = 0.3 and
major agent v0max = 0.1 respectively.

An additional environmental state consists of up to 5 spatially localized foraging areas, which is not observed by the agents.
In each time step, Nt = Pois(0.2) new foraging areas appear, up to a maximum total number of 5. The location xm

t of
each foraging area m = 1, . . . , 5 is sampled uniformly randomly from Unif(X ), while their total initial size Lm

t is sampled
from Unif([0.5, 1.5]), making up the environment state xenv

t = (xm
t , Lm

t )m. At every time step, the foraging areas m are
depleted by nearby agents closer than range 0.5,

Lm
t+1 = Lm

t −∆Lm(µt),

∆Lm(µt) := min(Lm
t+1 − Lm

t ,min(0.1,

∫
(0.5− ∥x− xm

t ∥2)+ µt(dx))

where (·)+ := max(0, ·), until they are fully depleted and disappear (Lm
t+1 ≤ 0).

Foraging minor agents simulate encumbrance, gaining it from nearby foraging areas and depositing to a nearby major agent,
by splitting the foraged amount among all nearby minor agents according to their foraged contribution, and wasting any
amount going beyond maximum encumbrance 1,

x̃i
t+1 =

{
min(1, x̃i

t +∆Lm(µt) · (0.5−∥x−xm
t ∥2)

+∫
(0.5−∥x−xm

t ∥2)+ µt(dx)
) if ∥xi

t − x0
t∥2 ≥ 0.5,

0 else.

The reward at each time step is then given by the according total foraged and then deposited amount by the minor agents,
where any clipped amount is wasted.

The initialization of agents is uniform, while the environment starts empty, i.e. µ0 = Unif(X ) and µ0
0 = Unif(X )⊗ δ∅. For

sake of simulation, we define the episode length T = 200 after which a new episode starts.
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Figure 10. Training curves (mean episode return vs. time steps) of M3FPPO in red, compared to A2C in blue. (a) 2G; (b) Formation; (c)
Beach; (d) Foraging; (e) Potential.
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Figure 11. Qualitative visualization of learned M3FC behavior in the 2G (a-d), Formation (e-h) and Potential (i-l) problems. Red: minor
agent; blue triangle: major agent; green triangle: major agent target. (i-l): As in (e-h), with arrow for potential gradient (not to scale).

Potential. Lastly, in Potential we consider minor agents on a continuous one-dimensional torus X = [−2, 2] (where the
points −2 and 2 are identified), actions U = [−1, 1] and major state X 0 = X × X . The minor agents move as in Foraging
(wrapping around the torus instead of clipping), while the major agent follows the gradient of the potential landscape
generated by minor agents, with the goal of staying close to its current target. The major agent state x0

t = (x̂0
t , x

∗
t ) here

contains both the major agent position x̂0
t and its target position x∗

t . For simplicity, here we use a linear repulsive force
decreasing from 1

N to 0 over a range of 1,

x̂0
t+1 = x̂0

t +
1

20

∑
xoff∈{−4,0,4}

∫
(1− ∥x̂0

t − x+ xoff∥2)+
x̂0
t − x+ xoff

∥x̂0
t − x+ xoff∥2

µt(dx) mod [−2, 2]

where we let terms 0/0 = 0 and use the offset xoff to account for the wrap-around on the torus.

The target follows the discretized Ornstein-Uhlenbeck process

x∗
t+1 ∼ N

(
0.99x∗

t ,diag(σ
2
targ, σ

2
targ)

)
with covariance σ2

targ = 0.005, and gives rise to the reward function via the toroidal distance between target and major agent

r(x0
t , µt) = −d(x̂0

t , x
∗
t ).

The initialization of agents is uniform, while the target starts around zero, i.e. µ0 = Unif(X ) and µ0
0 = Unif(X ) ⊗

N
(
0,diag(σ2

targ, σ
2
targ)

)
. For sake of simulation, we define the episode length T = 100 after which a new episode starts.

In contrast to M = 72 = 49 in 2G, Formation and Foraging, here we use M = 7 bins for the one-dimensional problem.
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Figure 12. Training curves (mean episode return vs. time steps) of IPPO, trained on the systems with N ∈ {5, 10, 20}. (a) 2G; (b)
Formation; (c) Beach; (d) Foraging; (e) Potential.

29



Major-Minor Mean Field Multi-Agent Reinforcement Learning

0 1
Steps t ×106

−200

−100

R
et

ur
n
J

(π
)

(a)

0 1 2
Steps t ×105

−600

−400

−200

(b)

0 1 2
Steps t ×106

−600

−400

(c)

0.0 0.5 1.0
Steps t ×106

500

1000

1500

(d)

0.0 0.5 1.0
Steps t ×106

−100

−50

(e)

MAPPO N=5
MAPPO N=10
MAPPO N=20
MF N=20

Figure 13. Training curves (mean episode return vs. time steps) of MAPPO, trained on the systems with N ∈ {5, 10, 20}. (a) 2G; (b)
Formation; (c) Beach; (d) Foraging; (e) Potential.

R.2. Comparison to M3FA2C

In Figure 10 we can see that vanilla M3FA2C typically performs worse than M3FPPO, getting stuck in worse local optima.
Here, we used the same hyperparameters as in PPO. This validates our choice of PPO for M3FMARL.

R.3. Qualitative results

In Figure 11, M3FPPO successfully learns to form mixtures of Gaussians in 2G, and a Gaussian around a moving major
agent that tracks its target in Formation. As expected in 2G, the two Gaussians at their sinusoidal peaks t = 25 and t = 50
are not perfectly tracked, in order to minimize the cost in following time steps, when the other Gaussian reappears. Finally,
in Potential the minor agents succeed in pushing the major agent towards its target, while spreading on both sides of the
major agent to be able to track any random movement of the target.

R.4. Training M3FPPO, IPPO and MAPPO on smaller systems

In Figure 6 we verified the training of M3FPPO on small finite system. Comparing to Figures 5 and 9, for M3FPPO we see
little difference between training on a small finite-agent system versus training on a large system and applying the policy on
the smaller system. For the chosen hyperparameters, the performance in the Potential problem depends on the initialization.
However, M3FPPO compares especially favorably to IPPO in Beach and Foraging, even when directly training on the finite
system. This shows that we can either (i) directly apply M3FPPO as a MARL algorithm to small systems, or (ii) train on a
fixed system, and transfer the learned behavior to systems of almost arbitrary other sizes.

Analogously, in Figures 12 and 13 we show the training results for around a day of IPPO and MAPPO for numbers of agents
N = 5, N = 10 and N = 20. As seen in the plot, the results for each number of agents is comparable to the analysis shown
in the main text. In particular, transferring M3FPPO or comparing with Figure 6, we observe that M3FPPO continues to
outperform or match the performance of IPPO and MAPPO, even in the setting with fewer agents.
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