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ABSTRACT

In many machine learning applications, the most relevant items for a particular
query should be efficiently extracted. The relevance function is typically an ex-
pensive neural similarity model making the exhaustive search infeasible. A typical
solution to this problem is to train another model that separately embeds queries
and items to a vector space, where similarity is defined via the dot product or co-
sine similarity. This allows one to search the most relevant objects through fast
approximate nearest neighbors search at the cost of some reduction in quality. To
compensate for this reduction, the found candidates are then re-ranked by the ex-
pensive similarity model. In this paper, we propose an alternative approach that
utilizes the relevances of the expensive model to make relevance-based embed-
dings. We show both theoretically and empirically that describing each query
by its relevance for a set of support items creates a powerful query representation.
We also investigate several strategies for selecting these support items and demon-
strate that additional significant improvements can be obtained. Our experiments
on diverse datasets show improved performance over existing approaches.

1 INTRODUCTION

Finding the most relevant element (item) i to a query q among a large set of candidates I is a key
task for a wide range of machine learning problems, for example, information retrieval, recom-
mender systems, question-answering systems, or search engines. In such problems, the final score
(relevance) is often predicted by the pairwise function R : Q × I → R, where Q is a query space
and R approximates some ground truth relevances from training data, such as click probability, time
spent or else. Depending on the task, Q can be, for example, a set of text queries or a set of at-
tributes — numerical features describing the user, such as age, time spent on the service, etc. An
item i ∈ I could also be represented in various ways, including feature vectors.

The problem of relevance retrieval for a query q can be written as argmaxi∈I R(i, q). For practical
applications, it is usually required to return not one but K best items (for directly displaying to the
user or further re-ranking), which could be written as

BestK(R, q) := argmax
TI⊂I,|TI |=K

(
argmin

i∈TI

R(i, q)
)
.

Most recommendation systems are characterized by a large size of the item space I (millions to
hundreds of millions), so an exhaustive search is not feasible. This problem is often solved by
training an auxiliary model R̃, called a Siamese, two-tower, or dual encoder, in which late binding
is used: R̃(i, q) = S(FI(i), FQ(q)), where FI : I → Rd, FQ : Q→ Rd, and S is some lightweight
similarity measure, usually dot product or cosine similarity.

While a lot of effort has been put into developing dual-encoder models, the cross-encoder ones are
generally more powerful (Wu et al., 2019; Yadav et al., 2022). Moreover, in practice, one may have
pairwise features that describe a query-item pair. For instance, in information retrieval, pairwise
features can include statistics based on counts of each query term in the document. Clearly, such
features cannot be used by dual encoders.

In this paper, we propose a solution to the problem discussed above. The main idea is to build
embeddings for queries based on their relevance to some pre-selected support (or key/anchor) items
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and vice versa. We theoretically show that such relevance-based embeddings are expressive enough
to approximate any continuous relevance function. Importantly, our approach does not change the
general pipeline of embedding queries and items into a certain space and then searching for the
nearest vectors in this space via any efficient nearest neighbor search algorithm. Additionally, given
relevance vectors, embeddings can be obtained via simple encoders such as MLPs (multilayer per-
ceptrons), thus requiring little development efforts compared to standard dual encoder training with
a complex set of features, for example, in the case of recommendation systems (Covington et al.,
2016).

An important aspect of our approach is how to properly choose support elements. We investigate dif-
ferent options and show that better choices allow one to significantly boost the overall performance.
In particular, even very simple strategies like clustering the elements and choosing the cluster cen-
ters as support items already give significant improvements. The results can be further improved if
the elements are greedily chosen to optimize the accuracy of relevance approximation.

To evaluate the performance of the proposed embeddings, we conduct experiments on textual and
recommendation datasets. We compare our approach with dual encoders and with a recent approach
based on the query-item relevance matrix factorization (Yadav et al., 2022). We get an average
improvement of 33% over this baseline for various data sets (from 8% to 69% see Table 3).

2 RELATED WORK

In this section, we discuss research areas and representative papers related to our study.

Relevance retrieval problem is widespread in the context of building information retrieval sys-
tems (Kowalski, 2007), such as text search engines (Huang et al., 2013), image search (Gordo et al.,
2016), entertainment recommendation systems (Covington et al., 2016), question answering sys-
tems (Karpukhin et al., 2020), e-commerce systems (Yu et al., 2018), and other practical applica-
tions.

Usually, such problems are solved by learning queries and items embeddings into a certain space
and then searching for approximate nearest elements in this space, followed by rearrangement us-
ing a heavier ranker. In particular, the works mentioned above (Covington et al., 2016; Huang
et al., 2013) explicitly use this approach, offering two-tower models (a.k.a. dual encoders). Note
that there are simple alternatives to the dual encoder that use, e.g., BM25 scores applicable to
texts (Logeswaran et al., 2019; Zhang & Stratos, 2021) or other cheaper or more expensive al-
ternatives (Humeau et al., 2019; Luan et al., 2021). However, there is usually trading-off complexity
for quality. It is also worth mentioning the works trying to facilitate the training of the dual encoder
through distilling a heavier ranker model (Wu et al., 2019; Hofstätter et al., 2020; Lu et al., 2020;
Qu et al., 2020; Liu et al., 2021).

As for the nearest neighbors search in a common query-item space, a wide variety of algorithms
exist, including locality-sensitive hashing (LSH) (Indyk & Motwani, 1998; Andoni & Indyk, 2008),
partition trees (Bentley, 1975; Dasgupta & Freund, 2008; Dasgupta & Sinha, 2013), and similarity
graphs (Navarro, 2002). LSH-based and tree-based methods provide strong theoretical guarantees,
however, it has been shown that graph-based methods usually perform better (Malkov & Yashunin,
2018), which explains their widespread use in practical applications.

Another research direction is methods that combine nearest neighbors search with heavy ranker
calls (Morozov & Babenko, 2019; Chen et al., 2022) instead of separately embedding queries and
items in a common space where the search for the nearest items can be efficiently performed. Such
methods show better quality in comparison with separate embeddings, however, their practical ap-
plication may be limited due to a significant change in the structure of the search index. In particular,
in practice, microservices with neural networks and microservices with document indexes are dif-
ferent services, which allows for increasing GPU utilization on the one hand and using specialized
(including sharded) solutions with a large amount of memory on the other. Therefore, in this paper,
we focus on the basic scenario with a separate investment in space and a separate search for the
nearest elements in it.

The paper by Yadav et al. (2022) is the most relevant for our research. The idea is to apply the matrix
factorization to the query-item relevance matrix in order to represent it as a product of its submatrix
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containing only a few columns (relevances for random support items set) and some other, explicitly
computable. Despite the simplicity of the idea and implementation, the authors have shown in detail
the superiority of their algorithm over more complex approaches, such as dual encoders. We use their
work (Yadav et al., 2022) as a baseline in our experiments. Note that Morozov & Babenko (2019)
also propose an idea with the allocation of support elements randomly. Combining their algorithm
with our strategies of selecting support items is an option for further research. As an enhancement
of the original approach, in another paper, Yadav et al. (2023) proposed the idea of selecting support
items per each query independently, but the time complexity of each query processing becomes
linear in the number of elements, which makes the approach infeasible in most practical applications.
On the contrary, our support items selection is performed in the pre-processing stage and does not
increase the query time.

3 RELEVANCE-BASED EMBEDDINGS

In general, the information (attributes) used to calculate the ground-truth item-to-query relevances
R(i, q) can be divided into three types: depending only on the query q, only on the item i, and
depending on both of them. The key problem when constructing separate embeddings of items and
queries in the common space (that can be used for searching for the nearest elements) is the inability
to use information that depends on both query and item, which lowers the quality of relevance search.
Below we propose a theorem stating that, under certain constraints, it is possible to design new
factors based on the query relevances to a pre-selected set of items and, vise-versa, item relevances
based on a pre-selected set of queries, such that the relevance function can be well estimated using
only such individual vectors. Motivated by that, we propose using relevance-based embeddings
(RBE) and discuss how pre-selected sets of queries and items can be chosen in practice.

3.1 UNIVERSALITY OF RELEVANCE-BASED EMBEDDINGS

In this section, we prove a formal statement that any continuous relevance function of queries and
items can be well approximated by a neural architecture that uses only individual relevance vectors
of queries and items.

Formally, let Q and I be compact topological spaces of queries and items, respectively. Assume that
we are given a relevance function R : I ×Q→ R. In practice, R is our relevance model which may
be heavy or rely on pairwise features.

Let SI ⊂ I and SQ ⊂ Q be some finite ordered sets of support items and support queries:

SI = {i1, . . . , im}, SQ = {q1, . . . , qn}.

Let R(i, SQ) be a relevance vector of the item i w.r.t. the set of support queries SQ:

R(i, SQ) = (R(i, q1), . . . , R(i, qn)).

Similarly, R(SI , q) is a relevance vector of the query q w.r.t. the set of support items SI :

R(SI , q) = (R(i1, q), . . . , R(im, q)).

Additionally R(SI , Q), R(I, SQ) - are relevance matrices composed in a similar way.

We say that a function on I is a relevance-based embedding if it has a representation of the form
eI(i) = fI(R(i, SQ), θI) where SQ is a set of support queries and fI is some ML-architecture with
parameters θI which parametrizes mapping Rn → Rd. Analogously, eQ(q) = fQ(R(SI , q), θQ) is
a relevance-based embedding of the query q.

The following theorem holds (the proof can be found in Appendix A.1).
Theorem 1. Let I and Q be compact topological spaces, and R : I × Q → R be a continuous
function. Then, R can be uniformly approximated up to an arbitrarily small absolute error by a
function R̃(i, q):

R̃(i, q) = ⟨ fI(R(i, SQ), θI), fQ(R(SI , q), θQ) ⟩, (1)
where SI ∈ I and SQ ∈ Q are some finite sets of support items and queries and fI , fQ are neural
architectures with the universal approximation property (e.g., MLPs).

3



Under review as a conference paper at ICLR 2024

Figure 1: Relevance-based framework visualization: support queries are red, support items are yel-
low, and the remaining cells of the relevance matrix can be approximated by the dot product of
transformed relevance vectors. The test queries are colored blue, their relevance scores for the sup-
port items are needed to approximate the remaining values.

The statement of the theorem is visualized in Figure 1. This theorem shows that the true relevance
function can be approximated with arbitrary precision by some functions of the relevance vectors.
To illustrate the importance of this observation, recall that usually the relevance function R(·, ·) is a
complex cross-encoder model. Moreover, such a model can use pairwise features that are available
only for query-item pairs. In contrast, dual encoders are known to often be less powerful and they
do not have access to pairwise features. However, Theorem 1 shows that if we replace the original
features with the relevance-based vectors, a dual-encoder model can well approximate the cross-
encoder function.

The corollary below shows that the retrieval of the most R-relevant items with tolerance to ε-sized
relevance loss can be reduced to the standard nearest neighbor search on a sphere.

Corollary 1. For each ε > 0, there is a multiplier a ∈ R such that aR̃ is an ε-approximation of R
and R̃ uses embeddings scaled to the unit sphere.

We refer to Appendix A.2 for the proof.

3.2 SELECTING SUPPORT ITEMS

Let us revise the statement of Theorem 1. The theorem states that there exist such sets SQ, SI that
the relevance function R could be effectively approximated by separated embedders FI , FQ. In the
related works (Morozov & Babenko, 2019; Yadav et al., 2022), this selection is random, implicitly
assuming that the elements are in some sense equivalent. However, for example, when building
a recommendation service, the popularity of different objects has a strongly skewed distribution,
which is why more information is known about a small set of highly popular items than about a
large set of unpopular ones. Thus, it is natural to assume that the choice of support items may have a
significant effect on performance. We investigate this direction and compare the following options:

• Random: Support items are chosen uniformly at random (Morozov & Babenko, 2019;
Yadav et al., 2022). For better reproducibility, we also present the results of using the first
|SI | elements as support elements, assuming that the order of queries is pseudorandom in
nature.

• Popular: As mentioned above, a recommendation service usually has a small set of very
popular elements that many users interact with. As a result, a lot of information can be
collected from these interactions thus making the popular elements more informative. Since
it is not always possible to get popularity explicitly, we consider the following surrogate:
choose the objects with the highest average relevance for the training set.

• Clusters centers: When it comes to the allocation of a representative subset of vectors, it is
reasonable to consider the allocation of clusters. We consider various clustering algorithms
and select the cluster centers as support elements. The number of clusters is set to the
number of required support elements.
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• Most diverse: This strategy is a greedy algorithm optimizing the minimum distance be-
tween the support elements. We first choose the element furthest from the center (by Eu-
clidean distance) and then, at each step, an element is selected whose minimum distance to
the current support elements is maximal.

• l2-greedy: A natural step further when selecting the key elements is to optimize them so
that we better approximate the relevance matrix R(i, q). In this strategy, we greedily select
items so that the MSE error of the CUR-approximation (Mahoney & Drineas, 2009) is
minimized for the train queries. We refer to Appedinx B for the details.

3.3 RELEVANCE-BASED EMBEDDINGS IN PRACTICE

In this section, we discuss several aspects related to applying relevance-based embeddings in prac-
tical applications.

First, we note that relevance-based embeddings can naturally handle scenarios where the set of items
changes frequently. The embeddings fI(R(i, SQ), θI) can be easily calculated for the new items
without the need of re-training the embedding model fI (similarly to feature-based dual encoders).

However, in many practical tasks of information retrieval, the set of initial objects I is finite: e.g.,
the set of movies currently available in a recommender service. In this case, the transformation
fI(R(i, SQ), θI) can be replaced with trainable embeddings θI(i) ∈ Rd. In contrast to items, the
query set Q cannot be assumed to be finite: e.g., queries can be represented by texts of unlimited
length or be characterized by real-valued features.

Note that in practice, the mapping fQ (or fI ) could be extended by enriching it with the features
of the original query (or item), which can further improve the approximation of the ground truth
relevance. In other words, although the theorem states that the relevance of supporting elements is
sufficient, in practice we can add more information, for example, in order to reduce the size of the
support items set SI while maintaining quality.

Since the heavy ranker R is assumed to be the most expensive part in terms of computational com-
plexity, during the calculation of R̃, we are mainly limited by the sizes of the support sets SQ and
SI . In contrast, calculating fQ, fI , or the dot product between them is assumed to be significantly
cheaper. Thus, fQ and fI may embed the relevance vectors in a higher-dimensional space, which
may help to eliminate the disadvantages of the dot product, in comparison with other (Shevkunov &
Prokhorenkova, 2021) ways of measuring the distances or similarities between objects in spaces.

Scalability Let us discuss the scalability of the proposed approach. The first step of our proce-
dure is selecting support items. We note that this should be done once at the preprocessing stage
and time restrictions are usually not strict. However, let us note that l2-greedy requires computing
the relevance scores for some train queries and all items. If this is infeasible, one can use down-
sampling to reduce the number of candidates for support items. Our preliminary experiments show
that even significant downsampling gives reasonable performance of the obtained support items.
If downsampling is not applicable, the proposed clustering-based approaches can be easily scaled
by using external information instead of relevance vectors: in most services, items are annotated
with categories that can be used as clusters or are described by feature vectors that can be used for
clusterization.

Given the relevance vectors, the training does not significantly differ from any dual-encoder-like
models that are commonly used in production recommendation services. The only major difference
is that relevances to fixed support items should be provided.

At the inference, we need to compute the query representation, which requires d relevance compu-
tations. Then, the inference is similar to dual encoders: the item representations are pre-calculated
and placed in the Approximate Nearest Neighbours index like HNSW, which accepts the embedding
of the query as input. These d additional computations are taken into account in our experiments:
we show that the proposed approach is still more efficient than standard dual encoders.
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Table 1: Dataset sizes
Yugioh P.Wrest. StarTrek Dr.Who Military RecSys RecSysLT

items 10031 10133 34430 40281 104520 16514 16514
queries (used) 3374 1392 4227 4000 2400 6958 6958

4 EXPERIMENTS

In this section, we evaluate the performance of the proposed relevance-based embeddings and com-
pare our approach with existing methods.1

4.1 EXPERIMENTAL SETUP

In our experiments, we use two groups of data: ZESHEL zero-shot entity linking datasets and
production data from a recommendation service.2 In both datasets, there is a heavy ranker that
provides relevance, which we consider close to the ground truth, according to which a complete
table (R : |I| × |Q| → R) of relevance scores is built. In both cases, the task is to find the most
relevant items for some query. The quality is evaluated as

HitRate(P, T ) :=
1

|Qtest|
∑

qi∈Qtest

|BestP (R̂, qi) ∩BestT (R, qi)|
|BestT (R, qi)|

,

HitRate(K) := HitRate(K,K),

where BestK(R, q) ⊂ I is defined as the set of K items i1, . . . , iK with the highest relevances
R(i1, q), . . . , R(iK , q) to a given query q ∈ Q; Qtest is a set of test queries that do not participate
in the training: SQ ⊂ Qtrain, Qtrain

⊔
Qtest = Q. For all our experiments, |Qtest| ≈ 0.3|Q|,

|SI | = 100.

4.1.1 ZESHEL DATASET

The Zero-Shot Entity Linking (ZESHEL) dataset was constructed by Logeswaran et al. (2019) from
Wikia. The task of zero-shot entity linking is to link mentions of objects in the text to an object
from the list of entities with related descriptions. The dataset consists of 16 different domains. Each
domain contains disjoint sets of entities, and during testing, mentions should be associated with
invisible entities solely based on entity descriptions. We run experiments on five domains from
ZESHEL selected by Yadav et al. (2022). As a heavy ranker R, we use the cross-encoder trained
by Yadav et al. (2022) and publicly available. Table 1 shows the dataset statics for the domains used
in this paper.

4.1.2 RECSYS DATA

To evaluate the generalization of the proposed approach to other tasks and domains, we collected a
dataset from a production service providing recommendations of items to users. As a heavy ground-
truth ranker R, we use the CatBoost gradient boosting model (Prokhorenkova et al., 2018) trained on
a wide range of features, including categories and other static attributes of items, social information
(age, language, etc.) of users, simple item statistics, user statistics, real-time statistics on user and
element interaction, factors derived from the matrix factorizations and multiple two-tower neural
networks, receiving the factors listed above as their factors.

Two versions of the dataset are presented. In the first one, CatBoost was trained to predict the time
that a user is going to spend on a given item immediately after the click (in one session). In the
second version, CatBoost was trained on the pairwise PairLogit target to predict the item with the

1The code and experimental data will be made publicly available after the blind review due to anonymity
considerations.

2Not specified to preserve anonymity.
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longest time spent for some long time after the click (including new sessions). The first version is
denoted in the tables as RecSysLT and the second as RecSys.

This dataset allows us to evaluate the generalizability of our approach across different domains
and different types of heavy rankers since gradient boosting models differ significantly from neural
approaches.

4.1.3 BASELINE

As our main baseline, we consider the AnnCUR recommendation algorithm (Yadav et al., 2022): in
this approach, the approximated relevances for a query q can be re-written in our notation as:

R̃(I, q) := ⟨R(I,Qtrain)× pinv(R(SI , Qtrain)), R(SI , q) ⟩,

where pinv(X) is the pseudo-inverse matrix of X , Qtrain is a subset of the query set Q. Note that
this formula fits our framework (1) with

SQ := Qtrain, θI := pinv(R(SI , Qtrain)),

fI(R(i, SQ), θI) := R(i, SQ)× θI , fQ(R(SI , q), θQ) := R(SI , q).

Thus, the predicted relevances obtained by the AnnCUR algorithm are a special case of relevance-
based embeddings with relatively simple transformation functions based on matrix factorization.

What is important for further discussion, a broad comparison of this method with different basic
approaches, including various dual encoders, is carried out by Yadav et al. (2022). In most of
our experiments, we rely on these results, comparing only with AnnCUR. However, we explicitly
provide the comparison with our best dual encoder for the new data in Section 4.4.

Note that our results generally reproduce the pipeline of the experiments in Yadav et al. (2022),
in particular, the recalculated (using our preprocessing code) AnnCUR metrics are comparable with
the metrics from the original paper.3 This allows us to assert that the approaches are compared under
the closest possible conditions.

4.1.4 RELEVANCE-BASED EMBEDDINGS SETUP

In this section, we discuss our implementation of the relevance-based embeddings.

As a trainable mapping fQ(R(SI , q), θQ), we use the following variant:

fQ(R(SI , q), θQ) := R(SI , q) ||Fmlp
Q (R(SI , q), θQ) || (1),

where Fmlp
Q is a 2-layer perceptron with the ELU activations, || is the vector concatenation, and the

last term is needed to represent the items offsets as a scalar product. The intuition here is that we
split the representation into the prediction of AnnCUR and the trainable prediction of its error. In
the experiments, such decomposition improves the convergence and training stability.

For the item mapping fI(R(i, SQ), θI), we use the following function:

fI(R(i, SQ), θI) := tI(R(i, SQ), θI) ||Fmlp
I (tI(R(i, SQ), θ̃I)) || (ci),

tI(R(i, SQ), θI) := R(i, SQ)× P, P = pinv(R(SI , Qtrain)), θI := (P, c, θ̃I),

where c is a trainable bias vector, θ̃I — perceptron trainble parameters. Although, as noted in
Section 3.3, the transformation fI acts in practice on a finite set I of elements and can be learned
as an embedding matrix, the approach described above greatly accelerates the speed and stability of
learning.

The mappings are trained using the Adam algorithm to optimize the following loss function inside
the batches:

L :=
1

|Qtrain|
∑

q∈Qtrain

softmax(R̃(q, I))(̇2 · 1binRelevance(q) − 1),

3Our HitRate(k, kr) is equivalent to Top-k-Recall@kr from Yadav et al. (2022).
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Table 2: Support item selection applied to AnnCUR, HitRate(100) (greater is better) is reported

Selection strategy Yugioh P.Wrest. StarTrek Dr.Who Military RecSys RecSysLT
random (AnnCUR) 0.4724 0.4280 0.2287 0.1919 0.2455 0.6697 0.5842
first 100 0.4845 0.4182 0.2489 0.1975 0.2599 0.6490 0.5609
popular 0.2429 0.3001 0.1154 0.1197 0.1907 0.7623 0.6695
KMeans 0.5083 0.4850 0.3226 0.2517 0.3042 0.7070 0.6184
BisectingKMeans 0.4825 0.4592 0.2839 0.2159 0.2752 0.7035 0.6213
MiniBatchKMeans 0.5077 0.4737 0.2912 0.2365 0.2826 0.7033 0.5981
AgglomerativeClustering 0.5105 0.4911 0.3264 0.2531 0.2448 0.7050 0.6265
SpectralCoclustering 0.4618 0.4443 0.2540 0.2076 0.2551 0.6998 0.6094
SpectralBiclustering 0.4654 0.4708 0.2628 0.1845 0.2533 0.7409 0.5972
SpectralClusteringNN 0.5087 0.4690 0.2742 0.2048 0.2507 0.6936 0.5740
ByMin 0.5333 0.4290 0.3325 0.2278 0.2483 0.6504 0.6182
Greedy 0.5618 0.5119 0.3677 0.2960 0.3357 0.7197 0.6565

Table 3: Evaluating neural relevance-based embeddings, HitRate(100) (greater is better) is reported
Model Yugioh P.Wrest. StarTrek Dr.Who Military RecSys RecSysLT

Popular 0.0917 0.2410 0.0884 0.0821 0.1127 0.5077 0.2886
AnnCUR 0.4724 0.4280 0.2287 0.1919 0.2455 0.6697 0.5842

AnnCUR+KMeans 0.5083 0.4850 0.3226 0.2517 0.3042 0.7070 0.6184
RBE+KMeans 0.5431 0.4979 0.3399 0.2539 0.3019 0.7137 0.6300

AnnCUR+Greedy 0.5618 0.5119 0.3677 0.2960 0.3357 0.7197 0.6565
RBE+Greedy 0.5849 0.5249 0.3867 0.2992 0.3349 0.7234 0.6682

binRelevance(q) := R̃(q, I) ≥ q1− K
|I|
(R(q, I)),

where K is the desired top size and qx(v) calculates the x-th quantile of the vector v. We have
experimented with various loss functions, but the one described above leads to consistently good
results. Further in the experimental section, we will show that this relatively simple approach already
gives a visible increase in quality in practice.

4.2 SUPPORT ITEMS SELECTION

Following the arguments of Section 3.2, we check various ways of choosing support elements as
opposed to the existing approaches that use random selection. All clustering algorithms are taken
from the scikit-learn (Pedregosa et al., 2011) library, SpectralClusteringNN is a SpectralClustering
with “nearest neighbors” affinity. The algorithms are used with their default parameters because even
this simple setting already allows us to significantly improve over the basic solution with random
support item selection.

The results of the comparison are presented in Table 2, where the best 3 results for each dataset
are highlighted in bold. Clearly, there is a significant superiority of almost any approach based
on clustering or diversity over the random selection. The greedy algorithm is the clear winner,
second and third places are taken by KMeans and AgglomerativeClustering. However, due to the
significantly worse quality of AgglomerativeClustering on the Military dataset, KMeans will be used
in further experiments. Another observation is that on the RecSys data, there is a clear superiority of
the choice of popular items as the support ones. It is worth mentioning that for RecSys, the elements
extracted by popularity are also quite stratified by their categories and an explicit restriction on the
number of elements from one category changes the top slightly. However, this may not be true for
other data.

4.3 NEURAL RELEVANCE-BASED EMBEDDINGS

Following the description in Section 4.1.4, we also apply non-trivial trainable relevance mappings
fI(R(I, SQ), θI), fQ(R(SI , q), θQ) to check whether this modification improves prediction quality
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Table 4: Dual encoder embeddings vs support relevances, HitRate, RecSysLT

Base emb. Top 100 Top 200 Top 300 Top 400 Top 500 Top 600 Top 700

Dual Encoder Emb. 0.7048 0.6803 0.6739 0.6739 0.6760 0.6792 0.6827
R(SI , q), R(i, SQ) 0.6300 0.6611 0.6912 0.7109 0.7253 0.7357 0.7448

Table 5: Dual encoder embeddings vs support relevances, HitRate(K, 100), RecSysLT

Base emb. K = 100 K = 200 K = 300 K = 400 K = 500 K = 600 K = 700

Dual Encoder Emb. 0.7048 0.7977 0.8518 0.8855 0.9086 0.9258 0.9385
R(SI , q), R(i, SQ) 0.6300 0.8090 0.8823 0.9190 0.9402 0.9536 0.9629

in practice. The results are shown in Table 3. To better interpret the values, the quality of the constant
output consisting of popular (in the same sense as in the previous section) elements is also given.
It can be seen that in most cases, except for one dataset (Military), trainable relevance mappings
improve the final quality of the search for relevant elements and the improvements are obtained for
both KMeans and Greedy support elements selection. Note that the transformation that we use is not
claimed to be optimal and is given rather to demonstrate that with the help of an easy transformation,
one can get an increased quality on various datasets.

4.4 DUAL ENCODER EMBEDDINGS VS SUPPORT RELEVANCES

To check whether the embeddings obtained from the relevance vectors are really more useful than
other embeddings trained on the service data, we replaced the relevance vectors in the experiments
above with embeddings obtained by a dual encoder (the one that is proved to be the best in this task),
and trained our algorithm (with KMeans selection of support elements) in the same way, keeping the
transformation of the relevance vectors and the training parameters unchanged. The only difference
is that, since we used |SI | = 100 requests to a heavy ranker to form an RBE, we must take them
into account when calculating the top. Thus, when constructing the top-X output, for dual encoder
we use the metric HitRate(X + |SI |, X), and for RBE — HitRate(X,X), which gives the former
an advantage with small top sizes.4 However, starting from X = 300, our algorithm is superior
to the dual encoder variant, as can be seen from Table 4. A second comparison, where the size of
the desired top is fixed, while the number of extracted elements changes, is presented in Table 5.
Similarly to the previous comparison, calls to the heavy ranker are taken into account: for the dual
encoder, HitRate(K+|SI |, 100) is calculated, and for RBE — HitRate(K, 100). In this comparison,
RBE outperforms the dual encoder starting at K = 200. Let us note that the actual size of the top
used to select candidates before ranking in the production service exceeds the values indicated in the
table. A similar comparison with the dual encoder on the data from ZESHEL can be found in Yadav
et al. (2022): it is shown that AnnCUR outperforms the dual encoder.

5 CONCLUSION

In this paper, we present the concept of Relevance-Based Embeddings. We justify our approach
theoretically and show its practical effectiveness on textual (ZESHEL) and recommendation system
data. We demonstrate that RBE allows one to obtain better quality in comparison with existing
approaches. An important contribution of our work is the study of different strategies for choosing
the support elements for RBE. We show that a proper choice of the support elements allows one to
significantly boost performance.

Promising directions for future research include a deeper investigation of support element selection
strategies as well as applying the proposed RBE to other algorithms, e.g., based on using a heavy
ranker during the nearest neighbor search (Morozov & Babenko, 2019).

4For all sizes of the top, both algorithms were trained once. By training algorithms with different loss func-
tions for each top, taking into account different sizes of tops, the quality of both algorithms can be improved,
which, however, is not essential for the current comparison, since the changes will affect both algorithms
equally.
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A PROOFS

A.1 PROOF OF THEOREM 1

Queries as functions on items and vice versa. Each query q defines a function rq on items:
rq(i) = R(i, q). Let us call two queries q and q′ R-equivalent if rq = rq′ and write q ∼R q′ to
denote this relation. R-equivalent queries are interchangeable when it comes to measuring their
relevance to any item. Let QR be the set of R-equivalence classes. QR may be considered as an
image of Q in C(I) under the mapping RQ which maps query q to rq . This point of view suggests
a natural metric dQR

on QR induced by the uniform norm on C(I): dQR
(q, q′) = ∥rq − rq′∥ =

supi∈I |R(i, q)−R(i, q′)|.
Now let us note that the map RQ : Q→ C(I) is continuous since R is continuous and I is compact.
Therefore, QR is compact as an image of a compact space Q under a continuous mapping. And
there is an (injective) embedding of C(QR) to C(Q) under which the function f ∈ C(QR) goes to
f ◦ RQ ∈ C(Q). Simply speaking, a continuous function on the equivalence classes of queries is
also a continuous function on the queries themselves.

Analogously, we define:

RI : I → C(Q), RI(i) = ri, ri(q) = R(i, q), RI(I) = IR,

dIR(i, i
′) = ∥ri − ri′∥ = sup

q∈Q
|R(i, q)−R(i′, q)|.

For convenience, we will identify functions in C(IR) and C(QR) with functions in C(IR × QR)
which are independent of one of their arguments. The relationships mentioned above and similar
ones are shown in the diagram below (hooked arrows represent injective mappings, arrows with two
heads stand for surjective ones):

C(I ×Q)

C(I) C(IR ×QR) C(Q)

C(IR) C(QR)

Q QR IR I

Now, let us make several observations.

Claim 1. ri ∈ C(QR) and, similarly, rq ∈ C(IR).

Proof. We note that ∥ri(q) − ri(q
′)∥ = ∥rq(i) − rq′(i)∥ ≤ ∥rq − rq′∥ = dQR

(q, q′). So, ri(q) −
ri(q

′) = 0 if rq = rq′ and the value ri(q) does not change if a query is replaced with an equivalent
one. It means that ri is a correctly defined function on the classes of equivalent queries, i.e., on
QR. And finally the same inequality ∥ri(q) − ri(q

′)∥ ≤ dQR
(q, q′) implies that the function ri is

1-Lipschitz with respect to the metric dQR
.

Claim 2. R ∈ C(IR, QR).

Proof. We have |R(i, q) − R(i, q′)| = |rq(i) − rq′(i)| ≤ ∥rq − rq′∥ = dQR
(q, q′) and |R(i, q) −

R(i′, q)| ≤ dIR(i, i
′). It follows that the value R(i, q) does not change after replacement of a

query-item pair (i, q) with some equivalent pair (i′, q′). So, R can be considered as a function on
IR×QR. And by the same inequality R is 1-Lipschitz with respect to the metric dR((i, q), (i′, q′)) =
dIR(i, i

′) + dQR
(q, q′) and hence is continuous.

12
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Stone-Weierstrass theorem. Let us call all functions rq and ri elementary. Consider the family
of all elementary functions F = {rq|q ∈ Q} ∪ {ri|i ∈ I} ⊂ C(IR ×QR).

Claim 3. The family F separates points in IR × QR, i.e., for each two different points x, y ∈
IR ×QR, there is a function f ∈ F such that f(x) ̸= f(y).

Proof. Indeed, let (i1, q1) and (i2, q2) be any two different points in IR × QR. Then i1 ̸= i2 or
q1 ̸= q2. Without loss of generality, we can assume that i1 ̸= i2 (they are unequal as points in IR).
So, ri1 and ri2 are different functions on QR and there exists q ∈ QR such that ri1(q) ̸= ri2(q) ⇔
R(i1, q) ̸= R(i2, q) ⇔ rq(i1) ̸= rq(i2) ⇔ rq((i1, q1)) ̸= rq((i2, q2)). Thus, we found a function
(rq) from our family that separates the two points.

Next, consider the algebra of functions R[F ] generated by the family F . This algebra consists
of all polynomial combinations of functions in F . More formally, each element of R[F ] has a
representation of the form:

R[F ] ∋ f =

d∑
k=1

ck · rik,1
· . . . · rik,ak

· rqk,1
· . . . · rqk,bk

.

In other words, there are d sets S1, . . . , Sd of queries and items such that:

Sk = Sk
I ∪ Sk

Q, Sk
I = {ik,1, . . . , ik,ak

} ⊂ I, Sk
Q = {qk,1, . . . , qk,bk} ⊂ Q.

f =

d∑
k=1

ck ·

∏
i∈Sk

I

ri

 ·
 ∏

q∈Sk
Q

rq

 . (2)

Products of the form
∏

i∈Sk
I
ri may be empty and in this case the product equals 1. So, R[F ]

contains constant functions and separates points of IR × QR (because it contains F). Hence, by
Stone-Weierstrass theorem, the algebra R[F ] is dense in C(IR ×QR). In particular, the function R
can be approximated by element of R[F ] up to an arbitrarily small absolute error.

Represent polynomials in R[F ] as products of query and item embeddings. Consider an arbi-
trary function f ∈ R[F ] and its representation of the form (2). Denote the products

∏
i∈Sk

I
ri(q)

and
∏

q∈Sk
Q
rq(i) by πSk

I
(q) and πSk

Q
(i) respectively. Consider two d-dimensional vectors:

e(q) =
(
c1 · πS1

I
(q), . . . , cd · πSd

I
(q)
)
,

e(i) =
(
πS1

Q
(i), . . . , πSd

Q
(i)
)
.

Then, f(i, q) = ⟨e(i), e(q)⟩. Let SI = ∪dk=1S
k
I and SQ = ∪dk=1S

k
Q. Then e(q) is a continu-

ous (more specifically, polynomial) function of the vector R(SI , q) and e(i) is a continuous func-
tion of the vector R(i, SQ). So, by the universality theorem for MLPs (Cybenko, 1989; Leshno
et al., 1993), the vector e(i) can be approximated up to arbitrarily small absolute error in the
form fI(R(i, SQ), θI) where fI(·, θI) — a reach enough MLP architecture. Similarly, e(q) can
be approximated by fQ(R(SI , q), θQ). Hence, ⟨fI(R(i, SQ), θI), fQ(R(SI , q), θQ)⟩ approximates
f(i, q). Finally, we can consider f ∈ R[F ] such that ∥f − R∥ < ε

2 and then find such θI and
θQ that ∥f − ⟨fI(R(i, SQ), θI), fQ(R(SI , q), θQ)⟩∥ < ε

2 . These parameters will give us a desired
ε-approximation of R in a form of product of relevance-based embeddings.

A.2 PROOF OF COROLLARY 1

Let us take some ε
2 -approximation of R of the form

R(i, q) ≈ ⟨eI(q), eQ(i)⟩ = ⟨fQ(R(SI , q), θQ), fI(R(i, SQ), θI)⟩
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via the relevance-based embeddings eI(q) and eQ(i) of dimension d. Take a constant C such that
∥eI(i)∥ < C and ∥eQ(Q)∥ < C for all q ∈ Q and i ∈ I and consider the following vector
embeddings of dimension d+ 2:

ẽI(i) =

(
1

C
eI(i),

√
1− ∥ 1

C
eI(i)∥2, 0

)
,

ẽQ(q) =

(
1

C
eq(q), 0,

√
1− ∥ 1

C
eq(q)∥2

)
.

Note that ⟨eI(i), eQ(q)⟩ = C2 ·⟨ẽI(i), ẽq(q)⟩ and ẽI(i) and ẽq(q) lie on the (d+1)-dimensional unit
sphere Sd+1 ⊂ Rd+2. We can take new powerful enough architectures f̃I and f̃Q with outputs nor-
malized to unit sphere in Rd+2 and fit for them parameters θ̃I and θ̃Q such that f̃I(R(i, SQ), θ̃I) ≈
ẽI(i) and f̃Q(R(SI , q), θ̃Q) ≈ ẽQ(q) and R̃(i, q) = ⟨f̃I(R(i, SQ), θ̃I), f̃Q(R(SI , q), θ̃Q)⟩ ≈
⟨ẽI(i), ẽQ(q)⟩. More specifically take θ̃I and θ̃Q such that:

|⟨ẽI(i), ẽQ(q)⟩ − R̃(i, q)| < ε

2C2
⇒

|⟨eI(i), eQ(q)⟩ − C2R̃(i, q)| < ε

2

Given that |R(i, q) − ⟨eI(i), eQ(q)⟩| < ε
2 it yields |R − aR̃| < ε. Which means that statement of

corollary is satisfied with a = C2.

B GREEDY SELECTION OF SUPPORT ITEMS

It can be shown that the CUR approximation replaces every item with a linear combination of support
items so that the MSE between the true relevances and their CUR approximations on the train set of
queries is minimized. Thus, our goal is to choose support items so that the MSE error after the CUR
decomposition is minimal. Formally we need to solve the following problem:

Optimal CUR-decomposition: Assume that we are given an n×m matrix X of real numbers and let
xi, i = 1, . . . , n, be the rows of X . Choose k rows in such a way that the sum of squared distances
from each row of the matrix to the space generated by the chosen rows would be minimal. In other
words find subset of indices S = {i1, . . . , ik} ⊂ {1, . . . , n} which minimizes following expression:

n∑
i=1

∥xi − π(xi, span(xi1 , . . . , xik))∥22 =

n∑
i=1

∥xi −XT
S pinv(XT

S )xi∥22,

where XS is an k ×m matrix consisting of rows with indices from S. This problem corresponds to
the CUR-decomposition of X with k rows and all m columns.

A straightforward way is to choose items greedily. Suppose we have already chosen items i1, . . . , it.
Then, we choose an item it+1 so that

n∑
i=1

∥xi − π(xi, span(xi1 , . . . , xit+1
))∥22

is minimal.

Let us discuss how to choose xit+1
. Let ∆t be the n × m matrix of our current approximation

errors: ∆t
i = xi − π(xi, span(xi1 , . . . , xit)) (∆0 = X). Note that span(xi1 , . . . , xit , xi) =

span(xi1 , . . . , xit ,∆
t
i/∥∆t

i∥2), so for the purpose of evaluation our objective we can replace xi

with oti = ∆t
i/∥∆t

i∥2. When we add xi to the support set, the squared error on xj reduces by
⟨xj , oi⟩2 and ∆j becomes ∆j − ⟨xj , oi⟩oi. It can be seen by considering the orthonormal basis of
Rm, the first t elements of which generate span(xi1 , . . . , xit) and (t+ 1)-th is oti. Adding oti to the
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support set will set to zero the (t+ 1)-th coordinate of the vector xt
j (and ∆t

j). And in the standard
basis this coordinate may be calculated as ⟨xj , oi⟩. So we want to maximize over i:

n∑
j=1

⟨xjo
t
i⟩2 =

n∑
j=1

otTi xjx
T
j o

t
i = otTi

 n∑
j=1

xjx
T
j

 oti = otTi XTXoti.

Thus, the algorithm is as follows:

Algorithm 1 l2-greedy support items selection
compute XTX
compute normalized vectors o0i = xi/∥xi∥2
N ← n
for t in [1, . . . , k] do

choose it+1 which maximize otTi XTXoti
update all oj
for j in [1, . . . n] do

ot+1
j ← otj − otit+1

⟨otit+1
, otj⟩

ot+1
j ← ot+1

j /∥ot+1
j ∥2

end for
end for

The choice of the next support item may be trivially implemented with O(m2n) complexity. But
it can be optimized: together with otj we can keep the vectors ctj = XTXotj that can be computed
once initially in O(m2n) and can be updated at each iteration synchronously with otj . Updates of
otj at each iteration have the form ot+1

j = αotj + βotit+1
, so cj transforms analogously with the

same coefficients: ct+1
j = αctj + βctit+1

. So we can score all the items in O(mn), calculating all
the dot products ⟨otj , ctj⟩ and update vectors oj and cj . The total complexity of the algorithm is
O(mn(m+ k)).
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