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ABSTRACT

Automated Machine Learning (AutoML) aims to automatically select and config-
ure machine learning algorithms for optimal performance on given datasets. In
real-world applications, training data oftentimes contain a large amount of unla-
beled examples, whereas the amount of labeled examples is limited. However, Au-
toML tools have so far only focused on supervised learning, i.e., utilizing labeled
data for training, leaving the valuable information provided by unlabeled data
untapped. To address this limitation, we introduce our augmented AutoML sys-
tem AutoActiveSelf-Labeling (AutoASL), which combines principles from self-
training and active learning to effectively leverage unlabeled data during the train-
ing process. AutoASL iteratively self-labels previously unlabeled data instances,
which is achieved through a powerful ensemble of AutoML and traditional ML
algorithms, resulting in a substantial expansion of the labeled training data. We
observe synergetic effects between the incorporated self-training and active learn-
ing components, leading to an improvement of the overall accuracy compared to
state-of-the-art tools.

1 INTRODUCTION

In the rapidly evolving landscape of machine learning, AutoML has emerged with the promise to
democratize the application of machine learning by automating the complex process of selecting
proper learning algorithms and optimizing their hyperparameters. State-of-the-art tools have shown
impressive results on a variety of tasks, especially for tabular data (Thornton et al., 2013; Feurer
et al., 2015; Mohr et al., 2018; Olson & Moore, 2019; Hollmann et al., 2023). However, these
tools are all operating within the confines of supervised learning, relying heavily on the quality and
amount of labeled data for model training and evaluation.

In practice, datasets do not always conform to the supervised setting. Labeled data is oftentimes
limited, while a vast amount of unlabeled data remains untapped. Acquiring labeled data can be
time-consuming and expensive, e.g., medical data such as electronic health records (EHRs), where
experts are required to provide annotations (Mugisha & Paik, 2023). However, AutoML has largely
ignored this crucial aspect so far.

In this context, semi-supervised learning (SSL) becomes relevant. Aiming to leverage both labeled
and unlabeled data to enhance model performance (Chapelle et al., 2006), SSL encompasses various
techniques such as consistency regularization, entropy minimization, and pseudo-labeling, which
are widely employed to harness the latent information within unlabeled data (Wallin et al., 2022;
Zhao et al., 2022). These methods make use of one or more underlying assumptions of the data
distribution, including smoothness, cluster structure, or manifold properties, to guide the learning
process (Ouali et al., 2020). For instance, Darabi et al. (2021) and Yoon et al. (2020) propose
different data augmentation strategies for tabular data and employ consistency regularization. The
idea is to encourage the model to produce consistent predictions across these different, augmented
views of the same data instance, which substantially improves the robustness of the learner. In
contrast, Varma & Ré (2018) adopt a pseudo-labeling approach. They propose the tool Snuba, which
automates the process of labeling unlabeled data. Snuba selects base learners such as decision trees
or logistic regressors, based on their diversity and accuracy on the labeled training dataset. These
base learners then predict pseudo-labels for the unlabeled instances, which are combined.
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Figure 1: Our proposed approach AutoActiveSelf-Labeling (AutoASL). We build ensembles of
AutoML and traditional ML algorithms and incorporate a self-labeling and an active learning com-
ponent to update the labeled dataset DL and the unlabeled dataset DU .

Closely related to SSL is the idea to further optimize the utilization of labeled data through active
learning (AL). In AL (Dasgupta et al., 2008; Beygelzimer et al., 2010), the goal is to strategically
select the most informative instances from an unlabeled pool for manual annotation (Nguyen et al.,
2019; Gao et al., 2020). This process can be carried out in a variety of ways, including batch
selection and interactive modes, where an oracle (typically a human expert) is requested to provide
labels for specific instances.

While SSL and AL are closely related, they have mostly been studied in isolation. However, Zhu
et al. (2003) combine them under a Gaussian random field and minimize its energy function, whereas
Gao et al. (2020) employ consistency regularization. Both approaches additionally integrate AL by
providing pseudo-supervision from an oracle for specific, unlabeled instances.

However, the potential synergy between AutoML, SSL, and AL has not been explored so far. In
this paper, our primary goal is to harness the principles and methodologies of SSL and AL jointly to
integrate them within the context of AutoML (see Figure 1). Thereby, we enable AutoML systems to
be applied to semi-supervised data. More concretely, our main contributions include the following:

1. AutoActiveSelf-Labeling (AutoASL). We introduce a novel and efficient algorithm, designed
specifically for semi-supervised tabular data tasks. AutoASL combines traditional ML and
AutoML algorithms and incorporates strategies from SSL and AL to leverage information
from unlabeled data.

2. AutoML for SSL (Section 3). We explore the synergies between AutoML, SSL and AL and
demonstrate how methods from AutoML can effectively address SSL tasks.

3. Application. We efficiently implement AutoASL, evaluate it on a rich set of diverse datasets
and compare it to existing methods. The implementation can be found in the supplementary
material 1 and will be made open source upon acceptance.

2 PROBLEM DEFINITION AND NOTATION

For the sake of simplicity, we begin with the binary classification scenario, where we are given a d-
dimensional feature space X ∈ Rd. Each instance xi = (x1

i , ..., x
d
i ) ∈ X is (non-deterministically)

associated with a label yi ∈ Y = {0, 1} via a joint probability distribution P. A dataset is then given
as a sample D = {(xi, yi)}ni=1 from this joint probability distribution. In this setting, the goal is
to find a hypothesis h : X → Y from a hypothesis space H that minimizes the generalization error
(risk) with respect to a given loss function ℓ : Y × Y → R+:

h∗ ∈ argmin
h∈H

∫
(xi,yi)∼P

ℓ(h(xi), yi) dP

The latter is approximated by the empirical risk minimizer, e.g., by dividing D into a training set
Dtrain and test set Dtest, and finding

ĥ = argmin
h∈H

1

|Dtest|
∑

(xi,yi)∈Dtest

ℓ(h(xi), yi) ,

where Dtrain is used to induce the hypothesis h.
1https://anonymous.4open.science/r/AutoASL-3E44/
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One way of finding this optimal classifier is to apply AutoML. Given a set of learning algorithms
A = {A(1), . . . A(k)}with corresponding hyperparameter spaces Λ(1), ...,Λ(k), a learning algorithm
induces a hypothesis given a dataset from a dataset space D and a hyperparameter setting A(j) :
D×Λ(j) → H. AutoML seeks to find the most suitable algorithm and hyperparameter setting A∗

λ∗ :

A∗
λ∗ ∈ argmin

A(j)∈A,λ∈Λ(j)

1

|Dtest|
∑

(xi,yi)∈Dtest

ℓ(h(xi), yi), where h := A(j)(Dtrain, λ).

AutoML has proven to deliver fast and accurate solutions for the supervised setting (Erickson et al.,
2020; Mohr & Wever, 2021; Hollmann et al., 2023). However, current AutoML tools assume full
supervision, whereas in the setting of SSL, not every instance xi ∈ Dtrain is associated with a label
yi ∈ Y . Instead, we are given a small labeled dataset DL = {(xi, yi)}li=1 and a large unlabeled
dataset DU = {(xi)}ni=l+1 (i.e., |DL| ≪ |DU |). In this setting, several options are conceivable for
an AutoML tool:

• Reduction to supervised learning (SL): One straightforward approach is to simply ignore
the unlabeled data DU and solely use DL for model induction. This has the advantage that
standard supervised learning techniques suffice, but the obvious disadvantage of wasting
an opportunity to improve performance through additional training information.

• Semi-supervised learning (SSL): An arguably better approach that avoids this disadvantage
is to apply SSL methods to the entire data DL ∪DU . This, of course, requires an extension
of standard AutoML tools, so as to enable them to handle unlabeled data. In our approach,
to be detailed in the next section, this will be accomplished by means of self-training, where
the learner is first trained on DL and then assigns pseudo-labels to selected instances from
DU , thereby increasing its (labeled) training data.

• Active learning (AL): Instead of self-labeling additional training examples, labels could
also be queried from an oracle, for example, a human expert. Compared to self-labeling,
feedback by the oracle will presumably be more reliable. On the other side, human experts
are slow, costly, and do not scale to large amounts of (unlabeled) data.

In addition to opting for any of these “pure” strategies, the AutoML tool may of course also apply
them in a combined way, i.e., querying the oracle for a certain part of DU , self-labeling another
part, and perhaps ignoring the rest. Thereby, an optimal compromise between benefit and cost
could be achieved. Indeed, while SL is less costly than SSL, which in turn is less costly than AL,
the order is exactly reversed in terms of (expected) benefit: The presumably most useful (reliable)
information is provided by AL, followed by SSL, and finally SL. The design of an optimal “mixed”
strategy, tailored to the context and concrete problem at hand, can be seen as an interesting learning
or reasoning task on a meta-level (Hüllermeier et al., 2021).

3 AUTOMATED ACTIVE SELF-LABELING

We propose the approach AutoASL, which combines supervised learning, SSL, and AL. Throughout
this paper we utilize the same taxonomy as introduced by Triguero et al. (2015). We first outline
the core functionality of AutoASL. Following an iterative procedure, we initially train an ensemble
of learners on the labeled dataset DL. Subsequently, the learners generate pseudo-labels for the
instances within the unlabeled dataset DU . Based on the consensus or disagreement among the
learners for each instance, we either (a) self-label the instance, (b) forward it to an oracle for labeling,
(c) identify the instance as challenging to label or (d) leave it inside DU .

We then update the datasets DL and DU as follows. Instances that have been either self-labeled
or labeled by the oracle are incorporated into the training dataset DL, while instances identified as
difficult to label are excluded from DU . This marks the initiation of the next iteration, where the
ensemble is retrained on the newly adjusted DL, and the process continues iteratively.

3.1 SELF-TRAINING

As already said, self-training (Triguero et al., 2015) is a strategy in which the learner, previously
trained on DL, pseudo-labels instances contained in DU . Thus, an expanded training dataset DLself
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Algorithm 1 AutoActiveSelf-Labeling (the detailed pseudocode is given in Appendix 2)
Require: Labeled dataset DL, Unlabeled dataset DU , Maximum iterations n, Set of learning algo-

rithms A, MetaEnsemble E := [TabPFN], Oracle O, Thresholds τ, σ, ρ, Number of self-labeled
instances s, Number of oracle-labeled instances o, Initial iteration iter = 0

1: Ã ← SELECT(D,A, τ ) ▷ Select classifiers with 5-fold CV-score > τ on DL.
2: c← |Ã|
3: E ← E ∪ Ã ▷ Construct MetaEnsemble.
4: r ← COMPUTECLASSPROPORTION(DL) ▷ Computes class proportion of positive class.
5: if Ã = ∅ then return DL ▷ No classifier was selected→ abstain from self-labeling.
6: end if
7: while iter < n do:
8: {hi|1 ≤ i ≤ c} ← TRAIN(E ,DL) ▷ Train MetaEnsemble on DL.
9: Ŷ ← hi(DU ) ▷ Predict hard labels for DU for all hi.

10: z1 ← p1(DU ) ▷ Predict class probabilities for DU .
11: DL

conf
self ,Dunconf

U ,Drest
U ← ASSIGNSETS(DU , Ŷ , z1, σ, ρ, c)

12: DS ← Drest
U

13: AS,OS ← CONSTRUCTSETS(DL
conf
self ,Dunconf

U , s, o, r)
14: if AS = ∅ then return DL ▷ MetaEnsemble E is uncertain→ abstain from self-labeling.
15: end if
16: DL ← DL ∪AS ∪OS ▷ Update labeled dataset DL.
17: DU ← DU \ {DS ∪AS ∪OS} ▷ Update unlabeled dataset DU .
18: iter ← iter + 1
19: end while
20: return DL

can be generated, consisting of the original labeled data DL and the new pseudo-labeled instances
{(xi, ŷi)}ji=k, with xi ∈ DU and ŷi representing its pseudo-label. The underlying idea behind
self-training is that correctly labeling a portion of the new pseudo-labeled instances leads to an
improvement in test accuracy. While self-training is a promising approach, it comes with inherent
risks and challenges that must be acknowledged. A primary concern is the potential incorporation
of inaccurately labeled instances, leading to what is commonly referred to as self-confirmation bias
(Arazo et al., 2020). When the model makes incorrect predictions during pseudo-labeling, these
errors can propagate through subsequent training iterations. Therefore, the quality of the pseudo-
labeling process is critical to the overall success of self-training (Lienen & Hüllermeier, 2021; Lang
et al., 2022; Lienen et al., 2023). Another concern revolves around the possible alteration of the data
distribution. Self-training has the capacity to modify the data distribution, e.g., if only instances from
one class receive pseudo-labels. This alteration can disrupt the balance between classes, potentially
resulting in biased models. As such, it is necessary to actively monitor and mitigate any shifts in the
data distribution that may occur during the self-training process. Self-training incurs at a relatively
modest cost, yet its effectiveness depends on numerous factors, as discussed above.

3.2 MULTI-LEARNING, MULTI-CLASSIFIER METHOD

To build the ensemble, AutoASL first has to select suitable algorithms. Therefore, we consider the
set consisting of two different, fast AutoML tools, namely TabPFN (Hollmann et al., 2023) and
AutoGluon (Erickson et al., 2020) and ten different simple scikit-learn models (Pedregosa et al.,
2011), among them a random forest and a decision tree. For a complete list of the used ML models,
we refer to Appendix C. TabPFN is always incorporated in the ensemble, due to its extremely fast
runtime (Hollmann et al., 2023), accurate performance, and well-calibrated probabilities, that Au-
toASL uses later on. Further, AutoASL selects all algorithms from the different AutoML-tools and
the simple ML models, that achieve a 3-fold cross-validation score > τ on DL (Algorithm 1, line
1). The parameter τ has to be set beforehand by the user. We refer to this set of selected algorithms
and the TabPFN classifier as MetaEnsemble (Algorithm 1, line 3), since, e.g., AutoGluon on its own
constructs an ensemble. In cases where the number of selected algorithms (TabPFN excluded) is
even, we remove the worst-performing algorithm. This step is essential to maintain an even count
of algorithms in MetaEnsemble, a prerequisite for our uncertainty criterion in this section.
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Let in the following h1(xi) be the predicted label for the instance xi by TabPFN and p1(xi) its
predicted probabilistic label. Let further h2(xi), ..., hc(xi) be the predicted label by the other al-
gorithms inside the MetaEnsemble, with c being the number of selected algorithms (c = 4 in Fig-
ure 2). Then AutoASL computes the class proportion or ratio r of the positive class of DL, which
will be used in the sampling strategy later on, where AutoASL samples in a stratified manner. Once
selected, MetaEnsemble stays fixed for the follow-up iterations. The intuition behind including the
simple ML models is to integrate a counterweight consisting of simple, robust, but also diverse mod-
els that counteract the potential overfitting and the resulting self-confirmation bias of the AutoML
tools. The MetaEnsemble is now trained onDL (Algorithm 1, line 9) and then predicts pseudo-labels
for each instance in DU . Hence, each instance receives different predicted pseudo-labels from the
different algorithms inside the MetaEnsemble.

3.3 CONFIDENCE MEASURES

To mitigate the risk of wrongly labeling instances inside DU , the following hybrid confidence pre-
diction approach (Triguero et al., 2015) is proposed (Algorithm 1, lines 10-12). AutoASL combines
the agreement of the classifiers in the MetaEnsemble with the predicted probabilities of TabPFN.
In the first step, only the instances where the predicted labels of all predictors coincide are taken.
From those, AutoASL further filters out only the most confident ones. Hereby, AutoASL relies on
the well-calibrated probabilistic predictions of the TabPFN predictor while taking only instances
into account, where the probabilistic prediction was confident enough, i.e., either p1(xi) > σ or
p1(xi) < 1 − σ. We refer to these instances as confident instances Dconf

U and the set of confident
instances together with their predicted label as DL

conf
self in the following, or formally:

Dconf
U =

{
xi ∈ DU |h1(xi) = . . . = hc(xi), p1(xi) ̸∈ [1− σ, σ]

}
DL

conf
self =

{
(xi, h1(xi)) |xi ∈ Dconf

U

}
3.4 SELF-LABELING SAMPLING STRATEGY

We propose not to add all confident instances with their label to DL, but instead to sample a subset,
which we call agreement set (AS). To mitigate shifts in the data distribution of the training data, we
first employ a stratified sampling approach, which ensures that the class proportion r of the positive
class of AS approximately matches that of the initial training dataset DL. Further, we sample
uniformly, such that the instances within AS exhibit varying degrees of dissimilarity, dependent on
the chosen confidence threshold σ.

An alternative sampling approach could involve selecting only the s instances, where the proba-
bilistic prediction of TabPFN is the most confident. However, while this may lead to higher label
accuracy compared to our sampling strategy, it may not necessarily improve the generalization per-
formance of the ensemble. The reason for this lies in the likelihood that instances with highly
confident predictions tend to be very similar and cluster closely together. Consequently, they may
not provide the learner with new information about the underlying data distribution. This issue is
also discussed by Zhang & Sabuncu (2020), who emphasize that selecting perhaps less confident yet
more diverse instances leads to an increased generalization performance of the learner.

3.5 ACTIVE LEARNING COMPONENT

Instances characterized by the highest degree of uncertainty among predictors, i.e., the instances
where the number of predictors inside the ensemble that predict label 0 coincides with the number
that predicts label 1 (note, that c is even), and additionally, the TabPFN probabilistic prediction falls
between 1− ρ and ρ, are referred to as Dunconf

U , or formally:

Dunconf
U =

{
xi ∈ DU |

c∑
j=1

hj(xi) =
c

2
, p1(xi) ∈ (1− ρ, ρ)

}
We expect the instances within this set to have the greatest potential for information gain, assuming
we have knowledge of their true labels (Freund et al., 1997). As we want to present these instances
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Figure 2: Exemplary explanation of our approach. The selected algorithms are trained on DL and
predict on DU . TabPFN predicts probabilities (refer to these as p1(xi) and to the converted hard
labels as h1(xi)) and the other algorithms in the ensemble predict hard labels (refer to these as
h2(xi), h3(xi), h4(xi)). If all algorithms agree on a label for a specific instance xi, e.g., h1(xi) =
h2(xi) = h3(xi) = h4(xi) = 0 and the TabPFN prediction is confident enough, i.e., p1(xi) > σ or
p1(xi) < 1−σ, in the figure σ = 0.8, bold blue, the instance will be added to DL with its predicted
label. If the algorithms are maximally uncertain about a specific instance, e.g., h1(xi) = h3(xi) = 1
and h2(xi) = h4(xi) = 0 and TabPFN is unconfident, i.e., 1−ρ < p1(xi) < ρ, in the figure ρ = 0.6,
bold orange, the instance will be given to and labeled by an oracle. The instance and its label will
then be added to DL for the next iteration. If a majority of the algorithms disagrees with a minority
on a specific instance, e.g., h1(xi) = 1 and h2(xi) = h3(xi) = h4(xi) = 0, the instance will be
removed from DU . The rest of the instances will stay in DU for the followup iteration.

to an oracle for labeling, which is costly in practice, AutoASL again uniformly samples a subset,
namely o instances fromDunconf

U . In our implementation, however, the oracle has access to the true
labels. The sampled subset of instances together with their labels predicted by the oracle is referred
to as oracle set (OS) in the following. This integration of an oracle, effectively a “human-in-the-
loop” (Mosqueira-Rey et al., 2023), has the chance to enhance user confidence in our AutoML
system, since it enables users to inject their expertise into the process precisely where our tool
exhibits uncertainty, e.g., by harnessing domain knowledge (Lee et al., 2019).

Further, all instances within DU , for which a majority of the predictors disagrees with a minority,
are referred to as the disagreement set (DS), or formally:

DS = DU \ Dunconf
U .

All instances within DS will be removed from DU (x6 in Figure 2, iteration 1). This prevents them
from getting wrongly labeled in future iterations. The sampled instances from AS and OS with
their corresponding labels will be added to DL. The sampled instances from AS and OS will be
also removed from DU .

3.6 INCREMENTAL ADDITION MECHANISM

AutoASL retrains the MetaEnsemble on the updated training dataset DLself. This whole process is
repeated for a fixed number of iterations n, which incrementally enlarges the size of DLself.

6



Under review as a conference paper at ICLR 2024

3.7 STOPPING CRITERIA

AutoASL implements three different stopping criteria: (a) In the case that none of the models from
which the Ensemble is constructed achieves a sufficiently high accuracy score on DL, the self-
-labeling procedure is stopped and abstains from labeling instances of DU (Algorithm 1, line 5).
In this case, AutoASL is too uncertain to learn the data distribution and does not want to risk to
wrongly pseudo-label instances. (b) If the agreement set AS is empty, AutoASL stops the self-la-
beling process and abstains from labeling as well (Algorithm 1, line 13). In this case, MetaEnsemble
would predict only unconfident probabilistic scores. (c) If the maximum number of iterations n is
reached, AutoASL stops as well.. If any of these criteria is fulfilled, AutoASL predicts on the test
data. Hereby, we rely on TabPFN as a single classifier, which has been trained on the final DLself

(similar to all other algorithms in MetaEnsemble). The whole pipeline is visualized in Figure 2.

3.8 PARAMETERS

Our proposed algorithm involves different parameters that influence various trade-offs.

1. Number of Iterations (n): The choice of how many iterations to perform is crucial for
the performance of AutoASL. In each iteration, the size of the self-labeled dataset DLself

increases. This can enhance the robustness of the algorithm since it is trained on a larger
training dataset. However, this increase in iterations comes at the potential cost of decreased
accuracy in pseudo-labels, because the probability of mislabeling instances due to factors
like confirmation bias and modified data distribution becomes higher.

2. Instance Sampling (s and o): The parameters s and o dictate how many instances to sample
for the self-labeling and for the oracle from the unlabeled dataset DU in each iteration.
While a higher s introduces trade-offs similar to those discussed in the previous item, it is
important to select o in a reasonable way; typically, o will be relatively low, especially if
experts are involved in the labeling process.

3. Confidence Threshold (σ): The threshold σ determines the confidence level for including
instances in the self-labeled dataset. A higher σ results in higher accuracy of pseudo-
labels. However, this comes at the cost of an increased likelihood of substantial shifts in
the data distribution of DLself. Very confident instances tend to cluster in a small region
and exhibit high similarity, offering only limited information gain for the learner into the
overall underlying data distribution.

4. Threshold for Model Selection (τ ): The threshold τ influences the extent to which models
are permitted to be included in the MetaEnsemble. The higher τ , the more capable the
models are to learn the data. But this might also be an indicator of overfitting, which would
result in lower generalization capability.

4 EXPERIMENTS

We evaluate our proposed approach AutoASL on real-world binary classification tasks and compare
it against state-of-the-art (supervised) AutoML-tools and semi-supervised methods for tabular data.

4.1 DATASETS

We used all open source datasets from the OpenML-CC18 (Vanschoren et al., 2013) benchmark suite
that meet the requirements of TabPFN (Hollmann et al., 2023), i.e., no categorical attributes, at most
10 classes and at most 100 features. We further filter by restricting ourselves to binary classification
tasks with not too imbalanced class distributions, i.e., class proportion 0.25 < r < 0.75, leaving us
with a set of 47 different datasets.

4.2 BASELINES

We conduct an empirical analysis, comparing our approach against six different methods. We eval-
uate two state-of-the-art supervised AutoML tools, TabPFN (Hollmann et al., 2023) and AutoGluon
(Erickson et al., 2020), trained exclusively on the labeled data DL, and referred to as TabPFN-SL
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and AutoGluon-SL, respectively. Subsequently, we explore a basic self-training approach, where
both, TabPFN and AutoGluon, are first trained on DL. Then, they predict pseudo-labels for all in-
stances in the unlabeled data DU , and are retrained on the expanded training data DLself. We refer
to these learners as TabPFN-SSL and AutoGluon-SSL, respectively. We further compare against
the automated self-labeling tool, Snuba (Varma & Ré, 2018), using the existing open-source code2

provided by the authors. We implemented a shallow multi-layer perceptron as an end-to-end model
capable of handling the probabilistic labels generated by Snuba for instances withinDU . Finally, our
comparative analysis includes VIME (Yoon et al., 2020), a semi-supervised learning tool designed
specifically for tabular data. We utilized the open-source implementation3 provided by the authors.

4.3 EVALUATION

For each dataset and method, we conducted 20 repetitions, each with unique random seeds and
dataset splits. All methods utilized the same dataset split when initialized with a specific seed. For
every seed value, we randomly sampled a distinct subset from the entire dataset, comprising 1500
instances. This subset was subsequently divided into two portions: 1000 instances for DL and DU

and 500 instances for the Dtest. This partition was necessitated by the limitations of TabPFN, which
can only be trained on a maximum of 1000 instances. This is exactly the case, if all instances within
DU were pseudo-labeled, and thus |DLself| = 1000. We investigate a split size of 0.025 for DL and
DU , hence each containing 25 and 975 instances, respectively. This small split size was chosen to
focus on the use case where only very few instances are available. Although one might argue that
this data size is quite limited, we align with the viewpoint presented by Hollmann et al. (2023), that
small tabular datasets are most often encountered in real-world applications. We have found the
following parameters to generally make AutoASL a robust, well performing algorithm: n = 10,
s = 15, o = 5, τ = 0.75, σ = 0.8, ρ = 0.6, and thus used them in the experiments.

4.4 RESULTS

In Figure 3, we illustrate the ranking of each optimization method based on its test accuracy using
critical distance plots. These rankings are calculated by averaging the results from all datasets
and runs. By assigning ranks to performance measures, these plots provide a more intuitive and
comprehensive understanding of the relative performance. As can be seen, AutoASL ranks better
than any other approach considered across the different runs and datasets. Note that the improvement
of AutoASL over the baselines is significant.

1234567

5.5106Snuba
5.2128VIME
4.4255AutoGluon-SL
3.9149AutoGluon-SSL

3.4255TabPFN-SSL

3.3191TabPFN-SL

2.1915AutoASL (ours)

Average Rank

Figure 3: Average rank plot for the performance measure Accuracy.

In Table 1, we present the results from 47 tabular datasets. After conducting the self-labeling pro-
cess, we computed the average test accuracy across 20 different seeds for each algorithm. It is
evident that our approach demonstrates superior performance when compared to other methods.
Specifically, AutoASL outperforms all other approaches in 22 of the 47 datasets.

Having incorporated a stopping criterion that hinges on the prediction confidence of TabPFN, our
approach becomes dependent on the performance of TabPFN. Hence in cases, where TabPFN per-
forms quite well, our method improves notably (e.g., OpenML IDs 44, 803, and 823).

Overall, AutoASL is able to achieve state-of-the-art performance. Thanks to the combination of
techniques from AutoML, SSL, and AL, our proposed approach outperforms existing approaches.

2https://github.com/HazyResearch/reef
3https://github.com/jsyoon0823/VIME
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Table 1: Average test accuracy (mean± standard deviation) measured after the self-labeling process.
Best performances for a dataset are highlighted in bold.

OpenML IDs 44 293 351 354 715 722 723 727

AutoGluon .828 ± .07 .553 ± .06 .686 ± .06 .504 ± .02 .594 ± .07 .701 ± .09 .561 ± .05 .743 ± .08
TabPFN .892 ± .02 .575 ± .05 .854 ± .04 .506 ± .02 .571 ± .05 .785 ± .05 .550 ± .02 .761 ± .04
VIME .595 ± .27 .497 ± .25 .210 ± .34 .566 ± .37 .526 ± .18 .385 ± .28 .520 ± .19 .551 ± .16
Snuba .591 ± .18 .587 ± .06 .813 ± .04 .491 ± .07 .517 ± .10 .798 ± .06 .455 ± .10 .760 ± .06
AutoASL (Ours) .903 ± .02 .574 ± .05 .878 ± .04 .508 ± .02 .569 ± .05 .794 ± .04 .549 ± .03 .800 ± .04
OpenML IDs 734 735 740 743 751 752 761 772

AutoGluon .703 ± .08 .835 ± .05 .600 ± .05 .643 ± .08 .606 ± .07 .526 ± .05 .841 ± .04 .521 ± .03
TabPFN .772 ± .04 .870 ± .02 .573 ± .02 .638 ± .03 .588 ± .06 .527 ± .03 .878 ± .03 .538 ± .03
VIME .637 ± .24 .809 ± .16 .746 ± .16 .613 ± .23 .774 ± .16 .492 ± .16 .775 ± .19 .459 ± .29
Snuba .444 ± .14 .434 ± .20 .483 ± .12 .603 ± .10 .496 ± .15 .507 ± .12 .356 ± .22 .543 ± .10
AutoASL (Ours) .784 ± .04 .880 ± .02 .582 ± .03 .653 ± .05 .601 ± .05 .528 ± .03 .892 ± .02 .537 ± .03

OpenML IDs 797 799 803 806 807 813 816 819

AutoGluon .563 ± .06 .712 ± .05 .880 ± .08 .586 ± .05 .625 ± .06 .691 ± .05 .655 ± .08 .793 ± .06
TabPFN .566 ± .02 .775 ± .04 .896 ± .03 .570 ± .03 .674 ± .05 .658 ± .07 .701 ± .08 .830 ± .03
VIME .634 ± .27 .393 ± .13 .304 ± .36 .539 ± .21 .523 ± .24 .725 ± .16 .522 ± .17 .403 ± .21
Snuba .451 ± .12 .728 ± .06 .873 ± .10 .489 ± .13 .659 ± .06 .594 ± .12 .675 ± .06 .825 ± .03
AutoASL (Ours) .571 ± .02 .794 ± .04 .921 ± .02 .570 ± .03 .672 ± .05 .672 ± .08 .723 ± .08 .839 ± .03
OpenML IDs 821 822 823 833 837 843 845 846

AutoGluon .757 ± .04 .686 ± .07 .903 ± .10 .650 ± .06 .571 ± .07 .780 ± .07 .605 ± .07 .681 ± .09
TabPFN .771 ± .04 .752 ± .05 .943 ± .02 .697 ± .02 .562 ± .03 .812 ± .04 .700 ± .05 .746 ± .03
VIME .220 ± .32 .379 ± .34 .443 ± .27 .133 ± .21 .560 ± .23 .186 ± .29 .586 ± .19 .264 ± .18
Snuba .568 ± .31 .635 ± .19 .418 ± .28 .822 ± .03 .484 ± .11 .692 ± .22 .616 ± .10 .757 ± .11
AutoASL (Ours) .777 ± .03 .761 ± .04 .959 ± .01 .691 ± .02 .562 ± .03 .819 ± .03 .711 ± .06 .751 ± .03

OpenML IDs 847 849 866 871 901 903 904 910

AutoGluon .790 ± .05 .622 ± .07 .606 ± .07 .503 ± .03 .689 ± .06 .624 ± .07 .562 ± .07 .608 ± .06
TabPFN .804 ± .02 .629 ± .04 .597 ± .02 .503 ± .02 .728 ± .05 .593 ± .03 .606 ± .03 .596 ± .04
VIME .364 ± .31 .517 ± .20 .762 ± .14 .495 ± .17 .607 ± .15 .655 ± .21 .408 ± .14 .681 ± .21
Snuba .807 ± .03 .573 ± .14 .541 ± .11 .480 ± .08 .673 ± .07 .531 ± .18 .634 ± .05 .515 ± .16
AutoASL (Ours) .821 ± .01 .633 ± .04 .595 ± .02 .501 ± .02 .742 ± .06 .601 ± .05 .606 ± .03 .607 ± .06

OpenML IDs 912 913 917 979 1120 1489 1494

AutoGluon .765 ± .06 .674 ± .06 .558 ± .05 .724 ± .05 .691 ± .09 .762 ± .02 .710 ± .06
TabPFN .710 ± .08 .629 ± .06 .567 ± .04 .753 ± .03 .720 ± .04 .741 ± .02 .748 ± .05
VIME .660 ± .24 .682 ± .22 .565 ± .23 .862 ± .08 .668 ± .29 .859 ± .09 .735 ± .15
Snuba .709 ± .12 .616 ± .09 .468 ± .11 .458 ± .22 .390 ± .16 .377 ± .25 .407 ± .20
AutoASL (Ours) .733 ± .10 .656 ± .07 .570 ± .04 .782 ± .03 .728 ± .05 .747 ± .03 .749 ± .05

5 CONCLUSION AND FUTURE WORK

We have shown that AutoASL, combining principles and algorithms from AutoML, SSL, and AL,
yields superior performance compared to existing state-of-the-art AutoML- and SSL-tools. This
result hopefully encourages further exploration and innovation in the AutoML-community to tackle
real-world problems falling within the SSL-setting. Indeed, we consider our work merely a first step
in this direction, leaving much room for further improvements. For example, we have exclusively
focused on the binary classification setting so far, leaving an extension of our framework to the
multi-class setting for future work, which should be doable in a more or less straightforward way.

As already mentioned in the end of Section 2, it might also be tempting to tackle our approach from
the broader perspective of (optimal) metareasoning, a view of AutoML that has recently been advo-
cated by Hüllermeier et al. (2021): An AutoML tool is an agent that has to train a model on a given
set of data, which is the main reasoning task. Finding a good way of doing so requires delibera-
tion on a meta-level, including, e.g., decisions about the ML pipeline to be used, and in our setting
also about the labeling and the data to train on. AutoASL can be seen as a simple metareasoning
strategy, in which, however, many decisions are still made in an ad-hoc manner (including, for ex-
ample, the labeling strategy and the hard-coding of parameters outlined in Section 3.8). Building
on the theory of optimal metareasoning and bounded rationality (Russell, 1997; Cox & Raja, 2011),
better approaches can presumably be developed in a more principled manner. Moreover, by com-
bining metareasoning with meta-learning (Brazdil et al., 2022), tools like AutoASL should be able
to automatically improve over the course of time.
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