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Abstract

The Clock and Pizza interpretations, associated with neural architectures differing
in either uniform or learnable attention, were introduced to argue that different
architectural designs can yield distinct circuits for modular addition. Applying
geometric and topological analyses to learned representations, we show that this
is not the case: Clock and Pizza circuits are topologically and geometrically
equivalent and are thus equivalent representations.

1 Introduction

Modular addition has become a standard testbed for toy models in interpretability Nanda et al. [2023],
Chughtai et al. [2023], Gromov [2023], Morwani et al. [2024], McCracken et al. [2025], He et al.
[2024], Tao et al. [2025], Doshi et al. [2023]. The task is non-linearly separable yet mathematically
well understood, making it ideal for researching how networks internally compute solutions. Two
influential works examined modular addition in transformers, finding different architectures give rise
to different circuits. Nanda et al. [2023] described a “Clock” interpretation, while Zhong et al. [2023]
introduced the contrasting “Pizza” interpretation, each tied to architectural choices. We revisit these
claims using geometric and topological analyses and find that Clock and Pizza learn topologically
equivalent representations and thus the same circuit. In contrast, our new architecture, MLP-Concat,
produces a genuinely different representation and thus a different circuit.

2 Background and Setup

We consider various neural network architectures for the task of modular addition, which means
predicting the map (a, b) 7→ a+ b mod n for a, b ∈ Zn. For the sake of this paper, we fix n = 59.
All architectures begin by embedding the inputs a, b to vectors Ea,Eb ∈ R128 using a shared
(learnable) embedding matrix. The architectures differ in how the embeddings are then processed:
MLP-Add immediately passes Ea + Eb through an MLP, MLP-Concat immediately passes the
concatenation Ea ⊕Eb ∈ R256 through an MLP, and Clock and Pizza, introduced by Zhong et al.
[2023] pass Ea,Eb through a self-attention layer before the MLP. Particularly, Pizza [Zhong et al.,
2023] uses a fixed, constant attention matrix, while Clock [Nanda et al., 2023] uses the standard
scaled softmax attention. We refer to transformer-based architectures associated with the Clock as
Attention 1.0 and those associated with Pizza as Attention 0.0, respectively.

It is well-known [Nanda et al., 2023, Zhong et al., 2023] that the above architectures learn circuits
with learned embeddings of the following form,

Ea = [cos(2πfa/n), sin(2πfa/n)], Eb = [cos(2πfb/n), sin(2πfb/n)]. (1)
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What distinguishes them is how the embeddings are transformed post-attention. Treating the attention
as a blackbox and looking at its output Eab, the two claims follow. Clock computes the angle sum,

Eab = [cos(2πf(a+ b)/n), sin(2πf(a+ b)/n)] (2)
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Figure 1: Clock and
Pizza’s analytical forms.
Points are Eab (cf. (2),
(3)), colored by (a + b)
mod 59.

encoding the modular sum on the unit circle, which needs second-order
interactions (e.g., multiplying embedding components via sigmoidal atten-
tion). In Pizza, Eab adds the embeddings directly as Ea +Eb, giving:

Eab = [cos(2πfa/p) + cos(2πfb/p), sin(2πfa/n) + sin(2πfb/n)], (3)

producing a vector addition on the circle, which is entirely linear in the
embeddings. McCracken et al. [2025] showed that, across Clock, Pizza,
and MLP-Concat architectures, first layer neurons then take the form of
so-called simple-neurons, producing pre-activations Ni(a, b) given by

Ni(a, b) = cos(2πfa/p+ ϕi
a) + cos(2πfb/p+ ϕi

b), (4)

where frequencies f and phases ϕi
a, ϕ

i
b are learned across training.

3 Phase Distribution Dictates Representation Manifolds

In the simple neuron model the only degrees of freedom beyond the
frequency of a neuron are the learned phases. The phase distribution across
simple neurons in a cluster distinguishes the representation manifolds.
Informal Theorem 1 (Disc vs. Torus). Fix a frequency cluster of simple
neurons with phases ϕi

a, ϕ
i
b in [0, 2π) for neuron i, and consider pre-

activations over input pairs (a, b). Then, almost surely, the representations
lie on low-dimensional manifolds:

(Disc) If ϕi
a = ϕi

b = ϕi for all i, they lie on a 2D disc (in R2) with
coordinates

(
cos θa + cos θb, sin θa + sin θb

)
.

(Torus) If ϕi
a, ϕ

i
b can be independent across i, they lie on a 2D torus (in

R4) with coordinates
(
cos θa, sin θa, cos θb, sin θb

)
.

For the formal statement and proof of informal theorem 1 see Appendix A. This result motivates the
empirical evaluations we propose in the next section.

4 Methodology

We analyze the structure of learned representations using two empirical methods: phase distributions
and their induced topological structure. See Appendix B for additional details and computational
methodology.
Phase Alignment Distributions. We propose the Phase Alignment Distribution (PAD). To a given
architecture, a PAD is a distribution over Zn ×Zn. Samples of this distribution are drawn as follows:

1. Sample a random initialization and train the network, then sample a neuron uniformly.
2. Return pair (a, b) ∈ Zn × Zn achieving the largest activation in the resulting neuron.

A PAD illustrates, across independent training runs and neuron clusters, how often activations are
maximized on the a = b diagonal—that is, it depicts how often learned phases align i.e. ϕa = ϕb.
Even beyond inspecting the proximity of samples to this diagonal, we propose to compare the PADs
of architectures according to metrics on the space of distributions over Zn × Zn, giving an even
more precise comparison. In the following section, we will provide estimates of the PADs for
the aforementioned architectures, as well as distances between PADs under the maximum mean
discrepancy [Gretton et al., 2012, MMD]—a family of metrics with tractable unbiased sample
estimators.

Betti numbers. Betti numbers distinguish the structure of different stages of circuits across layers.
The k-th Betti number βk of a topological manifold counts k-dimensional holes: β0 counts connected
components, β1 counts loops, β2 counts voids enclosed by surfaces. For reference, a disc has Betti
numbers (β0, β1, β2) = (1, 0, 0), a circle has (1, 1, 0), and a 2-torus has (1, 2, 1). We estimate
the distribution over Betti number vectors corresponding to the set of neurons in a given layer to
distinguish the structure of the layers.
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Figure 2: Log-density heatmaps for the distribution of neuron maximum activations (top) and
activation center of mass (bottom) across 703 models. Attention 0.0 and 1.0 architectures show
modest off-diagonal spread relative to MLP-Add, but remain constrained by architectural bias toward
diagonal alignment. MMD scores between Attention 0.0 and 1.0 are 0.0237 (row 1) and 0.0181 (row
2), indicating near identical distributions (see Table 1).
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Figure 3: Betti number distributions across layers for 1-, 2-, and 3-layer models (100 seeds for each
model). In layer 1, MLP-Add, Attention 0.0, and Attention 1.0 mostly yield disc-like representations,
while MLP-Concat produces a torus. From the second layer onward, MLP-Add and both Attention
variants converge to either a disc or a circle: the circle reflects the logits topology (correct answer),
while the disc is a transient intermediate that can persist in later layers. MLP-Concat instead
transitions directly to the circle. Across depth, Attention 0.0 and 1.0 are nearly identical with the
latter having fewer transient discs.
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Figure 4: PCA projections of embeddings, intermediate pre-activations, and logits for MLP-Concat
(top) and MLP-Add/Attention variants (bottom). In layer 1, MLP-Add and Attention models form
discs like vector addition (Fig. 1), while MLP-Concat forms a torus (Fig. 3); in later layers and at
logits representations in all models approach circles (angle summation, Fig. 1), but MLP-Concat
immediately reaches a thin angle summation circle after layer 1.

5 Discussion and Conclusion

This work set out to clarify whether the Clock and Pizza interpretations (corresponding to Attention
1.0 and 0.0 architectures respectively) for modular addition implement distinct circuits or merely
reflect superficial differences. Using geometric and topological analyses, we find that their internal
representations are in fact highly similar. The PAD analysis (Fig. 2) shows that both architectures
produce distributions closely aligned with the a = b diagonal, nearly indistinguishable under MMD
(Appendix C for additional experiments and statistical significance). Betti number analysis (Fig. 3)
confirms that their topological trajectories across layers converge in the same way, while MLP-Concat
follows a different path. Thus, the distinction between “Clock” and “Pizza” is largely illusory: both
instantiate the same underlying circuit, differing more from MLP-Concat than from each other and
MLP-Add. Moreover, in Appendix D we evaluate prior metrics by Zhong et al. [2023] and find that
our geometric and topological methods are more robust in distinguishing Clock, Pizza, MLP-Add vs.
MLP-Concat which is genuinely different.

More broadly, we show that architectures with trainable embeddings approximate the torus-to-circle
map, with differences arising in how this map factors through intermediate representations. This
perspective connects to the manifold hypothesis [Bengio et al., 2013], which posits that networks
discover low-dimensional manifolds underlying data. Our results demonstrate how high-level archi-
tectural choices can induce the learning of the entire manifold or a projection of it, where the torus of
MLP-Concat is the entire manifold and the vector projection disc-like representation of MLP-Add,
Attention 1.0 and 0.0 is a projection.

While our analysis is restricted to modular addition, it illustrates how architectural bias shapes repre-
sentational geometry, with broader implications for understanding representations and interpreting
them. Future work should try to understand why these representations are learned, what aspects
of architecture induce representational changes vs. those that don’t, as well as whether there’s a
guiding universal principal that unifies all these representations–because the embeddings and logits
are always the same and the vector addition disc is a projection of the torus.
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A Theoretical result

A.1 Canonical manifolds

We will now focus on networks with a single learnable embedding matrix, matching the setups of
Nanda et al. [2023], Zhong et al. [2023], McCracken et al. [2025]. Our analysis will center on the
representation manifolds in a frequency cluster f coming from the preactivations hpre

ℓ,f (a, b) at layer ℓ
and the logits lf (a, b). The corresponding representation manifolds are, explicitly,

Mpre
ℓ,f :=

{
hpre
ℓ,f (a, b) : (a, b) ∈ Z2

n

}
⊂ Rdℓ,f ; and Mlogit

f :=
{
lf (a, b) : (a, b) ∈ Z2

n

}
⊂ Rn,

where dℓ,f is the number of neuron in the frequency cluster f at layer ℓ. Our thesis is that under
the simple neuron model of (4) introduced by McCracken et al. [2025] and a simple application of
symmetry corresponding to the interchangeability of a, b in a+ b mod n, the exact structure of the
Mpre

1,f manifolds and how they are mapped from inputs a, b can be revealed. Particularly, we will
show that under this model, Mpre

1,f always encodes the torus T2 or vector addition disk of Figure
1—that is, the pizza.

A.2 Simple neuron phase distribution dictates representation manifold

Under the simple neuron model, for any frequency cluster f , the only degrees of freedom in the
resulting preactivations lie in the maps (a, b) 7→ (ϕL, ϕR) for a, b ∈ Zn learned by neural networks.
Given that modular addition is commutative, one might expect to see a form of symmetry with respect
to ϕL, ϕR. Particularly, one might expect that ϕL ≡ ϕR for all a, b (since swapping the inputs should
have no effect on the output), or at the very least that the random variables ϕL, ϕR are identically
distributed for A,B ∼ Uniform(Zn). It turns out, as we show in the following theorem (whose
proof is given in Appendix A.3), that the resulting manifold Mpre

1,f takes an easily characterizable
form almost surely in this event. We devote §?? to validating that the phase maps indeed satisfy
these properties in practice—allowing us to easily analyze the geometry of representations across
thousands of trained neural networks.

Before stating the theorem, let us introduce some notation that will be useful. Under the simple
neuron model, a neuron indexed i belonging to a neuron cluster with frequency f maps (a, b) ∈ Z2

p

to cos(θa +ΦL
i ) + cos(θb +ΦR

i ), where θa = 2πfa/p. The notation Φi is meant to evoke that we
model these phases as random variables; these are random due to random initialization and random
gradient updates. The joint distribution of (ΦL

i ,Φ
R
i ) is denoted µa,b

i ∈ ∆([0, 2π]2).
Theorem 1. Let f ∈ Zp for p ≥ 3, and consider the frequency cluster at layer 1. Let m denote the
number of neurons in this cluster, and assume m ≥ 2. Define the matrix X ∈ Rp2×m according
to X(a,b),i = cos(θa + ϕL

i ) + cos(θb + ϕR
i ), denoting the simple neuron preactivations. Assume

ϕL
i ,Φ

L,b
i are identically distributed for each neuron i ∈ {1, . . . ,m} in this cluster, and that the

support of µa,b
i has positive (Lebesgue) measure. Then the following hold almost surely:

1. (Perfect phase correlation) If ΦL,a
i and ΦR,b

i are perfectly correlated, in the sense that
ΦL,b

i ≡ ΦR,b
i , then X has a rank-2 factorization X = V discW with V disc ∈ Rp2×2

satisfying
V disc
(a,b) = (cos θa + cos θb, sin θa + sin θb)

⊤. (5)

2. (Phase independence) Otherwise, X has a rank-4 factorization X = V torusW with V torus ∈
Rp2×4 given by

V torus
(a,b) = (cos θa, sin θa, cos θb, sin θb)

⊤. (6)

Geometrically, the disc can be viewed as a projection of the torus: (x1, x2, x3, x4) 7→ (x1 + x3, x2 +
x4). Thus, the torus structure generalizes the vector-addition disc.

Having established this theorem, it is worth stepping back to contextualize its consequences. As
shown by McCracken et al. [2025], first layer preactivations are dominantly simple neurons. Theorem
1 shows that, under the symmetry properties of ΦL,a

i and ΦR,b
I posited above, the preactivations
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have simple, low-dimensional structures: in the case of perfect phase correlation, the representation
manifold can be compressed to V disc, which is precisely the vector addition disc of Figure 1. In the
case of phase independence, the representation manifold can be compressed to V torus, which exactly
encodes the torus T2.
Remark 2. It is noteworthy that the Clock representation from Zhong et al. [2023] cannot occur
under the hypotheses of Theorem 1. The remainder of the paper demonstrates that these hypotheses
are satisfied empirically with overwhelming probability. Thus, while the Clock circuit of Zhong et al.
[2023] is theoretically plausible, it does not occur naturally in practice. On the other hand, the
possibility of the torus representation has not previously been identified in the literature.

A notable consequence of this result is that the geometry and topology of representation manifolds
can be characterized by simply investigating the distributions µa,b

i of the learned phases. As we
describe in §4, this can be done quantitatively, allowing us to derive statistical likelihoods of neural
circuits arising over thousands of initializations across architectures.

A.3 Proof of theorem

The proofs of both cases of Theorem 1 follow the same pattern: apply an angle sum formula to the
entries of the pre-activation matrix, realize this matrix as a product of 2 low-rank matrices and use
the assumption of uniformity of the phase variables to deduce full rank of the composition.

For integers p ≥ 3 and m ≥ 2, consider the p2 ×m data matrix of the pre-activations of the model
network with simple neurons (seee equation 4 and 1).

X(a,b),i = cos(θa +ΦL,a
i ) + cos(θb +ΦR,b

i ), θt :=
2πt

p
, (a, b) ∈ {0, . . . , p− 1}2.

and using the identity cos(x+ y) = cosx cos y − sinx sin y, we have

X(a,b),i = cos(θa) cos(Φ
L,a
i )− sin(θa) sin(Φ

L,a
i ) + cos(θb) cos(Φ

R,b
i )− sin(θb) sin(Φ

R,b
i ) (7)

Next, we show the details specific to each of the cases: disc and torus.

Proof of Theorem 1 (Disc)

Proof. By assumption, ΦL,a
i = ΦR,b

i = ϕi for all i. Then, equation 7 becomes

X(a,b),i = (cos θa + cos θb) cosϕi − (sin θa + sin θb) sinϕi (8)

Notice then that X = VW for the matrices V and W defined by the following row and column
vectors respectively

V(a,b),: := [cos(θa) + cos(θb), sin(θa) + sin(θb)] (9)

W:,i :=

[
cos(ϕi)
− sin(ϕi)

]
. (10)

Now we show they both have rank 2 and the kernel of W intersect the image of V trivially. The
rank 2 of V follows from the independence of cos and sin and the rank 2 of W is true almost
surely following the the independence of cos and sin and the hypothesis that ΦL,a

i and ΦR,b have
uncountable support.

Suppose ⟨V(a,b),:,W:,i⟩ = 0 for some (a, b) and all i, that means cos(θa + ϕi) = − cos(θb + ϕi) for
all i. From the assumption the random variables ϕL and ϕR are not discrete, this event has probability
0, so the kernel of W intersects the image of V trivially and X = VW has rank 2.

Proof of Theorem 1 (Torus)
Equation 7 shows X = VW for the matrices V,W defined by rows and columns respectively

V(a,b),: = [cos(θa), sin(θa), cos(θb), sin(θb)] (11)

W:,i =


cos(ΦL,a

i )

− sin(ΦL,a
i )

cos(ΦR,b
i )

− sin(ΦR,b
i )

 . (12)

7



The proof that X has rank 4 is the same as the one for the respective statement in theorem 1 (uniformity
of phases give the rank of V and W and the independence of the image of V and kernel of W ).

B Additional experimental details

B.1 Training hyperparameters.

All models are trained with the Adam optimizer Kingma and Ba [2014]. Number of neurons per layer
in all models is 1024. Batch size is 59. Train/test split: 90%/10%.

Attention 1.0

• Learning rate: 0.00075

• L2 weight decay penalty: 0.000025

Attention 0.0

• Learning rate: 0.00025

• L2 weight decay penalty: 0.000001

MLP-Add and MLP-Concat

• Learning rate: 0.0005

• L2 weight decay penalty: 0.0001

B.2 Constructing representations

In all networks, we cluster neurons together and study the entire cluster at once McCracken et al.
[2025]. This is done by constructing an n× n matrix, with the value in entry (a, b) corresponding to
the preactivation value on datum (a, b). A 2D Discrete Fourier Transform (DFT) of the matrix gives
the key frequency f for the neuron. The cluster of preactivations of all neurons with key frequency f
is the n2 × |cluster f | matrix, made by flattening each neurons preactivation matrix and stacking the
resulting vector for every neuron with the same key frequency.

B.3 Persistent homology

We compute these using persistent homology, applied to point clouds constructed from intermediate
representations at different stages of the circuit, as well as the final logits. This yields a compact
topological signature that captures how the geometry of these representations evolves across layers,
helping us identify when the underlying structure resembles a disc, torus, or circle. We use the Ripser
library for these computations Bauer [2021], de Silva et al. [2011], Tralie et al. [2018].

For our persistent homology computations, we set the k-nearest neighbour hyperparameter to 250.
Our point cloud consists of 592 = 3481 points.

B.4 Remapping procedure

Neuron remapping [McCracken et al., 2025]. For a simple neuron of frequency f , we define a
canonical coordinate system via the mapping:

(a, b) 7→ (a · d, b · d), where d :=

(
f

gcd(f, n)

)−1

mod
n

gcd(f, n)
. (13)

This inverse is the modular multiplicative inverse, i.e. for any Zk let x ∈ Zk. Its inverse x−1 exists
if gcd(x, k) = 1 and gives x · x−1 ≡ 1 mod k. This normalizes inputs relative to the neuron’s
periodicity and allows for qualitative and quantitative comparisons.
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C Statistical significance of our results

C.0.1 Figure 2

We trained 703 models of each architecture, being MLP vec add, Attention 0.0 and 1.0, and MLP
concat, and recorded the locations of the max activations of all neurons across all (a, b) inputs to the
network. We also computed the center of mass of each neuron as this doesn’t always align with the
max preactivation (though it tends to be close).

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 0.0968 0.0000 Moderate difference; highly significant
MLP vec add vs Attention 1.0 0.1239 0.0000 Clear difference; highly significant
MLP vec add vs MLP concat 0.2889 0.0000 Very strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.0338 0.0000 Subtle difference; highly significant
Attention 0.0 vs MLP concat 0.1987 0.0000 Strong difference; highly significant
Attention 1.0 vs MLP concat 0.1723 0.0000 Strong difference; highly significant

(a) Row 1: Max activation

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 0.0583 0.0000 Small difference; highly significant
MLP vec add vs Attention 1.0 0.0689 0.0000 Moderate difference; highly significant
MLP vec add vs MLP concat 0.2614 0.0000 Very strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.0210 0.0084 Subtle difference; highly significant
Attention 0.0 vs MLP concat 0.2126 0.0000 Strong difference; highly significant
Attention 1.0 vs MLP concat 0.1947 0.0000 Strong difference; highly significant

(b) Row 2: Center of mass

Table 1: Gaussian-kernel Maximum Mean Discrepancies (MMD) Gretton et al. [2012] and permuta-
tion p-values between the empirical distributions shown in Figure 2. For each architecture comparison,
we sampled 20,000 points from each empirical distribution (derived from histogram-based neuron
statistics), then computed the unbiased Gaussian-kernel MMD with a bandwidth chosen via the
pooled median heuristic. Significance was assessed using 50,000 permutation tests per comparison.

C.0.2 Figure 5: Torus distance from the max activation and center of mass to the line a = b
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Figure 5: Histograms of torus-distance from each neuron’s phase to the diagonal a = b, across 703
trained models. MLP-Add neurons align perfectly with the diagonal, Attention 0.0 and 1.0 show
increasing off-diagonal spread, and MLP-Concat exhibits broadly distributed activations on the torus.

We trained 703 models of each architecture with 512 neurons in its hidden layer (MLP vec add,
Attention 0.0 and 1.0, and MLP concat), and recorded the a, b value of where the max activation of
a neuron takes place across all (a, b) inputs to the network and all neurons. We also computed the
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(a, b) values for the location of the center of mass of each neuron as this doesn’t always align with
the max preactivation (though it tends to be close). Then we compute the shortest torus distance from
the point of the max activation or the center of mass, to the line a = b.

Table 2: Gaussian-kernel Maximum Mean Discrepancies (MMD) Gretton et al. [2012] and per-
mutation p-values between the empirical distributions shown in Figure 5. For each architecture
comparison, we sampled 2000 points from each empirical distribution (derived from histogram-based
neuron statistics), then computed the unbiased Gaussian-kernel MMD with a bandwidth chosen via
the pooled median heuristic. Significance was assessed using 5000 permutation tests per comparison.

(a) Row 1: Max activation

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 0.3032 0.0000 Strong difference; highly significant
MLP vec add vs Attention 1.0 0.3888 0.0000 Very strong difference; highly significant
MLP vec add vs MLP concat 0.9508 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.0705 0.0000 Moderate difference; highly significant
Attention 0.0 vs MLP concat 0.6323 0.0000 Very strong difference; highly significant
Attention 1.0 vs MLP concat 0.5695 0.0000 Very strong difference; highly significant

(b) Row 2: Center of mass

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 0.7727 0.0000 Extremely strong difference; highly significant
MLP vec add vs Attention 1.0 0.7517 0.0000 Extremely strong difference; highly significant
MLP vec add vs MLP concat 0.9148 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.0520 0.0006 Moderate difference; highly significant
Attention 0.0 vs MLP concat 0.7022 0.0000 Very strong difference; highly significant
Attention 1.0 vs MLP concat 0.6391 0.0000 Very strong difference; highly significant

D Previous interpretability metrics [Zhong et al., 2023]

D.1 Definitions

Gradient symmetricity measures, over some subset of input-output triples (a, b, c), the average
cosine similarity between the gradient of the output logit Q(a,b,c) with respect to the input embeddings
of a and b. For a network with embedding layer E and a set S ⊆ Z3

p of input-output triples:

sg =
1

|S|
∑

(a,b,c)∈S

sim

(
∂Qabc

∂Ea
,
∂Qabc

∂Eb

)
where sim(u, v) = u·v

∥u∥∥v∥ is the cosine similarity. It is evident that sg ∈ [−1, 1].

Distance irrelevance quantifies how much the model’s outputs depend on the distance between a and
b. For each distance d, we compute the standard deviation of correct logits over all (a, b) pairs where
a− b = d and average over all distances. It’s normalized by the standard deviation over all data.

Formally, let Li,j = Qij,i+j be the correct logit matrix. The distance irrelevance q is defined as:

q =

1
p

∑
d∈Zp

std({Li,i+d|i ∈ Zp})
std({Li,j |i, j ∈ Zp})

where q ∈ [0, 1], with higher values indicating greater irrelevance to input distance.

D.2 Results of evaluation

Figure 6 shows the mean and standard deviation of the gradient symmetricity and distance irrelevance
metrics from Zhong et al. [2023]. Unlike Zhong et al. [2023], who report gradient symmetricity
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results over a randomly selected subset of 100 input-output triples (a, b, c) ∈ Z3
p, we compute the

metric exhaustively across all 593 = 205, 370 triples to add accuracy.

MLP-Add and MLP-Concat cluster on opposite extremes, implying the metrics just identify whether
neurons have phases ϕa ̸= ϕb. MLP-Add models have high gradient symmetricity and low distance
irrelevance and MLP-Concat models have low gradient symmetricity and high distance irrelevance.
Attention 1.0 models span a wide range between these extremes depending on two factors: 1) how
well the frequencies they learned intersect and 2) how well neurons are able to get their activation
center of mass away from the ϕa = ϕb line. Attention 0.0 is closer to MLP-Add than Attention 1.0
because it’s harder for this architecture to learn ϕa ̸= ϕb. Notably, failure cases exist using both:
neither metric distinguishes between Attention 1.0 and 0.0 models. While their metrics were
intended to distinguish between Clock and Pizza, we show that they are not really able to and this
makes sense because Clock and Pizza are not actually different.
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Figure 6: Evaluation of gradient symmetricity (left) and distance irrelevance (right). Each point shows
the average (avg) and standard deviation (std) of one trained network. MLP-Add and MLP-Concat lie
at nearly opposite extremes, while attention 0.0 and 1.0 overlap substantially. Gradient symmetricity
separates Attention 1.0 better, but neither metric always distinguishes between Attention 1.0 and 0.0.

D.2.1 MMD analysis

MMD results for these two metrics are reported below, again showing that the distance between
attention 0.0 and attention 1.0 models is small. This is the case even those these metrics were chosen
to differentiate between the two architectures.

Using just the x-axis (since the y-axis on those plots is the std dev) MMD results are presented next.

We can conclude that the attention transformers are far from vector addition, and very close to each
other under all metrics.
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[h]
Table 3: Permutation–test MMDs on the empirical gradient symmetricity and distance irrelevance
distributions across all architectures. All p-values are ≤ 10−6 (reported as 0.0000).

(a) Gradient symmetricity (2-D: avg and std)

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 1.2725 0.0000 Extremely strong difference; highly significant
MLP vec add vs Attention 1.0 0.9688 0.0000 Extremely strong difference; highly significant
MLP vec add vs MLP concat 1.3471 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.7750 0.0000 Very strong difference; highly significant
Attention 0.0 vs MLP concat 1.3503 0.0000 Extremely strong difference; highly significant
Attention 1.0 vs MLP concat 1.2360 0.0000 Extremely strong difference; highly significant

(b) Distance irrelevance (2-D: avg and std)

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 0.7534 0.0000 Very strong difference; highly significant
MLP vec add vs Attention 1.0 0.7079 0.0000 Very strong difference; highly significant
MLP vec add vs MLP concat 1.2488 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.2078 0.0000 Moderate difference; highly significant
Attention 0.0 vs MLP concat 1.2255 0.0000 Extremely strong difference; highly significant
Attention 1.0 vs MLP concat 1.0990 0.0000 Extremely strong difference; highly significant

[h]
Table 4: Permutation-test MMDs on scatter-plot averages only (1-D). All p–values are ≤ 10−6, so
every difference is “highly significant.” Note that the distance between attention 0.0, attention 1.0,
and MLP vec add is large, implying they are not performing vector addition.

(a) Row 3: Gradient symmetricity (avg only)

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 1.2755 0.0000 Extremely strong difference; highly significant
MLP vec add vs Attention 1.0 0.9842 0.0000 Extremely strong difference; highly significant
MLP vec add vs MLP concat 1.3833 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.7726 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs MLP concat 1.3802 0.0000 Extremely strong difference; highly significant
Attention 1.0 vs MLP concat 1.2559 0.0000 Extremely strong difference; highly significant

(b) Row 4: Distance irrelevance (avg only)

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 0.7739 0.0000 Extremely strong difference; highly significant
MLP vec add vs Attention 1.0 0.7268 0.0000 Very strong difference; highly significant
MLP vec add vs MLP concat 1.2501 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.2109 0.0000 Strong difference; highly significant
Attention 0.0 vs MLP concat 1.2443 0.0000 Extremely strong difference; highly significant
Attention 1.0 vs MLP concat 1.1093 0.0000 Extremely strong difference; highly significant
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E GPU-optimized computations

E.1 GPU-optimized center-of-mass in circular coordinates

Let p be the grid size and for each neuron n = 1, . . . , N we have a pre-activation map

x
(n)
i,j , (i, j = 0, . . . , p− 1).

Define nonnegative weights
w

(n)
i,j =

∣∣x(n)
i,j

∣∣.
Let fn ∈ {1, . . . , ⌊p/2⌋} be the dominant frequency for neuron n, and let

f−1
n be the modular inverse of fn modulo p, fn f

−1
n ≡ 1 (mod p).

Convert the row index i and column index j into angles (“un-wrapping” by f−1
n ):

θ
(n)
i =

2π

p
f−1
n i, ϕ

(n)
j =

2π

p
f−1
n j.

Form the two complex phasor sums

S(n)
a =

p−1∑
i=0

p−1∑
j=0

w
(n)
i,j exp

(
i θ

(n)
i

)
,

S
(n)
b =

p−1∑
i=0

p−1∑
j=0

w
(n)
i,j exp

(
i ϕ

(n)
j

)
.

The arguments of these sums give the circular means of each axis:

µ(n)
a = arg

(
S(n)
a

)
, µ

(n)
b = arg

(
S
(n)
b

)
,

where arg returns an angle in (−π, π]. To ensure a nonnegative result, normalize into [0, 2π):

µ+ =
(
µ+ 2π

)
mod 2π.

Finally, map back from the angular domain to grid coordinates:

CoM(n)
a =

p

2π
µ(n)+
a , CoM

(n)
b =

p

2π
µ
(n)+
b .

This handles wrap-around at the boundaries automatically and weights each location (i, j) by |x(n)
i,j |,

producing a smooth, circularly-aware center of mass. All tensor operations—angle computation,
complex exponentials, and weighted sums—are expressed as parallel array primitives that JAX
can JIT-compile and fuse into a single GPU kernel launch, eliminating Python-level overhead.
By precomputing the angle grids and performing the phasor sums inside one jitted function, this
implementation fully exploits GPU parallelism and memory coalescing for maximal throughput.

E.2 GPU-vectorized distance irrelevance over all n2 input pairs (a, b)

Let
I =

{
(a, b) | a, b ∈ {0, . . . , n− 1}

}
,

and order its elements lexicographically:

X =
[
(a0, b0), (a1, b1), . . . , (an2−1, bn2−1)

]
∈ Zn2×2.

A n2 single batched forward pass on the GPU computes

Logits = Transformer
(
X
)

∈ Rn2×n,

producing all n2 · n output logits in parallel. We then extract the “correct-class” logit for each input:

yk = Logits k, (ak+bk) mod n, k = 0, . . . , n2 − 1.
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Next we reshape y into an n× n matrix L by
L i,j = yk where i = (ak + bk) mod n, j = (ak − bk) mod n.

All of the above: embedding lookup, attention, MLP, softmax and the advanced indexing is imple-
mented as two large vectorized kernels (the batched forward pass and the gather), so each of the n2

inputs is handled in O(1) time but fully in parallel on the GPU.

Finally, define

σglobal =

√
1

n2

∑
i,j

(
Li,j − µ

)2

, µ =
1

n2

∑
i,j

Li,j ,

and for each “distance” j

σj =

√
1

n

∑
i

(
Li,j − L̄·j

)2

, L̄·j =
1

n

∑
i

Li,j , qj =
σj

σglobal
.

We report

q =
1

n

n−1∑
j=0

qj , std(q) =

√√√√ 1

n

n−1∑
j=0

(
qj − q

)2
.

E.3 GPU-optimized gradient symmetricity over all n3 triplets (a, b, c)

Let
E ∈ Rn×d with d = 128

be the learned embedding matrix, and denote by
Q
(
Ea, Eb

)
c

the scalar logit for class c obtained by feeding the pair of embeddings (Ea, Eb) into the model. We
define the per-triplet gradient cosine-similarity as

S(a, b, c) =

〈
∇Ea

Q(Ea, Eb)c, ∇Eb
Q(Ea, Eb)c

〉∥∥∇EaQ(Ea, Eb)c
∥∥ ∥∥∇Eb

Q(Ea, Eb)c
∥∥ ,

for all (a, b, c) ∈ {0, . . . , n− 1}3.

To compute {S(a, b, c)} over the full n3 grid in one fused GPU kernel, we first form three index
tensors

Ai,j,k = i, Bi,j,k = j, Ci,j,k = k, i, j, k = 0, . . . , n− 1,

then flatten to vectors a = vec(A), b = vec(B), c = vec(C) ∈ {0, . . . , n − 1}n
3

. We gather the
embeddings

emba = E[a] ∈ Rn3×d, embb = E[b] ∈ Rn3×d,

and in JAX compute
ga = vmap

(
(ea, eb, c) 7→ ∇Ea

Q(ea, eb)c
)
(emba, embb, c),

gb = vmap
(
(ea, eb, c) 7→ ∇Eb

Q(ea, eb)c
)
(emba, embb, c),

each producing an (n3 × d)-shaped array. Finally the similarity vector is

S =
ga ⊙ gb

∥ga∥ ∥gb∥
∈ Rn3

,

and we report

S =
1

n3

n3∑
i=1

Si, σS =

√√√√ 1

n3

n3∑
i=1

(
Si − S

)2
.

Runtime. Because we express ga,gb and the subsequent dot-and-norm entirely inside a single
@jax.jit+ vmap invocation, XLA lowers it to one GPU kernel that processes all n3 triplets in paral-
lel. The kernel dispatch cost is therefore O(1), and each triplet’s gradient and cosine computations are
fused into vectorized instructions with constant per-element overhead. Although the total arithmetic
work is O(n3), the full data-parallel execution means the wall-clock latency grows sub-linearly in n3

and the per-triplet overhead remains effectively constant.
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TAG-DS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction are backed by proofs in
Appendix A or backed by figures over many random seeds in the main paper, with statistical
significance results found in C.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We only study a singke task: modular addition. We address this in the
discussion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: This can be found in A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes. The paper outlines the architectures tested, gives the experimental details
for the reproducing the results and provides open source code that is GPU optimized: giving
anyone with just one GPU the ability to reproduce results in the paper over a few days worth
of compute.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: We were unable to provide our code as a supplementary zip file since there
was no field in the OpenReview submission portal to attach it. We commit to providing it in
the future for a camera-ready version.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: This is introduced briefly in the paper but there are more details in Appendix
B. We also provide GPU-optimized procedures for how we computed various things in E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We compute the maximum mean discrepancy (MMD) to find the distance
between distributions, and statistical significance is detailed in the Appendix C and D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experiments in this paper can reproduced with a single RTX 8000 within
one day.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We highlight the positive impacts of our work: better understanding what deep
networks learn in the discussion and limitations. We can not conceive any negative aspects;
this is not capabilities research.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We wrote all the code ourselves. Part of the code is a translation, the clock
and pizza code from Zhong et al. [2023] was read, and translated into GPU optimized Jax,
which is stated in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: NA

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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