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Abstract

We consider the problem of identifying the best arm in a multi-armed bandit model.
Despite a wealth of literature in the traditional fixed budget and fixed confidence
regimes of the best arm identification problem, it still remains a mystery to most
practitioners as to how to choose an approach and corresponding budget or confi-
dence parameter. We propose a new formalism to avoid this dilemma altogether by
minimizing a risk functional which explicitly balances the performance of the rec-
ommended arm and the cost incurred by learning this arm. In this framework, a cost
is incurred for each observation during the sampling phase, and upon recommend-
ing an arm, a performance penalty is incurred for identifying a suboptimal arm.
The learner’s goal is to minimize the sum of the penalty and cost. This new regime
mirrors the priorities of many practitioners, e.g. maximizing profit in an A/B testing
framework, better than classical fixed budget or confidence settings. We derive
theoretical lower bounds for the risk of each of two choices for the performance
penalty, the probability of misidentification and the simple regret, and propose an
algorithm called DBCARE to match these lower bounds up to polylog factors on
nearly all problem instances. We then demonstrate the performance of DBCARE on a
number of simulated models, comparing to fixed budget and confidence algorithms
to show the shortfalls of existing BAI paradigms on this problem.

1 Introduction

Best Arm Identification (BAI) in multi-armed bandits is a fundamental problem in decision-making
under uncertainty. The objective is to identify the arm with the highest expected reward by adaptively
drawing samples from distributions associated with each arm. BAI arises in many real-world appli-
cations. In advertising, arms represent different ads, and the aim is to find the ad which maximizes
revenue generated [18]. In statistical model selection, arms represent different hyperparameter config-
urations, and the aim is to find the best-performing one with minimal computational resources [20].

Traditionally, BAI has been studied under two paradigms: the fixed budget setting [2, 8], which seeks
to maximize performance—i.e. the ability of a policy to recover the optimal arm—within a given
sampling budget, and the fixed performance (e.g., fixed confidence [33, 15]) setting, which aims to
minimize the number of samples needed to meet a target performance level. While algorithms for
these settings have been successfully deployed in many real-world settings [32, 35, 51, 18], these
settings are not a natural fit for all use cases. For instance, while determining the best arm is desirable,
a slightly suboptimal choice may be acceptable if the cost of distinguishing between top candidates is
prohibitively high. On the other hand, it is often unnecessary to continue sampling until reaching
some pre-specified horizon when there is already enough evidence to determine the optimal arm.

To this end, we propose a novel paradigm for BAI, in which a policy should explicitly balance
performance and sampling cost on the fly, without being constrained by a fixed performance level or
a pre-specified sampling budget. This framework allows policies to adaptively terminate according to
the difficulty of the problem. The following is an example where such a framework would be natural.
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Example (Advertising). Consider a firm choosing among K versions of an ad. To inform its choice,
the firm may show versions to participants in a focus group (arm pull), incurring a cost c per showing.
The firm wishes to choose an algorithm to maximize the expected profit, i.e. the expected revenue of the
selected ad (Î) minus the expected cost of the sampling procedure: E[revenueÎ ]− cE[# arm pulls].
Letting I⋆ be the ad with the highest expected revenue, then maximizing expected profit can be
equivalently stated as minimizing E[revenueI⋆ − revenueÎ ] + cE[# arm pulls]. Traditional fixed
budget or confidence algorithms would be a poor fit for this problem, as it is unclear how one should
choose the budget or confidence level to optimize the objective.

1.1 Model

We will now formally introduce our setting. A learner has access to a MAB model ν = {νa}a∈[K],
which consists of K arms, each associated with a probability distribution νa. Let µa = Eνa

[X]
denote the expected reward of arm a . Following common conventions in the BAI literature, we
assume without loss of generality that the arms are ordered so that µ1 ≥ µ2 ≥ · · · ≥ µK (the
learner is unaware of this ordering). We will assume that for each arm a ∈ [K], the distribution νa is
σ-sub-Gaussian and that µa ∈ [0, B]. The learner is aware of σ and B.

A learner interacts with the bandit model over a sequence of rounds t = 1, 2, . . . . On round t, the
learner selects an arm At ∈ [K] according to a policy π and observes an independent sample Xt

drawn from νAt
. The choice of At may depend on the history {(As, Xs)}t−1

s=1 of previous actions and
observations. Upon termination, the policy recommends an arm Î ∈ [K] as the estimated best arm.

Prior work. Traditionally, BAI has been studied under two main regimes: (1) Fixed budget:
The learner is allowed at most T ∈ N samples and aims to minimize either the probability of
misidentification [2] P(µ1 ̸= µÎ) or the simple regret [8] E[µ1−µÎ ], i.e. the expected gap between the
optimal and selected arms. (2) Fixed performance: The learner must satisfy a specified performance
goal while minimizing the number of samples. The most common instantiation is fixed-confidence
BAI [6, 16], where the probability of misidentification P(µ1 ̸= µÎ) is at most a given goal δ.

This work. Both the fixed-budget and fixed-performance formulations neglect practical situations
where one may not have a pre-specified budget or performance goal, but would like to trade-off
between performance and sampling cost based on problem difficulty. Motivated by such consid-
erations, we propose a new setting, where the goal is to minimize a risk functional that captures
both a performance penalty and the cumulative sampling cost. Choosing either the probability of
misidentification or the simple regret as the penalty, we study the following two risk measures:

RMI(π, ν) := Eν,π

[
1
(
µ1 ̸= µÎ

)
+ cτ

]
= Pν,π

(
µ1 ̸= µÎ

)
+ cEν,π[τ ] ,

RSR(π, ν) := Eν,π

[(
µ1 − µÎ

)
+ cτ

]
= Eν,π

[
µ1 − µÎ

]
+ cEν,π[τ ] .

(1)

Here, c > 0 is the (known) cost required to collect a sample, relative to the performance penalty, and
τ is the stopping time (total number of samples) of the policy π. Moreover, Pν,π and Eν,π denote the
probability and expectation with respect to all randomness arising from the interaction between the
policy π and the bandit model ν.

1.2 Summary of our contributions and results

Novel problem formalism. To the best of our knowledge, we are the first to study this risk-based
formalism for BAI which trades off between performance and sampling costs. We design policies for
both risk measures in (1), upper bound the risk, and provide nearly matching lower bounds.

Lower bounds. To summarize our lower bounds, let ∆k = µ1 − µk denote the sub-optimality gap
of arm k, and let H :=

∑K
k=2 ∆

−2
k be a problem complexity parameter [33, 15, 26, 21, 28, 30]. We

show that the problem difficulty exhibits a phase transition depending on the magnitude of H and
the smallest gap ∆2. Specifically, in the case ofRMI, when H ∈ O((σ2c)−1), we show thatRMI ∈
Ω
(
cσ2H log

(
(cσ2H)−1

))
, and otherwise, RMI ∈ Ω(1). In the case of RSR, when H∆−1

2 ∈
O((σ2c)−1), we show that RSR ∈ Ω

(
cσ2H log

(
∆2(cσ

2H)−1
))

, and otherwise, RSR ∈ Ω(∆2).
This phase transition—absent in classical fixed-confidence or fixed-budget settings—underscores
the trade-off between performance and costs inherent to our setting: probabilistically distinguishing
sub-Gaussian arms scales inversely with the size of the gaps between them, so with small enough
gaps it becomes optimal to simply guess the best arm without incurring the cost of sampling.
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Proof ideas. Our proof employs change-of-measure arguments to lower bound the risk associated
with any particular algorithm via an auxiliary function of problem parameters and the expected
stopping time of the algorithm, Eν,π[τ ]. Crucially, this function is convex in Eν,π[τ ], and minimizing
it with respect to Eν,π[τ ] yields lower bounds on the performance of any algorithm while additionally
revealing the phase transition behavior, via the regions where Eν,π[τ ] = 0 is optimal.

Algorithm. We propose DBCARE (Dynamically Budgeted Cost-Adapted Risk-minimizing
Elimination) for this setting. DBCARE maintains a subset S ⊂ [K] of surviving arms and confi-
dence intervals for the mean values of these arms. It takes as input a function N⋆ : N→ N of the size
of S, which determines the maximum number of times each arm in S may be pulled. It proceeds in
epochs, where in each epoch, every surviving arm is pulled once. At the end of each epoch, DBCARE
eliminates arms that can be confidently identified as suboptimal based on the confidence intervals. If
any arms are eliminated, the budget for each surviving arm is updated based on N⋆. If the budget
of arm pulls is exhausted before there is a clear winner, i.e. only one surviving arm, it recommends
the surviving arm with the highest empirical mean. However, if a clear winner emerges before the
current budget, it terminates early and recommends this arm.

DBCARE combines ideas from both fixed-budget and fixed-confidence algorithms for BAI. However,
unlike fixed budget algorithms, the budget is not given in advance; rather, the total number of times
an arm can be pulled is determined by the function N⋆ which depends on the risk (1), the cost c, and
the size of the current surviving set S. Similarly, unlike algorithms for fixed confidence BAI [24, 21],
the confidence intervals are carefully chosen based on problem parameters, and not via a prespecified
failure probability target δ. This design allows DBCARE to adapt to the problem difficulty with respect
to the gaps and cost, while simultaneously ensuring control over the worst-case risk.

Upper bound. We show that the above algorithm, with carefully chosen parameters, matches the
lower bounds in almost all regimes. Specifically, forRMI, our algorithm matches the lower bound
up to polylog factors for all values of the complexity parameter H . For RSR, we similarly match
the lower bound up to polylog factors when H is not too large. However, when H →∞ , our upper
bound scales as O(log(K)(Kσ2c)1/3), while the lower bound is Ω(∆2), leaving an additive gap.

Despite this discrepancy in theRSR case, we make two important observations. First, we show that
our algorithm is minimax optimal; that is, the worst-case risk over all problem instances matches the
worst-case lower bound up to logarithmic factors. Second, the lower bound in the large H regime is
tight and cannot be improved: a naive guessing algorithm—one that selects an arm without pulling
any—achieves the lower bound on certain problem instances in this region. However, such a policy
performs poorly when H is small, underscoring the value of our adaptive strategy.

Proof ideas. Our use of an elimination-style procedure allows us to guarantee that we never eliminate
the optimal arm with high probability, and also identify precisely when highly suboptimal arms are
guaranteed to be eliminated. Then, by choosing N⋆(|S|) ≍ O((|S| c)−1) for RMI and N⋆(|S|) ≍
O(σ2/3(|S| c)−2/3) forRSR, we ensure that DBCARE can both match the worst-case behavior of the
lower bound and adapt to easier problem settings where there are relatively few good candidate arms.

Empirical evaluation. We corroborate these theoretical findings in simulations and in a real-world
experiment on a drug discovery dataset. We compare to fixed budget and confidence algorithms to
show the deficiencies of naive adaptations of existing BAI paradigms on this problem.

1.3 Related work

BAI. The multi-armed bandit (MAB) problem, first introduced by Thompson [45], has become a foun-
dational framework for studying the exploration-exploitation trade-off in sequential decision-making
under uncertainty. Within this framework, Best Arm Identification (BAI) focuses on identifying the
arm with the highest expected reward [7, 25, 16, 10, 28, 21, 41].

BAI has primarily been studied under two paradigms: the fixed-budget and fixed-performance settings.
In the fixed-budget setting, the objective is to minimize the probability of misidentification [2, 29,
30, 11, 4], or alternatively, to minimize the simple regret [7, 8, 52]. In the fixed performance setting,
the majority of the literature has focused on achieving a target probability of misidentification (a.k.a
fixed confidence BAI) [14, 33, 15, 21, 17, 24, 23]. To the best of our knowledge, there is no prior
work on minimizing the number of pulls subject to a performance goal on the simple regret.
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Our work builds on the extensive literature in this area. In particular, our algorithm draws inspiration
from racing-style methods developed for fixed-confidence BAI [34, 21, 24], while our lower bounds
rely on technical lemmas from Kaufmann et al. [30]. Nevertheless, the problem we study departs
meaningfully from existing formulations, requiring new conceptual insights and analytical tools.

Cost of arm pulls in MAB. Several works have explored sampling costs in BAI. Xia et al. [49] and
Qin et al. [39] study identifying the arm with highest reward-to-cost ratio, assuming both reward
and cost are observed per sample, both in fixed-budget and fixed-confidence settings. In contrast, in
our setting, once a final arm is selected, only its expected reward—not its sampling cost—remains
relevant. Degenne et al. [13] and Yang et al. [50] consider minimizing the cumulative regret [40]
while performing BAI, but this approach is not applicable when sampling costs are exogenous to
rewards, as we consider in our setting. Kanarios et al. [27] study minimizing cumulative cost (instead
of the number of pulls) in a fixed confidence setting, when the learner observes a stochastic cost on
each arm pull in addition to the reward. Recent work in multi-Fidelity BAI [37, 48, 38] allows a
learner to choose to incur different costs for varying magnitudes of accuracy. The last two problem
settings are distinctly different from ours. Finally, some works [3, 43] address costs in the cumulative
regret setting, which is also distinct from our focus on BAI.

Bayesian sequential testing in classical statistics. Arrow et al. [1] and Wald and Wolfowitz [47]
study Bayesian formulations of sequential binary hypothesis testing problems (e.g., H1 : µ1−µ2 = ∆
vs. H2 : µ1 − µ2 = −∆), where the learner must balance the cost of incorrect decisions against
the cost of continued testing. They show that the Bayes-optimal procedure for such problems is the
sequential probability ratio test (SPRT) of Wald [46], with optimal thresholds determined by solving
complex implicit equations that depend on the specific problem parameters. A number of works
[44, 12, 5, 31] have extended this study to the more general composite hypothesis testing framework
(H1 : µ1 − µ2 > 0 vs. H2 : µ1 − µ2 ≤ 0). While there are similarities to our proposed setting, their
analyses have been restricted to developing procedures that are only asymptotically Bayes-optimal
and only hold in the case of exponential families.

Paper organization. The remainder of this paper is organized as follows. In §2, we study the
problem in the 2-arm setting. This new formalism for BAI introduces novel intuitions which are
best illustrated in the two arm setting. In §3, we present our algorithm and main results in the
K-arm setting. Finally, in §4, we evaluate our methods on simulations and show that it outperforms
traditional BAI methods on this problem.

2 Two-Arm Setting

To build intuition for this problem, we first study the K = 2 setting. Let P(R) denote all probability
measures on R, and let Gσ =

{
λ ∈ P(R) : ∀ t > 0, Pλ (X − Eλ[X] > t) ≤ exp

(
−t2/2σ2

) }
denote all σ-sub-Gaussian probability distributions. LetM, defined below in (2), denote the class of
two-armed bandit models with σ-sub-Gaussian rewards; recall that µi = Eνi

[X]. For a given gap
∆ ≥ 0, letM∆, defined below, denote the subclass of models with sub-optimality gap ∆. We have:

M := {ν = (ν1, ν2) : ν1, ν2 ∈ Gσ;µ1, µ2 ∈ [0, B]} , M∆ := {ν ∈M : µ1 − µ2 = ∆} . (2)

In §2.1, we begin by studying RMI in (1), which uses the probability of misidentification as the
performance criterion. In §2.2, we then considerRSR, which instead uses the simple regret. Unless
otherwise stated, all results in this section will be corollaries of more general results in §3.

2.1 Probability of misidentification in the two-arm setting

Lower bound. We begin with a gap-dependent lower bound applicable to any policy on this problem.
Corollary 1.1 (Corollary of Theorem 1, Lower bound onRMI). Fix a gap ∆ > 0 and the cost c per
arm pull. Then, for any policy π , we have

sup
ν∈M∆

RMI(π, ν) ≥ LBMI(∆) :=

{
σ2c
4∆2 log

(
e∆2

σ2c

)
, if ∆ ≥

√
σ2c,

1/4 , if ∆ <
√
σ2c.

(3)

It is instructive to compare the above result with lower bounds for fixed confidence BAI. As in
the fixed confidence setting [30], we observe that for large ∆, the lower bound exhibits a familiar
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Figure 1: Illustrations of the lower and upper bounds on the risk for RMI (on the left) and RSR

(on the right) in the 2-arm case presented throughout § 2, with the performance of the policy which
guesses an arm at random without pulling at all (Guess) included as a point of reference.

dependence on σ2∆−2, indicating that the problem becomes easier as the gap increases. Our bound
also depends on the cost c and includes a logarithmic term in ∆2(σ2c)−1. Notably, when the gap
is small, our setting departs from fixed confidence behavior: the lower bound undergoes a phase
transition and saturates at a constant value of 1/4, rather than continuing to increase with ∆−2.

An oracular policy. To build intuition towards designing a policy, it is worth considering the
behavior of an “oracular” policy which knows the gap ∆ but does not know which of the two
arms is optimal. Recall that it requires approximately N(∆, δ) ∈ O(σ2∆−2 log(1/δ)) samples
to separate two sub-Gaussian distributions whose means are ∆ apart [46, 22, 30] with proba-
bility at least 1 − δ. Hence, if we pull both arms N(∆, δ) times, we will incur a penalty of
δ+O(σ2c∆−2 log(1/δ)). By optimally choosing δ ∈ O(σ2c∆−2), we find that we need to pull each
arm N(∆) ∈ O(σ2∆−2 log(∆2(σ2c)−1)) times. However, the above expression is non-negative
only when ∆ ≥ Ω(

√
σ2c). Intuitively, if ∆ is very small, the policy will need to incur a large cost to

separate the two arms. If the policy knows ∆ it is better off randomly guessing an arm instead of
incurring this large cost. This intuition leads to the following policy and theoretical result. Its proof,
which is straightforward, is given in Appendix C.

Proposition 1. Let π∆ be the policy which pulls each arm max
{
0,
⌈
4σ2

∆2 log
(

∆2

8σ2c

)⌉}
times. If

it pulls 0 times, it will choose an arm uniformly at random, and otherwise, outputs the empirically
largest arm (breaking ties arbitrarily). Then, letting LBMI(∆) be as in (3), we have,

sup
ν∈M∆

RMI(π∆, ν) ≤ 32LBMI(∆) + 2c ∈ O(LBMI(∆))

As we see, and illustrated in Fig 1, this bound matches the lower bound up to constant factors.1
To design a policy when ∆ is unknown, we will leverage the above intuition. We will also draw
inspiration from prior work on racing-style algorithms [36, 34], which have shown that sequentially
pulling arms and eliminating them based on confidence intervals can match oracular policies up to
logarithmic factors in the fixed confidence setting.

A policy forRMI. We will let δ be a confidence hyperparameter, aiming to output the optimal arm
with probability at least 1− δ. However, to avoid over-pulling when the gap ∆ is too small, we also
incorporate a hyperparameter N⋆, which is a limit on the total amount of times we are willing to pull
each arm. Intuitively, we know the cost grows linearly in the number of pulls, but the probability of
misidentification decays exponentially, so there is a point where the trade-off between the cost of
pulling and the increased precision these pulls provide no longer favors continuing to pull.

Our approach proceeds in epochs of sampling both arms once and comparing the difference between
the empirical averages of the two arms against a Hoeffding confidence bound at the end of each epoch
to test for separation. If the observed difference on any epoch is larger than the confidence bound, it
will exit and recommend the larger arm. Otherwise, it will continue to sample each arm until reaching
the N⋆-th epoch, where it will return the arm with the larger empirical average even though they have
not statistically separated. In the case of the 2-arm probability of misidentification setting, we use
N⋆ = (2ec)−1 and δ = c(1 + 2cN⋆)−1. Here, we set N⋆ to be the maximum number of times the
oracular policy would ever pull each arm for any ∆. The confidence parameter δ is used to control

1Proposition 1 includes an additive penalty corresponding to the cost of two extra pulls, and a similar additive
term appears in all upper bounds. This is unavoidable in general, as even as ∆ → ∞, each arm must be pulled
at least once to identify it. While this can be formally incorporated in the lower bound, we omit it for simplicity.
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the penalty of the policy on the event that the policy’s confidence interval for the gap does not contain
the true gap. We have described this algorithm formally in the K-arm setting in Algorithm 1.

As the corollary below demonstrates, by careful choice of N⋆ and δ, we show that we can match the
lower bound in Corollary 2.1 up to log(1/c) factors, for all values of ∆. Based on the relationship
between algorithmic performance and lower bounds in the BAI literature, we conjecture that this
logarithmic gap is largely unavoidable, and could at best be reduced to a log-log factor [28, 21, 30].
Corollary 2.1 (Corollary of Theorem 2, DBCARE underRMI). Let π be the policy described above
using N∗ = (2ec)−1 and δ = c(1 + 2cN∗)−1 . Then, letting LBMI(∆) be as in (3),

sup
ν∈M∆

RMI(π, ν) ≤ 128 log

(
e+ 1

(ec)2

)
LBMI(∆) + 3c ∈ O

(
log(c−1)LBMI(∆)

)
.

This bound and its comparison to the lower bound are illustrated in Fig 1. As we can see in Fig 1, by
our choice of N⋆, our policy actually performs within a constant factor of the lower bound for small
∆, and the log(1/c) factor is incurred mostly in the “moderate” ∆ regime. After the sharp transition
at the midpoint of the plot in Fig 1, representing the point at which our algorithm is guaranteed to
output the optimal arm before reaching N⋆ epochs with high probability, we can also see that the
comparison to the lower bound quickly improves until we again reach a constant factor mismatch.

2.2 Simple regret in the two-arm setting

Lower bound. We again begin by presenting a lower bound on this problem.
Corollary 3.1 (Corollary of Theorem 3, Lower bound onRSR). Fix a gap ∆ > 0 and the cost c per
arm pull. Then, for any policy π ,

sup
ν∈M∆

RSR(π, ν) ≥ LBSR(∆) =

{
σ2c
4∆2 log

(
e∆3

σ2c

)
, if ∆ ≥ (σ2c)1/3

∆/4 , if ∆ < (σ2c)1/3
(4)

Additionally, taking the worst-case over all ∆ , we have, for any policy π ,

sup
ν∈M

RSR(π, ν) ≥ LB⋆
SR =

3

8

(
σ2c

e

)1/3

(5)

As in Corollary 1.1, we observe a phase transition in the lower bound: it is ∆/4 when the gap is
small, and scales as Ω(∆−2) when the gap is large. For what follows, we also state the minimax
(worst-case) value of this lower bound as a function of ∆. As we see, this minimax lower bound
decreases as the arm-pull cost c decreases. In contrast, forRMI, the minimax lower bound is 1/4 , and
even a naive policy that guesses an arm without any pulls incurs a penalty of only 1/2 . However, for
RSR, even achieving the minimax lower bound requires a well-designed policy.

An oracular policy. To design such a policy, let us again consider the behavior of an oracular policy
which knows ∆. The motivation behind the chosen number of samples is the same as before, but when
pulling the arms N(∆, δ) times, we now incur a penalty of δ∆+O(σ2c∆−2 log(1/δ)) . Because of
this change, we now wish to use δ ∈ O(σ2c∆−3) , leading to the following result, mirroring that of
Proposition 1. Its proof, which is straightforward, is given in Appendix C.

Proposition 2. Let π⋆ be the policy which pulls each arm max
{
0,
⌈
4σ2

∆2 log
(

∆3

8σ2c

)⌉}
times. If it

pulls them 0 times, it will choose an arm uniformly at random, and otherwise, outputs the empirically
largest arm (breaking ties arbitrarily). Then, letting LBSR(∆) be as in (4) and LB⋆

SR as in (5),

sup
ν∈M∆

RSR(π
⋆, ν) ≤ 32LBSR(∆) + 2c ∈ O(LBSR(∆)) , sup

ν∈M
LBSR(π

⋆, ν) ≤ 8LB⋆
SR + 2c

A policy forRSR. Our policy will proceed exactly as before, performing rounds of equal sampling
until either we reach a prespecified number of epochs or we are able to identify the optimal arm
with high probability. Like the oracular policy, though, the change in risk requires updating our
hyperparameters N⋆ and δ to ensure that our algorithm still performs well in this setting. We again
motivate our choice of N⋆ via the behavior of the oracular policy, choosing N⋆ = (3/2e)(σ/c)2/3 .
We also still use δ as a tool to control the worst-case penalty when our confidence interval does not
contain the true gap, and thus we set δ = c(B + 2cN⋆)−1 .
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Corollary 4.1 (Corollary of Theorem 4, DBCARE underRSR). Let π be the policy described above
using N∗ = (3/2e)(σ/c)2/3 and δ = c(B + 2cN⋆)−1 . Then, letting LBSR(∆) be as in (4), when
∆ ≥ (σ2c)1/3, we have,

sup
ν∈M∆

RSR(π, ν) ≤ 128 log

(
3Bσ4/3

c5/3

)
LBSR(∆) + 3c ∈ O

(
log(Bσc−1)LBSR(∆)

)
When ∆ < (σ2c)1/3, we instead have,

sup
ν∈M∆

RSR(π, ν) ≤ 4LBSR(∆) + 2(σ2c)
1/3 + 3c ∈ O (LBSR(∆) + poly(σ, c))

Finally, letting LB⋆
SR be as in (5), taking the worst case over all ∆, we have,

sup
ν∈M

RSR(π, ν) ≤ 9LB⋆
SR + 3c ∈ O(LB⋆

SR)

Here we see, when ∆ ≥ (σ2c)1/3, these results closely mirror that of Corollary 2.1, though the
log-factor now additionally scales with Bσ2. As illustrated in Fig 1, this log-factor primarily plays a
role in the moderate ∆ regime like in the case ofRMI. Our bound and Fig 1 also further highlight
the inherent difficulty of designing a simultaneously minimax- and instance-optimal policy forRSR,
as it is impossible to match the lower bound as ∆→ 0 without performing fewer pulls even as the
problem becomes more difficult. Illustrating why the instance-based lower bound cannot be improved
in this regime, however, is the policy which guesses an arm without any pulls in purple in Fig 1.

3 K-arm Setting

We now generalize our results to the K-arm setting. We begin by adapting the notation formalities
for K arms. We now let M, defined in (6), denote the class of K-armed bandit models with
σ-sub-Gaussian rewards. Further, for a bandit model ν ∈ M, assuming WLOG that we have
µ1 ≥ µ2 ≥ · · · ≥ µK , we define the complexity measureH(ν) :=∑K

k=2 ∆
−2
k , where ∆k = µ1−µk

is the k-th largest suboptimality gap. For a given complexity H > 0, letMH , defined below, denote
the subclass of models having complexity at most H . Thus, we define:

M =
{
ν = (νa)

K
a=1 : νa ∈ Gσ , µa ∈ [0, B] ∀ a ∈ [K]

}
, MH = {ν ∈M : H(ν) ≤ H} (6)

As we will see, while our hardness results extend naturally from two to K arms, extending the
intuitions for the algorithm design requires a more careful design of the budget parameter N⋆.

3.1 Probability of misidentification in the K-arm setting

Lower bound. We now present the general K-arm lower bound result forRMI.
Theorem 1. Fix a complexity H > 0 and a cost per arm pull c > 0 . Then, for any policy π,

sup
ν∈MH

RMI(π, ν) ≥ LBMI(H) =

{
σ2cH

4 log
(

e
σ2cH

)
, if H ≤ (σ2c)−1

1/4 , if H > (σ2c)−1
(7)

Comparing this result to its Corollary 1.1 in the 2-arm setting, we observe the same phase transition,
now in terms of the complexity, H . Using the definition of H , we note that it still occurs when
∆k ≍ O((σ2c)−1), and it provides the same intuition: when at least some of the gaps are sufficiently
close to zero (or if there are very many arms), the cost of separating them outweighs the decrease in
the probability of misidentification, and it becomes optimal to guess the best arm without pulling.

A policy for RMI. We present our proposed algorithm, DBCARE, in its full K-arm generality in
Algorithm 1. To account for there now being K arms, DBCARE maintains a “surviving set” S of arms
that have not yet been determined to be sub-optimal, and performs rounds of equal sampling of all
arms in S. At the end of each round, it compares the difference between the current largest empirical
average in S and each other arm in S, and eliminates them based on Hoeffding confidence intervals.
This continues until either there is only one arm remaining, or the remaining arms have reached their
maximum per-arm budget, at which point the arm with the largest empirical average is returned.
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In moving from the two arm to K-arm regimes, we once again encounter the issue of balancing
performance and costs when selecting our per-arm budget. On one hand, if we naively replace the
division by 2 in N⋆ in Corollary 2.1 with a division by K, then we will fall short on performance
when there are many highly sub-optimal arms. However, if we keep the same budget for each arm
from the 2-arm setting, we will perform too many total pulls when there are many near-optimal arms.

To this end, we allow the per-arm budgets to adapt to the problem complexity by letting N⋆ increase
as |S| decreases. This allows DBCARE to dedicate additional resources to separating the remaining
arms as some are determined to be sub-optimal, but prevents the total possible number of pulls from
scaling too quickly in K. Inspired by the 2-arm setting, we let N⋆(k) = (kec)−1. Further, we still
use the confidence δ to control the worst-case penalty when the confidence intervals do not contain
the true gap, so we set δ = c(1 + 2c log(K)N⋆(2))−1. The following theorem summarizes the key
properties of DBCARE when applied toRMI.
Theorem 2. Let πDBCARE be the policy defined in Algorithm 1 using N⋆(k) = (kec)−1 and δ =
c(1 + 2c log(K)N⋆(2))−1 . Then, letting LBMI(H) be as in (7), we have,

sup
ν∈MH

RMI(πDBCARE, ν) ≤ 760 log(K) log

(
K log(K)

ec2

)
LBMI(H) + (K + 1)c ,

which is ∈ O(polylog(K, c−1)LBMI(H)).

As in the 2-arm case, we see in Theorem 2 that our policy is still able to achieve performance within
a polylogarithmic factor of the lower bound, with the additional log(K) factor being due to the
worst-case impact of our adaptive budget updating.

Algorithm 1 Dynamically Budgeted Cost-Adapted Risk-minimizing Elimination
Require: Dynamic budget function N⋆ , Confidence δ

1: Initialization: µ̂k(0) = 0 ∀ k ∈ [K] , e0 = 0 , t = 0 , n = 0 , S = [K]
2: while n ≤ N⋆(|S|) AND |S| > 1 do
3: n← n+ 1
4: for k ∈ S do
5: t← t+ 1
6: At ← k , Observe Xt ∼ νAt

7: end for
8: µ̂k(n)← 1

n

∑t
s=1 1{k}(As)Xs , for k ∈ S

9: en ←
√
4σ2n−1 log(Knδ−1).

10: S ← S \
{
k ∈ S : max

ℓ∈S
µ̂ℓ(n)− µ̂k(n) > en

}
.

11: end while
12: return argmax

a∈S
µ̂a(n) (breaking ties randomly)

3.2 Simple regret in the K-arm setting

Lower bound. We now present our second lower bound, forRSR in the general K-arm setting.
Theorem 3. Fix a complexity H > 0 , a smallest gap ∆2 ≥ 0 , and a cost per arm pull c > 0 . Then,
for any policy π , we have,

sup
ν∈MH

RSR(π, ν) ≥ LBSR(H) =

{
cσ2H

4 log
(

e∆2

σ2cH

)
, if H∆−1

2 ≤ (σ2c)−1

∆2/4 , if H∆−1
2 > (σ2c)−1

(8)

Additionally, taking the worst case over all problem instances, we have, for any policy π ,

sup
ν∈M

RSR(π, ν) ≥ LB⋆
SR =

3

8

(
(K − 1)σ2c

e

)1/3

(9)

Looking at the bound presented in (8), we see that the phase transition in this lower bound now jointly
involves the total problem complexity and the smallest gap.
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A policy forRSR. Following the same intuition as in the probability of misidentification case, we
again wish to allow N⋆ to adapt to the problem complexity and increase as the surviving set of arms
shrinks. Observing the minimax lower bound presented in 9, though, we see that the maximum
problem difficulty scales with K1/3, unlike the constant scaling in the case ofRMI. Thus, we wish for
N⋆ to scale with K−2/3 instead of K−1, and so we choose N⋆(k) = (3/2e)σ2/3((k− 1)c)−2/3 . Then,
controlling for the worst-case performance again, we choose δ = c(B + eK1/3 log(K)N⋆(2))−1.

Theorem 4. Let πDBCARE be the policy defined in Algorithm 1 using N⋆(k) = (3/2e)σ2/3((k−1)c)−2/3

and δ = c(B + eK1/3 log(K)N⋆(2))−1. Then, letting LBSR be as in (8), when H∆−1
2 ≤ (σ2c)−1,

sup
ν∈MH

RSR(πDBCARE, ν) ≤ 550 log(K) log

(
K log(K)Bσ4/3

c5/3

)
LBSR(H) + (K + 1)c ,

which is ∈ O(polylog(B,K, σ, c−1)LBSR(H)). When H∆−1
2 > (σ2c)−1, we instead have,

LBSR(H) + 4 log(K)(Kσ2c)
1/3 + (K + 1)c ∈ O(LBSR(H) + log(K)poly(K,σ, c))

Finally, letting LB⋆
SR be as in (9), we have,

sup
ν∈M

RSR(πDBCARE, ν) ≤ 20 log(K)LB⋆
SR + (K + 1)c ∈ O(log(K)LB⋆

SR)

In Theorem 4, we see similar performance of DBCARE compared to the lower bound as in the two-arm
case: we are able to achieve performance within polylogarithmic factors when the complexity is
relatively low, and we incur an additive logarithmic and polynomial factor in K,σ, and c when the
complexity is prohibitively high. Observing our comparison to the minimax bound, we see that our
policy is still minimax-optimal, being only a logarithmic factor in K beyond the lower bound.

4 Numerical Experiments

Simulation Studies. We now empirically compare our method against traditional fixed budget and
fixed confidence methods to demonstrate the ability of DBCARE to perform well across all problem
instances. We study the performance across a range of suboptimality gaps ∆ for Gaussian and
Bernoulli rewards in the two-arm setting using the cost c = 10−4. In the Gaussian setting, the
arms have variance σ2 = 1 with means ±∆/2, for ∆ ∈ [0.05, 2]; for Bernoulli arms, the means are
0.5±∆/2, for ∆ ∈ [0.01, 0.95]. Results are averaged across 105 runs each with different random seeds.
We compare to Sequential Halving for fixed budget and elimination procedures using the optimized
stopping rules of [30] for fixed confidence. We use budgets T = 10 and T = 500 and confidences of
δ = 0.1 and δ = 0.01 for comparison against relatively low and high confidence/budget choices. We
also include the oracular policies of § 2 to provide a baseline of good performance. As we can see in
Fig 2, the fixed budget and confidence algorithms necessarily have some region of gaps where they
perform sub-optimally: for the small budget, it is moderate ∆ values, for the large budget, it is large
∆ values, and for both confidences, it is small ∆ values. On the contrary, our proposed algorithm
exhibits uniformly good performance across all ∆ values, which is preferable when ∆ is unknown.
In Appendix E, we provide further simulations in the K-arm setting.
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Figure 2: Comparisons between the oracular policy, DBCARE, and fixed budget and confidence
algorithms forRMI andRSR. Y -axes are adjusted per setting to highlight problem-specific behavior.
Confidence regions represent empirical average risk ± 2 SE.

Drug Discovery Experiment. To demonstrate the efficacy of our approach on a problem in practice,
we present the results of a real data experiment on a drug discovery dataset. For this experiment, we
take the results from Table 2 of Genovese et al. [19] on the efficacy of the drug secukinumab in patients
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with rheumatoid arthritis. They report outcomes for 237 patients assigned to one of 5 treatment groups
(arms) and report the drug efficacy according to the American College of Rheumatology criteria
ACR20, ACR50, and ACR70. We consider this data under 2 settings: 1.) a binary efficacy outcome,
being whether a patient achieved at least ACR20 (1) or not (0), as this was the primary goal of [19];
and 2.) a “leveled” efficacy outcome, where no improvement results in an outcome of 0, and ACR20,
ACR50, and ACR70 are outcomes of 0.2, 0.5, and 0.7, respectively, approximating a continuous
efficacy metric. We treat the proportions of patients reported in each category in Table 2 of [19] as
population proportions, and evaluate DBCARE, Sequential Halving, and an elimination procedure with
confidence bounds

√
4σ2n−1 log(Knδ−1) on 104 runs in each setting, each with different random

seeds. For the binary outcome setting, the means were µ = (0.537, 0.469, 0.465, 0.360, 0.340),
and for the leveled outcome setting, the means were µ = (0.230, 0.227, 0.200, 0.196, 0.102), each
presented in decreasing order (order was randomized during data generation). Because K and the
means are fixed in this setting, we choose to evaluate our performance across a range of values for
c ∈ [10−3, 10−5]. In Fig 3, we can see that no other method uniformly outperforms DBCARE across
all choices of c, again highlighting the ability of our method to adapt to the problem setting at hand.
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Figure 3: Comparisons between DBCARE and fixed budget and confidence algorithms forRMI and
RSR on a drug discovery dataset. Y -axes are adjusted per setting to highlight problem-specific
behavior. Error bars represent empirical average risk ± 2 SE.

5 Conclusion

We propose a novel framework for studying best arm identification. In many practical settings,
the traditional fixed budget and confidence regimes do not nicely align with the objectives of
practitioners. To fill this gap, our setting explicitly balances sampling costs and performance on
the fly by minimizing a risk functional. We prove hardness results for this problem and provide an
algorithm, DBCARE, which achieves near-optimal performance on nearly all problem instances.

Future directions. We believe our lower bound analysis for simple regret in the K-arm setting
can be improved. Though our bounds are tight when suboptimality gaps are similar, we believe the
bounds can be tighter when they are different. We also conjecture that the additive gap we observe in
the simple regret setting is unavoidable for algorithms which achieve the minimax risk.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made regarding the K-arm lower bounds are formally stated in
§ 3 and proved in Appendix B. Our algorithm and theorems regarding its comparison to the
lower bounds are presented in § 3 and proven in Appendix D. Our simulation studies and
real data experiments are presented in § 4 and Appendix E.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: As we compare the performance of our proposed algorithm to our stated
lower bounds in § 2 and § 3, we note where our algorithm falls short and point out what
improvements we believe are possible. In § 5, we also discuss where we believe our lower
bound analysis is loose and can be improved. When presenting empirical results in § 4 and
Appendix E, we explicitly state all of our problem setting choices.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Each theoretical result in § 2 and § 3 state all relevant assumptions, and
proofs are provided in Appendices B, C, and D. Necessary lemmas from external works are
included in Appendix A and are properly cited.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our proposed algorithm is clearly written in pseudocode in Algorithm 1,
which should be sufficient for implementation. All of our numerical experiments in § 4 and
Appendix E have their settings clearly stated, which should be sufficient for replication.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We do not provide access to the data and code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All of our numerical experiments in § 4 and Appendix E have their settings
clearly stated and parameters justified for their relevance to the problem.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experimental plots in § 4 and Appendix E include±2 SE error bars/regions.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compute resources declarations accompany the additional experiments in
Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

17

https://neurips.cc/public/EthicsGuidelines


Justification: Like any machine learning algorithm, our method could be used by bad actors
for explicitly nefarious purposes, but we do not consider potential negative downstream
effects of our work. It is our belief that our work does not enable greedy / negligent /
nefarious behavior any more than already existing methods in the field.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The real-data experiments in Appendix E are based on published scientific
results and are properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Results from Prior Works

Lemma 1 (Lemma 18 of [30]). Let ν and ν′ be two bandit models, and let τ be any stopping time
with respect to Ft , where Ft = σ(A1, X1, . . . , At, Xt) is the sigma-algebra generated by all bandit
interactions. For every event E ∈ Fτ (i.e., E such that E ∩ {τ = t} ∈ Ft),

Pν′(E) = Eν [1E exp(−Lτ )] ,

where,

Lτ =

K∑
a=1

Na(τ)∑
s=1

log

(
fa(Ya,s)

f ′
a(Ya,s)

)
,

where Ya,s is the s-th i.i.d. observation of the a-th arm and fa and f ′
a are the distribution functions

of the a-th arm under ν and ν′ , respectively.
Lemma 2 (Lemma 4 of [9]). Let ρ0, ρ1 be two probability distributions supported on some set X ,
with ρ1 ≪ ρ0 . Then, for any measurable function ϕ : X → {0, 1} , one has

PX∼ρ0
(ϕ(X) = 1) + PX∼ρ1

(ϕ(X) = 0) ≥ 1

2
exp(−KL(ρ0 || ρ1)) .

B Proof of Lower Bounds

We begin with a Lemma that will be central to all of our lower bounds, which builds upon the work
of [30] to achieve a bound with the form of their Lemma 15 which admits a random stopping time.
Lemma 3. Let ν and ν′ be two K-arm bandit models. Let π be any policy with associated stopping
time τ such that P(τ <∞) = 1 which outputs an arm Î ∈ [K] at time τ . Then for any a ∈ [K] ,

Pν,π(Î ̸= a) + Pν′,π(Î = a) ≥ 1

2
exp

(
−

K∑
a=1

Eν,π[Na(τ)] KL(νa || ν′a)
)

,

where Pν,π is the probability with respect to all randomness incurred by π interacting with the bandit
model ν and Na(t) =

∑t
s=1 1{a}(As) is the number of times arm a has been pulled up to round t .

Proof. Fix a policy π . For ease of notation, we suppress the π in the probabilities and expectations
throughout the proof. Now, we begin by using Lemma 1 to prove that the distributions of Î under
each bandit model are absolutely continuous with one another. Consider an event E ∈ Fτ such that
Pν′(E) = 0 . Then, because e−x > 0 for all x ∈ R , we must have Pν(1E exp(−Lτ ) = 0) = 1 by
Lemma 1. Further, by our supposition that Pν(τ <∞) = 1 , we must have Pν(exp(−Lτ ) > 0) = 1 ,
and so we have Pν′(E) = 0 =⇒ Pν(E) = 0 , and we achieve the reverse implication by symmetry.
Now, consider the fact that we necessarily have {Î = a} ∈ Fτ for all a ∈ [K] by construction, and
so if we denote by L(Î) and L′(Î) the distributions of Î under ν and ν′ , respectively, then clearly
L′(Î)≪ L(Î) . Thus, we can apply Lemma 2 to show,

Pν(Î ̸= a) + Pν′(Î = a) ≥ 1

2
exp

(
−KL(L(Î) || L′(Î))

)
To conclude the proof, we need only upper bound KL(L(Î) || L′(Î)) by Eν [Lτ ] , which we know is
equal to

∑K
a=1 Eν [Na(τ)] KL(νa || ν′a) by an application of Wald’s Lemma [42]. By applying the

conditional Jensen inequality to the statement of Lemma 1 and rearranging the terms, we know for
any E ∈ Fτ , we have Eν [Lτ | E ] ≥ log Pν(E)

Pν′ (E) . Thus, letting I = {k ∈ [K] : Pν(Î = k) ̸= 0} , we
can write,

Eν [Lτ ] =
∑
k∈I

Eν [Lτ | Î = k]Pν(Î = k)

≥
∑
k∈I

log

(
Pν(Î = k)

Pν′=k(Î = k)

)
Pν(Î = k)

= KL(L(Î) || L′(Î)) ,

which concludes the proof.
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We now employ Lemma 3 to prove Theorems 1 and 3 and their associated corollaries.

Proof of Theorem 1. Fix H > 0 , σ2 > 0 , c > 0 , and a policy π . Let ν be a Gaussian K-arm
bandit model with means µ1 > µ2 ≥ · · · ≥ µK and common variance σ2 satisfying H(ν) = H .
Then, it is easy to show by contradiction that there must exist some arm a ∈ {2, . . . ,K} such
that Eπ,ν [Na(τ)] ≤ Eπ,ν [τ ]

∆2
aH(ν) . Let ν′ be an alternative model with Gaussian arms having the same

common variance σ2 , where µk(ν) = µk(ν
′) for all k ̸= a and µa(ν

′) = µa(ν) + 2∆a so that arm
a is now the optimal arm. ClearlyH(ν′) ≤ H(ν) , and so we have ν, ν′ ∈MH . Then, we can apply
Lemma 3 to show,

sup
ν∈MH

RMI(π, ν) ≥ max {RMI(π, ν),RMI(π, ν
′)}

≥ 1

2
(RMI(π, ν) +RMI(π, ν

′))

=
1

2

(
Pν,π(Î ̸= 1) + Pν′,π(Î ̸= a)

)
+

c

2
(Eν,π[τ ] + Eν′,π[τ ])

≥ 1

2

(
Pν,π(Î ̸= 1) + Pν′,π(Î = 1)

)
+

c

2
(Eν,π[τ ] + Eν′,π[τ ])

≥ 1

4
exp

(
−

K∑
k=1

Eν,π[Nk(τ)] KL(νk || ν′k)
)

+
c

2
(Eν,π[τ ] + Eν′,π[τ ])

≥ 1

4
exp

(
−2Eν,π[τ ]

σ2H

)
+

c

2
(Eν,π[τ ] + Eν′,π[τ ]) (10)

Here, we recognize the fact that (10) is convex in Eν,π[τ ] , and thus we provide a π-free
lower bound by minimizing over Eν,π[τ ],Eν′,π[τ ] ≥ 0 , which is achieved by Eν,π[τ ] =

max{0, σ2H
2 log(1/σ2cH)} and Eν′,π[τ ] = 0 . Plugging in these values completes the proof.

Proof of Theorem 3. This proof proceeds nearly identically to the proof above. Again fix H >
0, σ2 > 0, c > 0 and any policy π . Then, let ν and ν′ be the same Gaussian K-arm bandit
models as in the previous proof, with optimal arms 1 and a ∈ {2, . . . ,K}, respectively. For
notational clarity, let the suboptimality gaps ∆2, . . . ,∆K be with respect to ν and let ∆1 ≡ 0, so
that µa(ν

′)− µk(ν
′) = ∆a +∆k for k ̸= a. Then, again using Lemma 3, we have,

sup
ν∈MH

RSR(π, ν) ≥ max {RSR(π, ν),RSR(π, ν
′)}

≥ 1

2
(RSR(π, ν),RSR(π, ν

′))

=
1

2

(
Eν,π[µ1 − µÎ ] + Eν′,π[µa − µÎ ]

)
+

c

2
(Eν,π[τ ] + Eν′,π[τ ])

=
1

2

 K∑
i=2

∆i Pν,π(Î = i) +
∑
j ̸=a

(∆a +∆j)Pν′,π(Î = j)


+

c

2
(Eν,π[τ ] + Eν′,π[τ ])

≥ ∆2

2

(
Pν,π(Î ̸= 1) + Pν′,π(Î ̸= a)

)
+

c

2
(Eν,π[τ ] + Eν′,π[τ ])

≥ ∆2

2

(
Pν,π(Î ̸= 1) + Pν′,π(Î = 1)

)
+

c

2
(Eν,π[τ ] + Eν′,π[τ ])

≥ ∆2

4
exp

(
−

K∑
k=1

Eν,π[Nk(τ)] KL(νk || ν′k)
)

+
c

2
(Eν,π[τ ] + Eν′,π[τ ])

≥ ∆2

4
exp

(
−2Eν,π[τ ]

σ2H

)
+

c

2
(Eν,π[τ ] + Eν′,π[τ ]) (11)

Once again, (11) is convex in Eν,π[τ ], so we can further lower bound (11) by setting Eν,π[τ ] =

max{0, σ2H
2 log(∆2(σ

2cH)−1)} and Eν′,π[τ ] = 0, completing the proof of (8).
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To prove (9), we can consider a specific set of means satisfying this problem instance. Consider the
instance where µ1 = ∆ and µ2 = · · · = µK = 0, so that ∆2 = · · · = ∆K = ∆ for some ∆ > 0 that
we will specify later. With these means, we have H = (K − 1)∆−2. Then, using (8), we can write,

sup
ν∈M(K−1)∆−2

RSR(π, ν) ≥ LBSR((K − 1)∆−2)

=

{
(K−1)σ2c

4∆2 log
(

e∆3

(K−1)σ2c

)
, if ∆ ≥ ((K − 1)σ2c)1/3

∆/4 , if ∆ < ((K − 1)σ2c)1/3

We can then find the ∆ which maximizes this function, which occurs at ∆⋆ = (
√
e(K − 1)σ2c)1/3,

which gives,

sup
ν∈M

RSR(π, ν) ≥ sup
ν∈M(K−1)(∆⋆)−2

RSR(π, ν) ≥ LBSR((K − 1)(∆⋆)−2) =
3

8

(
(K − 1)σ2c

e

)1/3

Proof of Corollaries 1.1 and 3.1. Recall that, when K = 2, H = ∆−2 and ∆2 = ∆ . The conclu-
sions then follow directly from Theorems 1 and 3.

C Oracular Policy Proofs

Proof of Proposition 1. Fix a gap ∆ > 0 . Because samples from each arm are i.i.d. σ-sub-Gaussian,
by equally sampling the arms, we have i.i.d.

√
2σ-sub-Gaussian observations of the gap ∆ . By

a Hoeffding confidence bound, if πT pulls each arm a fixed number of times ⌈T ⌉ and outputs the
empirically largest arm, then we have

RMI(πT , ν) = P(∆̂⌈T⌉ < 0) + 2c ⌈T ⌉ ≤ exp

(
−T∆2

4σ2

)
+ 2c(T + 1)

Plugging in the proposed number of pulls, we get RMI(π∆, ν) ≤ 8σ2c
∆2 log

(
e∆2

8σ2c

)
+ 2c when

∆ ≥
√
8σ2c , and exactly RMI(π∆, ν) = 1/2 otherwise, as then the policy guesses the optimal

arm uniformly at random. Multiplying (3) by 32 and adding 2c then clearly upper bounds this
quantity.

Proof of Proposition 2. This proof proceeds nearly identically to the previous. Again fix a gap ∆ > 0,
and consider that we can write,

RSR(πT , ν) = ∆P(∆̂⌈T⌉ < 0) + 2c ⌈T ⌉ ≤ ∆exp

(
−T∆2

4σ2

)
+ 2c(T + 1)

Then, plugging in the proposed number of pulls, we getRSR(π
⋆, ν) ≤ 8σ2c

∆2 log
(

e∆3

8σ2c

)
+ 2c when

∆ ≥ (8σ2c)1/3 and exactlyRSR(π
⋆, ν) = ∆/2 otherwise, as then the policy guesses the optimal arm

uniformly at random. Multiplying (4) by 32 and adding 2c then clearly upper bounds this quantity.
Further, maximizing this upper bound in terms of ∆ (occurring at ∆ = (8

√
eσ2c)1/3) yields,

sup
ν∈M

RSR(π
⋆, ν) = sup

∆
sup

ν∈M∆

RSR(π
⋆, ν) ≤ 3

(
σ2c

e

)1/3

+ 2c = 8LB⋆
SR + 2c

D Upper Bounds for DBCARE

We begin by presenting a number of technical lemmas allowing us to control the behavior of DBCARE
and prove our desired upper bounds on its performance.
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Lemma 4 (Bound on total number of pulls). For any bandit instance ν , using N⋆(k) = (kec)−1

and N⋆(k) = (3/2e)σ2/3((k − 1)c)−2/3 , DBCARE satisfies,

Eν,π[τ ] ≤
2 log(K)

ec
, Eν,π[τ ] ≤

3 log(K)(Kσ2)1/3

2c2/3
,

respectively.

Proof. Let k̂ denote the index of the k-th arm eliminated by the algorithm. Then by construction,
Eν,π[Nk̂(τ)] ≤ N⋆(K − k + 1) . Further, Eν,π[NÎ(τ)] ≤ N⋆(2) . Thus,

Eν,π[τ ] =

K∑
a=1

Eν,π[Na(τ)] ≤ N⋆(2) +

K∑
k=2

N⋆(k)

Then, apply the fact that 1/2 +
∑K

k=2 k
−1 ≤ 2 log(K) and 1 +

∑K
k=2(k − 1)−2/3 ≤ eK1/3 log(K)

to prove the statements.

Lemma 5 (Elimination behavior). Consider a bandit instance ν satisfying, WLOG, µ1 ≥ µ2 ≥
· · · ≥ µK . Let n(t) be the epoch associated with time t . Define the good event,

G =
⋂

n(t)≤n(τ)

⋂
k∈S\{1}

{∆k ∈ (µ̂1(n(t))− µ̂k(n(t))− en(t), µ̂1(n(t))− µ̂k(n(t)) + en(t))} .

Then,

1. Pν,π(G
c) ≤ δ

2. On G , 1 ∈ S ∀ n(t) ≤ n(τ) (i.e. the optimal arm is never eliminated)

3. On G, if ∆k >
√

16σ2 log(KN⋆(k)/δ)
N⋆(k) for all k ≥ ℓ ∈ {2, . . . ,K} and N⋆ decreasing in k ,

Nk(τ) ≤
16σ2 log(KN⋆(k)/δ)

∆2
k

< N⋆(k) ∀ k ≥ ℓ

Proof.
Part 1. Letting Ya,s denote the s-th i.i.d. observation from arm a , by assumption, Y1,s − Yk,s are
√
2σ-sub-Gaussian random variables with mean ∆k . Thus,

√
4σ2 log(n/δ)

n is a δ-correct confidence

interval width for ∆k after n observations using ∆̂k,n = µ̂1(n)− µ̂k(n) as the point estimate [21, 30].
Replacing δ by δ/K and taking a union bound across all k ∈ S \ {1} then proves 1. Part 2. Consider
that on G , µ̂k(n) − µ̂1(n) ≤ en − ∆k ≤ en for all k ̸= 1 , which proves 2. Part 3. We begin
with arm K. By the supposition, on G , there exists n < N⋆(k) such that µ̂1(n)− µ̂K(n)− en ≥
∆K − 2en > 0 , and thus K /∈ S for all m > n . Further, we can upper bound the n at which
this is true by 16σ2 log(KN⋆(k)/δ)

∆2
k

by construction of en , and this quantity less than N⋆(K) by the
supposition. Then, because K /∈ S at time N⋆(K) , if N⋆ is decreasing in k , the algorithm will
not be forced to terminate at time N⋆(K) by number of epochs, only if all arms other than 1 have
already been eliminated, under which the statement would hold anyway. We can then use the same
construction for each k = K − 1, . . . , ℓ, proving 3.

Lemma 6 (Bound on probability of misidentification on the good event). For any bandit instance ν
satisfying µ1 ≥ µ2 ≥ · · · ≥ µK , and N⋆ decreasing in k, if M ∈ {2, . . . ,K} is the smallest value

such that for each k = M + 1, . . . ,K , ∆k >
√

16σ2 log(KN⋆(k)/δ)
N⋆(k) (if no ∆k satisfy this, M = K),

then Pν,π({Î = j} ∩G) = 0 if j > M and Pν,π({Î = j} ∩G) ≤ exp(−N⋆(M)∆2
j

4σ2 ) otherwise.

Proof. We begin with the case j > M . By Lemma 5, arm 1 is never eliminated by the algorithm
and arms j, j + 1, . . . ,K are eliminated before round N⋆(j). Then, on G, DBCARE only terminates
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because either S = {1} or n(τ) = N⋆(|S|) ≥ N⋆(j), making Pν,π({Î = j} ∩ G) = 0 . Now
consider j ≤M . Then,

Pν,π({Î = j} ∩G) = Pν,π({Î = j} ∩G ∩ {j ∈ S at τ}) + Pν,π({Î = j} ∩G ∩ {j /∈ S at τ})
= Pν,π({Î = j} ∩G ∩ {j ∈ S at τ})
= Pν,π({µ̂j(n(τ)) > µ̂1(n(τ))} ∩G ∩ {j ∈ S at τ})
≤ Pν,π({µ̂j(N

⋆(M)) > µ̂1(N
⋆(M))} ∩G ∩ {j ∈ S at τ})

= Pν,π

 1

N⋆(M)

N⋆(M)∑
n=1

(Yj,n − Y1,n) > 0

 ∩G ∩ {j ∈ S at τ}


≤ Pν,π

 1

N⋆(M)

N⋆(M)∑
n=1

(Yj,n − Y1,n) > 0


≤ exp

(
−
N⋆(M)∆2

j

4σ2

)

Lemma 7 (Bound on simple regret on the good event). For any bandit instance ν satisfying µ1 ≥
µ2 ≥ · · · ≥ µK , and N⋆ decreasing in k, if M ∈ {2, . . . ,K} is the smallest value such that for

each k = M + 1, . . . ,K , ∆k >
√

16σ2 log(KN⋆(k)/δ)
N⋆(k) (if no ∆k satisfy this, M = K), then,

Eν,π[(µ1 − µÎ)1G] ≤
√

4σ2

√
eN⋆(M)

Proof. We begin by relating the simple regret with the probability of misidentification by applying
Lemma 6,

Eν,π[(µ1 − µÎ)1G] =

K∑
i=2

∆k Pν,π({Î = k} ∩G)

≤
M∑
k=2

∆k Pν,π

(
k−1⋂
ℓ=1

{µ̂k(n(τ)) > µ̂ℓ(n(τ))} ∩G

)
Now, consider that for k > ℓ ≥ 2,Pν,π({µ̂k(n(τ)) > µ̂ℓ(n(τ))} ∩G) is maximized when µk = µℓ

and is equal to 1/2 when this is the case. Thus, again applying Lemma 6, we can write,

Eν,π[(µ1 − µÎ)1G] ≤ ∆2

M∑
k=2

Pν,π({µ̂2(n(τ)) > µ̂1(n(τ))} ∩G)

2k−1

≤ 2∆2 Pν,π({µ̂2(n(τ)) > µ̂1(n(τ))} ∩G)

≤ 2∆2 exp

(
−N⋆(M)∆2

2

4σ2

)
Maximizing in terms of ∆2 then proves the statement.

With this collection of technical lemmas providing control on the behavior of DBCARE, we are ready
to prove Theorems 2 and 4.

Proof of Theorem 2. We break this proof into two cases. First, consider problems of complexity
H ≤ (σ2c)−1 with µ1 ≥ µ2 ≥ · · · ≥ µK . Further, let M ∈ {1, . . . ,K} be the smallest value such
that for each k = M + 1, . . . ,K , ∆k >

√
16ekσ2c log(KN⋆(k)/δ) (if no ∆k satisfy this, M = K).

Then, by the definition of H , we can write

LBMI(H) =
σ2cH

4
log
( e

σ2cH

)
≥ M − 1

64eM log(KN⋆(M)/δ)
+

σ2c

4

K∑
k=M+1

1

∆2
k

(12)
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Now, if M ≥ 2, we apply Lemmas 4 and 5 to show the following:

Pν,π({Î ̸= 1} ∩G) + cEν,π[τ 1G] = Pν,π({Î ̸= 1} ∩G) + c

K∑
k=1

Eν,π[Nk(τ)1G]

≤ 1 +
2 log(M)

e
+ 16σ2c

K∑
k=M+1

log(KN⋆(k)/δ)

∆2
k

(13)

If, in fact, M = 1 , then combining the results of Lemmas 4, 5, and 6, we can write

Pν,π({Î ̸= 1} ∩G) + cEν,π[τ 1G] ≤ 16σ2c

K∑
k=M+1

log(KN⋆(k)/δ)

∆2
k

(14)

Then, multiplying (12) by 760 log(K) log(K log(K)/ec2) and adding Kc (to account for non-integer
pulls) then upper bounds both (13) and (14). Now, consider the case where H > (σ2c)−1. Then
LBMI(H) = 1/4. Directly applying Lemma 4 gives us for all H ,

Pν,π({Î ̸= 1} ∩G) + cEν,π[τ 1G] ≤ 1 +
2 log(K)

e
≤ 760 log(K) log

(
K log(K)

ec2

)(
1

4

)
Finally, consider that by our choice of δ , using Lemmas 4 and 5, regardless of the value of H , we
have

Pν,π(G
c)
(
Pν,π(Î ̸= 1 | Gc) + cEν,π[τ | Gc]

)
≤ δ

(
1 +

2 log(K)

e

)
≤ c

This then proves the statement.

Proof of Theorem 4. This proof largely mirrors that of 2. Again, first consider problems satisfying
H∆−1

2 ≤ (σ2c)−1 with µ1 ≥ µ2 ≥ · · · ≥ µK , and let M ∈ {1, . . . ,K} be the smallest value such
that for each k = M + 1, . . . ,K , ∆k >

√
(32e/3)((k − 1)σ2c)2/3 log(KN⋆(k)/δ) (if no ∆k satisfy

this, M = K). Then,

LBSR(H) ≥ 3(M − 1)1/3(σ2c)1/3

128e log(KN⋆(M)δ−1)
+

σ2c

4

K∑
k=M+1

1

∆2
k

(15)

If M ≥ 2, we apply Lemmas 4, 5, and 7 to show

Eν,π[(µ1 − µÎ)1G] + cEν,π[τ 1G] ≤
√

8
√
e

3
((M − 1)σ2c)

1/3 +
3 log(M)

2
(Mσ2c)

1/3

+ 16σ2c

K∑
k=2

log(KN⋆(k)δ−1)

∆2
k

(16)

Additionally, if M = 1, then,

Eν,π[(µ1 − µÎ)1G] + cEν,π[τ 1G] ≤ 32σ2c

K∑
k=2

log(KN⋆(k)δ−1)

∆2
k

(17)

Then, multiplying (15) by 575 log(K) log(K log(K)Bσ5/3c−4/3) upper bounds both (16) and (17).
Now, for the case where H∆−1

2 > (σ2c)−1 and for the worst-case comparison, we apply Lemmas 4
and 7 to show for all H ,

Eν,π[(µ1 − µÎ)1G] + cEν,π[τ 1G] ≤
√

8
√
e

3
((K − 1)σ2c)

1/3 +
3 log(K)

2
(Kσ2c)

1/3 (18)

We then have (18) upper bounded by 4 log(K)(Kσ2c)1/3, and LBSR(H) ≥ 0. We can also upper
bound (18) by 20 log(K)LB⋆

SR. Finally, we never incur more than an additional Kc risk due to
integer pulls, and by choice of δ,

Pν,π(G
c)
(
Eν,π(µ1 − µÎ | Gc) + cEν,π[τ | Gc]

)
≤ δ

(
B +

3c log(K)σ2/3

ec2/3

)
≤ c

which proves all statements.
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Now, despite our 2-arm results being corollaries of their more general K-arm counterparts, we are
able to provide tighter constants in Corollaries 2.1 and 4.1 by utilizing some more precise techniques
that are not generally applicable in the K-arm case. For both cases, we apply Lemma 5 in the 2-arm
case to identify a ∆⋆ such that, for all ∆ > ∆⋆, the algorithm is guaranteed to identify the optimal
arm before reaching N⋆ samples per arm on the good event G. We then show that we simply need to
find a multiplier which makes the lower bound larger than the upper bound at ∆⋆, and this multiplier
will work for all other ∆.

Proof of Corollary 2.1. We begin by using Lemma 5 to identify ∆⋆ =

√
32eσ2c log

(
e+1
(ec)2

)
, which,

combined with Lemma 6, allows us to write,

sup
ν∈M∆

RMI(π, ν) ≤ UBMI(∆) :=

exp
(
− ∆2

8eσ2c

)
+ 1

e + 3c , if ∆ ≤ ∆⋆

32σ2c log
(

e+1

(ec)2

)
∆2 + 3c , if ∆ > ∆⋆

(19)

where the additive 3c term is to account for integer pulls for each of the 2 arms and an additional c
bound for the expected risk on Gc. Clearly, for any a ≥ 128 log

(
e+1
(ec)2

)
, (19) is upper bounded by

aLBMI(∆) + 3c for all ∆ > ∆⋆. We then divide our analysis for the remaining ∆ into two cases:
when ∆ ≤

√
eσ2c and otherwise. First, when ∆ ≤

√
eσ2c,

UBMI(∆) ≤ e+ 1

e
+ 3c , LBMI(∆) ≥ 1

2e
,

and so UBMI(∆) ≤ 8LBMI(∆) for ∆ ≤
√
eσ2c. Finally, we must consider ∆ ∈ (

√
eσ2c,∆⋆]. We

begin by comparing (19) and (3) at ∆⋆, then we prove that this is sufficient. This gives us,

UBMI(∆
⋆) =

(
(ec)2

e+ 1

)4

+
1

e
+ 3c , LBMI(∆

⋆) =
log
(
32e2 log

(
e+1
(ec)2

))
128e log

(
e+1
(ec)2

)
Supposing c < 1/4,2 we can see that UBMI(∆

⋆) ≤ 128 log
(

e+1
(ec)2

)
LBMI(∆

⋆). Finally, we conclude

that this is sufficient to prove the statement by showing that 128 log
(

e+1
(ec)2

)
LBMI(∆)−UBMI(∆)

is decreasing for ∆ ∈ (
√
eσ2c,∆⋆]. We show this here:

∂

∂∆
aLBMI(∆)−UBMI(∆) = −aσ2c

2∆3
log

(
∆2

σ2c

)
+

∆

4eσ2c
exp

(
− ∆3

8eσ2c

)
≤ −aσ2c

2∆3
+

∆

4eσ2c

(
8eσ2c

∆2

)2

= −aσ2c

2∆3
+

16eσ2c

∆3
,

which is < 0 when a > 32e , which is true for a = 128 log
(

e+1
(ec)2

)
. Thus, we have proven ∀ ∆,

128 log

(
e+ 1

(ec)2

)
LBMI(∆) ≥ UBMI(∆) ≥ sup

ν∈M∆

RMI(π, ν)

Proof of Corollary 4.1. We follow the same general proof strategy as in the previous proof. We again
apply Lemma 5 to identify ∆⋆ = (σ2c)1/3

√
(8e)/3 log(2N

⋆
/δ) and combine it with Lemma 6 to write,

sup
ν∈M∆

RSR(π, ν) ≤ UBSR(∆) :=

{
∆exp

(
− 3∆2

8e(σ2c)2/3

)
+ 3

e (σ
2c)1/3 + 3c , if ∆ ≤ ∆⋆

32σ2c log(2N⋆/δ)
∆2 + 3c , if ∆ > ∆⋆

(20)

2Previously, we have not put any restriction on the value of c, but we have implicitly assumed c ≪ 1 by the
construction of our problem setting. Consider that, under RMI, if c ≥ 1/4, one will perform uniformly best on
all instances by simply guessing the optimal arm uniformly at random. We do not explicitly account for this
behavior in our algorithm construction for simplicity, but it is unrealistic to let c ≥ 1/4 in practical settings.
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First, when ∆ < (σ2c)1/3, clearly UBSR(∆) ≤ 4LBMI(∆) + 2(σ2c)1/3 + 3c by (20). Then, noting
that 3Bσ

4/3

c5/3
≥ 2N⋆

δ , we can clearly see that UBSR(∆) ≤ 128 log
(

3Bσ
4/3

c5/3

)
LBSR(∆) + 3c for

∆ > ∆⋆. To prove this same bound for ∆ ∈ [(σ2c)1/3,∆⋆], we follow the same technique as in the
previous proof. First, when ∆ ∈ [(σ2c)1/3, (

√
eσ2c)1/3],

UBSR(∆) ≤ (σ2c)
1/3

[
exp

(
1

6
− 3

8e2/3

)
+

3

e

]
+ 3c , LBSR(∆) ≥ (σ2c)1/3

4
,

and thus UBSR(∆) ≤ 9LBSR(∆) + 3c for ∆ ∈ [(σ2c)1/3, (
√
eσ2c)1/3]. To prove the bound for

∆ ∈ ((
√
eσ2c)1/3,∆⋆], we again compare the two at ∆⋆ and then show that the difference between

the functions is decreasing in this range of ∆, and thus this is sufficient. At ∆⋆, we have,

UBSR(∆
⋆) =

(σ2c)1/3
√

32
3e log(

2N⋆
/δ)

(2N
⋆
/δ)4

+
3

e
(σ2c)

1/3 + 3c ≤ 5

e
(σ2c)

1/3 + 3c

LBSR(∆
⋆) =

3(σ2c)1/3

128e log(2N
⋆
/δ)

log

(
32e5/2

33/2
log

3/2(2N
⋆
/δ)

)
≥ 9(σ2c)1/3

128e log(2N
⋆
/δ)

Thus, we have UBSR(∆
⋆) ≤ 128 log

(
3Bσ

4/3

c5/3

)
LBSR(∆

⋆)+3c. We then conclude this portion of the

proof by showing 128 log
(

3Bσ
4/3

c5/3

)
LBSR(∆)−UBSR(∆) is decreasing for ∆ ∈ ((

√
eσ2c)1/3,∆⋆].

We show this here:

∂

∂∆
aLBSR(∆)−UBSR(∆) = −aσ2c

4∆3
log

(
∆6

e(σ2c)2

)
− exp

(
− 3∆2

8e(σ2c)2/3

)(
1− 3∆2

4e(σ2c)2/3

)
This is < 0 for any a ≥ 0 when ∆ ∈ ((

√
eσ2c)1/3,

√
4e/3(σ2c)1/3). When ∆ ∈ [

√
4e/3(σ2c)1/3,∆⋆],

∂

∂∆
aLBSR(∆)−UBSR(∆) ≤ −aσ2c

2∆3
+

3∆2

4e(σ2c)2/3

(
8e(σ2c)2/3

3∆2

)5/2

= −aσ2c

2∆3
+

σ2c

4∆3

(
8
5/2
(e
3

)3/2
)

,

which is < 0 for any a > 78, and in particular, a = 128 log
(

3Bσ
4/3

c5/3

)
. Now, all that is left to

prove is the worst-case comparison with LB⋆
SR. We can show this simply by considering that (20) is

maximized at ∆ =
√

4e/3(σ2c)1/3 , where it takes value (
√

4/3 + 3/e)(σ2c)1/3 + 3c, which is clearly
upper bounded by 9LB⋆

SR + 3c.

E Additional Experiments

Here we provide additional K-arm experiments. All experiments were performed using a 3.7GHz
AMD Ryzen 9 5900X 12-Core processor with 24 GB of memory. Total runtime across all experi-
ments took approximately 7.5 hours, and safeguards were employed to prevent the fixed confidence
algorithms from continuing to sample after already severely underperforming the other methods when
the sub-optimality gaps were particularly small (10/c total samples allowed).

K-arm simulations. We now include a number of additional K-arm experiments to demonstrate that
our algorithm continues to perform well compared to traditional fixed budget and confidence methods
when we move beyond the simple 2-arm case. For all of our K-arm experiments, we choose to use
Gaussian arms with σ2 = 1 for simplicity. We begin with the “1-sparse” setting, where µ1 = ∆
and µk = 0 for all k ̸= 1, resulting in H = (K − 1)∆−2, for ∆ ∈ [0.05, 2] for the probability of
misidentification performance penalty and ∆ ∈ [0.05, 3] for the simple regret performance penalty.
We additionally vary K among 8, 16, and 32. For these experiments, we average across 104 runs
each with different random seeds. As in § 4, we compare to Sequential Halving [28] for fixed budget
and we use an elimination, or “racing,” procedure for fixed confidence, with confidence bounds√
4σ2n−1 log(Knδ−1) . To extend to the K-arm case, our “low” budget is now 5K, and our “high”

budget is 250K, which align with our choices of 10 and 500 in the 2-arm case. We still use δ = 0.1
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Figure 4: Comparisons between DBCARE and fixed budget and confidence algorithms forRMI and
RSR in the K-arm 1-sparse setting. Y -axes are adjusted per setting to highlight problem-specific
behavior. Confidence regions represent empirical average risk ± 2 SE.

and δ = 0.01 for our confidences. As we can see in Fig 4, in the 1-sparse setting, DBCARE still
enjoys uniformly good performance across the full range of ∆, while the fixed budget and confidence
approaches have some region where they perform sub-optimally.

To explore the performance of DBCARE and fixed confidence and budget approaches across a variety
of problem structures, we additionally considered the “linear decay” setting, where we set µ1 = ∆2

and µk = −∆2(
k−2
K−2 ) for k ̸= 1 so that the suboptimality gaps linearly increase from ∆2 to 2∆2.

This results in H ≈ 0.5K∆−2
2 . We again let ∆2 ∈ [0.05, 2] for RMI and ∆2 ∈ [0.05, 3] for RSR,

average across 104 runs each with a different random seed, and vary K among 8, 16, and 32. As
we can see in Fig 5, this setting provides similar results to the 1-sparse and 2-arm settings, with
DBCARE performing well across the range of ∆2 values, while the other methods generally perform
sub-optimally for some ∆2 values.
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Figure 5: Comparisons between DBCARE and fixed budget and confidence algorithms forRMI and
RSR in the K-arm linear decay setting. Y -axes are adjusted per setting to highlight problem-specific
behavior. Confidence regions represent empirical average risk ± 2 SE.
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