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Figure 1: (a) Using Binary Cross-Entropy (BCE, col. 3) instead of Cross-Entropy (CE, col. 2) to
train linear probes on identical backbones significantly increases the class-specificity of explana-
tions. (b) Non-linear probes better extract class-specific features from pretrained representations:
moving from a linear to a 3-layer BCE probe noticeably improves class localization. These critical
findings are observed across a wide range of pre-training and attribution methods. Here, we show
B-cos (Böhle et al., 2022) explanations for a model pre-trained using DINO (Caron et al., 2021).

ABSTRACT

Post-hoc importance attribution methods are a popular tool for “explaining” Deep
Neural Networks (DNNs) and are inherently based on the assumption that the ex-
planations can be applied independently of how the models were trained. Con-
trarily, in this work we bring forward empirical evidence that challenges this
very notion. Surprisingly, we discover a strong dependency on and demonstrate
that the training details of a pre-trained model’s classification layer (<10% of
model parameters) play a crucial role, much more than the pre-training scheme
itself. This is of high practical relevance: (1) as techniques for pre-training
models are becoming increasingly diverse, understanding the interplay between
these techniques and attribution methods is critical; (2) it sheds light on an im-
portant yet overlooked assumption of post-hoc attribution methods which can
drastically impact model explanations and how they are interpreted eventually.
With this finding we also present simple yet effective adjustments to the clas-
sification layers, that can significantly enhance the quality of model explana-
tions. We validate our findings across several visual pre-training frameworks
(fully-supervised, self-supervised, contrastive vision-language training) and an-
alyze how they impact explanations for a wide range of attribution methods on a
diverse set of evaluation metrics. Code to reproduce all experiments: https:
//anonymous.4open.science/r/how-to-probe-iclr/

1 INTRODUCTION

Most prominently in image classification models, importance attribution methods have emerged as
a popular approach to mitigate the ‘black box’ problem of modern Deep Neural Networks (DNNs)
(Samek et al., 2021). These methods assign importance values to input features, such as image
pixels, to help humans understand why a DNN arrived at a particular classification decision.

While most attribution methods do not take the model training into account (are applied “post-
hoc”), given the recent emergence of increasingly diverse pre-training paradigms for representation
learning (Chen et al., 2020a;b; He et al., 2019; Chen et al., 2020c; Grill et al., 2020; Caron et al.,
2021; Chen & He, 2020; Caron et al., 2020; Bachman et al., 2019; Bardes et al., 2022; Radford
et al., 2021) and the popularity of importance attribution methods (Bach et al., 2015; Selvaraju et al.,
2017; Böhle et al., 2022; Shrikumar et al., 2017) to examine model decisions, a better understanding
of the interplay between model explanations and training details is of great practical importance.

In this work, we present an important finding that raises questions about the underlying assumptions
of post-hoc attribution methods and their utility on downstream tasks. In particular, we find that
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Figure 2: Impact of Loss (BCE vs. CE). (a) EPG Scores, and (b) Pixel Deletion scores for Bcos
and LRP attributions for a linear probe when trained on frozen pre-trained features (DINO in this
case). We find that BCE probes lead to more localized and stable attributions, thus higlighting
the significant impact of the loss function on well-established attribution methods. Interestingly,
despite the fact that the models differ only by a single classification layer, the attributions show
stark differences in commonly used metrics for evaluating their quality.

the quality of attributions for pre-trained models can be highly dependent on how the classification
head (i.e. the ‘probe’) is trained, even if the model backbone remains frozen. For example, in figure
Figure 2a we show that the localization scores of B-cos (Böhle et al., 2022) and LRP (Bach et al.,
2015) attributions significantly differ depending on which loss (BCE / CE) is used, with consistent
improvements under the BCE loss; this can also be observed qualitatively, see Figure 1a. Similar
improvements can also be seen under the commonly used pixel deletion paradigm for evaluating
attribution methods ( Figure 2b), despite the fact that the two models only differ by a single linear
layer and the linear probes themselves have limited modeling capacity (see discussion Appendix B).

Importantly, we find these effects to be robust across several pre-training paradigms and attribution
methods on downstream classification tasks. Specifically, we conduct a thorough evaluation of
the resulting explanations on a wide range of common interpretability metrics, that include object
localization (Zhang et al., 2018; Samek et al., 2016; Wang et al., 2020), pixel deletion (Samek
et al., 2017; Hedström et al., 2024), compactness (Chalasani et al., 2018) and complexity (Tseng
et al., 2020) measures. By this we demonstrate empirically that training the probes via the binary
cross-entropy (BCE) loss, as opposed to the conventionally used cross-entropy (CE) loss, leads
to consistent and significant gains across several interpretability metrics, which thus might have
important implications for many DNN-based applications.

To further study the impact of the probes, we investigate the interplay between the probe’s com-
plexity and the properties of the resulting explanations. Interestingly, we find that more complex
(i.e. multi-layer) probes can better distill class-specific features from the pre-trained representations
and thus significantly increase the localization performance (cf. Figure 1b), in particular when using
interpretable B-cos Multi-Layer Perceptrons (MLPs) (Böhle et al., 2023).

In short, we make the following contributions: (1) We identify and analyze a critical yet overlooked
problem of importance attribution methods, namely that how models are trained can significantly
impact the resulting attributions. (2) We show both quantitatively and qualitatively that even when
models differ only in their linear probe, explanations can dramatically differ based on the objective
used to train the probe on downstream tasks; in particular, we find that using BCE instead of CE leads
to significantly improved explanations when evaluated on a diverse set of interpretability metrics. (3)
We demonstrate that our findings are independent of how the visual encoder is trained by conducting
a detailed study across supervised, self-supervised (MoCov2 (He et al., 2019), DINO (Caron et al.,
2021), BYOL (Grill et al., 2020)), and vision-language-based learning (CLIP, (Radford et al., 2021)).
For this, we use diverse explanation methods (LRP (Bach et al., 2015), IntGrad (Sundararajan et al.,
2017), B-cos (Böhle et al., 2022), Input×Gradients (Shrikumar et al., 2017), GradCAM (Selvaraju
et al., 2017), LIME (Ribeiro et al., 2016)) and assess the quality of the resulting explanations on
multiple datasets (ImageNet (Russakovsky et al., 2015), VOC (Everingham et al.), and COCO (Lin
et al., 2014)). (4) Furthermore, we find that non-linear B-cos MLP probes further boost downstream
performance and ‘class-specific’ localization ability of attribution methods across pre-trained back-
bones. (5) We also show for the first time that the inherently interpretable B-cos (Böhle et al., 2022)
models are compatible with SSL approaches, preserving both their performance and interpretability.

Our findings uncover a new crucial aspect of explainable artificial intelligence (XAI) that should be
considered when using existing attribution methods or developing new ones in the future.
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2 RELATED WORK

Importance Attributions. To understand deep neural networks (DNNs), several post-hoc attri-
bution methods (Selvaraju et al., 2017; Chattopadhay et al., 2018; Bach et al., 2015; Jiang et al.,
2021; Wang et al., 2020; Desai & Ramaswamy, 2020; Petsiuk et al., 2018; Shrikumar et al., 2017;
Sundararajan et al., 2017; Rao et al., 2022; Simonyan et al., 2013; Teney et al., 2020; Fong &
Vedaldi, 2017; Zeiler & Fergus, 2014; Ribeiro et al., 2016; Springenberg et al., 2015; Dabkowski &
Gal, 2017), as well as inherently interpretable models (Chen et al., 2019; Brendel & Bethge, 2019;
Böhle et al., 2021; 2022) have been developed. The attribution (or explanation) map summarizes
the DNN computation and assigns importance values to the pixels that the model has used to make
a decision. Such attribution methods can be broadly classified into the following categories: (1)
backpropagation-based (Bach et al., 2015; Sundararajan et al., 2017; Shrikumar et al., 2017; Sprin-
genberg et al., 2015) that rely on gradients computed either with respect to the input or intermediate
layers, (2) perturbation-based (Ribeiro et al., 2016; Petsiuk et al., 2018) that assign importance by
noting the change in output on perturbing the input while treating the network as a ‘black-box’, (3)
activation-based (Selvaraju et al., 2017; Jiang et al., 2021; Wang et al., 2020; Desai & Ramaswamy,
2020) that leverage the weights of activation maps across different layers to assign importance val-
ues to the input, and (4) inherently interpretable models (Chen et al., 2019; Brendel & Bethge, 2019;
Böhle et al., 2021; 2022) that have been architecturally designed to be more interpretable.

In this work, we present surprising empirical evidence that shows that both ‘post-hoc’ and inherently
interpretable explanation methods highly depend on the weights of the last classification layer, such
as the linear probe for self-supervised methods.

Evaluating Importance Attributions. Recent work has studied important properties of such ex-
planation methods, like faithfulness (Adebayo et al., 2018; Hooker et al., 2019; Srinivas & Fleuret,
2018; Rao et al., 2022), robustness to adversarial attacks (Ghorbani et al., 2019; Slack et al., 2020;
Dombrowski et al., 2019) and fairness (Dai et al., 2022). In contrast to this, we focus on another
important dimension—the sensitivity of explanations to the model training, which has thus far not
been systematically studied. And although a dependence on the training has been reported in a few
instances (Caron et al., 2021; Tsipras et al., 2019; Böhle et al., 2023), these are mostly limited to
single explanation methods and pre-training paradigms. Moreover, while explanation methods are
often developed and evaluated in the context of supervised models, the pre-training paradigms even
for classification models have become increasingly diverse. Given the fact that many explanations
are applied ‘post hoc’, it is important to understand whether and to what degree they yield consistent
results independent of the pre-training paradigm.

To address this, we systematically study a wide range of explanation methods across a variety of pre-
trained backbones and find that the results are consistent across explanation methods, suggesting that
our conclusions are not an artifact of a particular explanation method or backbone combination.

Non-linear Probes. He et al. (2022) argue that linear probes cannot disentangle non-linear
representations, and show improved accuracy by fine-tuning multiple-layers of pre-trained models.
Li et al. (2023) propose to dynamically choose the complexity of a ‘readout’ (i.e. probing)
module to increase performance. Similarly, we also find non-linear probes to consistently improve
classification accuracy. In contrast to these works, we use interpretable MLPs that lead to both
improved accuracy and quality of explanations.

3 INTERPRETABLE PROBING OF PRE-TRAINED REPRESENTATIONS

To test the generality of our findings and isolate the impact of pre-training, we evaluate model ex-
planations across a broad range of pre-training paradigms, with a specific focus on commonly used
self-supervised representation learning methods. Linear probing of pre-trained models is a widely
adopted approach to evaluate the learned representations on downstream tasks, making it very rel-
evant to understand how to obtain effective explanations for combined models (backbone + probe).

3.1 SETUP

To holistically evaluate explanations methods, we utilize a diverse suite of interpretability metrics
described below. Note, however, that in contrast to fully supervised models, where output neurons
are optimized to represent specific classes, this is not the case for self-supervised models.
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Figure 3: Setup: Step 1. Linear or MLP probes h are trained on frozen pre-trained models f . Step 2.
Explanation methods are applied to the classification predictions of the trained probes, and evaluated
across a wide array of interpretability metrics to assess explanation quality (e.g. localization).
To nonetheless compare the explanations obtained from various pre-trained model backbones,
we propose the following experimental setting: (1) we pre-train the models based on various
pre-training paradigms and freeze the model parameters; (2) we train linear and non-linear
classifiers (probes) on those frozen features for downstream image classification; (3) we apply
attribution methods to the classification predictions of the trained probes and evaluate the quality of
the generated explanations (see Figure 3).

This allows us to compare all pre-trained backbones in a standardized setting and to leverage existing
evaluation metrics that were developed in the context of explaining classification models (see below).
Further, by freezing the backbone features, we are able to isolate the impact of the pre-training
paradigm. Finally, note that with a linear probe, the classification output is the result of simply a
linear combination of the backbone representations. For most attribution methods (e.g. LRP, B-cos,
LIME, IxG, and IntGrad, see Section 4.2), the resulting importance attributions, in turn, are also
just a linear superposition of the attributions that would be obtained for individual neurons in the
backbones’ representations, and therefore a direct reflection of the backbones’ interpretability itself.

Evaluation metrics. To assess the class-specificity of model explanations, we follow prior work
and measure the fraction of positive contributions AR

i that fall within a pre-specified region R of a
given image vs. the total amount of positive contributions ΣAi. The score si for each image i is thus
given by si = AR

i /ΣAi. We discuss the motivation for our metric selection in Appendix A.

For single-label classification (ImageNet (Russakovsky et al., 2015)), we employ the grid pointing
game (GridPG) (Böhle et al., 2021; 2022; Zhang et al., 2018; Samek et al., 2016). Here, the trained
models are evaluated on a synthetic grid of images of distinct classes and for each of the class logits
the region R is given by its respective position in the synthetic image grid, see also Figure 4.

For multi-label classification (VOC (Everingham et al.), COCO (Lin et al., 2014)), we rely on the
bounding box annotations provided in the datasets and use the energy pointing game (EPG) (Wang
et al., 2020). I.e., the region R corresponds to the bounding boxes of the class for which the expla-
nations are computed. The ImageNet validation set also includes bounding box annotations, which
we use to additionally report the EPG score on this dataset. We report both the GridPG and EPG
scores in percentages, with higher scores indicating better localization.

We further analyze the explanations using the pixel deletion method (Samek et al., 2017; Hedström
et al., 2024), and also evaluate their compactness (Gini index p.p. as in (Chalasani et al., 2018)) and
complexity (entropy as in (Tseng et al., 2020)), thus ensuring a comprehensive evaluation setting.

3.2 THE IMPACT OF THE PROBES’ TRAINING OBJECTIVE

As discussed in the previous section, we train linear probes on the frozen, pre-trained representa-
tions, to apply common explanation methods and metrics.

Following prior work (Caron et al., 2021; Grill et al., 2020; Chen et al., 2020c;a;b; He et al., 2022),
we optimize these probes via the cross-entropy (CE) loss LCE,i for image i, which is given by

LCE,i = −
∑
c

log
exp (ŷc,i)∑
k exp (ŷk,i)

× tc,i . (1)

Here, ŷc,i denotes the probe’s output logit for class c and input i, and tc,i the respective one-hot en-
coded label. Interestingly, in our experiments we noticed that the explanations of the predicted class
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Figure 4: Due to the shift-invariance of softmax, one cannot expect positive and negative attribu-
tions to be well calibrated, which can lead to unintuitive model explanations, see also Equation (3).
Specifically, one can easily define equivalent linear probes (Probe 1,2) that achieve the same CE
loss, but visually dissimilar explanations and GridPG scores (65.7% vs. 11.9%). Col. 2+3 show
LRP Bach et al. (2015) attributions for two equivalent probes explaining the same class (bighorn).
To obtain more interpretable post-hoc explanations, we therefore propose to train linear probes with
the BCE loss, cf. Section 3.2.

for CE-trained linear probes were highly distributed and failed to localize the class objects effec-
tively (see Figure 1a). We hypothesize that this could be due to the shift-invariance of the CE loss.

Softmax Shift-Invariance Issue. To understand this, note that the CE loss is invariant to adding a
shift δ to all output logits, as long as this shift is the same for all classes (Srinivas & Fleuret, 2021);
in fact, this shift can even be specific to image i (see Figure 4):

exp (ŷc,i + δi)∑
k exp (ŷk,i + δi)

=
exp (ŷc,i) exp (δi)∑
k exp (ŷk,i) exp (δi)

=
exp (ŷc,i)∑
k exp (ŷk,i)

. (2)

Importantly, note that such an image-specific shift can be obtained by shifting the probes’ weight
vectors wk for all classes k by a fixed vector w′

k=wk+∆w:

exp
(
w′T

c ai

)
∑

k exp
(
w′T

k ai
) =

exp
(
wT

c ai +∆wTai
)∑

k exp(w
T
k ai︸ ︷︷ ︸
ŷk,i

+∆wTai︸ ︷︷ ︸
δi

)
=

exp (ŷc,i + δi)∑
k exp (ŷk,i + δi)

(3)

Here, ai denotes the backbones’ frozen input representation. As can be seen from Equations (2)
and (3), there are an infinite number of linear probes which achieve the same loss and are thus
indistinguishable as far as the optimization is concerned.

As most attribution methods, in some form or another, rely on the models’ weights to compute
the importance attributions, this reliance can have a crucial impact on the resulting explanations,
as we show in Figure 4. Specifically, we show the attributions derived via layer-wise relevance
propagation (Bach et al., 2015) for two functionally equivalent probes. While the probes give the
same predictions and achieve the same loss for every input x by design, they yield vastly different
importance attribution maps (cf. Sundararajan et al. (2017)). This, in turn, results in very different
GridPG scores (65.7% vs. 11.9%).

Since both probes are equivalent under CE-based optimization, it cannot be expected that for
CE-trained probes the attributions are calibrated such that ‘positive’ attributions will be class-
specific. Therefore, we additionally evaluate BCE-based probes, which do not exhibit the same
shift invariance as CE models.

BCE Probing. The BCE objective has recently been shown to perform well for image classification
(Wightman et al., 2021; Böhle et al., 2023); in detail, the BCE loss is given by

LBCE,i = −
∑
c

tc,i log (σ (ŷc,i)) + (1− tc,i) log (1− σ (ŷc,i)) , (4)

with σ denoting the sigmoid function. Importantly, in contrast to the CE loss, the BCE loss is not
shift-invariant. Specifically, note that for BCE, the linear probe is penalized for adding a con-
stant positive shift to non-target classes and thus biased towards focusing on class-specific features.
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We therefore expect it to result in better calibrated explanations, which is indeed what we observe:
specifically, as we show in Section 5.1, BCE probes exhibit a significantly higher degree of class-
specificity and lend themselves better for localizing class objects. They also lead to more stable pre-
dictions under the pixel deletion evaluation, as well as more compact and less complex explanations.

3.3 NON-LINEAR PROBING WITH INTERPRETABLE MLPS

In addition to the impact of the probes’ loss function on the explanations (Section 3.2), here we
discuss the interplay between classifier’s complexity and the resulting explanations.

In particular, we note that features computed by self-supervised (Chen et al., 2020c; Grill et al.,
2020; Caron et al., 2021) or vision-language backbones (Radford et al., 2021) are not necessarily
optimized to be linearly separable with respect to the classes of any arbitrary downstream task (He
et al., 2022). We posit that this lack of linear separability might further diminish the localization abil-
ity of explanation methods, as different classes may share certain features in the frozen feature rep-
resentations of pre-trained backbones that are not trained with full supervision. To address this, prior
work (Li et al., 2023; Hewitt & Liang, 2019) investigates using non-linear probes, which have been
shown to result in improved downstream performance. However, this might come at a cost to model
interpretability, as it has been shown (Rao et al., 2022) that explanation methods like GradCAM (Sel-
varaju et al., 2017), perform significantly worse at earlier layers than at the last layer of a DNN.

MLP Probes. To mitigate this, we propose to use an interpretable Multi-Layer Perceptron (MLP)
probing technique to improve model accuracy and explanation quality. Specifically, we also train
more complex probes on the frozen features, namely two-layer and three-layer conventional and
B-cos (Böhle et al., 2022) MLPs and evaluate how this impacts the explanations’ class-specificity.

A conventional fully connected MLP f (x; θ) with L layers is given by:

f(x; θ) = lL ◦ lL−1 ◦ . . . ◦ l2 ◦ l1(x) (5)

where lj denotes a linear layer j with parameters Wj , and θ is the set of all parameters within the
MLP. For a given input al to layer l, the output is computed as: ll(al;Wl) = ϕ(WT

l al), with ϕ a
non-linear activation function (e.g. ReLU).

Instead of computing their outputs as a ReLU-activated linear transformation, the B-cos layers l∗l
employ the B-cos transformation, which is given by:

B-cos layer l∗l (al;Wl) = |c(al;Wl)|B−1 ⊙Wl al , (6)

Here, ⊙ is row-wise multiplication, i.e. all rows of Wl are scaled by the scalar entries of the vector
to its left and c computes the cosine similarity between the input vector al and each row of Wl.

Böhle et al. (2022) showed that the additional cosine factor in Equation (6) induces increased
weight-input alignment during optimization, which significantly increase the localization perfor-
mance of a linear summary of the B-cos models. Interestingly, we show in Section 5.2, using B-cos
MLP probes on conventional backbones can also improve the localization of post-hoc explanations.

4 EXPERIMENTAL SCOPE

In the following section, we outline our experimental scope, and discuss the pre-training (Sec-
tion 4.1) and explanation methods (Section 4.2) that we evaluate.

4.1 PRE-TRAINING FRAMEWORKS

We aim to have a broad enough representative set that highlights how our evaluation generalizes
across differently trained feature extractors, particularly (1) fully-supervised, (2) self-supervised,
and (3) contrastive vision-language learning.

(1) Fully-Supervised Learning First, we evaluate the explanation methods on fully supervised
backbones. On the one hand, backbones pre-trained in a supervised manner are still often used for
transfer learning (Cheng et al., 2022; Xie et al., 2021; Chen et al., 2017). On the other hand, an
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evaluation of fully supervised models also provides a useful reference value, as most explanation
methods have been developed in this context.

In addition to evaluating the end-to-end trained classifiers, we also evaluate linear probes on the
frozen representations of these models, in order to increase the comparability to the self-supervised
approaches we present in the following.

(2) Self-Supervised Learning. We consider three popular self-supervised pre-training frameworks:
MoCov2 (Chen et al., 2020c), BYOL (Grill et al., 2020), and DINO (Caron et al., 2021).

(3) Vision-Language Learning. For this we use the multi-modal CLIP (Radford et al., 2021), that
is pre-trained on a large-scale dataset comprising of image-text pairs.

To summarize, we evaluate across a broad spectrum of pre-training mechanisms: a contrastive,
two self-distillation-based, and a multi-modal pre-training paradigm, which cover some of the most
popular approaches to self-supervised learning. We contrast our evaluations with fully-supervised
trained models (for more details refer to Appendix F.3).

4.2 EXPLANATION METHODS

To evaluate model interpretability, we apply explanation methods to the classification predictions of
the probes trained on the frozen features (cf. Figure 3 and Section 3.1). In the following, we provide
a short overview on the explanation methods.

Input×Gradient (Shrikumar et al., 2017) is a backpropagation-based attribution method that in-
volves taking the element-wise product of the input and the gradient. For a given model f(x; θ) and
input x, it is denoted by x⊙ ∂f(x;θ)

∂x .

Integrated Gradients (Sundararajan et al., 2017) follows an axiomatic method and is formulated
as the integral of gradients over a straight line path from a baseline input x′ to the given input x.
IntGrad for an input x is equal to (x− x′)×

∫ 1

0
∂f(x′+α(x−x′))

∂x ∂α.

Layer-wise Relevance Propagation (Bach et al., 2015) generates attribution maps by propagating
relevance scores backwards through the network, thus decomposing the model prediction into con-
tributions from individual input features. Many relevance-propagation rules exist, in this work we
focus on the EpsilonGammaBox composite because it has been shown to work particularly well
in (Montavon et al., 2019; Rao et al., 2023a).

GradCAM (Selvaraju et al., 2017) is an activation based explanation method, that generates attri-
butions corresponding to the gradient of the class logit with respect to the feature map of the last
convolutional layer of a DNN.

LIME (Ribeiro et al., 2016) samples perturbed versions of the input of interest and observes the
changes in predictions. A linear model is fit to these perturbed instances to provide local explana-
tions for a model’s decision.

B-cos (Böhle et al., 2022) are attributions generated by the inherently interpretable B-cos networks.
Essentially, the attribution map is computed by an element-wise product of the dynamic weights with
the input that faithfully encapsulates the contribution of each pixel to a given class c: (WT

c (x)⊙x).

In short, we evaluate a wide range of attribution methods, including gradient-based, activation-
based, perturbation-based post-hoc explanations, as well as the inherent model explanations of the
recently proposed B-cos models.

For exact implementation details on datasets, models, pre-training please see Appendix F.

5 RESULTS

We now discuss our experimental findings. Specifically, we analyze the impact of the probes’ opti-
mization objective (Section 5.1) and the probe complexity (Section 5.2) on the model explanations.
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Figure 5: BCE vs. CE — Accuracy and GridPG scores on ImageNet. GridPG scores improve
significantly when the linear probe is trained with binary cross entropy (BCE) loss as compared to
cross entropy (CE) loss, and this is consistent across pre-training paradigms, as well as for B-cos
models (top row) and conventional models (bottom row). Additional XAI methods in Appendix.

5.1 IMPACT OF BCE VS. CE

In the following, we evaluate the impact of the optimization objective of the linear probes on their
accuracy and on the explanations. To assess the quality of the explanations, we report results on the
metrics discussed previously in Section 3.1.

Localization. In Figure 5, we plot the linear probe accuracy versus the GridPG scores for MoCov2
(red), BYOL (green), DINO (blue), CLIP (yellow) and supervised (black) models for B-cos/LRP
(col. 1), IntGrad (col. 2) and LIME (col. 3) on ImageNet. We do so for linear probes trained via
BCE (filled markers) and CE (hollow markers) for conventional (row 2) and B-cos (row 1) models.

We find significant gains in the explanations’ localization for all approaches, models, and expla-
nations when using the BCE loss instead of the commonly used CE loss. E.g., for conventional
models explained via LRP (Figure 5, col. 1, row 2), the GridPG score for CLIP improves by 32p.p.
(19%→51%), MoCov2 improves by 30p.p. (50%→80%), for BYOL by 18p.p. (48%→66%), and
for DINO even by 40p.p. (52%→92%).

Similarly, the GridPG score for B-cos explanations also significantly increases (Figure 5, col. 1, row
1): for MoCov2, it improves by 33p.p. (48%→81%), for BYOL by 28p.p. (43%→71%), and for
DINO by 37p.p. (43%→80%).

Interestingly, I×G and GradCAM (see appendix) only show consistent improvements for B-cos
models. For I×G, this is in line with prior work, as model gradients for conventional models are
known to suffer from ‘shattered gradients’ (cf. (Balduzzi et al., 2017)).

Notably, the observed improvements in localization lead to significant qualitative improvements
regarding the class-specificity of the explanations, see Figure 6 (left). The B-cos attributions in
Figure 6 (left) for probes trained with the BCE loss (top row) are much more localized as compared
to the probes trained with CE loss (bottom row). We see this behavior is consistent across all pre-
training approaches; for results on additional explanation methods, please see the appendix. To also
compare with supervised models qualitatively, in Figure 6 (right) we show B-cos explanations for
DINO (cols. 2+3) and supervised models (cols. 4+5). We find both explanations to visually look
similar, and to follow a similar trend when trained using either CE (cols. 2+4) or BCE (cols. 3+5).
For BCE, the model attributions are better localized for both types of training.

In Figure 2a similar improvements are seen for the EPG metric (on ImageNet) when using BCE
probes for B-cos and LRP attributions. We specifically see a greater improvement on smaller
bounding boxes thus highlighting the ability for improved localization as compared to CE probes.

Pixel Deletion. Under the pixel deletion setup, in fig. 2b we observe the BCE probes to lead to more
stable predictions when least important pixels are successively removed. This is consistent across
majority of the pre-training methods as well as attribution methods (see Appendix for more details).
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Figure 6: (a) BCE vs. CE. The B-cos attributions for a linear probe trained with CE loss (bottom
row) leak into nearby cells in the 2x2 GridPG evaluation setting. The attributions for linear probes
trained with a BCE loss (top row) are consistently much more localized. (b) SSL vs Super-
vised. The B-cos attributions for DINO (cols. 2+3) are visually very similar to supervised models
(cols. 4+5), despite being optimized very differently, thus highlighting the importance of the training
objective of the linear probe.

Figure 7: Qualitative results of MLP probes on ImageNet. We find that explanations for B-cos
MLPs trained on the DINO features exhibit better localization than a linear probe. For other pre-
training and explanation methods, see Appendix.

Complexity and Compactness. Table E1 demonstrates a consistent improvement in compactness
(Gini index p.p.) and reduction in complexity (entropy) for BCE vs. CE, except for I×G and Grad-
CAM in the case of conventional backbones

We thus note, that in contrast to the loss function, the choice of pre-training method has a limited
impact only on explanation quality, with no particular method consistently outperforming others.

5.2 EFFECT OF MORE COMPLEX PROBES

In this section, we present the experimental results on the effect of training more complex classifiers
on top of the frozen features. In particular, we train 2- and 3-layer MLPs and evaluate how this
affects the performance both in terms of accuracy and the quality of the explanations.

In Figure 8, we show the results on ImageNet for B-cos MLPs. It can be seen that for all pre-trained
models there is not only a steady increase in accuracy but also an improvement in the localization
ability (GridPG scores) of model explanations.

E.g., for standard models explained via IntGrad we observe the following improvements when going
from a single linear probe to a 3-layer MLP in (accuracy, GridPG): MoCov2 (66.9, 69.0) → (71.3,
83.0), BYOL (69.3, 83.0) → (72.1, 85.0), and DINO (70.6, 70.0) → (73.1, 89.0). A similar trend is
observed for B-cos models, and across explanation methods and datasets (see Figure 8 for results on
COCO), with GradCAM being an exception (for details and discussion on this, see the Appendix).

In Figure 9, the EPG scores (for ImageNet with bounding boxes) improve across all pre-training
paradigms for B-cos MLP probes, which is especially prominent in smaller bounding boxes. Fur-
thermore, Figure 7 depicts the observed localization improvements qualitatively. We find MLP
probes to better localize the object class of interest, relying less on background. This indicates that
they better capture class-specific features, which, in turn, improves their classification performance.
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Figure 8: Effect of more complex probes on accuracy and GridPG scores on ImageNet (top)
and COCO (bottom). A more complex B-cos probe (MLP) not only increases performance on the
downstream task (x-axis), but interestingly also the GridPG score (y-axis, top) and the EPG score
(y-axis, bottom) of the explanations (individual plots). This is true for B-cos models (left 2 cols.)
and for conventional models (right 1 cols.) probed via B-cos MLPs. For conventional MLPs, the
trends are less consistent, see the Appendix for more details and additional results on this.

Interestingly, this trend in improvement in both accuracy and localization is only seen consistently
for B-cos MLPs, independently of them being applied to conventional or B-cos models. While
an increase in localization as measured by the EPG score is observed for conventional MLPs on
COCO, on ImageNet we see a consistent decrease in the GridPG score (see Appendix). In order to
get well-localizing attribution maps on downstream tasks, we thus recommend to probe pre-trained
models via B-cos probes.

In short, we find that training relatively lightweight B-cos MLPs (∼ 10% of entire model parame-
ters) on frozen features of SSL-trained models with BCE loss is a versatile approach to obtain both
highly interpretable and also highly performant classifiers on downstream tasks.

Figure 9: Stronger probes lead to more localized attributions. EPG scores on ImageNet.

Note: We add more results for Vision Transformers(Xie et al., 2022; Chefer et al., 2020; Abnar &
Zuidema, 2020; Böhle et al., 2023) in Appendix C and ScoreCAM(Wang et al., 2020) in Table E3.

6 CONCLUSION

We discover an important and surprising finding, that the quality of explanations derived from a wide
range of attribution methods for pre-trained models is more dependent on how the classification
layer is trained for a given downstream task, than on the choice of pre-training paradigm itself. This
places important practical considerations on end-users when using ‘post-hoc’ attribution methods
that are typically assumed to be applied independent of model training. Further, we showed that
employing lightweight multi-layer B-cos probes contributes to enhanced localization performance
of the explanations, providing a simple and effective improvement. We support our findings with
extensive experimental evaluation across several pre-training frameworks (fully-supervised, self-
supervised, vision-language pre-training), and analysis on the quality of explanations for popular
attribution methods on a diverse evaluation setting. As our findings are robust to the pre-training
paradigms, and therefore can have broader implications for many DNN-based applications that rely
on XAI methods.
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Reproducibility Statement. We provide the complete code for pre-training, probing and eval-
uation of the trained models as well as for generating the quantitative and qualitative results of
the explanation methods used. The code is well-documented with helper scripts to run the differ-
ent parts of the pipeline and help with reproducibility. Additionally, we will also make the entire
pipeline available to the broader community by open-sourcing our software and provide the pre-
trained model checkpoints which further helps in reproducing the results in the manuscript. We
were also careful to only use open-source software, and publicly available datasets, which thus sup-
ports reproducible research. This is an effort to provide transparency, and encourage further research
in the field. Code to reproduce all experiments: https://anonymous.4open.science/r/
how-to-probe-iclr/

Broader Impact and Ethics Statement. The findings and discussion in our work opens up a new
conversation about designing attribution / XAI methods that do take the training details of underly-
ing models into account when getting explanations for their decisions. The fact that this also impacts
inherently interpretable models, which are designed to intrinsically learn interpretable features dur-
ing training, speaks more to the importance of the finding (i.e. we need to be very careful about how
to handle such models and methods). The user, really needs to consider such details when leveraging
model explanations.

Typically past research has focused on evaluating the interpretability of attribution methods given
a fixed model, post-hoc. Yet, in the real world, we often have use-cases where one has a large
pre-trained backbone over which probes are trained depending on the downstream task. In this
work, we find that, surprisingly, how these probes are trained can have a significant impact on how
interpretable the attributions of the model is using a fixed post hoc attribution method. Given that
training such probes is usually much cheaper as compared to the backbone, our findings can be used
to guide the training to yield models that are more interpretable post-hoc. Notably, we find that with
this simple approach, the improvements hold across model architectures, pre-training paradigms,
and even across different attribution methods.

To conclude, we see no apparent ethical concerns raised by the scientific discovery presented in
our work. However, we do acknowledge the privilige and availability of resources that enable deep
learning research, e.g. running large-scale training on GPUs that do result in an increased carbon
footprint and efforts must be made to be more careful when using such resources.
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Appendix

Table of Contents

In this appendix to our work on simple yet effective techniques for improving post-hoc explanations,
we provide:

(A) Discussion on Evaluation Metrics and Co-12 Properties . . . . . . . . . . . . . . . . 18
In this section, we provide a discussion on the importance of the interpretability
metrics we have selected in our evaluations, and also place them in context with
the recently proposed Co-12 Properties Nauta et al. (2023).

(B) Linear Probing On Frozen Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
In this section, we provide a short mathematical proof to show that when linear
probing on frozen pre-trained backbone features, it simply results in learning a
weighted linear combination of the backbone features.

(C) Additional Architectures: Vision Transformers . . . . . . . . . . . . . . . . . . . . . . . . 20
In this section, we provide quantitative results on Vision Transformers
(ViTs, Kolesnikov et al. (2021)) when evaluated on their related explanation
methods.

(D) Additional Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
In this section, we provide additional qualitative results for different evaluation
settings, for both B-cos models as well as conventional models. Specifically, we
qualitatively show examples highlighting the impact of using BCE vs. CE loss
and the effect of using more complex probes. Further, we provide a compari-
son between different explanation methods for all pre-training (supervised and
SSL) frameworks evaluated in our work. We provide more qualitative results in
Sec. D.4.

(E) Additional Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
In this section, we provide additional quantitative results: (1) GridPG results of
additional explanation methods on ImageNet, and (2) EPG results for additional
methods on COCO and VOC. In table E3 we provide quantitative results for
ScoreCAM (Wang et al., 2020).

(F) Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
In this section, we provide additional details regarding datasets, training, imple-
mentation and evaluation procedures.
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A DISCUSSION ON THE EVALUATION METRICS AND CO-12 PROPERTIES

In this section, we provide a discussion on the importance of the interpretability metrics we have se-
lected in our evaluations, and also place them in context with the recently proposed Co-12 Properties
by Nauta et al. (2023).

Nauta et al. (2023) posit that explainability is a multi-dimensional concept and propose various
properties that describe the different aspects of explanation quality. Specifically, they introduce these
properties as the Co-12 properties that are crucial to be evaluated for a comprehensive assessment
of explanation methods. These 12 properties are namely the following:

1. Correctness: denotes how faithful the explanation is with respect to the underlying ‘black-
box’ model.

2. Completeness: measures the extent to which the model is described by the explanation.

3. Consistency: evaluates the degree of determinisim and invariance of the explanation
method.

4. Continuity: measures continuity and generalizability of the explanation function.

5. Contrastivity: measures the discriminativity of the explanation with respect to different
targets.

6. Covariate Complexity: assesses the complexity (human interpretable) of features in the
explanation.

7. Compactness: reports the overall size of the explanation.

8. Composition: describes the presentation format and organization of the explanation.

9. Confidence: a measure of confidence of the explanation or model output.

10. Context: measures how relevant is the generated explanation to users.

11. Coherence: evaluates the plausibility of the explanation.

12. Controllability: measures the control or influence users have on the explanation.

In our work we present an important finding for explainable artificial intelligence (XAI), and conduct
a systematic study across pre-training schemes and heatmap based attribution methods to evaluate
to what extent the training influences the explanations derived from these attribution methods. To
quantitatively evaluate the quality of the explanations we assess their ability to localize class-specific
features using the grid pointing game (GPG) Böhle et al. (2021; 2022); Zhang et al. (2018); Samek
et al. (2016) and the energy pointing game (EPG) Wang et al. (2020).

The grid pointing game (GPG) is an established metric that reflects various of the Co-12 properties
(cf. Table 3 in (Nauta et al., 2023)). First, it constitutes a “controlled synthetic data check” which
allows to (approximately) deduce ground truth explanations, thus reflecting the correctness of the
explanations. Further, as multiple targets are present in the grid images, GPG reflects the target
sensitivity of the explanations and thus their contrastivity. By highlighting relevant regions for the
decision, explanations that score highly on GPG can be useful to end users (context).
The energy pointing game (EPG) can be seen as a general case of the pointing game (Hooker et al.,
2019), and thus subsumes all the above properties of the GPG.

We also analyze the explanations under the pixel removal method, that has been shown to be a
reliable measure of faithfulness (correctness) of an explanation (Samek et al., 2017; Hedström et al.,
2024).

Finally, to have a comprehensive evaluation we also report explanation evaluations using the Gini
index (as in (Chalasani et al., 2018)) to measure the compactness and the entropy (as in (Tseng
et al., 2020)) to measure the complexity.

Importantly, note that other Co-12 properties might not relate to heatmap-based explanations (com-
position, confidence, controllability) or remain unchanged by design as they are intrinsic to the
explanation method itself, such as consistency, completeness, coherence and continuity.
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B LINEAR PROBING ON FROZEN BACKBONE FEATURES

Interpretability of frozen backbone: Linear probing on the frozen pre-trained backbone features is
an important step when using pre-trained models for downstream tasks and can also inform us about
the interpretability of the backbone itself as we explain further. Since the linear probes themselves
have limited modeling capacity, these explanations must therefore necessarily reflect the ‘knowl-
edge’ of the backbone model. The different probes (CE / BCE), compute their outputs by nothing
but a weighted mean of the frozen backbone features.

It can be demonstrated mathematically by the following: let z ∈ RD represent the output feature
vector from the frozen backbone after the global average pooling operation, where the vector has D
dimensions. Let W ∈ RC×D be the weight matrix of the fully connected classification layer, where
C is the number of output classes (e.g., 1000 for ImageNet), and let b ∈ RC be the bias term of the
classification layer. The output prediction vector y ∈ RC is then given by:

y = Wz+ b

Here, Wz represents a linear combination of the backbone features z, with the weight matrix W.
The bias term b is added to each class output.

Since the feature extractor is frozen (i.e., its weights are not updated during training), the classifica-
tion layer performs a simple linear combination of the extracted features, and only the weights W
and bias b are learned during training. Thus, essentially when analyzing the explanations generated
by the model, it is largely dominated by the backbone features. This is what makes our finding
surprising, where BCE trained probes lend themselves to generate better quality explanations.
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C ADDITIONAL ARCHITECTURES: VISION TRANSFORMERS

In this section, we provide quantitative results on Vision Transformers (ViTs, Kolesnikov
et al. (2021)) and the explanation (attribution) methods developed specifically for ViTs: (1)
CGW1 (Chefer et al., 2020), (2) ViT-CX (CausalX (Xie et al., 2022)), (3) Rollout (Abnar &
Zuidema, 2020), and (4) B-cos (Böhle et al., 2023).

In particular, we first evaluate the impact of the training objective on probing in terms of accuracy
and explanation quality using the metrics discussed in Section 3.1 on ImageNet. Next we analyze
the effect of probe complexity on the explanation localization.

Figure C1: ViT backbones BCE vs. CE Probing—GridPG scores on ImageNet. GridPG for (1)
B-cos (Böhle et al., 2023), (2) CausalX (Xie et al., 2022), (3) CGW1 (Chefer et al., 2020), and (4)
Rollout (Abnar & Zuidema, 2020). BCE trained probes consistently outperform CE trained probes
across all pre-training paradigms and explanation method.

C.1 IMPACT OF BCE VS. CE

In the following, we evaluate the impact of the training objective of the linear probes on ViTs similar
to the evaluations for CNNs as described in Section 5.1 on both supervised (Kolesnikov et al., 2021)
and self-supervised (He et al. (2019), Caron et al. (2021)) pre-trained backbones.

GridPG Localization. In Figure C1, we plot the GridPG scores for ViT backbones when probed
with the BCE (orange) vs. CE (blue) training objective for both conventional and B-cos models. We
find significant gains in the explanations’ localization for all approaches, models, and explanations
when using the BCE loss instead of the CE loss. E.g., for conventional backbones when explained
via CGW1 (Figure C1, col. 3), the GridPG score for DINO improves by 12p.p (31%→43%),
MoCov3 improves by 4p.p. (48%→52%), and for supervised by 16p.p. (34%→50%). For B-cos
explanations, the increase in GridPG score is more drastic (Figure C1, col. 1): for DINO, it improves
by upto 33p.p (47%→80%), and for supervised by 23p.p (61%→84%).

In Table C1, we also report the accuracies and when probing with different training objectives and
observe that BCE probes achieve similar performance as CE probes while achieving significantly
greater localization scores.

Table C1: ViT backbones BCE vs. CE Probing—Accuracy and GridPG scores on ImageNet. A
consistent improvement in localization score for BCE over CE probes is seen for both conventional
ViTs (Kolesnikov et al., 2021) and inherently interpretable B-cos B-ViTs (Böhle et al., 2023) for
supervised and self-supervised pre-training of the backbones with comparable accuracies.

Acc.%↑ Localization%↑
Backbone Pre-training CE BCE ∆Bcos

bce−ce ∆CausalX
bce−ce ∆CGW1

bce−ce ∆Rollout
bce−ce

ViT-B/16 Sup. 73.2 72.8 – +0.7 +15.7 +0.4
ViT-B/16 DINO 77.2 77.6 – +5.3 +11.7 +4.8
ViT-B/16 MoCov3 76.3 75.1 – +3.8 +4.4 +3.3

B-ViTc-B/16 Sup. 77.3 78.1 +23.5 – – –
B-ViTc-S/16 DINO 73.2 73.4 +32.7 – – –
B-ViTc-B/16 DINO 77.1 77.3 +20.4 – – –
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Table C2: ViT backbones BCE vs. CE Probing—Accuracy and EPG scores on ImageNet. We
see improvement in localization score for BCE over CE probes for a majority of cases across Super-
vised and self-Supervised pre-training of the backbones and explanation methods with comparable
accuracies. Note: We see a greater improvement in localization scores for smaller bounding boxes
(with size 0− 50% of image area).

Localization %

Backbone XAI Method Pre-training Loss Acc.% BBox size
<25%

BBox size
<50%

BBox size
<75%

BBox size
<100%

ViT-B/16 CGW1 Sup CE 73.2 26.4 42.8 53.7 71.0
ViT-B/16 CGW1 Sup BCE 72.8 28.2(+1.8) 44.5(+1.7) 55.2(+1.5) 72.1+(1.1)

ViT-B/16 CGW1 DINO CE 77.2 40.2 51.4 61.5 77.5
ViT-B/16 CGW1 DINO BCE 77.6 41.7(+1.5) 52.5(+1.1) 62.2(+0.7) 77.7(+0.2)

ViT-B/16 CGW1 MoCov3 CE 76.3 34.2 50.5 59.5 76.1
ViT-B/16 CGW1 MoCov3 BCE 75.1 36.5(+2.3) 52.2(+1.7) 60.1(+0.6) 76.5(+0.4)

ViT-B/16 Rollout Sup CE 73.2 28.6 42.8 53.1 70.5
ViT-B/16 Rollout Sup BCE 72.8 30.1(+1.5) 43.9(+1.1) 53.5(+0.4) 71.1(+0.6)

ViT-B/16 Rollout DINO CE 77.2 41.1 53.3 61.1 76.8
ViT-B/16 Rollout DINO BCE 77.6 42.0(+0.9) 52.6 (−0.7) 60.4(−0.7) 76.5(+0.3)

ViT-B/16 Rollout MoCov3 CE 76.3 36.5 50.6 57.9 75.1
ViT-B/16 Rollout MoCov3 BCE 75.1 36.8(+0.3) 51.2(+0.6) 58.5(+0.5) 75.5(+0.4)

ViT-B/16 CausalX Sup CE 73.2 14.6 28.6 42.2 61.2
ViT-B/16 CausalX Sup BCE 72.8 14.6(0.0) 29.1(+0.5) 41.6(−0.6) 61.4(+(0.2)

ViT-B/16 CausalX DINO CE 77.2 14.5 28.4 42.3 62.2
ViT-B/16 CausalX DINO BCE 77.6 15.2(+0.7) 29.3(+0.9) 43.1(+0.8) 63.1(+0.9)

ViT-B/16 CausalX MoCov3 CE 76.3 14.2 28.9 43.3 63.2
ViT-B/16 CausalX MoCov3 BCE 75.1 15.4(+1.2) 30.1(+1.1) 44.2(+0.9) 63.3(+0.1)

Table C3: ViT backbones MLP Probing—Accuracy and EPG scores on ImageNet. A consistent
improvement in accuracy ∆acc and localization score ∆loc is seen for B-cos explanations when
using more complex 2 or 3 layer B-cos MLPs over a linear probe for DINO pre-trained small and
base ViTcs. This demonstrates that more powerful classifier heads are able distill ‘class-specific’
information better.

Backbone Classifier Acc.% ∆acc Loc.% ∆loc

B-ViTc-S/16 Linear Probe 73.4 – 79.9 –
B-ViTc-S/16 Bcos-MLP-2 74.2 +0.8 80.4 +0.5
B-ViTc-S/16 Bcos-MLP-3 74.7 +1.3 82.4 +2.5
B-ViTc-B/16 Linear Probe 77.3 – 80.3 –
B-ViTc-B/16 Bcos-MLP-2 78.2 +0.9 82.1 +1.8
B-ViTc-B/16 Bcos-MLP-3 79.7 +2.4 83.4 +3.1

EPG Localization. In Table C2 and Figure C2, similar improvements are seen for the EPG metric
(on ImageNet) when using using BCE probes for CGW1 (Chefer et al., 2020), Rollout (Abnar &
Zuidema, 2020) and CausalX (Xie et al., 2022) attributions. We specifically see a greater improve-
ment on smaller bounding boxes thus highlighting the ability for improved localization as compared
to CE probes.

C.2 IMPACT OF COMPLEX PROBES

In Table C3, we show the results for probing DINO B-ViTc-S (small) and B-ViTc-B (base) with
B-cos MLPs. It is seen that for these models there is an increase in both accuracy ∆acc as well as
the localization ability ∆loc (GridPG scores) of the B-cos explanations. This does seem to suggest
that using more complex probes helps distill ‘class-specific’ information from the frozen backbone
features thus leading to improved localization scores even for transformer based architectures.

These results are consistent with the improvements seen for convolutional backbones (see Section 5)
and demonstrate the robustness of our findings across different model architectures (vision trans-
formers and convolutional networks).
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Figure C2: ViT backbones BCE vs. CE Probing—EPG scores on ImageNet. EPG for (1)
CGW1 (Chefer et al., 2020), (2) Rollout (Abnar & Zuidema, 2020), and (3) CausalX (Xie et al.,
2022). BCE trained probes outperform CE trained probes for a majority of cases; with larger and
more consistent gains for smaller bounding boxes (occupying 0− 50% of the image area).
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.

D ADDITIONAL QUALITATIVE RESULTS

In this section we show additional qualitative results for the explanations of both conventional as
well as B-cos models under the different evaluation settings studied in the main paper. We first qual-
itatively show the impact of training the probes with binary cross entropy (BCE) vs. cross entropy
(CE) loss in Sec. D.1. Then we show the effect of more complex probes on localization in Sec. D.2.
Additionally, in Sec. D.3 we also provide qualitative comparisons between different explanation
methods for all SSL models as well as fully supervised models. Finally, in Sec. D.4 we add more
qualitative results showing a diverse set of samples for all self-supervised pre-trainings.

D.1 IMPACT OF BCE VS. CE

The probing strategy can have a significant influence on the localization ability of model explana-
tions. As described in Sec. 5.2 of the main paper, probes trained with BCE loss localize more
strongly as compared to probes trained with CE loss. Figures D1, D2, D3 (cf. Figure 6 in main
paper), show the B-cos (Böhle et al., 2022) explanations in the 2× 2 GridPG evaluation setting for
DINO, BYOL and MoCov2 respectively when probed with BCE or CE loss. It can be observed
that for all SSL-frameworks as well as supervised training, the explanations for linear probes trained
with BCE loss (cols. 3+5) are much more localized as compared to probing with CE loss. Inter-
estingly, however, while the focus region seems to be very similar between the SSL-trained and the
fully supervised models, the B-cos explanations of BYOL and MoCov2 show lower saturation.

Figure D1: DINO vs. Supervised Explanations. The B-cos explanations for DINO (cols. 2+3) are
visually very similar to supervised models (cols. 4+5), despite being optimized very differently. We
also see that for B-cos models the improvements in attribution localization for probes trained with
BCE loss are consistent for both DINO and supervised models.
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Figure D2: BYOL vs. Supervised Explanations. Similar to Figure D1 the B-cos explanations for
models trained via BYOL (cols. 2+3) exhibit significant improvements in localization when trained
via BCE. Interestingly, compared to the explanations of supervised models (cols. 4+5), we find
BYOL explanations to exhibit less saturation.

Figure D3: MoCov2 vs. Supervised Explanations. Similar to Figure D1, D2 the B-cos expla-
nations for models trained via MoCov2 (cols. 2+3) exhibit significant improvements in localization
when trained via BCE. Interestingly, compared to the explanations of supervised models (cols. 4+5),
we find MoCov2 explanations to exhibit less saturation.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

In Figure D4, we additionally visualize the LRP (Bach et al., 2015) explanations for conventional
models. Similar to the B-cos models in the preceding figures, we find the explanations for BCE-
trained models to exhibit significantly higher localization. Interestingly, despite the consistent im-
provements in localization, we again observe clear qualitative differences between the differently
trained backbones: e.g., the explanations for the DINO model seem to cover the full object, whereas
the explanations for the models trained via BYOL and MoCov2 are much sparser. See also Fig-
ure D5 for LRP visualizations for the CLIP (Radford et al., 2021) (vision-language) model.

Figure D4: Layer-wise Relevance Propagation Explanations. Even for conventional models we
see a consistent improvement in attribution localization for probes trained with BCE loss. This is
seen across all SSL methods (DINO, BYOL and MoCov2). We also observe significant qualitative
differences between differently trained backbones: e.g., the explanations for DINO model (left)
cover the full object, as compared to explanations for models trained via BYOL (center) or MoCov2
(right), that are much sparser.
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Figure D5: Layer-wise Relevance Propagation Explanations for CLIP. Similar to SSL and su-
pervised pre-trained models, for CLIP (Radford et al., 2021) which is a vision-language pre-trained
model we see BCE-trained probes (cols. 2+5) to localize better as compared to CE-trained (cols.
3+6) probes.
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D.2 EFFECT OF COMPLEX PROBES

Figure D6 shows visual results depicting the impact of training with MLP probes. Notice, e.g., in
cols. 3+4, two- and three-layer MLPs better localize the object class of interest with minimal reliance
on background features for DINO model. Since the features learned by SSL models may not always
be linearly separable with respect to the classes present in different downstream tasks, stronger MLP
classifiers are able to distill class-specific features better, leading to an improvement in localization
scores and also improved performance on the downstream task. This behaviour is consistent across
all SSL frameworks when we go from single probes to MLP probes. As seen previously, the B-cos
explanations for BYOL and MoCov2 show lower saturation as compared to DINO.

Figure D6: Qualitative results of MLP probes on ImageNet. We find explanations for B-cos
MLPs (cols. 3+4+6+7+9+10) trained on SSL pre-trained features to exhibit better localization than
a single linear probe (cols. 2+5+8). This behavior is seen more prominently for DINO (left) as
compared to BYOL (center) and MoCov2 (right).

D.3 ADDITIONAL EXPLANATION METHODS

Comparison between explanation methods
Figures D7, D8, D9 show additional comparisons between different attribution methods for each
SSL model (both B-cos and conventional) and how it compares to their fully-supervised counter-
parts; in particular we show results for B-cos (Böhle et al., 2022), Layer-wise Relevance Propagation
(LRP) (Bach et al., 2015), GradCAM (Selvaraju et al., 2017), Integrated Gradients (IntGrad) (Sun-
dararajan et al., 2017), and Input×Gradient (I×G) (Shrikumar et al., 2017). Notice, every pair of
consecutive rows illustrates this for a single SSL method and supervised training. We observe that
visually the explanations for SSL models and supervised models are quite similar. Interestingly, this
is more consistent for B-cos models as compared to conventional models. Note: For all SSL models,
these are explanations for the setting when the frozen backbone features are trained using only a
single linear probe with BCE loss.
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Figure D7: Qualitative comparison of different explanation methods for DINO and supervised
training for (a) B-cos and (b) conventional models. Notice that B-cos explanations are able to
highlight the object of interest quite well. Also LRP explanations for conventional models seem
to localize well to object features however are quite sparse. GradCAM explanations although do
focus on the object but are more spread out for DINO model as compared to supervised model.
IntGrad and I×G explanations are scattered across the entire image and also highlight background
regions.
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Figure D8: Qualitative comparison of different explanation methods for BYOL and supervised
training for (a) B-cos and (b) conventional models. Similar to Figure D7, we observe that B-cos
explanations are able to highlight the object of interest quite well. The LRP explanations for con-
ventional models seem to localize well to object features however are quite sparse. GradCAM ex-
planations although do focus on the object but are more spread out for BYOL model as compared to
supervised model (especially for conventional models). IntGrad and I×G explanations are scattered
across the entire image and also highlight background regions.
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Figure D9: Qualitative comparison of different explanation methods for MoCov2 and supervised
training for (a) B-cos and (b) conventional models. Similar to Figures D7 (DINO), D8 (BYOL) we
observe that B-cos explanations for MoCov2 are able to highlight the object of interest quite well.
The LRP explanations for conventional models seem to localize well to object features however are
quite sparse. GradCAM explanations although do focus on the object but are more spread out for
MoCov2 model as compared to supervised model (especially for conventional models). IntGrad and
I×G explanations are scattered across the entire image and also highlight background regions.
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D.4 ADDITIONAL QUALITATIVE RESULTS

In this sub-section we add more qualitative results for B-cos, ScoreCAM, and GradCAM explana-
tions to demonstrate the impact of the training objective and probe complexity on model explana-
tions.

(a)

(b)

Figure D10: Qualitative results for BCE vs. CE probing on ImageNet. (a) Shows six examples
each for DINO, BYOL, and MoCov2 sampled from the set of top 10% of images to show greatest
improvement of BCE probing over CE probing (∆bce−ce GridPG scores) when explained with B-
cos explanations. (b) Additionaly, shows a set six images randomly sampled for each SSL method;
out of 18 samples we find only 1 sample where the BCE probe localizes worse than the CE probe
(highlighted with a red box). Please zoom-in to notice the finer differences in the visual explanations.
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Figure D11: Qualitative results for BCE vs. CE probing on ImageNet for ScoreCAM. The
figure shows a set of six examples sampled randomly for each SSL method, i.e. DINO, BYOL and
MOCO when explained using ScoreCAM explanations. Overall BCE probes lead to more localized
explanations over CE probes. We highlight examples where BCE probes perform worse than CE
probes with a red box. Please zoom-in to notice the finer differences in the visual explanations.

Figure D12: Qualitative results for BCE vs. CE probing on ImageNet for GradCAM. The
figure shows a set of six examples sampled randomly for each SSL method, i.e. DINO, BYOL and
MOCO when explained using GradCAM explanations. Overall BCE probes lead to more localized
explanations over CE probes. We highlight examples where BCE probes perform worse than CE
probes with a red box. Please zoom-in to notice the finer differences in the visual explanations.
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Figure D13: More qualitative results for MLP Probing. The figure shows a set of six examples
sampled randomly for each SSL method, i.e. DINO, BYOL and MOCO when explained using B-cos
explanations. MLP probes on average tend to get visually more localized samples as compared to a
linear probe. Please zoom-in to notice the finer differences in the visual explanations.
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E ADDITIONAL QUANTITATIVE RESULTS

In this section, for completeness we present quantitative results for all explanation (or attribution)
methods; specifically for B-cos (Böhle et al., 2022), Layer-wise Relevance Propagation (LRP) (Bach
et al., 2015), GradCAM (Selvaraju et al., 2017), Integrated Gradients (IntGrad) (Sundararajan et al.,
2017), Input×Gradient (I×G) (Shrikumar et al., 2017), LIME (Ribeiro et al., 2016) and Guided-
Backpropagation (Springenberg et al., 2015). In Sec. E.1 we first evaluate the impact of the op-
timization objective on probing in terms of accuracy and explanation quality using the different
metrics (see section 3.1) on ImageNet. Then in Sec. E.2 we analyze the effect of probe complexity
on explanation localization. Finally in the second part of Sec. E.2, we also present the results on the
multi-label classification setting on COCO and VOC datasets, where the explanation localization
metric used is EPG score.

E.1 IMPACT OF BCE VS. CE

(a)

Figure E1: BCE vs. CE — Accuracy and GridPG scores on ImageNet. To study the impact
of the optimization objective on probing we plot the accuracy vs localization (GridPG) score for
B-cos models (B-RN50). For BCE trained probes (solid markers), a steady improvement in the
localization score is seen for all SSL methods and across most explanation methods on ImageNet.
For GradCAM (bottom left), DINO model does not show an improvement in localization score for
BCE trained probe, and Guided Backpropagation explanations (bottom right) are inconsistent for
SSL models.

In fig. E1 we plot the linear probe accuracies vs GridPG score for MoCov2 (red), BYOL (green),
DINO (blue), CLIP (yellow) and supervised (black) models for (a) B-cos models (B-RN50) and (b)
conventional models (RN50) on ImageNet. The linear probes trained with BCE loss are depticted
with filled markers, and the hollow markers represent CE loss. We see consistent improvement in
localization score for most explanation methods. Note, as discussed in the main paper I×G and
GradCAM do not show consistent behaviour and only show consistent improvements for B-cos
models (compare the bottom rows in fig. E1 (a) vs fig. E1 (b)). For I×G, this is in line with prior
work, as model gradients for conventional models are known to suffer from ‘shattered gradients’ (cf.
(Balduzzi et al., 2017)) and provide highly noisy attributions. Additionally, Guided Backpropagation
also performs poorly overall to see any obvious trend (as it has been shown earlier to produce noisy
explanations (Rao et al., 2022)). Finally, for GradCAM it has been shown that especially for self-
supervised models, it can perform poorly due to focusing on background regions rather than object
of interest (this can be induced due to the SSL specific training objectives) (Selvaraju et al., 2021).

Figures E2, E3 show the EPG localization scores on the bounding boxes provided for the ImageNet
validation set. For B-cos backbones we observe a consistent improvement for BCE trained probes
for 11 out of 12 cases. The only odd case is GradCAM explanations for the DINO model. For
conventional backbones this is consistent for 9 out of 12 cases (GradCAM explanations being the
exception again).
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Next figures E4, E5 show the pixel deletion plots on the ImageNet validation set. For B-cos back-
bones we observe a more consistent improvement in terms of stability when compared to conven-
tional models. For B-cos backbones for GradCAM method, CE probes produce more stability, and
for conventional backbones we only see consistent results for LRP attribution methods (where BCE
probes are more stable than CE probes). For other attribution methods and pre-trained backbones
we see mixed results.

(b)

Figure E1: BCE vs. CE — Accuracy and GridPG scores on ImageNet. To study the impact of the
optimization objective on probing we plot the accuracy vs localization (GridPG) score for conven-
tional models (RN50). For BCE trained probes (solid markers), an improvement in the localization
score is seen for all SSL methods for LRP, IntGrad and LIME explanations on ImageNet. However,
for I×G, and GradCAM this is not seen. For Guided Backpropagation there is a slight improvement
in localization score for BCE trained probes (except for DINO model).
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Figure E2: BCE vs. CE — EPG scores for B-cos models on ImageNet.
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Figure E3: BCE vs. CE — EPG scores for Conventional models on ImageNet.
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Figure E4: BCE vs. CE — Pixel deletion scores for B-cos models on ImageNet.

Figure E5: BCE vs. CE — Pixel deletion scores for Conventional models on ImageNet.
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Table E1: Compactness and Complexity of BCE vs CE Probing. A consistent improvement in
compactness (Gini index pp. as in (Chalasani et al., 2018)) and reduction in complexity (entropy as
in (Tseng et al., 2020)) for BCE vs. CE, except for Input×Gradients and GradCAM with conven-
tional backbones.

Backbone Pre-training Method XAI Method Accuracy ∆Complexity↓ ∆Compactness↑
CE BCE

B-RN50 MoCoV2 Bcos: W(x) x Input 66.3 65.4 -2.72 +0.10
B-RN50 BYOL Bcos: W(x) x Input 68.3 68.1 -1.87 0.14
B-RN50 DINO Bcos: W(x) x Input 68.8 67.5 -2.35 +0.16

B-RN50 MoCoV2 Input x Gradient 66.3 65.4 -0.13 0.00
B-RN50 BYOL Input x Gradient 68.3 68.1 -0.08 0.00
B-RN50 DINO Input x Gradient 68.8 67.5 -0.08 0.00

B-RN50 MoCoV2 IntGrad 66.3 65.4 -0.09 0.00
B-RN50 BYOL IntGrad 68.3 68.1 -0.04 0.00
B-RN50 DINO IntGrad 68.8 67.5 -0.05 0.00

B-RN50 MoCoV2 GradCAM 66.3 65.4 -1.07 +0.13
B-RN50 BYOL GradCAM 68.3 68.1 -2.82 +0.20
B-RN50 DINO GradCAM 68.8 67.5 -2.51 +0.19

B-RN50 MoCoV2 GBP 66.3 65.4 -0.23 +0.02
B-RN50 BYOL GBP 68.3 68.1 -0.14 +0.01
B-RN50 DINO GBP 68.8 67.5 -0.13 +0.01

RN50 MoCoV2 Input x Gradient 67.5 66.9 +0.01 0.00
RN50 BYOL Input x Gradient 70.1 69.3 -0.04 +0.01
RN50 DINO Input x Gradient 71.2 70.6 +0.01 0.00

RN50 MoCoV2 IntGrad 67.5 66.9 -0.01 0.00
RN50 BYOL IntGrad 70.1 69.3 -0.08 0.00
RN50 DINO IntGrad 71.2 70.6 0.00 0.00

RN50 MoCoV2 LRP 67.5 66.9 -1.48 +0.07
RN50 BYOL LRP 70.1 69.3 -0.85 +0.04
RN50 DINO LRP 71.2 70.6 -2.01 +0.12

RN50 MoCoV2 GradCAM 67.5 66.9 +1.13 -0.25
RN50 BYOL GradCAM 70.1 69.3 +1.61 -0.25
RN50 DINO GradCAM 71.2 70.6 -2.94 +0.23

RN50 MoCoV2 GBP 67.5 66.9 -0.14 +0.01
RN50 BYOL GBP 70.1 69.3 -0.24 +0.02
RN50 DINO GBP 71.2 70.6 0.00 0.00
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Table E2: Supervised Probing. We present the effect of probing fully-supervised models (ref.
Section 4.1 in main paper) for different attribution methods (B-cos Böhle et al. (2022), IntGrad Sun-
dararajan et al. (2017), I×G Shrikumar et al. (2017), GradCAM Selvaraju et al. (2017), and
LRP Bach et al. (2015)), and demonstrate how this impacts the localization (GridPG) score. We
observe similar accuracy for both (CE and BCE) probes. However, as seen earlier (cf. fig. E1a,b),
the probes trained with BCE loss lead to consistently high improvements in GridPG scores.

Accuracy (%) GridPG (%)
Att. Method CE BCE ∆ CE BCE ∆

B
-R

N
50

– 72.4 73.7 +1.3 – – –
B-cos Böhle et al. (2022) ” ” ” 15.0 87.0 +72.0
IntGrad Sundararajan et al. (2017) ” ” ” 24.0 86.0 +62.0
I×G Shrikumar et al. (2017) ” ” ” 15.0 65.0 +50.0
GradCAM Selvaraju et al. (2017) ” ” ” 14.0 72.0 +58.0

R
N

50

– 75.5 75.6 +0.1 – – –
LRP Bach et al. (2015) ” ” ” 9.0 32.0 +23.0
IntGrad Sundararajan et al. (2017) ” ” ” 14.0 28.0 +14.0
I×G Shrikumar et al. (2017) ” ” ” 10.0 18.0 +8.0
GradCAM Selvaraju et al. (2017) ” ” ” 16.0 42.0 +26.0

In table E1 we present the results for probing with BCE vs CE loss, when evaluated on the com-
pactness and complexity metrics. A consistent improvement in compactness (Gini index pp. as in
(Chalasani et al., 2018)) and reduction in complexity (entropy as in (Tseng et al., 2020)) for BCE
vs. CE, except for Input×Gradients and GradCAM with conventional backbones.

Probing Supervised Models. In table E2, we demonstrate the effect of probing fully-supervised
backbones with CE and BCE linear probes. This is to also increase comparability with the self-
supervised and vision-language approaches that we present earlier (cf. fig. E1 (a) and (b)).

Additional Perturbation-based Explanations In table E3, we show the improved localization abil-
ity of BCE probes over CE probes for another perturbation-based explanation method called Score-
CAM (Wang et al., 2020). See Figure D11 for qualitative results.

Table E3: ScoreCAM BCE vs. CE Probing—GridPG scores on ImageNet. A consistent im-
provement in localization score for BCE over CE probes is seen for both conventional and inher-
ently interpretable B-cos backbones for supervised and self-supervised pre-training.

Localization%

Bakcbone Pretraining CE BCE ∆loc
RN50 MoCov2 52.6 54.4 +1.8
RN50 BYOL 38.1 40.5 +2.4
RN50 DINO 44.2 55.9 +11.7

BRN50 MoCov2 30.2 43.2 +13.0
BRN50 BYOL 45.3 50.2 +4.9
BRN50 DINO 51.0 67.7 +16.7

E.2 EFFECT OF MORE COMPLEX PROBES
In this subsection, we present the quantitative results for probing with more complex MLP probes,
specifically instead of using a single linear probe on top of frozen backbone features, we use two-
and three-layer MLPs for training on downstream tasks and study its effect on performance (in terms
of classification accuracy or f1-score) and explanation localization ability. For this setting, we train
both B-cos and conventional MLPs, and show results for the same.

Effect of MLP Probes on ImageNet In fig. E6 we show the results on ImageNet for B-cos MLPs for
both (a) B-cos and (b) conventional SSL models. It is observed that for all SSL models there is both
an increase in accuracy as well as in the localization (GridPG) score across most attribution methods.

Next, in fig. E7 we plot the results to see the effect of conventional MLPs. In contrast to B-cos MLPs,
here the stronger MLP based probing does lead to an increase in accuracy but does not lead to an
increase in GridPG localization score. This is observed independent of B-cos or conventional model
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backbones. We attribute this to the alignment pressure introduced by B-cos layers (cf. (Böhle et al.,
2022)) that helps distill object-class relevant features and rely less on background context. Thus, as
discussed in the main paper in order to get attribution maps with good localization on downstream
tasks, we suggest to probe pre-trained models with B-cos probes.

These are followed by presenting the bar plots for MLP probing experiments for EPG scores on
ImageNet in figures E8, E9 for B-cos probes, and in figures E10, E11 for conventional probes.

Figures E12, E13, and E14 contain the pixel deletion plots on ImageNet for the MLP probing setup.

(a)

(b)

Figure E6: Effect of complex B-cos probes on accuracy and GridPG scores on ImageNet on (a) B-
cos backbones (B-RN50) and (b) conventional backbones (RN50). Notice that there is a consistent
improvement in accuracy (x-axis) as well as GridPG localization score (y-axis) as we move from
a single probe to two- and three-layer MLP probes in most cases. Except only for B-cos models
trained with MoCov2, for IntGrad (top-middle, subplot a) and GradCAM (bottom-left, subplot a)
explanations we see a slight drop in localization scores. For the remaining cases (SSL frameworks
and explanation methods), there is a steady increase in both accuracy and localization.
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(a)

(b)

Figure E7: Effect of complex conventional probes on accuracy and GridPG scores on ImageNet
on (a) B-cos backbones (B-RN50) and (b) conventional backbones (RN50). Interestingly, in contrast
to B-cos MLP probes (cf. fig. E6), when conventional MLP probes are used, although there is an
improvement in accuracy for all SSL models, there is no consistent improvement in the GridPG
localization score. In fact, in several cases there is a drop in localization score as we move from a
single probe to conventional MLP probes.
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Figure E8: Bcos-MLP — EPG scores for Bcos models on ImageNet.
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Figure E9: Bcos-MLP —EPG scores for Conventional models on ImageNet.
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Figure E10: Conventional-MLP — EPG for B-cos models on ImageNet.
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Figure E11: Conventional-MLP — EPG for Conventional models on ImageNet.
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Figure E12: Bcos-MLP — Pixel deletion scores for Bcos models on ImageNet.

Figure E13: Bcos-MLP — Pixel deletion scores for Conventional models on ImageNet.
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Figure E14: Conventional-MLP — Pixel deletion scores for Conventional models on ImageNet.
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Evaluation on Multi-label Classification We also evaluate all SSL models (both B-cos and con-
ventional backbones) and explanation methods under the multi-label classification setting. We train
single probes and MLP probes using the BCE loss (as is typical) on COCO and VOC datasets.
To measure model performance we report f1-score and explanation localization we report the EPG
score. Figures E15, E16 show the f1-score vs EPG score plots for models probed with B-cos MLPs
and conventional MLPs respectively on COCO. Here we notice, that stronger MLPs result in an
improvement in both classification performance (depicted by an increase in f1-score), and also im-
proved localization EPG scores.

(a)

(b)

Figure E15: Effect of complex B-cos probes on accuracy and EPG scores on COCO on (a) B-cos
backbones (B-RN50) and (b) conventional backbones (RN50). When we train with B-cos MLP
probes as compared to a single probe, we observe an improvement in both f1-score (x-axis) and
EPG localization score (y-axis) for all SSL models and explanation methods, except for GradCAM
where improvement in localization is not seen consistently.

49



2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

(a)

(b)

Figure E16: Effect of complex conventional probes on accuracy and EPG scores on COCO on
(a) B-cos backbones (B-RN50) and (b) conventional backbones (RN50). Similar to fig. E15, when
training with conventional MLP probes as compared to a single probe, we observe an improvement
in both f1-score (x-axis) and EPG localization score (y-axis) for all SSL models and explanation
methods, except for GradCAM (bottom-left, subplots a,b) where improvement in localization is not
seen consistently.
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Likewise, Figures E17, E18 show the corresponding plots for VOC for B-cos MLPs and conven-
tional MLPs respectively. We see a similar trend as we saw on COCO, complex (two- and three-layer
MLPs) probes lead to an increased f1-score and EPG score. Interestingly, we notice that GradCAM
shows inconsistent behaviour, especially in the case of conventional MLPs (see Figures E16 and
E18). This is a well-known limitation for GradCAM, which has been shown to perform poorly (in
terms of localization) at earlier layers (Jiang et al., 2021). Note: For B-cos MLPs we omit showing
the results for LRP explanations as the relevance propagation rules for B-cos layers are not defined.

(a)

(b)
Figure E17: Effect of complex B-cos probes on accuracy and EPG scores on VOC on (a) B-cos
backbones and (b) conventional backbones. Notice as seen for COCO (cf. fig. E15), stronger two-
and three-layer MLPs lead to an improvement in both f1-score (x-axis) and EPG localization score
(y-axis). Once again, for GradCAM this is not very consistent. Also note that for B-cos models
trained with MoCov2, B-cos explanations (top-left, subplot a) for MLP probes perform worse in
EPG-score as compared to a single probe.
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(a)

(b)

Figure E18: Effect of complex conventional probes on accuracy and EPG scores on VOC on (a)
B-cos backbones and (b) conventional backbones. Even conventional two- and three-layer MLPs
lead to an improvement in both f1-score (x-axis) and EPG localization score (y-axis). Yet again, for
GradCAM this is not consistent.
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F IMPLEMENTATION DETAILS

In this section we describe in detail our experimental setting, i.e. the datasets we train and evaluate
on, the training and implementation details, and finally the evaluation metrics used.

F.1 DATASETS

For our experiments we use three datasets namely ImageNet (Russakovsky et al., 2015), VOC
2007 (Everingham et al.) and MS COCO 2014 (Lin et al., 2014).

ImageNet We use the ImageNet-1K dataset that is part of the ImageNet Large-Scale Visual Recog-
nition Challenge (ILSVRC) (Russakovsky et al., 2015). This has 1000 classes, with roughly 1000
images belonging to each category. In total, there are 1,281,167 training images, and 50,000 valida-
tion images. We perform all self-supervised pre-training on the training set, and evaluation on the
validation set. For training, the images are resized to an input resolution of 224×224. For measur-
ing the performance of the model the top-1 accuracy (proportion of correctly classified samples) is
reported, and to evaluate model explanations the grid pointing game (GridPG) localization score is
reported (discussed in more detail below).

VOC 2007 VOC 2007 (Everingham et al.) is a popularly used multi-label image classification
dataset. It comprises of 9,963 images in total and 20 object classes, and is split into the train-val
set with 5,011 images and the test set with 4,952 images. We use the train-val set for training and
test set for evaluation. For training, the images are resized to a fixed resolution of 224×224. As is
typical (Rao et al., 2023b) for evaluating multi-label classification datasets, we report the f1-score
and use the energy pointing game (EPG) score to evaluate the model explanations.

MS COCO 2014 Microsoft COCO (Lin et al., 2014) is another popular dataset generally used
for image classification, segmentation, object detection and captioning tasks. We use COCO-2014
in our experiments, that has 82,081 training and 40,137 validation images and 80 object classes.
For our training, we resize the images to a fixed size of 448×448. Similar to VOC for evaluation
we report the f1-score and use the EPG score to evaluate model explanations. Also note that the
variation of objects’ shapes and sizes are more complicated (Zhu & Wu, 2021) on COCO than those
in VOC, and it is also substantially larger with more object classes.

In short, we evaluate the models on (1) single-label and (2) multi-label classification. For (1), we
train probes on top of the frozen pre-trained features on ImageNet (Russakovsky et al., 2015), and
report top-1 accuracy on the validation set. For (2), the probes are trained to predict all classes that
are present in an image; for this, we use VOC (Everingham et al.) and COCO (Lin et al., 2014) and
report the F1 scores on the test set.

F.2 MODELS

We evaluate both conventional (ResNet-50, ViT-B/16) and the recently proposed inherently inter-
pretable B-cos models (B-cos ResNet-50, ViTc-S/16, ViTc-B/16). To adapt these to the various
pre-training paradigms, we follow (Böhle et al., 2023) in converting the MLP heads of the respec-
tive SSL methods. Specifically, we replace the linear layers in the MLP projection heads (MoCov2,
BYOL, DINO) and the prediction head (BYOL) with corresponding B-cos layers (B=2), remove all
ReLU non-linearities, and replace all batch normalization layers with the corresponding uncentered
version, see (Böhle et al., 2023).

F.3 PRE-TRAINING FRAMEWORKS

As discussed previously, we aim to have a broad enough representative set that highlights how our
evaluation generalizes across differently trained feature extractors, particularly (1) fully-supervised,
(2) self-supervised, and (3) contrastive vision-language learning.

(1) Fully-Supervised Learning We first, evaluate the explanation methods on fully supervised
backbones. Since, the backbones pre-trained in a supervised manner are still often used for transfer
learning (Cheng et al., 2022; Xie et al., 2021; Chen et al., 2017). Additionally, an evaluation of fully
supervised models also provides a useful reference value, as most explanation methods have been
developed in this context.
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In addition to evaluating the end-to-end trained classifiers, we also evaluate linear probes on the
frozen representations of these models, in order to increase the comparability to the self-supervised
approaches we present in the following.

(2) Self-Supervised Learning. We consider three popular self-supervised pretraining
frameworks—MoCov2 (Chen et al., 2020c), BYOL (Grill et al., 2020), and DINO (Caron et al.,
2021)—regarding their interpretability. In the following, we briefly describe each of them.

MoCov2 (He et al., 2019) employs a contrastive learning paradigm, which can be regarded as a form
of instance classification. In particular, the backbone is trained to yield similar representations for
different augmentations of the same image, whilst ensuring that representations of different images
(‘negatives’) are dissimilar.

BYOL (Grill et al., 2020) constructs self-supervised learning as a form of Mean Teacher self-
distillation (Tarvainen & Valpola, 2017) with no labels. Unlike MoCov2, it does not rely on negative
pairs for training. The mean squared error between the normalized predictions (student) and target
projections (teacher) is minimized during training.

DINO (Caron et al., 2021) uses a similar setup as BYOL, i.e., a self-distillation approach. In-
stead of employing an MSE loss, DINO optimizes for a low cross-entropy loss between the output
representations of the teacher and the student models.

(3) Vision-Language Learning. CLIP (Radford et al., 2021) employs contrastive learning on a
large-scale noisy dataset comprising of image-text pairs. It comprises of two encoders, an image
encoder (ResNet (He et al., 2016) or ViT (Kolesnikov et al., 2021)) and a text encoder (Trans-
former (Vaswani et al., 2017)), and is optimized to align the embedding spaces of the two encoders.

Thus, to summarize, we evaluate across a broad spectrum of pre-training mechanisms: a contrastive,
two self-distillation-based, and a multi-modal pre-training paradigm, which cover some of the most
popular approaches to self-supervised learning. This is contrasted with fully-supervised trained
models.

F.4 TRAINING DETAILS

Here we mention the training details for the pre-training (self-supervised and fully-supervised), as
well as probing experiments.

Self-supervised Pre-training. We pretrain all models on the ImageNet dataset (Russakovsky et al.,
2015). For each self-supervised pre-training framework, we follow the standard recipes as men-
tioned in their respective works1. To keep the configuration consistent we use a batch size of 256 for
all models, distributed over 4 GPUs and train for 200 epochs. The learning rate for each SSL frame-
work is updated following the linear scaling rule (Goyal et al., 2017): lr = 0.0005× batchsize/256.

Supervised Training When training fully supervised models we train the model for 100 epochs.
For probing the pre-trained SSL features, on ImageNet we train the probes for 100 epochs as is
standard (Caron et al., 2021; Grill et al., 2020) and for 50 epochs when training on COCO and
VOC datasets. Random resize crops2 and horizontal flips augmentations are applied during training,
and we report accuracy on a central crop. Note that we do not perform any hyperparameter tuning
separately for every dataset, and use the same training procedure for all settings (except the number
of epochs for which the probe is trained).

Probing on Pre-trained SSL Features When probing on the pre-trained SSL (and CLIP) features,
as is done for B-cos (Böhle et al., 2022) models we first apply the classifier as a 1×1 convolution
to the feature volume and then apply Global Average Pooling (GAP) to get the class-wise logits.
To keep it consistent across all models, we apply this scheme to both B-cos as well as conventional
models. Also it is important to note that when using conventional probes with B-cos models, we
remove all biases.

Note. For fully supervised models and probing the pre-trained SSL features we use the following
training configuration: the Adam (Kingma & Ba, 2014) optimizer, a batch size of 256, and a cosine
learning rate schedule with warmup. Weight decay of 0.0001 is applied only for end-to-end training

1For B-cos models with DINO, Adam optimizer and a learning rate of 0.001 was used
2For VOC and COCO when applying random resized cropping, the crop size is limited within (0.7, 1.0)

fraction of the original image size.
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of standard models (i.e. non B-cos models). Random resize crops and horizontal flips augmentations
are applied during training.

Finally, for the CLIP vision-language model we use the checkpoint for the conventional model
provided by the authors’ original implementation (Radford et al., 2021).

F.5 EVALUATION DETAILS

Model Performance To evaluate the model performance on single-label datasets, i.e. ImageNet we
report the top-1 accuracy: which is the proportion of correctly classified samples in the validation
set. For multi-label datasets, i.e. COCO and VOC we report the f1-score as is typically done (Rao
et al., 2023b).

Grid Pointing Game As described in Sec. 3.3 of the main paper, we use the grid pointing game
(GridPG) (Böhle et al., 2021) to evaluate the model explanations on single-label image classification
datasets (ImageNet). Originally, GridPG was used to quantitatively evaluate explanation methods,
instead in our work we use it to compare between diferently trained models. Fig. 2 in the main
paper shows an illustration of our evaluation setup for a 2×2 grid image. Similar to the original
setting (Böhle et al., 2021; 2022), we construct 500, 3×3 image grids from the most confidently
and correctly classified images for each model independently and report the mean GridPG score. In
every grid all images belong to distinct classes, and for each of the corresponding class logits we
measure the fraction of positive attribution an explanation method assigns to the correct location in
the grid. To put it mathematically the GridPG localization score Li for the ith cell in the grid is
defined as:

Li =

∑
p∈celli

A+(p)∑n2

j=1

∑
p∈cellj

A+(p)

where A+(p) denotes the amount of positive attributions given to the pth pixel in the n × n grid
image. Also note that in the case that an image has no positive attributions (all attributions are
negative), we ignore that sample from the evaluation set as Li is undefined in such cases since the
denominator is 0.

Energy Pointing Game For both single-label and multi-label classification datasets we use the
energy pointing game (EPG) to evaluate model explanations. Introduced in (Wang et al., 2020) the
EPG measures the concentration of positive attributions inside the bounding box for each object
class k in the image. Finally we report the mean EPG score on the entire validation (or test) set. We
follow the formulation as in (Rao et al., 2023b) for a given image with height, width as H×W and
kth class the EPGk score is given by:

EPGk =

∑H
h=1

∑W
w=1 Mk,hwA

+
k,hw∑H

h=1

∑W
w=1 A

+
k,hw

where Ak ∈ RH×W denotes the attribution map for class k, and A+
k denotes the positive part of the

attributions; Mk ∈ {0, 1}H×W denotes the binary mask for class k that is computed by taking the
union of bounding boxes for all occurrences of class k in the given image.

This evaluation setting might be used for any dataset that has available annotations in the form of
bounding boxes or segmentation masks for the object classes of interest.

Pixel Deletion This evaluation procedure has been used in prior works (Samek et al., 2017; Hed-
ström et al., 2024) as a reliable metric to evaluate the faithfulness of explanations derived from a
given attribution method. In this setting, the least important pixels (or tokens) as given by an expla-
nation are incrementally removed from the input. This should not affect the model’s prediction and
result in a slow decline of the model’s prediction confidence.

Compactness In their work work Chalasani et al. (2018) used the Gini index p.p. as a measure
of quality of explanations generated for neural networks during adversarial training. The higher the
compactness, the better is the explanation quality.
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Complexity The authors in (Tseng et al., 2020) used entropy as a measure of quality for expla-
nations generated by attribution methods of deep learning models for genomics. Lower entropy of
explanations is considered to indicate higher quality.

Attribution Implementation The following attribution (or explanation) methods are used in our
work: B-cos (Böhle et al., 2022), Layer-wise Relevance Propagation (LRP) (Bach et al., 2015),
GradCAM (Selvaraju et al., 2017), Integrated Gradients (IntGrad) (Sundararajan et al., 2017),
Input×Gradient (I×G) (Shrikumar et al., 2017), LIME (Ribeiro et al., 2016) and GuidedBack-
propagation (GBP) (Springenberg et al., 2015). For all methods except B-cos, LRP and LIME
we use the implementations provided by the captum library (github.com/pytorch/captum).
For IntGrad, similar to (Böhle et al., 2022) we set n steps = 50 for integrating over the gradi-
ents and a batch size = 16 to accommodate for limited compute. For computing LRP attribu-
tions we rely on the zennit library (https://github.com/chr5tphr/zennit) and use the
epsilon gamma box composite. For LIME attributions we use the official implementation avail-
able at https://github.com/marcotcr/lime. And for B-cos attributions we use the au-
thor provided implementation given at https://github.com/B-cos/B-cos-v2/.

We also evaluate on explanation methods developed specifically for Vision Transform-
ers (Kolesnikov et al., 2021). In particular we use CGW1 (Chefer et al., 2020), Rollout (Ab-
nar & Zuidema, 2020) and ViT-CX (CausalX, (Xie et al., 2022)). For CGW1 and Rollout we
use the author provided implementation provided at https://github.com/hila-chefer/
Transformer-Explainability. And for ViT-CX we use the official implementation avail-
able at https://github.com/vaynexie/CausalX-ViT.
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