
Disentangling Reasoning Tokens and Boilerplate Tokens For Language
Model Fine-tuning

Anonymous ACL submission

Abstract

When using agent-task datasets to enhance001
agent capabilities for Large Language Mod-002
els (LLMs), current methodologies often treat003
all tokens within a sample equally. How-004
ever, we argue that tokens serving different005
roles—specifically, reasoning tokens versus006
boilerplate tokens (e.g., those governing output007
format)—differ significantly in importance and008
learning complexity, necessitating their disen-009
tanglement and distinct treatment. To address010
this, we propose a novel Shuffle-Aware Dis-011
criminator (SHAD) for adaptive token discrim-012
ination. SHAD classifies tokens by exploiting013
predictability differences observed after shuf-014
fling input-output combinations across samples:015
boilerplate tokens, due to their repetitive na-016
ture among samples, maintain predictability,017
whereas reasoning tokens do not. Using SHAD,018
we propose the Reasoning-highlighted Fine-019
Tuning (RFT) method, which adaptively em-020
phasizes reasoning tokens during fine-tuning,021
yielding notable performance gains over com-022
mon Supervised Fine-Tuning (SFT).023

1 Introduction024

Recently, there has been a surge of enthusiasm in re-025

searching Agents based on Large Language Models026

(LLMs) (Weng, 2023; Wang et al., 2024), with the027

aim of achieving human-level artificial intelligence028

or beyond. Despite LLMs showcasing remarkable029

capabilities in various areas, they have not inher-030

ently demonstrated strong agent capabilities, such031

as multi-step reasoning (Wei et al., 2022; Yao et al.,032

2023; Qiao et al., 2024) and tool use (Qin et al.,033

2024; Schick et al., 2023; Liu et al., 2024; Patil034

et al., 2023). This shortfall has directed significant035

attention toward incorporating datasets tailored for036

agent tasks to enhance the agent capabilities of037

LLMs (Chen et al., 2023; Zeng et al., 2023; Chen038

et al., 2024b; Zhao et al., 2023). These datasets039

offer structured examples of standard reasoning040

chains for solving agent tasks (Chen et al., 2024b;041

Thought: Based on the user's request to find the most
popular genre in the Media-Group tool, I should call
the “list_genres_for_media_group” function to
retrieve a list of genres. By doing so, I can analyze the
genres and determine which one is currently trending
based on popularity. This way, I will be able to
provide the user with the information they are looking
for regarding the most popular genre in the Media-
Group tool.
Action: list_genres_for_media_group
Action Input: {}

Figure 1: Examples of reasoning tokens (green) and
boilerplate tokens (yellow and blue). Boilerplate tokens
can be further categorized into format tokens (yellow)
and template-connecting tokens (blue).

Qin et al., 2024), enabling LLMs to learn from 042

them and thereby enhance their agent capabilities. 043

When leveraging these datasets to bolster LLMs’ 044

agent capabilities, existing research often treats all 045

tokens within a sample equally (Chen et al., 2023; 046

Zeng et al., 2023; Chen et al., 2024c; Qin et al., 047

2024; Zhao et al., 2023). However, we argue that 048

these tokens could differ substantially in learning 049

difficulty and importance. Given the standardized 050

structure of the data, tokens within a sample can 051

be divided into two categories as depicted in Fig- 052

ure 1: 1) boilerplate tokens, which include for- 053

mat tokens that constrain the output structure, and 054

template-connecting tokens that serve as standard 055

transitional phrases for reasoning, such as “Based 056

on the user’s request... By doing so... This way..."; 057

and 2) reasoning tokens, which provide sample- 058

specific reasoning information crucial for task solv- 059

ing. Boilerplate tokens are distinctly less critical 060

for task solving compared to reasoning tokens and 061

are easier to learn due to their repetitive nature 062

across many samples. 063

It is crucial to distinguish between the reason- 064

ing and boilerplate components and handle them 065

separately. Failure to do so may result in unde- 066

1

0 500 1000 1500 2000 2500 3000
Checkpoint Number

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Lo

ss
Loss on Wrong test data

Reasoning
Boilerplate
Average

Figure 2: Loss changes for different types of tokens in
the sampled test data that the model fails to answer for
the regular SFT training.

sired effects, such as overfitting to the boilerplate067

components, as depicted in Figure 2, ultimately068

leading to inadequate agent capabilities. While069

manually crafting regular expressions to filter out070

boilerplate tokens appears to be a feasible solution,071

it can be highly inefficient when dealing with data072

of diverse formats. Additionally, creating regu-073

lar expressions for template-connecting tokens of074

transitional phrases poses challenges due to their075

potential variability in language. Therefore, an076

automated and adaptive approach for segregating077

these components is highly desirable.078

This study introduces a novel SHuffle-Aware Dis-079

criminator (SHAD) to achieve automated and adap-080

tive token distinction. Considering boilerplate to-081

kens are usually consistent across samples, they can082

be treated as sample-independent. Consequently,083

shuffling the correspondence between input and084

output across data samples does not alter the pre-085

dictability of boilerplate tokens. However, such086

shuffling introduces noise that complicates the pre-087

diction of reasoning tokens, by causing mismatches088

between the tokens and the input queries1. SHAD089

is developed based on this principle. Specifically,090

it fine-tunes an LLM model using a small portion091

of shuffled data and then compares the token-level092

loss between the tuned and original models to clas-093

sify tokens for the target data. A token is classi-094

fied as a boilerplate token2 if the loss on the tuned095

model decreases; otherwise, it is classified as a096

1We will later provide practical examples in Section 3.1
to illustrate how shuffling can cause the reasoning parts of a
response to mismatch with the corresponding queries.

2These tokens would be further categorized into formatting
tokens and template connecting phrases based on their losses
if needed.

reasoning token. 097

Based on SHAD, we have developed a new 098

Reasoning-highlighted Fine-Tuning (RFT) ap- 099

proach, which adaptively assigns greater weights 100

to challenging reasoning tokens to emphasize the 101

learning of reasoning. This approach demonstrates 102

superior performance compared to existing super- 103

vised fine-tuning methods across several common 104

agent benchmarks. Further analysis reveals that our 105

method could effectively identify reasoning tokens 106

and strengthen the learning of these tokens, ulti- 107

mately enhancing the learning of agent capabilities 108

for LLMs. 109

The main contributions of this work are summa- 110

rized as follows: 111

• We emphasize the differences in learning diffi- 112

culty and importance between reasoning and boil- 113

erplate tokens for agent learning, highlighting the 114

critical importance of effectively distinguishing 115

between them. 116

• We introduce SHAD, a novel method that auto- 117

matically discriminates between reasoning and 118

boilerplate tokens based on their predictability 119

differences observed after shuffling input-output 120

combinations. 121

• We have developed a new fine-tuning method 122

RFT rooted in SHAD, improving the effective- 123

ness of learning agent capabilities for LLMs. 124

2 Related Work 125

• Token Differentiation. Typically, when tuning 126

LLMs, the sequence-level loss is optimized, treat- 127

ing all involved tokens equally. However, recent 128

studies across various domains have increasingly 129

recognized that tokens play different roles. For 130

instance, Lin et al. 2024 suggest that not all to- 131

kens are necessary during pretraining, especially in 132

domain-specific contexts, and propose leveraging 133

a reference model trained on high-quality data to 134

distinguish between token importance. Similarly, 135

(Yang et al.; Rafailov et al., 2024) recognize token 136

differences in preference learning for LLMs, and 137

accordingly introduce token-level rewards to better 138

align models with human preferences. Among ex- 139

isting works, Agent-Flan (Chen et al., 2024b) is the 140

most relevant to ours, sharing a similar motivation 141

to account for token differences in agent tuning. 142

However, it only considers “format tokens" as boil- 143

erplate tokens, overlooking template-connecting 144

tokens, which are more challenging to disentan- 145

gle from reasoning tokens. Additionally, it does 146

2

Step1:Data Shuffle

Datasets

𝒟($)*%+ ⊂ 𝒟

Data
Shuffle

𝑥! 𝑦!

𝑥" 𝑦"

𝑥# 𝑦#

𝑥! 𝑦#

𝑥" 𝑦!

𝑥# 𝑦"

𝒟&

Step2:Model Tuning

Train Ref
Model

Step3:Classifying

We need call
“get_current_weat
her” with “6:30”
and “Beijing” as
paramters

𝑙& − 𝑙'
𝑥! 𝑦#

𝑥" 𝑦!

𝑥# 𝑦"

𝒟&

Token-
Level Loss

Token-
Level Loss

𝑙&

𝑙'𝜃'

𝜃&

𝜃'
𝜃&

Figure 3: Illustration of the SHAD method, which classifies tokens through three steps. In step 1, a small subset of
the data is sampled, and the output of the sampled data is shuffled. In step 2, the LLM is tuned using the shuffled
data. In step 3, tokens are classified by comparing the prediction losses between the tuned and original models.

not emphasize the importance of distinguishing (or147

classifying) these tokens, resulting in a fundamen-148

tal difference in both the problems addressed and149

the solutions proposed. We focus on automatically150

disentangling reasoning tokens from boilerplate to-151

kens, whereas Agent-Flan prioritizes converting152

agent data into a standard conversational format.153

•Enhancing Agent Capability for LLMs. To154

tackle complex real-world problems, it is essential155

to enhance LLMs’ agent capabilities, such as the156

ability of external tool use and multi-step reason-157

ing (Shen et al., 2023; Nakano et al., 2021; Yao158

et al., 2022; Du et al., 2024; Paranjape et al., 2023).159

Prior works (Yao et al., 2023; Shinn et al., 2023;160

Pan et al., 2024; Zhao et al., 2023; Shen et al.,161

2024) have focused on developing frameworks that162

prompt LLMs to integrate tools better and engage163

in deeper reasoning before taking action. Subse-164

quent works have further constructed diverse and165

well-structured agent-task benchmark datasets, e.g.,166

Toolllama (Qin et al., 2024), Toolalpaca (Tang et al.,167

2023), and APIGen (Liu et al., 2024), considering168

these specific datasets for further tuning of LLMs169

to more directly and effectively enhance their agent170

abilities. Although these methods train LLMs on171

agent datasets and achieve promising results, they172

often struggle with overfitting and generalization173

issues (Chen et al., 2024b). Our RFT with SHAD174

can better utilize these datasets to learn reason-175

ing, achieving superior performance on agent tasks176

while maintaining good generalization ability on177

out-of-distribution benchmarks.178

3 Methodology179

In this section, we first introduce the SHuffle-180

Aware Discriminator (SHAD), which is proposed181

to adaptively distinguish between reasoning and182

boilerplate tokens. We then discuss how to183

develop our Reasoning-highlighted Fine-Tuning184

(RFT) based on the discrimination results.185

3.1 SHAD: Adaptive Token Discriminator 186

To develop SHAD, our foundational idea is that 187

boilerplate tokens, which template outputs, should 188

be interchangeable across many samples, whereas 189

reasoning tokens are specific to individual samples 190

and cannot be swapped. Consequently, shuffling 191

the combination of inputs and outputs across sam- 192

ples does not alter the predictability of boilerplate 193

tokens, unlike reasoning tokens. Leveraging this 194

principle, we could achieve automated and adap- 195

tive token discrimination through the three steps 196

(as show in Figure 3): 197

1. Data Shuffle: Select a small ratio of the data 198

and shuffle the combinations of inputs and 199

outputs among the sampled items. 200

2. Model Tuning: Fine-tune an LLM model 201

using the shuffled data. 202

3. Classifying: Classify tokens based on the 203

loss change between the tuned and original 204

models for the target data. Compared to the 205

original model, if a token’s loss decreases, 206

it is likely a boilerplate token; otherwise, a 207

reasoning token. 208

Next, we elaborate on these three steps: 209

•Data Shuffle. This is the core step of our method, 210

creating distinct predictability for the reasoning 211

tokens and boilerplate tokens. The shuffle is per- 212

formed by randomly reassigning the input-output 213

combinations between samples. When implement- 214

ing, we just select a small ratio (1%) of the tar- 215

get dataset and shuffle it for use in the subsequent 216

model tuning step, to avoid large tuning costs and 217

overfitting on the whole dataset. 218

Let (xi, yi) denote the i-th sample for the sam- 219

pled dataset, with xi as the input and yi as the 220

output. Denote all the inputs of all samples as 221

X = [x1, . . . , xN], and the corresponding outputs 222

as Y = [y1, . . . , yN], where N denotes the size 223

3

Data Shuffle

User

Assistant Assistant

User

As a trader, I want to evaluate the performance of the BTCUSDT
pair on Binance. Fetch the Ultimate Oscillator (UO), the Typical
Price (TP), and the Trix (TRIX) for the past month. Additionally,
provide the Stochastic (STOCH) and the Standard Deviation (STD)
for the same period. Begin!

As a trader, I want to evaluate the performance of the BTCUSDT
pair on Binance. Fetch the Ultimate Oscillator (UO), the Typical
Price (TP), and the Trix (TRIX) for the past month. Additionally,
provide the Stochastic (STOCH) and the Standard Deviation (STD)
for the same period. Begin!

Thought: I should call the 'ultimateoscillator_for_qvantana'
function with the arguments provided. This API call will fetch
the Ultimate Oscillator (UO), the Typical Price (TP), and the Trix
(TRIX) for the BTCUSDT pair on Binance for the past month.
Additionally, it will also provide the Stochastic (STOCH) and the
Standard Deviation (STD) for the same period. This will help me
evaluate the performance of the BTCUSDT pair and gather the
necessary data for analysis.
Action: ultimateoscillator_for_qvantana
Action Input: {
"exchange": "binance",
"interval": "1d",
"market": "spot",
"symbol": "btcusdt",
"backtracks": 30
}"

Thought: I need to call the `maxindex_for_twelve_data` function
to retrieve the highest and lowest values of the selected
instrument. The API call is made with the arguments `interval`
set to "1day", `symbol` set to "AAPL", `series_type` set to
"close", and `outputsize` set to 100. By using these arguments, I
can receive the daily data for the AAPL stock and analyze it to
find the maximum and minimum values. This will help me
provide the desired information to the user for displaying on the
trading platform.
Action: maxindex_for_twelve_data
Action Input: {
"interval": "1day",
"symbol": "AAPL",
"series_type": "close",
"outputsize": 100
}"

Before Shuffle After Shuffle

Qi

Ri

Qi

Rj

Figure 4: Example of shuffled data. After shuffling, the assistant’s responses no longer correspond to the original
queries. However, some tokens (boilerplate tokens, red) remain semantically similar to the original response and are
therefore predictable. In contrast, reasoning tokens (green) no longer align with the query, resulting in noise. Note
that ’Action’ and ’Action Input’ are directly copied from ’Thought’ and could be considered as non-reasoning.

of sampled dataset. We shuffle Y , and then re-224

combine the inputs in X and outputs in the shuffled225

Y to construct the shuffled dataset Ds. This means,226

for the i-th original sample (xi, yi), its input xi227

may be combined with the j-th sample’s output yj228

to form a new sample (xi, yj), while its output yi229

may be combined with the k-th sample’s input xk230

to form a new sample (xk, yi). With this opera-231

tion, the mapping relationship between the inputs232

and outputs becomes noise for reasoning tokens,233

making them unpredictable. As for the boilerplate234

tokens, since they are shared across samples, their235

predictability remains intact. Figure 4 provides an236

example to illustrate this.237

•Model Tuning. After obtaining the shuffle data,238

we leverage them to fine-tune an LLM model. Note239

that this tuning process uses the same LLM as our240

backbone model for performing agent tasks. The241

model tuning is performed according to the classic242

causal language modeling. Formally,243

θs = argmin
∑

(x′,y′)∈Ds

l(x′, y′; θ), (1)244

where θ denotes the learnable model parameters,245

and l(x′; y′; θ) denotes the loss for a shuffled sam-246

ple (x′, y′) ∈ Ds, and θs denotes the optimized θ.247

As the output is shuffled for the input, the tuned248

model is only expected to learn to predict boiler-249

plate tokens effectively.250

•Classifying. After tuning the model with shuffled251

data, we evaluate the role of each token in a target 252

sample by comparing the token-level prediction 253

loss between the tuned and original models. Given 254

that the tuned model should primarily learn boil- 255

erplate tokens, we classify a token as ‘boilerplate’ 256

if its prediction loss decreases in the tuned model 257

relative to the original; otherwise, we classify it as 258

a ‘reasoning’ token. 259

Given a sample (x, y) in the target dataset, we 260

focus on classifying the tokens in the output part. 261

Formally, for the k-th token yk in the output, we 262

first compute the prediction loss difference (de- 263

noted as LD(yk)) between the tuned and original 264

models as follows: 265

LD(yk) = ls(yk)− lo(yk), (2) 266

where ls(yk) and lo(yk) represent the loss calcu- 267

lated on the tuned model and the original model, 268

respectively, given by: 269

ls(yk) = − log(P (yk|x, y<k; θs)),

lo(yk) = − log(P (yk|x, y<k; θo)).
(3) 270

Here, P (yk|x, y<k; θs) and P (yk|x, y<k; θo) de- 271

note the predicted probabilities of the token yk 272

from the tuned model (parameterized by θs) and 273

the original model (parameterized by θo), respec- 274

tively. 275
Based on the calculated loss difference LD(yk), 276

the token is classified as follows: 277

Classifier(yk) =

{
boilerplate, if LD(yk) ≤ 0

reasoning, otherwise
278

4

Note that our token classification can be con-279

ducted offline with a single forward pass of LLM280

computation for each sample, without affecting the281

efficiency of the subsequent agent tuning process.282

3.2 Reasoning-highlighted Fine-Tuning283

Agent-tuning data often follows fixed formats and284

similar reasoning trajectories, making boilerplate285

tokens easily learned. To prevent overfitting to286

these tokens and enhance reasoning capabilities,287

we propose focusing more on reasoning tokens288

identified by our SHAD method during fine-tuning.289

Instead of manually assigning fixed weights to290

the two types of tokens, we utilize an adaptive291

weight assignment to align the dynamic learning292

process better. Specifically, we compare the total293

losses of the reasoning and boilerplate parts, apply-294

ing the softmax function to assign higher weights295

to the part with the greater loss. Notably, since296

the reasoning part typically exhibits a higher loss297

(see Figure 6), our method naturally assigns greater298

weights to emphasize reasoning learning. Further-299

more, when the loss difference between the two300

parts diminishes, our method can adaptively ad-301

just the weights to promote a more balanced learn-302

ing process for the two parts. Given the nature303

of highlighting reasoning, we name our method304

Reasoning-highlighted Fine-Tuning (RFT).305

Formally, let Lb and Lr represent the total loss306

for the boilerplate and reasoning tokens, respec-307

tively. The re-weighted loss of our RFT, denoted308

as LRFT , can be formulated as follows:309

LRFT = ωbLb + ωrLr, (4)310

where311

ωb =
exp(Lb/τ)

exp(Lb/τ) + exp(Lr/τ)
,

ωr =
exp(Lr/τ)

exp(Lb/τ) + exp(Lr/τ)
.

(5)312

Here, τ is the temperature coefficient of the soft-313

max function. A smaller τ results in greater weight314

being assigned to the part with the higher loss.315

4 Experiments316

We now present experiments to evaluate the effec-317

tiveness of our method in enhancing LLMs’ agent318

capabilities, particularly in multi-step planning and319

tool usage, for solving complex real-world prob-320

lems. We begin by detailing the experimental setup,321

followed by the analyses of the results.322

4.1 Experiment Setup 323

•Training Data. We use LLaMA3-8B and 324

LLaMA3.1-8B as the backbone models, fine- 325

tuning them to solve agent tasks. The train- 326

ing dataset is constructed from two commonly 327

used multi-step planning and tool-use benchmarks, 328

ToolBench (Qin et al., 2024) and APIGen (Liu 329

et al., 2024), supplemented with general data from 330

ShareGPT3. The general data is used to preserve 331

general capabilities like instruction-following, as 332

demonstrated in previous work (Zeng et al., 2023). 333

ToolBench and APIGen provide a variety of exam- 334

ples for solving complex real-world user queries 335

across different environments, all organized in a 336

standard agent-specific format: “Thought-Action- 337

Action Input" or JSON style. 338

• Evaluation Setting. To comprehensively evalu- 339

ate the proposed method, we consider two evalua- 340

tion settings: held-in task evaluation and held-out 341

task evaluation, following prior work (Zeng et al., 342

2023). For the held-in setting, we use the Stable- 343

ToolBench (Guo et al., 2024) and BFCL (Yan et al., 344

2024) benchmarks. These datasets align with our 345

agent tuning datasets: StableToolBench shares the 346

same source as ToolBench, while BFCL serves 347

as the leave-out evaluation data for APIGen. For 348

the held-out setting, we use two additional bench- 349

marks: 1) T-eval (Chen et al., 2024a), a compre- 350

hensive step-level reasoning benchmark, and 2) 351

Nexus (team, 2023), a complex single-step nested 352

tool-use benchmark. Both benchmarks provide 353

a diverse set of tools for LLMs to choose from, 354

with tasks in StableToolBench and T-eval often re- 355

quiring multiple steps to complete. Appendix B.1 356

contains more evaluation details. 357

• Compared Methods. To evaluate our 358

RFT method developed on SHAD (denoted as 359

SHAD+RFT), we compare it against the follow- 360

ing baselines: 1) SFT, standard supervised fine- 361

tuning; 2) Regex, which uses regular expressions 362

to distinguish formatting tokens from other tokens 363

and re-weights their losses with constant values; 364

2) Rho-1 (Lin et al., 2024), which leverages a 365

reference model trained on high-quality data to 366

identify noise tokens and then mask them during 367

fine-tuning; and 3) Reward-based Fine-Tuning 368

(RewardFT) (Yang et al.; Rafailov et al., 2024), 369

which assigns token-level reward scores for tuning 370

3https://huggingface.co/datasets/
anon8231489123/ShareGPT_Vicuna_unfiltered

5

https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered

Table 1: Performance comparison between baselines, SHAD+RFT, and its variants. Accuracy is reported for BFCL,
Nexus, and T-eval, while pass rate, assessed by GPT-4, is used for StableToolBench. ‘AVG’ represents the average
performance across all evaluation datasets. The best results among baselines and SHAD+RFT are highlighted in
bold, and the second-best are underlined.

Model Method Held-In Held-Out AVG
StableToolbench BFCL T-eval Nexus

LLaMA3-8B

SFT 43.1 85.9 67.0 14.0 52.5
Regex 36.2 81.0 54.3 6.45 44.5
Rho-1 24.5 82.9 68.4 19.0 48.7
RewardFT 44.4 89.3 66.3 8.0 52.0
SHAD+RFT 50.1 87.6 71.8 27.8 59.3
SHAD+α-FT 47.0 87.2 68.8 28.7 57.9
Regex+RFT 41.2 83.81 61.1 12.4 49.6

LLaMA3.1-8B

SFT 48.5 89.3 64.2 19.5 55.4
Regex 42.3 82.1 58.6 14.3 49.3
Rho-1 30.6 84.6 67.0 26.0 52.0
RewardFT 48.2 88.2 66.4 19.1 55.5
SHAD+RFT 50.4 89.4 68.3 32.0 60.0
SHAD+α-FT 49.2 88.2 63.8 28.9 57.5
Regex+RFT 46.7 80.31 57.6 16.2 50.2

using a DPO-based reward model. It is important371

to note that Rho-1 and RewardT were not originally372

designed for agent tuning tasks; however, we have373

extended them for this purpose, with implementa-374

tion details provided in the Appendix C.375

In addition to the above baselines, we also com-376

pare our method with two of its variants to as-377

sess its core design components: 1) SHAD+α-FT,378

which retains the SHAD component but assigns a379

fixed weight α to reasoning tokens to emphasize380

them; and 2) Regex+RFT, which preserves the381

RFT weighting mechanism, but uses regular expres-382

sions for the token distinction. The implementation383

details of α-FT are also provided in Appendix C.384

4.2 Main Results385

Table 1 summarizes the performance of all com-386

pared methods. From the table, we could draw two387

main conclusions:388

SHAD+RFT Performs Strongly. Our method,389

SHAD+RFT, outperforms all baselines on all held-390

in and held-out evaluation datasets, except for the391

held-in evaluation BFCL with LLaMA3-8B. This392

highlights the advantage of emphasizing reasoning393

components in solving complex real-world prob-394

lems and demonstrates the effectiveness of our395

method in identifying and highlighting these parts.396

Notably, while Rho-1 and RewardFT also differ-397

entiate between tokens during learning, they are398

not specifically designed for agent tuning to dis- 399

cover and emphasize reasoning tokens, resulting 400

in comparatively lower performance. Specifically, 401

Rho-1 targets identifying noise tokens to mask dur- 402

ing tuning, but fails to distinguish between normal 403

boilerplate and reasoning tokens. The RewardFT 404

method leverages token-level rewards from a DPO- 405

based reward model aligned with human prefer- 406

ences to differentiate tokens, but it is also not de- 407

signed to identify reasoning tokens that are essen- 408

tial for agent-specific capabilities. 409

Notably, we have further evaluated the general 410

effectiveness of our method along two dimensions: 411

model scale and model family. First, we extend 412

our experiments to the LLaMA 3.2 3B model. The 413

results show that our method continues to perform 414

better, emphasizing its effectiveness across differ- 415

ent model scales (Appendix D.4). Second, we com- 416

pare our method with SFT on the Qwen model. 417

The results demonstrate that our method outper- 418

forms SFT across all evaluation metrics, further 419

reinforcing its generalizability across model fami- 420

lies (Appendix D.5). 421

Both SHAD and RFT are Crucial. When com- 422

paring SHAD+RFT with its variants, Regex+RFT 423

and SHAD+α-FT, the original SHAD+RFT con- 424

sistently demonstrates superior performance. We 425

explain the results as follows: 426

• Adaptive weighting in RFT is crucial. Com- 427

6

Thought: I should call the API "smart_phones_for_amazon_api_v2" with empty arguments
to fetch the top-rated smartphone options from Amazon. This API specifically caters to the
task of finding top-rated smartphones, so it is the appropriate choice. By calling this API, I
can retrieve the necessary information to suggest the user some of the best-rated
smartphones available on Amazon.
Action: smart_phones_for_amazon_api_v2
Action Input: {}

Examples of Tokens Classified by SHAD

{
"tool_calls": [

{"name": "getgamelevel", "arguments": {"level": 5, "output": "json"}}
]

}

Figure 5: Case study of tokens classified by SHAD. The blue regions represent reasoning tokens, identified by
an increase in loss on the model tuned with shuffled data compared to the original model. In contrast, the brown
regions indicate boilerplate tokens, characterized by a decrease in loss on the tuned model.

paring the proposed SHAD+RFT with its variant428

SHAD+α-FT, SHAD+RFT consistently outper-429

forms, demonstrating the superiority of RFT’s430

adaptive mechanism over the fixed weighting431

approach of α-FT. This advantage stems from432

adaptive weighting’s ability to better align with433

the dynamic learning process, adaptively adjust-434

ing weights for reasoning and boilerplate token435

components, thereby preventing over-learning or436

under-learning of either part.437

• The importance of SHAD for token differ-438

entiation. Replacing SHAD with Regex in439

SHAD+RFT leads to a significant drop in model440

performance. This highlights that the effec-441

tiveness of reasoning-highlighted fine-tuning de-442

pends on accurate token differentiation. The re-443

sults also demonstrate SHAD’s superior ability444

to disentangle boilerplate tokens from reasoning445

tokens. In contrast, Regex relies solely on regular446

expressions to identify formatting tokens, failing447

to fully distinguish between template-connecting448

tokens (one part of boilerplate tokens) and rea-449

soning tokens.450

This indicates that replacing either SHAD or RFT451

diminishes the method’s effectiveness, affirming452

the importance of both components.453

5 Analysis on SHAD and RFT454

In this section, we first present a case study on the455

effectiveness of SHAD in distinguishing different456

tokens, followed by a comprehensive analysis of457

how RFT functions.458

Case study of tokens classified by SHAD. To 459

further validate SHAD’s ability to identify reason- 460

ing tokens, we conducted a series of case studies, 461

with one example of classification result shown 462

in Figure 5 (additional examples are provided 463

in Appendix F). As shown in the figure, SHAD 464

successfully classifies most query-dependent in- 465

formation related to ‘smart-phones’—as reason- 466

ing tokens, while formatting tokens (e.g., the at- 467

tribute names ‘Thought’ and ‘Action’) and com- 468

mon template-connecting tokens like ‘I should 469

call’ and ‘this API’ are classified as boilerplate 470

tokens. This outcome aligns with human under- 471

standing of reasoning tokens, verifying the ef- 472

fectiveness of our method again. Interestingly, 473

SHAD does not classify the entire function name 474

‘smart_phones_for_amazon_api_v2’ as reasoning 475

but only the ‘smart_phones’ portion. We think this 476

is may because the ‘amazon_api_v2’ part is com- 477

mon across many function names. Additionally, 478

When this function name appears in ‘Action’ field, 479

it is classified as boilerplate as it is derived from the 480

thought rather than part of the reasoning process. 481

We acknowledge that evaluating classification 482

quality ideally involves a quantitative analysis 483

of classification accuracy. However, this is im- 484

practical since obtaining ground-truth labels for 485

all tokens is nearly impossible, even for humans. 486

Nonetheless, for tokens that can be manually an- 487

notated, we conducted a quantitative analysis of 488

classification accuracy, presented in Appendix D. 489

The results show that our method achieves a very 490

low classification error rate (<3%). 491

7

0 1000 2000 3000
Steps

0.5

0.6

0.7

0.8

0.9

1.0

Lo
ss

SFT Loss vs RFT Loss

SFT
RFT

200 800 1400 2000 2600 3200 3775
Steps

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

Reasoning vs Bolierplate

RFT reasoning
RFT boilerplate

SFT reasoning
SFT boilerplate

Figure 6: Training loss for SFT and our RFT (based on SHAD). Left: Overall training loss; Right: Training loss for
reasoning token part and boilerplate token part.

RFT Enhancing Reasoning Token Learning.492

Blindly treating reasoning and boilerplate tokens493

equally, as done in SFT, can lead to overfitting on494

boilerplate tokens while insufficiently learning for495

reasoning tokens. To further verify the effective-496

ness of RFT, we compare the training loss between497

SFT and RFT. The results are summarized in Fig-498

ure 6. The findings indicate that RFT significantly499

reduces the loss for reasoning tokens while main-500

taining a comparable loss for boilerplate tokens501

compared to SFT, confirming that RFT effectively502

enhances the learning for reasoning tokens. Addi-503

tionally, we conducted case studies on the model’s504

output, presented in Appendix E, to assess whether505

our method improves model reasoning. The re-506

sults show that our method enhances the model’s507

ability to correctly apply functions in reasoning508

components (e.g., providing accurate parameters)509

while preventing overfitting to training formats. A510

detailed discussion is available in Appendix E.511

The Effect of Hyper-parameter τ . The temper-512

ature coefficient τ in Equation 5 plays a crucial513

role in controlling the strength of our re-weighting514

mechanism in RFT, so we next investigate its im-515

pact. Specifically, we vary 1/τ within the range516

of [0, 2] and analyze the corresponding perfor-517

mance of SHAD+RFT (averaged over all evalua-518

tion datasets). The results are illustrated in Figure 7.519

From the figure, we observe that the performance of520

our method initially increases and then roughly de-521

creases as 1/τ increases, i.e., as gradually enhanc-522

ing our re-weighting mechanism. This indicates523

the importance of carefully selecting the optimal524

τ . Fortunately, across a wide range, SHAD+RFT525

could consistently outperform regular SFT and sur-526

pass most baselines (c.f., Table 1). 527

0.0 0.1 0.2 0.3 0.5 0.7 0.9 1.1 1.3 1.5 2.0
1/Tau

55

56

57

58

59
R

es
ul

t

Figure 7: The performance of our SHAD+RFT method
as the temperature coefficient τ varies. The performance
averaged over all evaluation datasets is reported, with
LLaMA3-8B as the backbone. Notably, 1/τ = 0 means
assigning equal weights to the reasoning and boilerplate
parts, i.e., deactivating our re-weighting mechanism.

6 Conclusion 528

In this paper, we highlighted the importance of 529

distinguishing between reasoning and boilerplate 530

tokens and introduced a SHuffle-Aware Discrimina- 531

tor (SHAD) to automatically achieve this. Building 532

on SHAD, we further developed a new Reasoning- 533

Highlighted Fine-Tuning (RFT) method to en- 534

hance reasoning learning during LLM fine-tuning, 535

thereby improving agent capabilities. Extensive re- 536

sults demonstrated that our method significantly en- 537

hances LLMs’ ability to solve complex real-world 538

problems. In the future, we plan to extend our 539

approach to the entire SFT domain and develop 540

more refined mechanisms, such as token-level re- 541

weighting, to better leverage our token differentia- 542

tion results. 543

8

7 Limitations544

We identify several limitations of our method in545

both token differentiation and re-weighting during546

training. First, the effectiveness of our approach547

depends on boilerplate tokens remaining consistent548

across different samples. When this consistency is549

lacking, such as in cases where the diversity of boil-550

erplate tokens is high, our method may fail. Second,551

our distinction between reasoning and boilerplate552

tokens relies on rigid, manually defined thresholds553

for loss differences, which may need refinement.554

Third, our weighting strategy is currently applied555

only at the group level, and future optimization556

may be required at the token level.557

Additionally, even with improved reasoning ca-558

pabilities, model outputs may still exhibit unpre-559

dictable behaviors in real-world deployments, po-560

tentially leading to incorrect or unsafe actions.561

There’s also a risk that our approach could rein-562

force certain biases present in the training data, par-563

ticularly if those biases are related to reasoning pat-564

terns and tool usage decisions. Future work should565

investigate these risks more comprehensively.566

8 Ethical Considerations567

All experiments were conducted using publicly568

available datasets and models, ensuring no privacy569

concerns. The Toolbench and ShareGPT datasets570

are licensed under Apache-2.0, while APIGen is571

licensed under CC-BY-4.0. The training data was572

carefully curated and processed to exclude any per-573

sonally identifiable information. We have main-574

tained transparency in our methodology and results,575

acknowledging both the strengths and limitations576

of our approach.577

For the large language model use, we utilize578

ChatGPT to help polish the writing at the sentence579

level.580

References581

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier,582
Karthik Narasimhan, and Shunyu Yao. 2023. Fire-583
act: Toward language agent fine-tuning. Preprint,584
arXiv:2310.05915.585

Zehui Chen, Weihua Du, Wenwei Zhang, Kuikun586
Liu, Jiangning Liu, Miao Zheng, Jingming Zhuo,587
Songyang Zhang, Dahua Lin, Kai Chen, and Feng588
Zhao. 2024a. T-eval: Evaluating the tool utilization589
capability of large language models step by step. In590
Proceedings of the 62nd Annual Meeting of the As-591
sociation for Computational Linguistics (Volume 1:592

Long Papers), ACL 2024, Bangkok, Thailand, Au- 593
gust 11-16, 2024, pages 9510–9529. Association for 594
Computational Linguistics. 595

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei 596
Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and 597
Feng Zhao. 2024b. Agent-flan: Designing data and 598
methods of effective agent tuning for large language 599
models. In Findings of the Association for Compu- 600
tational Linguistics, ACL 2024, Bangkok, Thailand 601
and virtual meeting, August 11-16, 2024, pages 9354– 602
9366. Association for Computational Linguistics. 603

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei 604
Zhang, Jiangning Liu, Dahua Lin, Kai Chen, 605
and Feng Zhao. 2024c. Agent-FLAN: Design- 606
ing Data and Methods of Effective Agent Tun- 607
ing for Large Language Models. arXiv preprint. 608
ArXiv:2403.12881 [cs]. 609

Yu Du, Fangyun Wei, and Hongyang Zhang. 2024. Any- 610
Tool: Self-reflective, hierarchical agents for large- 611
scale API calls. Preprint, arXiv:2402.04253. 612

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, 613
Yujia Qin, Peng Li, Zhiyuan Liu, Maosong Sun, and 614
Yang Liu. 2024. Stabletoolbench: Towards stable 615
large-scale benchmarking on tool learning of large 616
language models. In Findings of the Association 617
for Computational Linguistics, ACL 2024, Bangkok, 618
Thailand and virtual meeting, August 11-16, 2024, 619
pages 11143–11156. Association for Computational 620
Linguistics. 621

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, 622
and Piotr Dollár. 2020. Focal loss for dense object 623
detection. IEEE Transactions on Pattern Analysis 624
and Machine Intelligence, 42(2):318–327. 625

Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, 626
Yelong Shen, Ruochen Xu, Chen Lin, Yujiu Yang, 627
Jian Jiao, Nan Duan, and Weizhu Chen. 2024. Rho-1: 628
Not All Tokens Are What You Need. arXiv preprint. 629
ArXiv:2404.07965 [cs]. 630

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, 631
Tian Lan, Shirley Kokane, Juntao Tan, Weiran Yao, 632
Zhiwei Liu, Yihao Feng, Rithesh Murthy, Liangwei 633
Yang, Silvio Savarese, Juan Carlos Niebles, Huan 634
Wang, Shelby Heinecke, and Caiming Xiong. 2024. 635
APIGen: Automated Pipeline for Generating Verifi- 636
able and Diverse Function-Calling Datasets. arXiv 637
preprint. ArXiv:2406.18518 [cs]. 638

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, 639
Long Ouyang, Christina Kim, Christopher Hesse, 640
Shantanu Jain, Vineet Kosaraju, William Saunders, 641
Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen 642
Krueger, Kevin Button, Matthew Knight, Benjamin 643
Chess, and John Schulman. 2021. Webgpt: Browser- 644
assisted question-answering with human feedback. 645
CoRR, abs/2112.09332. 646

Haojie Pan, Zepeng Zhai, Hao Yuan, Yaojia Lv, 647
Ruiji Fu, Ming Liu, Zhongyuan Wang, and Bing 648

9

https://arxiv.org/abs/2310.05915
https://arxiv.org/abs/2310.05915
https://arxiv.org/abs/2310.05915
https://doi.org/10.18653/V1/2024.ACL-LONG.515
https://doi.org/10.18653/V1/2024.ACL-LONG.515
https://doi.org/10.18653/V1/2024.ACL-LONG.515
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.557
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.557
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.557
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.557
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.557
http://arxiv.org/abs/2403.12881
http://arxiv.org/abs/2403.12881
http://arxiv.org/abs/2403.12881
http://arxiv.org/abs/2403.12881
http://arxiv.org/abs/2403.12881
https://doi.org/10.48550/arXiv.2402.04253
https://doi.org/10.48550/arXiv.2402.04253
https://doi.org/10.48550/arXiv.2402.04253
https://doi.org/10.48550/arXiv.2402.04253
https://doi.org/10.48550/arXiv.2402.04253
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.664
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.664
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.664
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.664
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.664
https://doi.org/10.1109/TPAMI.2018.2858826
https://doi.org/10.1109/TPAMI.2018.2858826
https://doi.org/10.1109/TPAMI.2018.2858826
http://arxiv.org/abs/2404.07965
http://arxiv.org/abs/2404.07965
http://arxiv.org/abs/2404.07965
http://arxiv.org/abs/2406.18518
http://arxiv.org/abs/2406.18518
http://arxiv.org/abs/2406.18518
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332

Qin. 2024. KwaiAgents: Generalized Information-649
seeking Agent System with Large Language Models.650
arXiv preprint. ArXiv:2312.04889 [cs].651

Bhargavi Paranjape, Scott Lundberg, Sameer Singh,652
Hannaneh Hajishirzi, Luke Zettlemoyer, and653
Marco Tulio Ribeiro. 2023. ART: Automatic multi-654
step reasoning and tool-use for large language mod-655
els. Preprint, arXiv:2303.09014.656

Shishir G Patil, Tianjun Zhang, Xin Wang, and657
Joseph E Gonzalez. 2023. Gorilla: Large language658
model connected with massive apis. arXiv preprint659
arXiv:2305.15334.660

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo,661
Wangchunshu Zhou, Yuchen Jiang, Chengfei Lv, and662
Huajun Chen. 2024. AutoAct: Automatic agent663
learning from scratch for QA via self-planning. In664
Proceedings of the 62nd Annual Meeting of the As-665
sociation for Computational Linguistics (Volume 1:666
Long Papers), pages 3003–3021, Bangkok, Thailand.667
Association for Computational Linguistics.668

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan669
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,670
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,671
Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li,672
Zhiyuan Liu, and Maosong Sun. 2023. ToolLLM: Fa-673
cilitating Large Language Models to Master 16000+674
Real-world APIs. arXiv preprint. ArXiv:2307.16789675
[cs].676

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan677
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,678
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,679
Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li,680
Zhiyuan Liu, and Maosong Sun. 2024. Toolllm: Fa-681
cilitating large language models to master 16000+682
real-world apis. In The Twelfth International Con-683
ference on Learning Representations, ICLR 2024,684
Vienna, Austria, May 7-11, 2024. OpenReview.net.685

Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea686
Finn. 2024. From r to Q^*: Your Language687
Model is Secretly a Q-Function. arXiv preprint.688
ArXiv:2404.12358 [cs].689

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta690
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-691
moyer, Nicola Cancedda, and Thomas Scialom. 2023.692
Toolformer: Language models can teach themselves693
to use tools. In Advances in Neural Information Pro-694
cessing Systems 36: Annual Conference on Neural695
Information Processing Systems 2023, NeurIPS 2023,696
New Orleans, LA, USA, December 10 - 16, 2023.697

Weizhou Shen, Chenliang Li, Hongzhan Chen, Ming698
Yan, Xiaojun Quan, Hehong Chen, Ji Zhang, and Fei699
Huang. 2024. Small LLMs are weak tool learners: A700
multi-LLM agent. In Proceedings of the 2024 Confer-701
ence on Empirical Methods in Natural Language Pro-702
cessing, pages 16658–16680, Miami, Florida, USA.703
Association for Computational Linguistics.704

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, 705
Weiming Lu, and Yueting Zhuang. 2023. Hugging- 706
gpt: Solving AI tasks with chatgpt and its friends in 707
hugging face. In Advances in Neural Information 708
Processing Systems 36: Annual Conference on Neu- 709
ral Information Processing Systems 2023, NeurIPS 710
2023, New Orleans, LA, USA, December 10 - 16, 711
2023. 712

Noah Shinn, Federico Cassano, Ashwin Gopinath, 713
Karthik Narasimhan, and Shunyu Yao. 2023. Re- 714
flexion: language agents with verbal reinforcement 715
learning. In Advances in Neural Information Pro- 716
cessing Systems 36: Annual Conference on Neural 717
Information Processing Systems 2023, NeurIPS 2023, 718
New Orleans, LA, USA, December 10 - 16, 2023. 719

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, 720
Qiao Liang, Boxi Cao, and Le Sun. 2023. ToolAl- 721
paca: Generalized Tool Learning for Language Mod- 722
els with 3000 Simulated Cases. arXiv preprint. 723
ArXiv:2306.05301 [cs]. 724

Nexusflow.ai team. 2023. Nexusraven-v2: Surpassing 725
gpt-4 for zero-shot function calling. 726

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao 727
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang, 728
Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, 729
and Jirong Wen. 2024. A survey on large language 730
model based autonomous agents. Frontiers Comput. 731
Sci., 18(6):186345. 732

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 733
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, 734
and Denny Zhou. 2022. Chain-of-thought prompting 735
elicits reasoning in large language models. In Ad- 736
vances in Neural Information Processing Systems 35: 737
Annual Conference on Neural Information Process- 738
ing Systems 2022, NeurIPS 2022, New Orleans, LA, 739
USA, November 28 - December 9, 2022. 740

Lilian Weng. 2023. Llm-powered autonomous agents. 741
lilianweng.github.io. 742

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, Tianjun 743
Zhang, Shishir G. Patil, Ion Stoica, and Joseph E. 744
Gonzalez. 2024. Berkeley function calling leader- 745
board. 746

Shentao Yang, Shujian Zhang, Congying Xia, Yi- 747
hao Feng, Caiming Xiong, and Mingyuan Zhou. 748
Preference-grounded Token-level Guidance for Lan- 749
guage Model Fine-tuning. 750

Shentao Yang, Shujian Zhang, Congying Xia, Yi- 751
hao Feng, Caiming Xiong, and Mingyuan Zhou. 752
2023. Preference-grounded Token-level Guidance 753
for Language Model Fine-tuning. arXiv preprint. 754
ArXiv:2306.00398 [cs]. 755

Shunyu Yao, Howard Chen, John Yang, and Karthik 756
Narasimhan. 2022. Webshop: Towards scalable real- 757
world web interaction with grounded language agents. 758
Advances in Neural Information Processing Systems, 759
35:20744–20757. 760

10

http://arxiv.org/abs/2312.04889
http://arxiv.org/abs/2312.04889
http://arxiv.org/abs/2312.04889
https://doi.org/10.48550/arXiv.2303.09014
https://doi.org/10.48550/arXiv.2303.09014
https://doi.org/10.48550/arXiv.2303.09014
https://doi.org/10.48550/arXiv.2303.09014
https://doi.org/10.48550/arXiv.2303.09014
https://doi.org/10.18653/v1/2024.acl-long.165
https://doi.org/10.18653/v1/2024.acl-long.165
https://doi.org/10.18653/v1/2024.acl-long.165
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
http://arxiv.org/abs/2404.12358
http://arxiv.org/abs/2404.12358
http://arxiv.org/abs/2404.12358
http://papers.nips.cc/paper_files/paper/2023/hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html
https://doi.org/10.18653/v1/2024.emnlp-main.929
https://doi.org/10.18653/v1/2024.emnlp-main.929
https://doi.org/10.18653/v1/2024.emnlp-main.929
http://papers.nips.cc/paper_files/paper/2023/hash/77c33e6a367922d003ff102ffb92b658-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/77c33e6a367922d003ff102ffb92b658-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/77c33e6a367922d003ff102ffb92b658-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/77c33e6a367922d003ff102ffb92b658-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/77c33e6a367922d003ff102ffb92b658-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://arxiv.org/abs/2306.05301
http://arxiv.org/abs/2306.05301
http://arxiv.org/abs/2306.05301
http://arxiv.org/abs/2306.05301
http://arxiv.org/abs/2306.05301
https://nexusflow.ai/blogs/ravenv2
https://nexusflow.ai/blogs/ravenv2
https://nexusflow.ai/blogs/ravenv2
https://doi.org/10.1007/S11704-024-40231-1
https://doi.org/10.1007/S11704-024-40231-1
https://doi.org/10.1007/S11704-024-40231-1
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://lilianweng.github.io/posts/2023-06-23-agent/
http://arxiv.org/abs/2306.00398
http://arxiv.org/abs/2306.00398
http://arxiv.org/abs/2306.00398

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak761
Shafran, Karthik R. Narasimhan, and Yuan Cao. 2023.762
React: Synergizing reasoning and acting in language763
models. In The Eleventh International Conference764
on Learning Representations, ICLR 2023, Kigali,765
Rwanda, May 1-5, 2023. OpenReview.net.766

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao767
Liu, Yuxiao Dong, and Jie Tang. 2023. AgentTun-768
ing: Enabling Generalized Agent Abilities for LLMs.769
arXiv preprint. ArXiv:2310.12823 [cs].770

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin,771
Yong-Jin Liu, and Gao Huang. 2023. ExpeL: LLM772
Agents Are Experiential Learners. arXiv preprint.773
ArXiv:2308.10144 [cs].774

11

https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
http://arxiv.org/abs/2310.12823
http://arxiv.org/abs/2310.12823
http://arxiv.org/abs/2310.12823
http://arxiv.org/abs/2308.10144
http://arxiv.org/abs/2308.10144
http://arxiv.org/abs/2308.10144

A Detail Information of Training Datasets775

We provide more details of our training datasets in776

Table 2. To enable the multi-step reasoning ability777

of LLM, we choose ToolBench (Qin et al., 2024)778

and APIGen (Liu et al., 2024) as our basic datasets.779

Following the practice in AgentTuning (Zeng et al.,780

2023) and AgentFlan (Chen et al., 2024b), we also781

mix ShareGPT and basic datasets for training. We782

filter the obviously low-quality data that does not783

follow the request format and sample 5k percent784

of data from APIGen for data balance. All meth-785

ods use the same dataset and do not apply token786

differentiation to general data.787

Dataset Data Size

APIGen 5000
ToolBench 22993
ShareGPT 93481

Total 121474

Table 2: Training Dataset detail in our experiment

B Experimental Details and Resources788

Required789

B.1 Evaluation Details790

For the BFCL benchmark, we use BFCL V1 for791

evaluation. We primarily focus on AST-based accu-792

racy evaluation4. It directly measures the model’s793

ability to produce syntactically and parametrically794

correct function calls. We omit relevance scores795

from our evaluation since APIGen has not released796

the training data required for this metric. Addition-797

ally, we exclude execution-based metrics due to798

their inherent instability during evaluation, as they799

depend on external API availability and runtime800

conditions.801

For StableToolBench, the pass rate is assessed by802

GPT-4 following the original benchmark’s method-803

ology. We specifically select three most challeng-804

ing subsets - I2-Category, I3-Instruction, and I1-805

Tool - as they represent complex scenarios requir-806

ing sophisticated reasoning capabilities. We report807

accuracy metrics on T-eval and Nexus as defined in808

their original papers.809

4The AST-based evaluation includes simple, multiple, par-
allel,parallel multiple

B.2 Training Details 810

Table 3 lists the hyper-parameters used in our 811

model training. For evaluation, we set the infer- 812

ence temperature to 10−6 to ensure reproducibility. 813

When utilizing GPT-4 for evaluation, we follow the 814

practice in ToolLLM (Qin et al., 2023) and evaluate 815

each response 3 times. 816

Params LLaMA3-8B LLaMA3.1-8B

learning rate 1e-5 1e-5
warmup radio 0.05 0.05

max length 3072 3072
batch size 32 32

gpus 8 8

Table 3: Hyperparameters used for model training.
Both LLaMA3-8B and LLaMA3.1-8B were trained on
NVIDIA A100 GPUs with a batch size of 32 and a max-
imum sequence length of 3072. Each training session
utilized 8 GPUs and took approximately 8 hours.

C Implementation Details 817

C.1 Implementation Details of Rho-1 818

For the Rho-1 baseline, we train the reference 819

model in self-reference setting (Lin et al., 2024). 820

Specifically, we sample 5% data from our train- 821

ing dataset to train the reference model. We fol- 822

low the original implementation that focuses train- 823

ing on H→L tokens (i.e., the tokens with loss 824

decreased from high to low during training the ref- 825

erence model) and masks the other tokens. 826

C.2 Implementation Details of RewardFT 827

For the RewardFT baseline, because of the lack of 828

Agent preference data, we use general DPO data 829

ORCA DPO5 and Ultrafeedback6 to train the model 830

as token-level reward model under the same setting 831

in (Rafailov et al., 2024). We calculate the token- 832

level reward given by the preference model, then 833

we follow the practice in weighted-MLE (Yang 834

et al., 2023), taking softmax on all token rewards 835

as the weight to train the model. 836

C.3 Implementation Details of α-FT 837

A simple and common method for addressing im- 838

balance training is to manually give a fixed weight 839

5https://huggingface.co/datasets/Intel/orca_
dpo_pairs

6https://huggingface.co/datasets/allenai/
ultrafeedback_binarized_cleaned

12

https://huggingface.co/datasets/Intel/orca_dpo_pairs
https://huggingface.co/datasets/Intel/orca_dpo_pairs
https://huggingface.co/datasets/allenai/ultrafeedback_binarized_cleaned
https://huggingface.co/datasets/allenai/ultrafeedback_binarized_cleaned

for each type of token (Lin et al., 2020). Here840

we introduce a weighting factor α ∈ [0, 0.5] for841

boilerplate tokens and 1− α for reasoning tokens.842

Let Lb and Lr represent the total loss for the boil-843

erplate and reasoning tokens, respectively. The844

re-weighted loss (denoted as Lα−balance) can be845

formulated as follows:846

Lα−balance = αLb + (1− α)Lr (6)847

This loss is a simple extension to CE we call α-FT848

in this paper that we consider as an experimental849

baseline for our proposed RFT method.850

D Analysis of Token Classification851

D.1 Challenges in Manual Token Annotation852

The task of manually annotating tokens as either853

reasoning or boilerplate presents significant chal-854

lenges that make it impractical for large-scale vali-855

dation. To illustrate these challenges, we present a856

detailed example:857

Consider the following agent response:858

Thought: Based on the user's request to859

fetch weather data for NewYork, I should860

call the get_weather function. This API861

requires the city name and will return862

current weather conditions.863

Action: get_weather864

Action Input: {"city": "NewYork"}865

In this example, while some tokens are clearly866

boilerplate (e.g., "Action:", "Action Input:", "", ""),867

others are more ambiguous, "Based on" could be868

considered a template-connecting phrase (boiler-869

plate) or part of the reasoning process, "should870

call" might be viewed as either reasoning (indicat-871

ing decision-making) or a standard template phrase872

The structure "city name and will return" combines873

both reasoning content and standard connecting874

phrases875

D.2 Evaluation of SHAD Classification876

Given these challenges, we instead focused on eval-877

uating our SHAD method against the subset of878

tokens that can be clearly classified - specifically,879

formatting tokens that can be identified through880

regular expressions. We conducted this evaluation881

on our two training datasets in Table 4.882

The misclassification Rate is defined as:883

Misclassification Rate =
|T misclassified|

|T total|
(7)884

Table 4: SHAD Classification Performance on Format-
ting Tokens

Dataset Misclassification Rate Recall
ToolBench 0.82% 0.99
APIGen 2.62% 0.97

where |T misclassified| denotes the number of in- 885

correctly classified formatting tokens, and |T total| 886

represents the total number of formatting tokens 887

in the dataset. We also provide additional metrics 888

such as recall of the formatting tokens. Note that 889

while traditional metrics often include precision, 890

it would be misleading in our context since our 891

method identifies both format tokens and template- 892

connecting tokens as boilerplate, whereas our 893

ground truth only contains format tokens. There- 894

fore, we focus on recall to measure how effectively 895

our method identifies known format tokens. 896

The low misclassification rates shown in Table 897

4 on these unambiguous tokens provide strong evi- 898

dence for SHAD’s effectiveness in identifying boil- 899

erplate elements. While this evaluation only covers 900

a subset of all boilerplate tokens, it represents the 901

most objective measure possible given the inherent 902

ambiguity in token classification. 903

We acknowledge that our evaluation is limited to 904

formatting tokens identifiable through regular ex- 905

pressions, which represents only a subset of all boil- 906

erplate tokens. This limitation stems from the inher- 907

ent challenges in obtaining ground truth labels for 908

template-connecting tokens and reasoning tokens, 909

as the distinction often involves subtle semantic 910

differences and context-dependent interpretations. 911

A more comprehensive evaluation framework that 912

can assess classification accuracy across all token 913

types remains an important direction for future 914

work. Nevertheless, the strong performance on un- 915

ambiguous formatting tokens, combined with the 916

qualitative analysis and downstream task improve- 917

ments, provides reasonable confidence in SHAD’s 918

token classification capabilities. 919

D.3 Experiments with Different Model 920

Variants and Providers 921

To thoroughly evaluate the effectiveness and gener- 922

alizability of our proposed method, we conducted 923

extensive experiments across different model vari- 924

ants and providers. The results demonstrate that 925

SHAD+RFT shows consistent improvements re- 926

gardless of model architecture or size. 927

13

Table 5: Performance comparison of SHAD+RFT across different model providers and sizes. Results show accuracy
for BFCL, T-eval, and Nexus, while StableToolBench reports GPT-4 assessed pass rates. The best results among
baselines and SHAD+RFT are highlighted in bold.

Model Method Held-In Held-Out AVG
StableToolbench BFCL T-eval Nexus

LLaMA3.2-3B

SFT 45.6 87.1 59.00 14.4 51.5
Regex 23.6 54.1 54.5 16.2 37.1
Rho-1 43.2 87.5 58.2 16.66 51.4
RewardFT 41.7 86.7 55.7 15.5 49.9
SHAD+RFT 47.2 87.0 61.0 16.72 53.0
SHAD+α-FT 43.9 86.4 58.3 15.6 51.1
Regex+RFT 40.7 86.2 53.1 13.3 48.3

Table 6: Performance comparison of SHAD+RFT on Qwen1.5-4B The best results among SFT and SHAD+RFT
are highlighted in bold.

Model Method Held-In Held-Out AVG
StableToolbench BFCL T-eval Nexus

Qwen1.5-4B
SFT 45.3 84.7 60.7 17.1 51.9
SHAD+RFT 47.4 83.5 61.1 17.3 52.3

D.4 Experiments with Different Model928

Variants929

Table 5 presents detailed results comparing930

SHAD+RFT against various baselines using the931

LLaMA3.2-3B model. Our method consistently932

outperforms baseline approaches across both held-933

in and held-out evaluations. Notably, while934

some baselines like Rho-1 achieve strong per-935

formance on individual metrics (e.g., 87.5% on936

BFCL), SHAD+RFT maintains more balanced per-937

formance across all metrics, leading to the best938

overall average performance (53.0%).939

D.5 Experiments with Different Model940

providers941

To verify that our method generalizes beyond the942

LLaMA family, we also evaluated SHAD+RFT us-943

ing Qwen1.5-4B, as shown in Table 6. The results944

demonstrate that our method maintains its effec-945

tiveness across different model providers.946

E Qualitative Analysis947

In this section, we present several examples of how948

model trained by our method yeild more accurate949

answer than model trained by naive SFT in Figure 9.950

In the response generated by the naïve SFT model,951

we observe overfitting, with formatted tokens (yel-952

low) and template-connect tokens (blue) being er-953

roneously generated. Additionally, the naïve SFT954

model exhibits hallucination, leading to reasoning 955

errors (red). In contrast, our SHAD+RFT method 956

successfully follows the Held-Out instructions and 957

provides accurate reasoning. 958

F More examples Labeled by SHAD 959

In Figure 8, we show several examples of tokens 960

classified by our SHAD method, with blue regions 961

representing reasoning tokens and brown regions 962

indicate boilerplate tokens. 963

G More Example of Shuffled Data 964

In this section, we add more examples of shuffled 965

data in Figure 10 to support the state made that 966

shuffling the correspondence between input and 967

output across data samples does not alter the pre- 968

dictability of boilerplate tokens while reasoning 969

tokens are disruptive after the shuffling. 970

14

Thought: Based on the user‘s request for fresh manga content in the genres
of Comedy, Romance, and Supernatural, I called the “fetch_latest_for_mangaverse_api”
function from the MangaVerse API. With this function, I can retrieve the
latest manga that matches the user’s desired genres. By specifying the genres
and requesting chapter lists and images, I will be able to assist the
user in finding new manga to blog about. Now, I will call the “fetch_chapters_for_mangav
erse_api” function to fetch the chapters for the manga that was
fetched in the previous step. This will provide me with the necessary
information to present to the user and further enhance their blogging experience.
Action: fetch_chapters_for_mangaverse_api
Action Input: {}

More Examples of Tokens Classified by SHAD

Thought: The current API, “businessplan_for_business_starter_api”, is being called with
the argument “{\n ”idea“: ”Start a mobile pet grooming business“\n}”. By calling
this API with the user‘s selected business idea, I can generate a comprehensive
business plan specifically tailored to the concept of starting a mobile pet
grooming business. This will provide the user with a step-by-step guide on
how to establish and run their venture, including details on services offered, target marke
t, marketing strategies, and financial projections. The purpose of
this API call is to assist the user in transforming their idea into a concrete and well-
structured business plan.
Action: businessplan_for_business_starter_api
Action Input: {

"idea": "Start a mobile pet grooming business"
}

{
"tool_calls": [

{"name": "live_players_rankings", "arguments": {"n_player": "300"}}, {"name": "
teammedia", "arguments": {"is_id": 7890}}

]
}

{
"tool_calls": [

{"name": "products_search_by_barcode", "arguments": {"upc": "123456789012"}}, {
"name": "get_product_s_reviews", "arguments": {"productid": "B012345678"}}

]
}

Figure 8: More case studies of tokens classified by SHAD. The blue regions represent reasoning tokens, identified
by an increase in loss on the model tuned with shuffled data compared to the original model. In contrast, the brown
regions indicate boilerplate tokens, characterized by a decrease in loss on the tuned model.

15

You are given multiple functions and a user query.
Please proceed with generating a function call for the function with the proper arguments that best answers the given prompt.
Respond with nothing but the function call ONLY, such that I can directly execute your function call without any post processing necessary
from my end. Do not use variables.
{tools}

Examples on Held-Out Benchmark Nexus

Instruction:

find_places_near_location(type_of_place=['restaurant'], location=get_current_location())

Function Call: find_places_near_location(['restaurant'], 'my location', 10)

Explanation: Based on the user's query, I can see that they are looking for restaurants near their location. To fulfill this request, I will use the

"find_places_near_location" function. The current arguments for the function call are "type_of_place" = ['restaurant'], "location" = 'my

location'. These arguments indicate that the user is specifically interested in finding restaurants near their current location. The "radius_miles"

argument is set to 10, which means that the search will be limited to a 10-mile radius. This will ensure that the recommendations are relevant

to the user's current location.

```python

find_places_near_location(['restaurant'], 'my location', 10)

```

User Question:

Give me restaurants near me?

Response (SFT):

Response (SHAD+RFT):

User Question:

Give me vulnerabilities, sorted by their CVSS version 2.0 scores in descending order, released between January 1, 2021 and January 31, 2021,

that match the CPE name 'cpe:/a:microsoft:windows_10:1909' and have a Technical Alert from US-CERT?

Function call: sortCVEsByCVSSv2Score(cve_list, descending=True)

Explanation: The user wants to search for vulnerabilities associated with the CPE named 'cpe:/o:linux:linux_kernel' and sort them in

descending order by their CVSS Version 2.0 base scores. The function call 'sortCVEsByCVSSv2Score' is used to achieve this. The argument

'cve_list' is a list of CVE objects, and the argument 'descending' is set to True to sort the CVEs in descending order.

Response (SFT):

sortCVEsByCVSSv2Score(searchCVE(cpeName='cpe:/a:microsoft:windows_10:1909', pubStartDate='2021-01-01', pubEndDate='2021-01-

31', hasCertAlerts=True), descending=True)

Response (SHAD+RFT):

User Question:

Could you help identify CPEs that closely resemble the pattern 'cpe:2.3:a:google:android:'? And please, limit the results to just 5.

Function call: searchCPE(cpeMatchString='cpe:2.3:a:google:android:', limit=5)

Explanation: The user wants to identify CPEs that closely resemble the pattern 'cpe:2.3:a:google:android:', and limit the results to just 5. To

accomplish this, I will call the 'searchCPE' function with the arguments 'cpeMatchString' set to 'cpe:2.3:a:google:android:' and 'limit' set to 5.

This will search for CPEs that match the given pattern and limit the results to just 5.

Response (SFT):

searchCPE(cpeMatchString='cpe:2.3:a:google:android:', limit=5)

Response (SHAD+RFT):

Example 1

Example 2

Example 3

Figure 9: Comparison example on Held-Out Benchmark Nexus. In the response generated by the naïve SFT
model, we observe overfitting, with formatted tokens and template-connect tokens being erroneously generated.
Additionally, the naïve SFT model exhibits hallucination, leading to reasoning errors. In contrast, our SHAD+RFT
method successfully follows the Held-Out instructions and provides accurate reasoning, we explicitly mark the
different reasoning part in red.

16

Data Shuffle

User

Assistant Assistant

User

My company is organizing a team-building event and

we need some entertainment. Retrieve a random

programming meme and a Chuck Norris joke for us.

Also, generate a Pet Pet meme using an image of our
company logo. Begin!

My company is organizing a team-building event and

we need some entertainment. Retrieve a random

programming meme and a Chuck Norris joke for us.

Also, generate a Pet Pet meme using an image of our
company logo. Begin!

Thought: Based on the user's request, they are interested
in the history of NBA games and want to fetch statistics for
all NBA games, including the date, home team, visitor team,
and final scores. Additionally, they requested a trivia fact
about a significant NBA game. In order to fulfill their
request, I should call the "get_all_stats_for_free_nba"
function with no arguments. This function will fetch the
necessary information about all NBA games. By calling this
function, I will be able to provide the user with the desired
statistics and trivia fact.
Action: get_all_stats_for_free_nba
Action Input: {}

Thought: The user is requesting a driving route from New
York to Los Angeles without tolls and ferries, and they
would like the route geometry in GeoJSON format. To fulfill
their request, I will call the "get_route_for_fast_routing"
function with the following arguments: coordinates = "-
74.0060, 40.7128;-118.2437, 34.0522", exclude =
"toll;ferry", geometries = "geojson", and steps = "true".
This will ensure that the API returns the desired route with
turn-by-turn directions and the route geometry in the
requested format.
Action: get_route_for_fast_routing
Action Input: {
"coordinates": "-74.0060,40.7128;-118.2437, 34.0522",
"exclude": "toll;ferry",
"geometries": "geojson",
"steps": "true”
}

Before Shuffle After Shuffle

User

Assistant Assistant

User

I am interested in growing flowering house plants. Can

you provide me with a list of flower category plants? I

would like to know their origin, temperature range, and

recommended watering frequency. Begin!

Thought: I received a user query asking for a list of flower
category plants in the house plant database. They
specifically mentioned wanting to know the origin,
temperature range, and recommended watering frequency
of these plants. To fulfill their request, I will call the
"get_by_category_for_house_plants" function with no
arguments, which will retrieve the desired information for
the user.
Action: get_by_category_for_house_plants
Action Input: {}

Thought: The user wants details about the genre with the
ID 'rock' on Deezer. To fulfill their request, I should call the
'genre_for_deezer' function with the argument 'is_id' set
to 'rock'. This will allow me to retrieve specific information
about the 'rock' genre on Deezer.
Action: genre_for_deezer
Action Input: {
"is_id": "rock”
}

User

Assistant Assistant

User

I want to surprise my family with a healthy breakfast.

Can you suggest a random breakfast recipe that

includes eggs? Additionally, fetch me the nutrition

information for 1lb of brisket with fries and a random

diet recipe. Begin!

Thought: I called the
'breakfast_ingredient_for_recipe_finder' function with the
argument {"ingredient": "eggs"} because the user wants a
random breakfast recipe that includes eggs. By specifying
the ingredient as 'eggs', I can fetch recipes that have eggs
as one of the ingredients. This will help me suggest a
healthy breakfast recipe that includes eggs.
Action: breakfast_ingredient_for_recipe_finder
Action Input: {
"ingredient": "eggs”
}

Thought: I called the
'v1_nutrition_for_nutrition_by_api_ninjas' function with
the argument {"query": "1lb of brisket with fries"}
because the user requested the nutrition information for
1lb of brisket with fries. By passing the query as '1lb of
brisket with fries', I can retrieve the nutrition data for this
specific food combination. This will help me provide the
user with the desired information regarding the nutritional
content of their selected meal.
Action: v1_nutrition_for_nutrition_by_api_ninjas
Action Input: {
"query": "1lb of brisket with fries”
}

I want to surprise my family with a healthy breakfast.

Can you suggest a random breakfast recipe that

includes eggs? Additionally, fetch me the nutrition

information for 1lb of brisket with fries and a random

diet recipe. Begin!

I am interested in growing flowering house plants. Can

you provide me with a list of flower category plants? I

would like to know their origin, temperature range, and

recommended watering frequency. Begin!

Figure 10: More Example of Shuffled Data. After shuffling, the assistant’s responses no longer correspond to the
original queries. However, some tokens (boilerplate tokens, red) remain semantically similar to the original response
and are therefore predictable. In contrast, reasoning tokens (green) no longer align with the query, resulting in noise.

17

	Introduction
	Related Work
	Methodology
	SHAD: Adaptive Token Discriminator
	Reasoning-highlighted Fine-Tuning

	Experiments
	Experiment Setup
	Main Results

	Analysis on SHAD and RFT
	Conclusion
	Limitations
	Ethical Considerations
	Detail Information of Training Datasets
	Experimental Details and Resources Required
	Evaluation Details
	Training Details

	Implementation Details
	Implementation Details of Rho-1
	Implementation Details of RewardFT
	Implementation Details of -FT

	Analysis of Token Classification
	Challenges in Manual Token Annotation
	Evaluation of SHAD Classification
	Experiments with Different Model Variants and Providers
	Experiments with Different Model Variants
	Experiments with Different Model providers

	Qualitative Analysis
	More examples Labeled by SHAD
	More Example of Shuffled Data

