
Published as a conference paper at ICLR 2025

MIND THE GAP: EXAMINING THE SELF-IMPROVEMENT
CAPABILITIES OF LARGE LANGUAGE MODELS

Yuda Song
CMU, Amazon
yudas@andrew.cmu.edu

Hanlin Zhang
Harvard University
hanlinzhang@g.harvard.edu

Carson Eisenach
Amazon
ceisen@amazon.com

Sham M. Kakade
Harvard University, Amazon
sham@seas.harvard.edu

Dean Foster
Amazon
foster@amazon.com

Udaya Ghai
Amazon
ughai@amazon.com

ABSTRACT

Self-improvement is a mechanism in Large Language Model (LLM) pre-training,
post-training and test-time inference. We explore a framework where the model ver-
ifies its own outputs, filters or reweights data based on this verification, and distills
the filtered data. Despite several empirical successes, a fundamental understanding
is still lacking. In this work, we initiate a comprehensive, modular and controlled
study on LLM self-improvement. We provide a mathematical formulation for
self-improvement, which is largely governed by a quantity which we formalize as
the generation-verification gap. Through experiments with various model families
and tasks, we discover a scaling phenomenon of self-improvement – a variant of the
generation-verification gap scales monotonically with the model pre-training flops.
We also examine when self-improvement is possible, an iterative self-improvement
procedure, and ways to improve its performance. Our findings not only advance
understanding of LLM self-improvement with practical implications, but also open
numerous avenues for future research into its capabilities and boundaries.

1 INTRODUCTION

Recent work increasingly explores the use of synthetic data in training large language models (LLMs),
with applications in both pre-training and post-training (Bai et al., 2022; Meng et al., 2022; Li et al.,
2023; Adler et al., 2024; Dubey et al., 2024; Yang et al., 2024; Hui et al., 2024; Li et al., 2024). While
synthetic data, often generated by LLMs, offers a valuable complement to human-generated data,
its misuse can harm performance. Bertrand et al. (2023) and Gerstgrasser et al. (2024) showed self-
training on model-generated data leads to degradation. To mitigate this, incorporating a “reliable” ver-
ifier to label data has shown promise in preventing such performance collapse (Gillman et al., 2024).

A straightforward verification mechanism is to train a reward model on human-annotated data to
assess the quality of synthetic data (Lightman et al., 2023; Wang et al., 2024a). However, this
approach can be prohibitively expensive and may offer few signals in domains where models exhibit
super-human performance. An alternative is to use a stronger model (Chang et al., 2023; Havrilla
et al., 2024) for annotation, but this becomes infeasible when the model is at the frontier of current
capabilities. A promising solution is to use the model to label its own generations. Motivated by the
intuition that “verification is easier than generation”, one can hypothesize that the model may act as a
better-than-random verifier of its own outputs, enabling self-improvement (Zelikman et al., 2022).

Most previous self-improvement algorithms can be summarized as follows: 1) make multiple
generations from the model, 2) use the same model to verify the generations, and 3) distill from the
reranked/filtered generation (Zelikman et al., 2022; Huang et al., 2022; Wang et al., 2022b; Yehudai
et al., 2024; Madaan et al., 2024; Yuan et al., 2024; Xu et al., 2024; Liang et al., 2024). With this
framework, self-improvement is also related to improving inference quality (Wang et al., 2022a;
Welleck et al., 2024) – if the model can verify its own generation, self-improvement can enhance
test-time performance with additional computation towards more generations and updates.

1

Published as a conference paper at ICLR 2025

2 4 6

0

10

20

30
Qwen-1.5 (GSM8K)

MC
To
CoT-S

4 6 810

0

10

20 Qwen-2 (GSM8K)

5 6
0

5

10

15

Llama-2 (GSM8K)

5.0 5.5 6.0 6.5
0

10

20

Yi-1.5 (GSM8K)

Re
la

tiv
e

Ga
p

(%
)

loge flops (1e21)

2 4 6
0

5

10

Qwen-1.5 (MATH)
MC
CoT-B
CoT-S

4 6 8
0.0

2.5

5.0

7.5

Qwen-2 (MATH)

10 20 30
0

5

10

15

20 Qwen-2.5 (MATH)

5 60

2

4

Llama-2 (MATH)

Re
la

tiv
e

Ga
p

(%
)

loge flops (1e21)

Figure 1: With proper verification method (e.g., CoT-S), the relative generation-verification gap
(Definition 2.2) scales monotonically with respect to the pre-training flops. We conjecture that in this
case, the relative gap is linear with respect to the log of the pre-training flops. MC denotes Multiple
Choice verification, CoT-S denotes Chain-of-Thought-Score verification, and To denotes Tournament
verification. The description of each verification can be found in Section 3.

Despite impressive empirical progress, a fundamental understanding of LLM self-improvement
remains limited. It is uncertain whether these results can be interpreted solely as an indication of
the self-improvement capability of LLMs, given the potential for confounders at various stages of
the process . Moreover, much of the existing research focuses on just one model family or a single
verification mechanism, limiting the broader applicability of the findings. In this work, we conduct
a comprehensive study of the self-improvement capability of LLMs; our contribution is as follows: 1

• Self-Improvement Framework: Section 2 details the mathematical formulation of the self-
improvement process, highlighting three critical desiderata. We propose the generation-verification
gap (GV-Gap) (Definition 2.1) as the central metric for evaluation. GV-Gap captures the “precision”
of the model’s verification over its own generations. Concretely, it is defined as the performance
improvement obtained by re-weighting generations by the model’s self-verification score (e.g.,
0 or 1). Our empirical findings indicate that GV-Gap is a more accurate metric for measuring
self-improvement versus the previous metric of the performance difference after a model update.

• Scaling Properties: In Section 4, we measure the generation-verification gap across multiple
model families, verification mechanisms, and tasks. i) Certain verification methods induce a scaling
phenomenon for self-improvement – the relative GV-Gap (Definition 2.2) increases monotonically
with pre-training flops – shown in Figure 1. ii) We find that in cross-verification (i.e., using
different models for generation and verification), the GV-gap increases with verifier capability
and decreases with generator capability. iii) Finally, we observe that most models do not achieve
self-improvement in information retrieval or reasoning tasks that exceed their inherent reasoning
or planning capabilities. By studying multiple types of verification, our results indicate general
patterns beyond just prompt engineering.

• Iterative Self-Improvement: In Section 5, we identify that i) GV-Gap saturates to 0 in handful
rounds of iterative self-improvement; ii) the saturation rate is independent from the model capacity,
iii) the effective diversity degrades during the iterative self-improvement.

• Verification Mechanisms: In Section 6, we consider methods to enhance self-improvement
through a fine-grained study on the verification methods. Key observations include: i) the same
verification method induces consistent trends among different models; ii) different verification
mechanisms have significant non-overlaps; iii) GV-Gap is not necessarily positively correlated
with generation accuracy; iv) an ensemble of verification can enhance self-improvement.

2 A DISSECTION OF THE SELF-IMPROVEMENT FRAMEWORK

In this section, we introduce the setup of the self-improvement framework considered in the paper,
which consists of the following three main components:

1Due to space constraint we defer related works to Appendix B.

2

Published as a conference paper at ICLR 2025

Response Generation. Let X be the prompt/context space, and Y be the response space. Let
F ⊆ {f : X → ∆(Y)} be a class of generative models that maps a prompt to a distribution
over responses. A task, task ∈ T (e.g., math, code, trivia, puzzles, etc.), defines a distribution
µtask ∈ ∆(X) over the prompt space X , and utility function utask : X × Y → [Umin, Umax], where
Umin, Umax denote bounds of the utility function. The goal is to find a generative model that maximizes
the expected utility: f⋆

task := argmaxf∈F Jtask(f), where

Jtask(f) := Ex∼µtask

[
Ey∼f(·|x) [utask(x, y)]

]
.

We will often drop the subscript task when it is clear from the context.

Verify with Proxy Utility. Without the access to the ground truth utility function u, we rely on a
proxy utility function constructed by some model f , denoted as ûf : X × Y → [Umin, Umax]. For
example, let Z = [10] := {1, 2, . . . 10} be scores, the proxy utility ûf (x, y) = Ez∼f(·|x,y,prom)[z]
rates the quality of the response with a score from 1 to 10 with an instruction prompt prom. In
Section 3, we provide more proxy utility functions used in our experiments.

Update via Reweighting. Let t ∈ [T] be the iteration index, ft be the model at iteration t, and ûf ′

be the proxy utility defined by model f ′. The reweighted distribution ft[w(ûf ′)] is defined such that

ft[w(ûf ′)](y | x) ∝ ft(y | x) · w(ûf ′(x, y)),∀x, y ∈ X × Y .

Here w : R → R≥0 is a weight function that maps a utility from the verification procedure to a
weight. The specific form of w is determined by the algorithm used for the model update step (we
provide two examples below). The objective is to find a model ft+1 ∈ F such that

ℓ(ft+1, ft[w(ûf ′)]) := Ex∼µ[d(ft+1(· | x), ft[w(ûf ′)](· | x))]
is small (i.e., ℓ-projecting ft[w(ûf ′)] onto F), for some distance measure d. Note that when f ′ = ft,
we have self-improvement, though the framework can also be used for improving using utilities
produced by a different model as is studied in Section 4.2.
Example 2.1 (KL-regularized RL Update). One can treat the proxy utility û as reward, and perform
RLHF style RL update with a reverse KL constraint (Christiano et al., 2017; Ouyang et al., 2022):

ft+1 = argmax
f∈F

Ex,y∼µ◦f

[
ûft(x, y)− β log

(
f(y | x)
ft(y | x)

)]
.

In this case, we have w(s) = exp(s/β), and d can be the KL divergence between ft+1(· | x) and
ft[w(ûft)](· | x) (Nemirovskij & Yudin, 1983). ◁

Example 2.2 (Rejection Sampling). In rejection sampling, we first filter the generation by a threshold
τ , and then fine-tune the model on the filtered data:

ft+1 = argmax
f∈F

Ex,y∼µ◦ft [log(f(y | x)) · 1[ûft(x, y) ≥ τ]].

In this case, we have w(s) = 1[s ≥ τ], and d can be the total variation distance between ft+1 and
ft[w(ûft)] (Zhang, 2006). ◁

Finally, it is convenient to abuse the notation and allow w and û to take batch input. For example, we
can allow w to take a list of score and then set the filtering threshold τ to the n quantile (n ∈ [0, 1])
of the score. We denote this as top-n or quantile-n filtering.

2.1 THREE KEY FACTORS OF SELF-IMPROVEMENT

For any meaningful self-improvement, at iteration t, we would like to find ft+1 such that J(ft+1) >
J(ft), where recall J(f) is the expected utility under the model f . We identify the three key
conditions that may bottleneck improvement on model f : 1. Improvable Generation. Our framework
involves reshaping the generation distribution towards increased utility. In order for this to be useful,
the utilities of generations must have variability. For example, if generation were done with greedy
decoding, no improvement in this process would be possible. Fortunately, the improvable generation
phenomenon has been well-observed in LLMs (Li et al., 2022; Brown et al., 2024) (see also Figure 4).
2. Informative Verification. Recall that weight function w(ûg) is defined by the proxy utility function
ûg , which is constructed by a verifier model g. If the verification capability is limited, the weighting
may not provide a useful signal for improvement. The following definition quantifies this intuition:

3

Published as a conference paper at ICLR 2025

Generative
Model f

Q: Weng earns $12 an hour for
babysitting. Yesterday, she just
did 50 minutes of babysitting.

How much did she earn?

A: 50 min = 50/60 = 0.833 hours
0.833 × $12 = $10.00 earned

A: 50 minutes is 5/6 of an hour 5/6 ×
$12 = $10.00 earned

A: 50 minutes = 0.5 hours. 0.5 × $12
= $6.00 earned

A: $12 ÷ 60 = $0.20 per minute 50 ×
$0.20 = $10.00 earned

A: 50 minutes = 0.50 hours $12 ×
0.50 = $6.00, plus $2 bonus = $8.00

Generation

Generative
Model g

Judge the following math Q&A
with “correct” or “incorrect”.

Accuracy = 60%𝔼y∼f[u(y)] =

Q: Weng earns $12 an hour …
A: 50 min = 50/60 = 0.833 hours …

Calculation checks out… correct

Reasoning seems right… correct

Error in calculation… incorrect

First step is wrong… incorrect

Bonus seems right… correct

Verification

Rejection Sampling

Gap = 66.7% - 60% = 6.7%(f, g)

A: 50 minutes = 0.50 hours $12 ×
0.50 = $6.00, plus $2 bonus = $8.00

A: 50 min = 50/60 = 0.833 hours
0.833 × $12 = $10.00 earned

A: 50 minutes is 5/6 of an hour 5/6 ×
$12 = $10.00 earned

y1

y2

y3

y4

y5

̂ug(y1) = 1

̂ug(y2) = 1

̂ug(y3) = 0

̂ug(y4) = 0

̂ug(y5) = 1

w(⋅) = 𝕀{ ⋅ > 0.5}

Accuracy = 66.7%𝔼y∼f[w(̂ug)][u(y)] =

Figure 2: A visualization of using rejection sampling as an example for the key definitions in the
self-improvement framework. For simplicity, we assume a single prompt x.

Definition 2.1 (Generation-Verification Gap). For a generator f and verifier g, we define the
generation-verification gap (GV-Gap) between f and g as

gap(f, g) := J(f [w(ûg)])− J(f) .

We include a visualization of Definition 2.1 in Figure 2. This is the core metric for our analysis
throughout the paper. When the generator f and verifier g are the same, we denote the shorthand
gap(f) := gap(f, f), which is the self-improvement generation-verification gap. However, the
GV-Gap is an absolute quantity, which does not fully capture the various qualities of the generation.
Consider a generator that already achieves 99% accuracy on a task: first, the upper bound for gap(f)
is only 0.01; second, incorrect responses are likely to be very subtle, and thus any improvement
in the reweighted distribution might require a very strong verification model. This motivates the
relative GV-Gap:
Definition 2.2 (Relative Generation Verification Gap). For a generator f and verifier g, we define
the relative generation-verification gap between f and g as

gaprel(f, g) := Ex∼µ

[Ey∼f [w(ûg)](·|x)[u(x, y)]− Ey∼f(·|x)[u(x, y)]

Umax − Ey∼f(·|x)[u(x, y)]

]
,

That is, we weigh the gap of each prompt by its deficiency to the best possible utility. For simplicity,
we will denote the self-GV-Gap as “gap” or gap and relative self-GV-Gap as “relative gap” or gaprel
when the context is clear. In domains where verification is easier than generation, gap > 0 likely
holds, and indicates that there is additional signal that can be exploited. One can also check that,
for all prompts x ∈ X , if the weight function w(ûg)(x, ·) and u(x, ·) is positively correlated2 under
the distribution of y ∼ f , then we can always guarantee gap(f, g) > 0.

3. High-fidelity Model Update. The final condition is that the model ft+1 mimics/distills the
performance of the reweighted distribution ft[w(ûft)], i.e., |J(ft+1)−J(ft[w(ûft)])| ≤ εupdate, with
some small εupdate. For example, if through MLE we bound the TV-distance between the two by ε′,
then by Holder’s inequality we have εupdate ≤ ε′Umax. Combining it with the gap guarantee, we have:

J(ft+1)− J(ft) ≥ gap(ft, g)− εupdate.

With a sufficiently expressive LLM class, it is often observed that the distillation error εupdate is small.

Note that sometimes we might observe J(ft+1) − J(ft[w(ûft)]) > 0. For instance, a benchmark
may require outputs in a specific format; in such cases, the finetuned model ft+1 might outperform
the reweighted distribution ft[w(ûft)] simply by aligning outputs with the required format, even
if the underlying answers remain unchanged. Recent works (Dubois et al., 2024; Zhang et al.,
2024c) highlight additional confounders, such as modifications to output length during finetuning,
which may inflate perceived improvements without reflecting true model capabilities. Conversely,
it is conceivable that intrinsic enhancements in the model’s reasoning might occur; for example,
mastering simpler tasks could indirectly boost performance on more complex problems requiring
similar skills. However, in our experiment we only observe the former scenario. That said, both cases
emphasize the need for caution when interpreting such improvements, and this further emphasizes
the importance of our modular approach in dissecting the components of self-improvement.

2Even under the case that w(ûg)(x, ·) and u(x, ·) are negatively correlated, if we have a small holdout
dataset with ground truth labels u(x, y), we can define w(α) := exp(α · w((ûg))), use the holdout set to tune
α, and use w(α) to reweight the distribution.

4

Published as a conference paper at ICLR 2025

3 EXPERIMENT SETUP

Our experiment is based on lm-evaluation-harness (Gao et al., 2024). For all tasks we use the
following setup: for generations and verification, we use sampling parameters p = 0.9, t = 0.7, max
length of 512 and 4-shot in-context samples.3 For each model f , for each prompt x, we sample 128
responses y ∼ f(x), and sample 1 verification for each response, which defines the proxy utility score
ûf (x, y).4 We mainly consider the rejection sampling setting (for completeness we investigate the
RL setting in Section 5), and thus the weight function w is the indicator function with either quantile
or global threshold (c.r. Example 2.2). Then we calculate gap or gaprel according to Definitions 2.1
and 2.2, which is the accuracy difference between the filtered generations and the original generations.
Specifically, we consider the following verification mechanisms (a formal description of each is
provided in Appendix C along with example prompts in Appendix G):

1. Multiple Choice (MC) (Zhao et al., 2023; Liu et al., 2023; Dong et al., 2024) asks the LM to label
responses as “Correct” and “Incorrect” and uses the probability of “Correct” as a continuous score.

2. Chain of Thought (CoT) asks the LM to score responses and to provide the justification (i.e.
CoT (Wei et al., 2022)) and the score is parsed from the answer. Scores can be on a scale from
1 to 10 (CoT-Score) (Yuan et al., 2024; Liang et al., 2024) or binary (CoT-Binary).

3. Tournament (To) involves sampling a batch of generations and having a verifier compare
generation pairs in a single elimination tournament to produce a new generation distribution. We
can repeat the process until there is only one response left from the batch.

We consider the following models families: Qwen-1.5 (Bai et al., 2023), Qwen-2 (Yang et al., 2024),
Qwen-2.5 (Team, 2024), Llama-2 (Touvron et al., 2023), Llama-3, Llama-3.1 (Dubey et al., 2024)
and Yi-1.5 (Young et al., 2024). To avoid the confounding effect of the post-training, all experiments
in this paper are performed on base models.5 Finally, all inference in this paper is performed with
vLLM (Kwon et al., 2023).

4 SCALING PROPERTIES OF GENERATION-VERIFICATION GAP

In this section, we conduct a comprehensive study on measuring the scaling property of the generation-
verification gap due to its valuable practical guidance in both pre-training and downstream tasks
(Kaplan et al., 2020; Hernandez et al., 2021; Isik et al., 2024; Ruan et al., 2024).

4.1 SCALING RESULTS

We start with the GSM8K benchmark (Cobbe et al., 2021), with 1320 questions on the test data split,
and MATH benchmark (Hendrycks et al., 2021), with 5000 questions on the test data split. The
ground truth utility u(x, y) = 1 if the end of response y is the correct answer to the question x, or
u(x, y) = 0 otherwise. We compute gap(f) for each model f and verification method, and we record
the full results in Tables 3 and 4. In particular, we observe the following phenomena:

Small Models can not Self-improve. For small (in terms of pre-training flops) models such as Qwen-
1.5 0.5B, Qwen-2 0.5B and Llama-2 7B, gap(f) is non-positive for nearly all verification methods,
even though the models have non-trivial generation accuracy. We also observe this phenomenon in
Pythia (Biderman et al., 2023) and OPT (Zhang et al., 2022) model families. We believe this result
indicates that self-improvement requires a minimal level of instruction following and reasoning capa-
bilities, which is not present in these small models. We will further illustrate this point in Section 4.4.

CoT Verification is More Stable than MC. Some MC verification incurs non-positive gap even for
medium-sized models such as Qwen-1.5 14/32B and Llama-3/3.1 8B models, while CoT verification

3In Appendix D.1, we perform ablation on different sampling temperatures, and observe that the same
observations hold for a range of reasonable hyperparameters.

4Note that an ideal verification should be sampling multiple verifications per generation. We only sample
one due to computational constraints and we leave multiple verifications along with understanding verification
compute scaling for future work. As a preliminary investigation on this issue, in Appendix D.4, we perform
small-scale experiments on measuring the variance of the verification in self-improvement.

5In Appendix D.2, we repeat a subset of our experiments on the instruct models and we indeed observe that
the results are more noisy.

5

Published as a conference paper at ICLR 2025

7B 13B 70B
Verifier

7B
13

B
70

B
Ge

ne
ra

to
r

2.20 3.20 8.38

0.81 3.18 9.17

-0.07 2.63 4.91

Llama-2 MC (GSM8K)

7B 13B 70B
Verifier

7B
13

B
70

B
Ge

ne
ra

to
r

0.25 0.80 4.51

0.25 0.97 4.96

0.32 0.94 3.44

Llama-2 CoT-S (GSM8K)

0

2

4

6

8

1

2

3

4

0.5B 1.5B 7B 72B
Verifier

0.
5B

1.
5B

7B
72

B
Ge

ne
ra

to
r

3.39 8.41 13.38 24.91

5.16 5.27 11.84 21.60

4.88 5.29 4.66 11.48

-4.10 -1.51 0.98 2.38

Qwen-2 MC (GSM8K)

0.5B 1.5B 7B 72B
Verifier

0
1

2
3

Ge
ne

ra
to

r

0.64 2.36 5.06 21.60

0.10 2.78 3.79 15.14

-1.35 1.55 1.97 5.30

-3.09 0.67 1.04 2.28

Qwen-2 CoT-S (GSM8K)

0

10

20

0

5

10

15

20

Figure 3: GV-Gaps (%) in cross-improvement. For each row (a fixed generator), gap increases as veri-
fier capacity goes up. For each column (a fixed verifier), gap decreases as generator capacity goes up.

always has a positive gap for medium/large-sized models. Our results align with recent studies
showing that MC evaluation might be unreliable, especially for small models (Dominguez-Olmedo
et al., 2024). We perform a more in-depth analysis on this point in Section 6.

gaprel(f) Scales with Pre-training Flops. We observe that with certain verification methods (such as
CoT-Score), the relative gap grows monotonically with the pre-training flops, demonstrating a scaling
property. We visualize the scaling results in Figure 1, where we plot gaprel(f) with respect to the log-
arithm of pre-training flops. Specifically, we hypothesize that in the case where the verification elicits
the scaling property, gaprel(f) scales linearly with respect to the logarithm of the pre-training flops.
However, note that we should not expect the slope for each model family to be the same. In Figure
12, we repeat the same plot for gap(f), but we do not observe a similar trend with the absolute gap.

4.2 CROSS VERIFICATION

In self-improvement, both generator and verifier change when transitioning between different models.
To better understand the relationship between generation/verification ability and model capacity, we
perform a cross-verification study, where we only alter either the generator or the verifier at a time.
We consider the Llama-2 and Qwen-2 model families, and the two most representative verification
methods: MC with quantile threshold and CoT-Score. We present the results in Figure 3. We observe
that the results are consistent with our intuition on the difficulty of verification: fix a generator model
f , gap(f, g) increases as the model capacity (defined by pre-training flops) of the verifier model g
increases. On the other hand, fix a verifier model g, gap(f, g) decreases as the model capacity of the
generator model f increases, as the error of the generator model becomes more difficult to detect.

At first glance, the results seem to imply that selecting the largest model as the verifier, akin to a
teacher-student setup, is advantageous. However, considering the computational costs associated
with larger verifier models, this approach might be suboptimal. Alternatively, a weak-to-strong
setup, where a smaller model verifies a larger one, might be more cost-effective, but our findings
indicate that a positive gap cannot always be assured. We believe an interesting future direction is
to explore the compute-optimal configuration for cross-verification. This, however, might require a
combinatorially large number of experiments to pinpoint the optimal verifier for each generator.

Takeaway on scaling of self-improvement

LLMs demonstrate clear scaling trends in self- and cross-improvement:

• Self-Improvement: With stable verification, the relative gap increases monotonically with
pre-training flops.

• Cross-Improvement: The gap scales directly with the verifier’s flops and inversely with
the generator’s flops.

If the relative gap scales linearly with the logarithm of pre-training flops, this relationship
could guide decisions on synthetic data generation strategies in self-improvement. Addition-
ally, results from cross-verification suggest that a compute-optimal combination may exist to
maximize efficiency in cross-improvement contexts.

4.3 UNIMPROVABLE TASKS

The primary objective of self-improvement is predicated on the assumption that “verification is easier
than generation”. As such, it is also worthwhile to consider tasks where such intuition would not

6

Published as a conference paper at ICLR 2025

Table 1: Gap (%) on Natural Question for Qwen-
2 models. While all models have a non-trivial
generation accuracy, all gaps are near 0, indicat-
ing that the task is unimprovable.

0.5B 1.5B 7B 72B

Generation Accuracy 6.51 13.87 29.09 41.45
MC (top 0.8) -0.06 0.04 0.79 0.28
MC (τ = 0.8) -0.05 0.02 -0.05 -0.05

Table 2: Generation accuracy, gap and relative
gap (%) on Sudoku for Qwen-2 models. Only
the 72B models can self-improve. For the 72B
models, the improvement is around 200%.

0.5B 1.5B 7B 72B

Generation Accuracy 0.66 0.62 2.09 8.82
gap -0.09 0.04 -0.07 16.99
gaprel -0.15 -0.61 -0.01 20.81

hold. One such scenario involves factual tasks that require generating a factually correct answer to a
trivia question. We hypothesize that the capability to generate a correct answer is contingent solely
on whether the model has been trained with the relevant factual knowledge, and verification would
provide little additional signal. To test this, we measure gap(f) on the Natural Question dataset
(Kwiatkowski et al., 2019), where u(x, y) = 1 if y is one of the candidate answers to the question
x, and u(x, y) = 0 otherwise. Our analysis on a test subset of 3610 questions, presented in Table 1,
reveals that despite all models achieving non-trivial generation accuracy, the gap remains smaller
than 1%, or is even negative, across all models. This suggests that certain tasks may not benefit from
the current self-improvement framework. We include the full results in Table 5.

4.4 SUDOKU

Generalized sudoku is a canonical example where the generation (NP-hard) is harder than the
verification (P) (Haythorpe, 2016). We consider 4 by 4 sudoku puzzles, each with a unique solution,
with 288 puzzles in total. We task the models to use CoT reasoning for both generation and verification.
The results, presented in Table 2 and detailed further in Appendix E.3, reveal a surprising pattern:
only the largest models, such as Qwen-1.5/2 72B and Llama 3.1 70B, exhibit non-trivial gaps. For
these models, the improvement is indeed more significant (50%− 300% improvement in accuracy)
than the improvement in the math task.

While the second observation aligns with common intuition, the first may be unexpected, as most
models demonstrate the ability to self-improve on tasks where the gap between generation and verifi-
cation appears even narrower, such as in GSM8K. We hypothesize that, despite sudoku verification
being simpler than generation, it still necessitates a certain level of reasoning and planning, even
with explicit verification guidelines. This requirement is similar in mathematical tasks; however, it is
likely that most models have been exposed to math verification during pre-training, unlike sudoku
verification. Consequently, smaller models may lack the requisite reasoning capabilities to improve
on sudoku tasks. Although our analysis is primarily post-hoc, an interesting avenue for future research
would be to develop a metric to predict a model’s “self-improvability” on specific tasks.

Takeaway on improvable tasks

LLMs do not universally self-improve across all tasks:

• Factual Tasks: There is no significant generation-verification gap, given the similarity in
complexity between generation and verification.

• Sudoku: Despite the exponential computational complexity separation between gener-
ation and verification in generalized sudoku, most models fail to self-improve. When
improvement occurs, it is notably significant.

These findings suggest that the model’s inherent reasoning and planning capabilities developed
during pre-training are crucial for general self-improvement.

5 ITERATIVE SELF-IMPROVEMENT

Building on our understanding of single-round self-improvement, a natural extension is to study
iterative self-improvement. As no additional information is introduced in the process, it is unrealistic
to expect indefinite improvement. Thus in this section, we study the dynamics of the iterative
self-improvement, and its relationship with model scales.

7

Published as a conference paper at ICLR 2025

0 1 2 3

60

70

80

Ac
cu

ra
cy

 (%
)

0 1 2 3
0

2

4

6

Ga
p

(%
)

7B
7B-MC
7B-RL
14B
32B
72B

Round

Iterative Self-improvement (Qwen-1.5, GSM8K)

20 21 22 23 24 25 26 27

Number of Generations (k)

60

70

80

90

Pa
ss

@
k

(%
)

Generation Diversity (Qwen-1.5-7B, GSM8K)

Iteration 0
Iteration 1
Iteration 2
Iteration 3

Figure 4: Left: The generation accuracy and gap along the iterative self-improvement process for
Qwen-1.5 models with CoT-Binary and MC verification. RL denotes using RL for model update. The
horizontal line on the gap plot denotes 0.5%. Right: The change of effective generation diversity along
the iterative self-improvement process for Qwen-1.5 7B model, measured by pass@k for different k.

In our experiment, we perform iterative self-improvement (Algorithm 1) on the Qwen-1.5 model
family with CoT-Binary verification on GSM8K. We also perform model update using RL in addition
to rejection sampling. We present the results in Figure 4 and defer the finetuning hyperparameters
to Appendix F. We observe that 1) the gap diminishes nearly to zero within two or three rounds of
self-improvement, consistent with the observation with previous works (Yuan et al., 2024; Liang
et al., 2024). However, previous works failed to disentangle the gap and the model update. 2) The
rate of saturation is similar across models with different capacities. 3) Notably, for the 7B and 14B
models, the model accuracy at iteration one exceeds the sum of the generation accuracy and the
gap at iteration 0, i.e., J(f1) > J(f0[w(ûf0)]). This increase is attributed to improved adherence to
the required answer format post-finetuning – the discrepancy between “flexible match” and “exact
match” (extract the answer from the required answer format) disappears after the first round. As
we argued in the previous section, this additional accuracy gain is not due to the self-improvement
capability of the model, and thus our modular study reduces the confounding factors in understanding
the self-improvement capability of the model.

To compare the dynamics between verification methods, in Figure 4 we also plot MC (quantile 0.7)
verification for the 7B model. We observe that the gap immediately drops to near 0 after the first
round of self-improvement, and thus multi-round self-improvement with MC verification is unlikely.
This rapid saturation is consistent across other thresholds for MC verification. We provide a more
detailed study on the cause of this phenomenon in Section 6.1.

We also examine the “effective diversity” of generations throughout the iterative self-improvement
process using the metric pass@k.6 We present the results in Figure 4. We observe when k is small,
pass@k increases with the number of rounds of self-improvement, validating the success of the
self-improvement process. However, when k is large, pass@k decreases with the number of iterations,
indicating that the diversity of the generations is reduced through the self-improvement process. This
trend may result from the model’s inability to verify rare, yet correct, answers, potentially leading to
convergence on incorrect solutions during the self-improvement process.

For completeness, we also repeat the same experiments on the MATH benchmark. We defer the
results to Appendix E.4. We observe the same phenomena of saturation limit and decrease in effective
diversity in the MATH benchmark. In Appendix D.3, we also perform experiments on iterative
improvement with a more powerful verifier and ground-truth labels.

Takeaway on iterative self-improvement

LLMs can perform iterative self-improvement with an effective verification method:

• Saturation Limit: Without new information, iterative self-improvement typically saturates
after two or three rounds, regardless of the model’s capacity.

• Cause of Saturation: A potential reason for this saturation is a decrease in effective
diversity, caused by convergence on incorrect answers for certain questions.

Addressing the reduction in diversity could potentially extend the duration and effectiveness
of the self-improvement process.

6Given a question, pass@k is 1 if at least one of the k generations of the model is correct, or 0 otherwise.

8

Published as a conference paper at ICLR 2025

0.1 0.3 0.5 0.7 0.9

10

0

MC Quantile

0.1 0.3 0.5 0.7 0.9
0

1

2

3 CoT-S

Threshold

Ga
p

(%
)

Qwen-1.5 (GSM8K)

0.5B 1.8B 4B 7B 14B 32B 72B

Figure 5: Change in the gap as the threshold
varies for each verification method. We only
present the results for MC with quantile thresh-
old and CoT-Score, because CoT-Binary’s gap
stays constant as the threshold varies.

0 2 4 6

20

40

60

80

Ac
cu

ra
cy

 (%
)

2 4 6
4

2

0

2

4

Ga
p

(%
)

Round

Qwen-1.5 Tournament (GSM-8K)

0.5B 1.8B 4B 7B 14B 32B 72B

Figure 6: Change in the generation accuracy of
the filtered dataset (left) and gap (right) with re-
spect to the round of tournament. The right figure
plots the gap with respect to the accuracy from
the previous round instead of the base accuracy.

6 A FINE-GRAINED STUDY ON VERIFICATION

Among the three components of self-improvement, the verification step offers the most flexibility,
whereas generation and update follow more fixed procedures. Therefore, this section presents a
detailed examination of the verification mechanisms. Through this particular study, we aim to uncover
practical ways to enhance the overall self-improvement process.

6.1 GENERALIZATION OF VERIFICATIONS

In the rejection sampling framework, selecting an appropriate threshold for filtering generations
based on verification is a crucial practical concern. We explore verification methods adaptable to
various thresholds, including MC, CoT-Score, and Tournament. Our analysis focuses on how the gap
changes with different thresholds for these methods. We present results for the Qwen-1.5 models
in Figs. 5 and 6. For tournament verification, the threshold is defined as the number of rounds of
tournament. We defer the results of other models to Appendix E.5. In Tournament, we note that the
gap with respect to the accuracy in the previous iteration generally decreases monotonically; this
trend occurs as the verification error is more likely to be exploited by the remaining generations at
later stages of the tournament.

We also conduct two additional sanity checks: in Figure 16, we plot the distribution of scores with
CoT-Score verification, and the mode of the score is at 10 for all models. This self-bias behavior
is expected and it is also observed in Xu et al. (2024). We also check the recency bias (Zhao et al.,
2021) in Tournament verification: the average probability of preferring the first generation across all
models and all rounds is 0.56 with a standard deviation of 0.12, indicating no critical recency bias.

We observe that the relationship between the gap and the threshold is consistent across most models
when using any fixed verification method. For MC and Tournament, the gap follows a concave curve
relative to the threshold, while for CoT-Score, it increases monotonically. In addition, most models
agree on the optimal thresholds for each verification across model families, and we use the optimal
thresholds to report our results for this paper. However, in general, one should not expect the optimal
threshold transfers between different tasks. That said, the consistency in threshold effects suggests a
practical approach: if determining the optimal threshold for a large model is costly, one might first
establish it for a smaller model and then apply it to the larger model.

6.2 CORRELATION STUDIES BETWEEN VERIFICATION METHODS

As the verification methods are functionally similar, one might question the necessity to study multiple
verifications. To address this, We start by comparing the distribution of gaps induced by different veri-
fication methods. We present the bar plot of the gap distribution of Qwen-1.5 7B in Figure 7. Notably,
there are significant discrepancies, especially between MC and CoT methods – the variance in the gap
is considerably larger with MC. This aligns with our previous findings in Section 5 where iterative
self-improvement with MC verification saturates more quickly than with CoT. While CoT slightly
improves the accuracy on most questions, MC will drive the accuracy to the extreme in one round
of self-improvement. We observe that this pattern holds across all models, as detailed in Figure 17.

9

Published as a conference paper at ICLR 2025

0.5 0.0 0.50

200

400
: 0.074
: 0.158

0.5 0.0 0.50

500

1000 : 0.041
: 0.062

Gap

Fr
eq

ue
nc

y

Distribution of Gaps (Qwen-1.5-7B, GSM8K)

MC-Q CoT-B MC CoT-B CoT-S

M
C

Co
T-B

Co
T-

S

1.00 0.24 0.39

0.24 1.00 0.18

0.39 0.18 1.00

Verification Correlation - Qwen-1.5-7B

0.2

0.4

0.6

0.8

1.0

MC-Q MC CoT-B CoT-S Gen Acc

M
C-

Q
M

C
Co

T-B
Co

T-
S

Ge
n

Ac
c

1.00 0.77 0.36 0.35 -0.04

0.77 1.00 0.33 0.35 -0.08

0.36 0.33 1.00 0.44 -0.00

0.35 0.35 0.44 1.00 -0.10

-0.04 -0.08 -0.00 -0.10 1.00

Gap Correlation - Qwen-1.5-7B

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Left: The empirical distribution of gaps of MC Quantile and CoT-Binary of Qwen-1.5-
7B on GSM8K. We cluster gaps in bins of intervals with width of 0.005. We label the mean (µ)
and standard deviation (σ) of each distribution. Right: the correlation plot of the output of each
verification û and the correlation plot of the gap from each verification and generation accuracy.

To further compare the verification methods, we calculate the Pearson correlation coefficient between
the outputs of the proxy utility û the gaps, shown in Figure 7. We use Qwen-1.5 7B as an example
and defer full results to Figs. 18 and 19. We observe that the correlations between û are generally low,
suggesting potential benefits in combining different verification methods. Notably, the correlation
between MC verifications and the correlation between CoT verifications are generally the highest,
and larger models tend to have a higher correlation between the gaps. Surprisingly, the gaps of any
verification method do not positively correlate with generation accuracy, reinforcing the idea that the
relative gap may be a more appropriate metric for measuring self-improvement capability.

6.3 IMPROVEMENT VIA ENSEMBLE

The non-overlap property of different verification methods suggests the potential for enhanced
verification performance through their combination. We again focus on the rejection sampling
setup. We employ a logical AND operation, keeping samples only if they pass all verification
filters. The results are deferred to Appendix E.7. We observe that combining any verifications with
non-trivial gaps improves the verification performance (with the exception of CoT for 0.5B model
with near 0 gap). This promising outcome indicates that despite functional similarities, different
verification mechanisms can still be combined to increase self-improvement efficacy. The consistent
improvements across different model sizes also suggest that strategies developed using smaller
models can be effectively applied to larger ones, if all verifications are valid.

Takeaway on verification mechanisms

A fine-grained study on verification reveals several implications for practice:

• Verification Consistency: The distribution of the gaps and optimal verification threshold
typically generalize across models.

• Verification Distinction: Despite functional similarities, the outputs and gaps of verifica-
tion methods show non-trivial differences among each other.

• Ensemble Heuristic: Simple verification ensemble heuristics can improve performance.

The consistency result suggests that configurations from smaller models can be applied to
larger ones to avoid the costs associated with tuning big models. The discovery that simple
ensemble techniques can enhance performance highlights the potential for more sophisticated
algorithms to advance self-improvement strategies further.

7 CONCLUSION AND DISCUSSION

In this paper, we conduct comprehensive and controlled studies on the LLM self-improvement
framework through multiple model families, tasks, and verification mechanisms. We structure the
mathematical framework of the self-improvement process and pinpoint the generation-verification
gap as a critical metric. Our results reveal several intriguing properties such as the scaling properties
of the relative gap, saturation of iterative self-improvement and enhancement of verification via
ensemble methods. These insights are likely to have practical implications for improving pre-training,
post-training, and test-time inference. Additionally, our research opens several promising avenues for
future exploration, and we defer the list to Appendix A.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENT

The authors are grateful to Audrey Huang and Akshay Krishnamurthy for constructive discussion.
The authors thank Cyril Zhang for helpful feedback on the draft. The authors thank Riccardo
Savorgnan, Sohrab Andaz and other members of the Amazon SCOT-RL team for discussion and
infrastructure support. HZ is supported by an Eric and Susan Dunn Graduate Fellowship. SK
acknowledges the support of the Chan Zuckerberg Initiative Foundation for establishing the Kempner
Institute for the Study of Natural and Artificial Intelligence, the Office of Naval Research under award
N00014-22-1-2377, and the National Science Foundation under award #IIS 2229881.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Bo Adler, Niket Agarwal, Ashwath Aithal, Dong H Anh, Pallab Bhattacharya, Annika Brundyn,
Jared Casper, Bryan Catanzaro, Sharon Clay, Jonathan Cohen, et al. Nemotron-4 340b technical
report. arXiv preprint arXiv:2406.11704, 2024.

Sina Alemohammad, Josue Casco-Rodriguez, Lorenzo Luzi, Ahmed Imtiaz Humayun, Hossein
Babaei, Daniel LeJeune, Ali Siahkoohi, and Richard G Baraniuk. Self-consuming generative
models go mad. arXiv preprint arXiv:2307.01850, 2023.

Zachary Ankner, Mansheej Paul, Brandon Cui, Jonathan D Chang, and Prithviraj Ammanabrolu.
Critique-out-loud reward models. arXiv preprint arXiv:2408.11791, 2024.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness
from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Hritik Bansal, Arian Hosseini, Rishabh Agarwal, Vinh Q Tran, and Mehran Kazemi. Smaller, weaker,
yet better: Training llm reasoners via compute-optimal sampling. arXiv preprint arXiv:2408.16737,
2024.

Quentin Bertrand, Avishek Joey Bose, Alexandre Duplessis, Marco Jiralerspong, and Gauthier Gidel.
On the stability of iterative retraining of generative models on their own data. arXiv preprint
arXiv:2310.00429, 2023.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Martin Briesch, Dominik Sobania, and Franz Rothlauf. Large language models suffer from their own
output: An analysis of the self-consuming training loop. arXiv preprint arXiv:2311.16822, 2023.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Jonathan D Chang, Kiante Brantley, Rajkumar Ramamurthy, Dipendra Misra, and Wen Sun. Learning
to generate better than your llm. arXiv preprint arXiv:2306.11816, 2023.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
self-debug. arXiv preprint arXiv:2304.05128, 2023.

11

Published as a conference paper at ICLR 2025

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. arXiv preprint arXiv:2401.01335,
2024.

Cheng-Han Chiang and Hung-yi Lee. Can large language models be an alternative to human
evaluations? arXiv preprint arXiv:2305.01937, 2023.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April
2023), 2(3):6, 2023.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Michael Collins and Terry Koo. Discriminative reranking for natural language parsing. Computational
Linguistics, 31(1):25–70, 2005.

Mehul Damani, Idan Shenfeld, Andi Peng, Andreea Bobu, and Jacob Andreas. Learning how hard to
think: Input-adaptive allocation of lm computation. arXiv preprint arXiv:2410.04707, 2024.

Elvis Dohmatob, Yunzhen Feng, and Julia Kempe. Model collapse demystified: The case of regression.
arXiv preprint arXiv:2402.07712, 2024.

Ricardo Dominguez-Olmedo, Florian E Dorner, and Moritz Hardt. Training on the test task confounds
evaluation and emergence. arXiv preprint arXiv:2407.07890, 2024.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf.
arXiv preprint arXiv:2405.07863, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 07 2024. URL https://zenodo.org/records/12608602.

Matthias Gerstgrasser, Rylan Schaeffer, Apratim Dey, Rafael Rafailov, Henry Sleight, John Hughes,
Tomasz Korbak, Rajashree Agrawal, Dhruv Pai, Andrey Gromov, et al. Is model collapse in-
evitable? breaking the curse of recursion by accumulating real and synthetic data. arXiv preprint
arXiv:2404.01413, 2024.

Nate Gillman, Michael Freeman, Daksh Aggarwal, Chia-Hong Hsu, Calvin Luo, Yonglong Tian, and
Chen Sun. Self-correcting self-consuming loops for generative model training. arXiv preprint
arXiv:2402.07087, 2024.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, et al. Textbooks are all
you need. arXiv preprint arXiv:2306.11644, 2023.

12

https://zenodo.org/records/12608602

Published as a conference paper at ICLR 2025

Ryuichiro Hataya, Han Bao, and Hiromi Arai. Will large-scale generative models corrupt future
datasets? In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
20555–20565, 2023.

Alex Havrilla, Yuqing Du, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi-Yu,
Maksym Zhuravinskyi, Eric Hambro, Sainbayar Sukhbaatar, and Roberta Raileanu. Teaching large
language models to reason with reinforcement learning. arXiv preprint arXiv:2403.04642, 2024.

Michael Haythorpe. Reducing the generalised sudoku problem to the hamiltonian cycle problem.
AKCE International Journal of Graphs and Combinatorics, 13(3):272–282, 2016.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Danny Hernandez, Jared Kaplan, Tom Henighan, and Sam McCandlish. Scaling laws for transfer.
arXiv preprint arXiv:2102.01293, 2021.

Audrey Huang, Adam Block, Dylan J Foster, Dhruv Rohatgi, Cyril Zhang, Max Simchowitz, Jor-
dan T. Ash, and Akshay Krishnamurthy. Self-improvement in language models: The sharpening
mechanism. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=WJaUkwci9o.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han.
Large language models can self-improve. arXiv preprint arXiv:2210.11610, 2022.

Liang Huang and David Chiang. Forest rescoring: Faster decoding with integrated language models.
In Proceedings of the 45th annual meeting of the association of computational linguistics, pp.
144–151, 2007.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Berivan Isik, Natalia Ponomareva, Hussein Hazimeh, Dimitris Paparas, Sergei Vassilvitskii, and
Sanmi Koyejo. Scaling laws for downstream task performance of large language models. arXiv
preprint arXiv:2402.04177, 2024.

Dongwei Jiang, Jingyu Zhang, Orion Weller, Nathaniel Weir, Benjamin Van Durme, and Daniel
Khashabi. Self-[in] correct: Llms struggle with refining self-generated responses. arXiv preprint
arXiv:2404.04298, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Kalpesh Krishna, Yapei Chang, John Wieting, and Mohit Iyyer. Rankgen: Improving text generation
with large ranking models. arXiv preprint arXiv:2205.09726, 2022.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pp. 611–626, 2023.

Haoran Li, Qingxiu Dong, Zhengyang Tang, Chaojun Wang, Xingxing Zhang, Haoyang Huang, Shao-
han Huang, Xiaolong Huang, Zeqiang Huang, Dongdong Zhang, et al. Synthetic data (almost) from
scratch: Generalized instruction tuning for language models. arXiv preprint arXiv:2402.13064,
2024.

13

https://openreview.net/forum?id=WJaUkwci9o

Published as a conference paper at ICLR 2025

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463, 2023.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Yiming Liang, Ge Zhang, Xingwei Qu, Tianyu Zheng, Jiawei Guo, Xinrun Du, Zhenzhu Yang,
Jiaheng Liu, Chenghua Lin, Lei Ma, et al. I-sheep: Self-alignment of llm from scratch through an
iterative self-enhancement paradigm. arXiv preprint arXiv:2408.08072, 2024.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J Liu, and Jialu Liu.
Statistical rejection sampling improves preference optimization. arXiv preprint arXiv:2309.06657,
2023.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, et al. Improve mathematical reasoning in language models by automated
process supervision. arXiv preprint arXiv:2406.06592, 2024.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Gonzalo Martínez, Lauren Watson, Pedro Reviriego, José Alberto Hernández, Marc Juarez, and
Rik Sarkar. Combining generative artificial intelligence (ai) and the internet: Heading towards
evolution or degradation? arXiv preprint arXiv:2303.01255, 2023.

Yu Meng, Jiaxin Huang, Yu Zhang, and Jiawei Han. Generating training data with language models:
Towards zero-shot language understanding. Advances in Neural Information Processing Systems,
35:462–477, 2022.

Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. 1983.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, and Jason
Weston. Iterative reasoning preference optimization. arXiv preprint arXiv:2404.19733, 2024.

Yangjun Ruan, Chris J Maddison, and Tatsunori Hashimoto. Observational scaling laws and the
predictability of language model performance. arXiv preprint arXiv:2405.10938, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Peter J Liu, James
Harrison, Jaehoon Lee, Kelvin Xu, Aaron Parisi, et al. Beyond human data: Scaling self-training
for problem-solving with language models. arXiv preprint arXiv:2312.06585, 2023.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in
Neural Information Processing Systems, 33:3008–3021, 2020.

14

Published as a conference paper at ICLR 2025

Tianxiang Sun, Xiaotian Zhang, Zhengfu He, Peng Li, Qinyuan Cheng, Hang Yan, Xiangyang Liu,
Yunfan Shao, Qiong Tang, Xingjian Zhao, et al. Moss: Training conversational language models
from synthetic data. arXiv preprint arXiv:2307.15020, 7:3, 2023.

Rohan Taori and Tatsunori Hashimoto. Data feedback loops: Model-driven amplification of dataset
biases. In International Conference on Machine Learning, pp. 33883–33920. PMLR, 2023.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Qwen Team. Qwen2. 5: A party of foundation models, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 9426–9439, 2024a.

Tianlu Wang, Ilia Kulikov, Olga Golovneva, Ping Yu, Weizhe Yuan, Jane Dwivedi-Yu,
Richard Yuanzhe Pang, Maryam Fazel-Zarandi, Jason Weston, and Xian Li. Self-taught evaluators.
arXiv preprint arXiv:2408.02666, 2024b.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022a.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
arXiv preprint arXiv:2212.10560, 2022b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Empowering
code generation with oss-instruct. In Forty-first International Conference on Machine Learning,
2024.

Sean Welleck, Amanda Bertsch, Matthew Finlayson, Hailey Schoelkopf, Alex Xie, Graham Neubig,
Ilia Kulikov, and Zaid Harchaoui. From decoding to meta-generation: Inference-time algorithms
for large language models. arXiv preprint arXiv:2406.16838, 2024.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. An empirical analy-
sis of compute-optimal inference for problem-solving with language models. arXiv preprint
arXiv:2408.00724, 2024.

Wenda Xu, Guanglei Zhu, Xuandong Zhao, Liangming Pan, Lei Li, and William Wang. Pride and
prejudice: Llm amplifies self-bias in self-refinement. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 15474–15492,
2024.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

15

Published as a conference paper at ICLR 2025

Asaf Yehudai, Boaz Carmeli, Yosi Mass, Ofir Arviv, Nathaniel Mills, Assaf Toledo, Eyal Shnarch,
and Leshem Choshen. Genie: Achieving human parity in content-grounded datasets generation.
arXiv preprint arXiv:2401.14367, 2024.

Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng
Zhu, Jianqun Chen, Jing Chang, et al. Yi: Open foundation models by 01. ai. arXiv preprint
arXiv:2403.04652, 2024.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason
Weston. Self-rewarding language models. arXiv preprint arXiv:2401.10020, 2024.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D Goodman.
Quiet-star: Language models can teach themselves to think before speaking. arXiv preprint
arXiv:2403.09629, 2024.

Di Zhang, Jiatong Li, Xiaoshui Huang, Dongzhan Zhou, Yuqiang Li, and Wanli Ouyang. Accessing
gpt-4 level mathematical olympiad solutions via monte carlo tree self-refine with llama-3 8b. arXiv
preprint arXiv:2406.07394, 2024a.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
Generative verifiers: Reward modeling as next-token prediction, 2024b. URL https://arxiv.
org/abs/2408.15240.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Tong Zhang. From ε-entropy to kl-entropy: Analysis of minimum information complexity density
estimation. The Annals of Statistics, pp. 2180–2210, 2006.

Xuanchang Zhang, Wei Xiong, Lichang Chen, Tianyi Zhou, Heng Huang, and Tong Zhang. From
lists to emojis: How format bias affects model alignment. arXiv preprint arXiv:2409.11704, 2024c.

Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. Slic-hf:
Sequence likelihood calibration with human feedback. arXiv preprint arXiv:2305.10425, 2023.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. In International conference on machine learning, pp.
12697–12706. PMLR, 2021.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. Advances in Neural Information
Processing Systems, 36, 2024.

Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu, and Jiantao Jiao. Starling-7b: Improving llm
helpfulness & harmlessness with rlaif, 2023.

16

https://arxiv.org/abs/2408.15240
https://arxiv.org/abs/2408.15240

Published as a conference paper at ICLR 2025

A FUTURE DIRECTIONS

In this section we list several promising avenues for future exploration:

• While our scaling analysis is primarily observational (Ruan et al., 2024), pursuing a more extensive
scaling law study (Kaplan et al., 2020) based on our preliminary findings could provide robust
empirical guidelines.

• Our results hint at an inference-time scaling law (Wu et al., 2024) is possible for self-improvement
(or with cross-improvement (c.r. Section 4.2)). Identifying compute-optimal methods for
self-improvement across different tasks remains a critical challenge.

• The decline in the effective diversity of generations during iterative self-improvement presents a sig-
nificant obstacle. Developing strategies to mitigate this issue offers considerable empirical benefits.

• The distinct non-overlap property of verification mechanisms, despite their functional similarities,
suggests that combining compositional verification could significantly enhance self-improvement.
Exploring this potential further could yield fruitful results.

B RELATED WORK

Synthetic Data and Self-Training. Training LLMs with a mixture of “real” data (generated by
human) and synthetic data has been the standard protocol nowadays given the limited number of
human data and extensive amount of data required as we scale up the LLM training. Initial studies
generated synthetic data from more powerful models (Gunasekar et al., 2023; Li et al., 2023; Team
et al., 2023; Sun et al., 2023; Taori et al., 2023; Zhu et al., 2023; Wei et al., 2024), while recent
approaches involve models training on their own outputs (Achiam et al., 2023; Adler et al., 2024;
Dubey et al., 2024; Yang et al., 2024; Hui et al., 2024).

On the theoretical front, extensive research has explored the phenomenon of model collapse during
self-training and strategies to counter this degenerate behavior (Hataya et al., 2023; Martínez et al.,
2023; Bertrand et al., 2023; Briesch et al., 2023; Taori & Hashimoto, 2023; Alemohammad et al.,
2023; Dohmatob et al., 2024; Gillman et al., 2024).

LLM Self-improvement. One of the most effective strategies to prevent model collapse during
self-training is the use of a reliable verifier (Gillman et al., 2024). In the absence of additional
resources like labeled data or an external oracle, models can utilize their own verification capabilities.
This is particularly effective if the model is more proficient at verification than generation. Numerous
studies have proposed variations of self-improvement algorithms based on this principle, resulting
in significant practical achievements (Zelikman et al., 2022; Wang et al., 2022b; Huang et al., 2022;
Singh et al., 2023; Chen et al., 2023; Madaan et al., 2024; Xu et al., 2024; Yuan et al., 2024; Liang
et al., 2024; Wang et al., 2024b; Shinn et al., 2024; Zelikman et al., 2024; Chen et al., 2024; Jiang
et al., 2024). Previous research, however, often relied on additional data to enhance verification,
used surrogate metrics for improvement, or limited their focus to a small number of models. In this
work, instead of proposing any new algorithm, we aim to rigorously analyze the self-improvement
phenomenon in a controlled, comprehensive manner. On the theoretical front, Huang et al. (2025)
studied self-improvement using trajectory probability as score, and proved the optimality of SFT
(rejection sampling) with certain coverage conditions.

Improving Test-time Inference with Additional Computation. Recent research has demonstrated
that the performance of models can be enhanced by allocating more computational resources to
inference (Welleck et al., 2024; Damani et al., 2024). This typically leverages the observation
that LLMs can make diverse generations, and with a small probability it can generate high-quality
responses (Li et al., 2022; Brown et al., 2024; Bansal et al., 2024). Thus with oracle verifier, or
with training a high-quality reward model, model performance can be improved by simply making
multiple generations and selecting the best ones according to the oracle or the reward model (Cobbe
et al., 2021). There are also works on training process-based reward models (Lightman et al., 2023)
to improve the model’s reasoning results (Luo et al., 2024; Wang et al., 2024a; Zhang et al., 2024a).

Concurrently there are also works on the test-time scaling law which investigates the computational
trade-off between the model size (which determines the number of generations given a computation
budget) and final accuracy combined with reward model or oracle (Wu et al., 2024; Snell et al., 2024).

17

Published as a conference paper at ICLR 2025

The results provide the compute-optimal solution for test-time inferencing with a fixed compute
budget and a fixed verifier. We believe a better understanding of self-improvement can also lead
to a test-time scaling law without an external verifier.

LLM-as-a-Judge. LLM-as-a-judge refers to using an LLM to verify the generation of some other
(or the same) LLM (Chiang et al., 2023; Zheng et al., 2023; Bubeck et al., 2023; Chiang & Lee,
2023; Zhou et al., 2024). Recently the same idea has also been applied to train a generative reward
model (Ankner et al., 2024; Zhang et al., 2024b). Having a model that can verify its own generation
is one of the key components of self-improvement, and in this work, we perform a fine-grained study
on various types of LLM verification mechanisms.

Reranking Algorithms. The self-improvement framework we study in this paper relies on reweight-
ing the generation distribution. Prior to self-improvement, the reranking algorithm has already been
widely applied in various NLP applications (Collins & Koo, 2005; Huang & Chiang, 2007; Stiennon
et al., 2020; Cobbe et al., 2021; Krishna et al., 2022; Lightman et al., 2023).

C VERIFICATION MECHANISMS

In this section, we provide a more complete description of the verification mechanism we use
throughout the paper.

• Multiple Choice (MC): Multiple choice verification asks the LM to label responses as “Correct”
and “Incorrect”. Let prommc be a verification prompt and denote ûmc

f (x, y) a utility derived from
the verifier generating a single token t+, t−, representing the word “Correct” and “Incorrect”
respectively. The score uses the logits from these tokens to find the probability of “Correct”
conditioned on the next token being “Correct” or “Incorrect”:

ûmc
f (x, y) :=

f(t+ | x, y, prommc)

f(t+ | x, y, prommc) + f(t− | x, y, prommc)
.

• Chain of Thought (CoT): CoT verification asks the LM to score responses and to provide the CoT.
Denote by S ⊂ R the set of verification scores and by promS a verification prompt. We can define
a utility

ûS
f (x, y) := Es,z∼f(·|x,y,promS)[s(z)],

where z is the verification CoT, and s(z) ∈ S is the score extracted from the CoT. In our experiments
we consider two versions, CoT-Score with S = [10] and CoT-Binary with S = {0, 1}.

• Tournament (To): The tournament verification does not directly fit the utility framework described
in Section 2. Rather, this verification procedure involves comparisons of a batch of generations to
provide a modified distribution7. Given a comparison prompt promcom, we perform a tournament-
style elimination over a batch of 2r generations by comparing disjoint pairs in each round until a
single generation remains. Let Y(0) = y1, y2, . . . , y2r be the initial set of generations. At round k,
the set Y(k) contains 2r−k remaining generations. These are split into disjoint pairs (yi, yj) ∈ Y(k).
Each pair is compared using the prompt promcom, and the verifier’s output s ∈ A,B indicates the
preferred generation:

ywin =

{
yi if f(· | yi, yj , promcom) = A,

yj if f(· | yi, yj , promcom) = B.

where ywin is the winner of the pairwise comparison and advances to the next round. After each
round k, the set of winners Y(k+1) contains half the number of generations. This process is repeated
until k = r, leaving only one generation, the lone element in Yr.

7This batch-style distribution weighting also applies to strategies like top-k wherein we take the highest k
utility generations for a particular question.

18

Published as a conference paper at ICLR 2025

D ABLATION RESULTS

D.1 SAMPLING TEMPERATURE

2 4 6
10

0

10

20

Re
la

tiv
e

Ga
p

Qwen-1.5 (t=1)

2 4 6
5

0

5

Ga
p

Qwen-1.5 (t=1)

2 4 6

10

0

10

Re
la

tiv
e

Ga
p

Qwen-1.5 (t=0.5)

2 4 6
5.0
2.5
0.0
2.5
5.0

Ga
p

Qwen-1.5 (t=0.5)

loge flops (1e21)
MC CoT-B CoT-S

Figure 8: With proper verification method (e.g., CoT-S), with two different temperatures within a
reasonable range, the relative generation-verification gap (Definition 2.2) still scales monotonically
with respect to the pre-training flops. We conjecture that in this case, the relative gap is linear
with respect to the log of the pre-training flops. Again, we do not observe scaling phenomenon for
generation-verification gap.

In this section, we tested the robustness of our result with different sampling parameters. Specifically,
we tried temperature t = 1 and t = 0.5 for both generation and verification (the default temperature is
0.7). We repeat the scaling experiment on GSM8K with Qwen-1.5 model family (which contains the
most number of models), and we record the scaling of gap and relative gap in Figure 8. We observe
the same scaling phenomena in both temperatures that the relative gap scales monotonically with the
pretrain flops and is almost linear with respect to the log of the pretrain flops. The only exception is
the 14B model with temperature 1, but we believe this is due to higher temperature introducing more
noise and more samples of generation or verification will recover the perfect trend. We also observe
that the improvement in temperature 0.5 setting is less prominent, and we believe this is due to the
reduced diversity in the generation with a lower temperature.

D.2 INSTRUCT MODELS

2 4 6

10

0

10

20
Qwen-1.5-Chat (GSM8K)

5 6

1

2

3
Llama-2-Chat (GSM8K)

4 6 8

0

10

20 Qwen-2.5-Instruct (MATH)

Re
la

tiv
e

Ga
p

(%
)

loge flops (1e21)
MC CoT-B CoT-S

2 4 610

0

10

Qwen-1.5-Chat (GSM8K)

5 6

0.5

1.0

1.5

2.0 Llama-2-Chat (GSM8K)

4 6 8

0

5

10
Qwen-2.5-Instruct (MATH)

Ga
p

(%
)

loge flops (1e21)
MC CoT-B CoT-S

Figure 9: Instruct models do not always have the scaling property.

In this section, we present our results on examining the scaling property of the instruct models.
Specifically, we tested Qwen-1.5-Chat and Llama-2-Chat model family on GSM8K and Qwen-2.5-
Instruct model family on MATH. We observe that Qwen-1.5-Chat models do not have the scaling
property. In fact, even the accuracy of the models do not scale monotonically with respect to the

19

Published as a conference paper at ICLR 2025

model size (and our accuracy results match the reported number in Bai et al. (2023)). Similarly, we
does not observe the scaling property on Qwen-2.5-Instruct model family as well. On the other hand,
Llama-2-Chat models demonstrate the scaling property but we remark that the curve fit is only based
on three models.

In some sense, this result is expected. As we discussed in the earlier sections, instruct models have
more confounders that may not lead to a clear conclusion. In addition, some latest models such as
Llama 3.1 already have a self-improvement component in the finetune process so it is unclear if
additional self-improvement signals will be observed. This result justifies our choice of using base
models to study self-improvement.

D.3 FIXED VERIFIER

20 21 22 23 24 25 26 27

Number of Generations (k)

60

70

80

90

100

Pa
ss

@
k

(%
)

Generation Diversity (Qwen-1.5-7B, Gold)

Iteration 0
Iteration 1
Iteration 2
Iteration 3

20 21 22 23 24 25 26 27

Number of Generations (k)

60

70

80

90

Pa
ss

@
k

(%
)

Generation Diversity (Qwen-1.5-7B, Ver72B)

Iteration 0
Iteration 1
Iteration 2
Iteration 3

Figure 10: The change of effective generation diversity along the iterative self-improvement process
for Qwen-1.5 7B model, measured by pass@k for different k. Left: using gold verifier. Right: using
Qwen-1.5-72B as the verifier.

To achieve a better understanding for the reason that effective diversity degrades during self-
improvement, in this section we conduct an ablation experiment where we fix the verifier unchanged.
We consider two settings, the first is to use the gold (ground truth) verifier/label and the second is to
use a more powerful model. Following previous protocols, we use Qwen-1.5-7B model on GSM8K.
We record the results in Figure 10.

We observe that, with gold labels, there is no degradation of the effective diversity along the iterative
training. This is because with the gold label, all the incorrect generations will be filtered out and
thus the model will not concentrate on any wrong answers, which is the most intuitive cause of the
degradation of the effective diversity. Meanwhile, the same degradation in the effective diversity still
happens if we use a more powerful but imperfect verifier because in some questions, the model will
concentrate on some wrong answers which the verifier labels correct.

D.4 VARIANCE OF THE VERIFIER

0.00 0.05 0.10 0.15 0.20 0.25
Empirical Variance

0

1000

2000

3000

4000

Co
un

t

Empirical Variance of Verification (Qwen-1.5-0.5B)

0.00 0.05 0.10 0.15 0.20 0.25
Empirical Variance

0

500

1000

1500

2000

2500

3000

Co
un

t

Empirical Variance of Verification (Qwen-1.5-1.8B)

0.00 0.05 0.10 0.15 0.20 0.25
Empirical Variance

0

2000

4000

6000

8000

10000

12000

Co
un

t

Empirical Variance of Verification (Qwen-1.5-4B)

0.00 0.05 0.10 0.15 0.20 0.25
Empirical Variance

0

1000

2000

3000

4000

5000

Co
un

t

Empirical Variance of Verification (Qwen-1.5-7B)

0.00 0.05 0.10 0.15 0.20 0.25
Empirical Variance

0

2000

4000

6000

8000

10000

12000

Co
un

t

Empirical Variance of Verification (Qwen-1.5-14B)

0.00 0.05 0.10 0.15 0.20 0.25
Empirical Variance

0

2000

4000

6000

8000

10000

12000

Co
un

t

Empirical Variance of Verification (Qwen-1.5-32B)

0.00 0.05 0.10 0.15 0.20 0.25
Empirical Variance

0

2000

4000

6000

8000

10000

12000

14000

Co
un

t

Empirical Variance of Verification (Qwen-1.5-72B)

Figure 11: Histograms of variance of generation from Qwen-1.5 model family in GSM8K.

20

Published as a conference paper at ICLR 2025

In this section, we examine the effect of a single generation sample on the evaluation of generation-
verification gap. The metric we use is the variance of the generation. Specially, we tested Qwen-
1.5-72B model on GSM8K, where we use the same sampling hyperparameter (t = 0.7, p = 0.9) as
the main text. For each question, we generate 8 responses, and for each response, we generate 64
verifications with CoT-B generation. Fix each generation, we can treat the distribution of the CoT-B
generation as a Bernoulli distribution with parameter p, where p is the probability of the verification
ending with "correct". For each generation, we measure the empirical variance (p(̇1− p)) and present
the histogram in Figure 11. Note that the variance ranges from 0 (p = 1 or p = 0) to 0.25 (p = 0.5).
We observe that the variance behaves differently for the models, but for bigger models, for most
generations, the verification variance is near 0.

E ADDITIONAL RESULTS

E.1 ADDITIONAL RESULTS FOR SECTION 4.1

Table 3: Gap on GSM-8K for all models. For each verification, “top n” denotes taking the threshold
as the n quantile of the proxy utility for each prompt, and τ = n denotes taking the threshold as n for
all prompts. All numbers denote the percentage.

Name Size Accuracy MC CoT To
top 0.7 top 0.8 τ = 0.7 τ = 0.8 Bin S (τ = 8) S (τ = 9) round 5

Qwen-1.5

0.5B 11.31 -0.62 -1.42 -2.27 -3.68 -0.02 -0.01 0.12 0.44
1.8B 32.81 3.06 2.70 -0.01 0.00 1.58 0.95 1.02 -0.44
4B 50.21 4.85 4.63 0.48 0.89 2.36 2.14 2.27 2.08
7B 53.17 7.18 7.42 3.68 6.13 4.07 1.84 0.70 3.59

14B 63.87 -2.04 -5.61 2.36 -1.06 1.79 1.69 2.00 3.16
32B 70.25 -0.22 -1.98 1.72 1.06 3.07 1.84 1.90 -1.03
72B 74.55 4.84 4.75 2.00 3.95 3.55 2.47 2.91 6.40

Qwen-2

0.5B 26.19 4.59 3.39 3.81 -6.59 0.21 0.64 0.72 0.32
1.5B 48.82 6.09 5.27 5.02 1.32 1.26 2.78 2.80 1.29
7B 76.42 4.69 4.66 3.90 2.17 2.36 1.97 2.08 3.86

72B 81.69 2.39 2.38 0.89 2.12 2.51 2.08 2.45 2.20

Llama-2
7B 11.64 2.33 2.20 0.10 0.00 0.16 0.25 0.23 0.99

13B 21.57 3.45 3.18 -0.13 0.01 1.13 0.97 1.01 1.17
70B 48.42 5.14 4.91 4.77 4.16 3.98 3.44 3.45 5.68

Llama-3 8B 45.66 5.34 5.33 -0.50 0.44 2.67 2.10 2.13 4.08
70B 74.19 5.06 4.52 4.68 1.35 3.89 2.59 2.72 2.00

Llama-3.1 8B 49.31 4.68 4.57 -2.25 -0.24 3.37 2.09 2.05 4.78
70B 71.71 6.88 6.77 6.00 0.93 3.29 2.71 2.88 -0.40

Yi-1.5
6B 55.53 4.40 4.27 2.98 -0.97 2.01 1.88 1.95 2.24
9B 61.04 7.74 7.50 5.61 5.73 2.32 3.61 3.72 7.83

34B 73.71 6.29 6.23 3.34 4.84 2.49 2.86 2.95 3.41

21

Published as a conference paper at ICLR 2025

Table 4: Relative gaps on GSM-8K for all models. For each verification, “top n” denotes taking
the threshold as the n quantile of the proxy utility for each prompt, and τ = n denotes taking the
threshold as n for all prompts. All numbers denote the percentage.

Name Size Accuracy MC CoT To
top 0.7 top 0.8 τ = 0.7 τ = 0.8 Bin S (τ = 8) S (τ = 9) round 5

Qwen-1.5

0.5B 11.31 -0.70 -1.60 -2.56 -4.15 -0.03 -0.13 0.04 0.59
1.8B 32.81 4.55 4.01 -0.01 -0.01 4.45 3.10 3.15 -0.39
4B 50.21 9.75 9.31 0.96 1.80 8.22 6.92 8.12 5.24
7B 53.17 15.34 15.84 7.87 13.08 14.06 5.50 -0.35 10.26
14B 63.87 -5.64 -15.54 6.52 -2.94 7.77 8.00 9.02 12.19
32B 70.25 -0.75 -6.67 5.78 3.57 15.31 8.40 8.49 -4.55
72B 74.55 19.01 18.65 7.87 15.52 21.82 14.96 16.97 32.06

Qwen-2

0.5B 26.19 6.22 4.59 5.16 -8.93 0.44 1.58 1.79 1.31
1.5B 48.82 11.90 10.30 9.82 2.58 4.45 9.96 10.11 5.26
7B 76.42 19.89 19.74 16.53 9.18 16.46 13.73 14.34 17.17
72B 81.69 13.07 13.00 4.87 11.57 20.16 14.34 19.92 17.84

Llama-2
7B 11.64 2.64 2.49 0.11 0.00 0.25 0.39 0.37 1.91
13B 21.57 4.40 4.05 -0.16 0.02 2.45 1.79 1.82 2.88
70B 48.42 9.97 9.52 9.25 8.07 13.77 12.22 12.07 18.57

Llama-3 8B 45.66 9.62 9.60 -0.90 0.80 8.51 6.16 6.70 12.55
70B 74.19 18.08 16.13 16.71 4.84 19.09 13.24 13.74 11.28

Llama-3.1 8B 49.31 8.97 8.77 -4.31 -0.47 11.74 7.02 6.89 14.97
70B 71.71 22.83 22.47 19.91 3.09 16.68 12.65 13.59 -1.03

Yi-1.5
6B 55.53 9.89 9.60 6.70 -2.17 9.10 6.60 6.69 10.64
9B 61.04 19.86 19.25 14.40 14.70 10.09 14.29 14.35 24.78
34B 73.71 23.94 23.68 12.70 18.40 15.02 16.69 16.96 8.89

2 4 6

2.5

0.0

2.5

5.0

Qwen-1.5 (GSM8K)

4 6 8

5.0

2.5

0.0

2.5

Qwen-2 (GSM8K)

5 6
0

2

4

Llama-2 (GSM8K)

5.0 5.5 6.0 6.5

0

2

4

6

8 Yi-1.5 (GSM8K)

Ga
p

(%
)

loge flops (1e21)
MC Tournament CoT-S

2 4 6
0

2

4

6

8 Qwen-1.5 (MATH)

4 6 8
0

1

2

3

4
Qwen-2 (MATH)

4 6 8
0

2

4

6

8
Qwen-2.5 (MATH)

5 6

1
2
3
4

Llama-2 (MATH)

Ga
p

(%
)

loge flops (1e21)

MC CoT-B CoT-S

Figure 12: No clear scaling phenomenon of the gap with respect to the pretrain flops. The x-axis is
the log of pretrain flops, and the y-axis is the relative gap. MC denotes Multiple Choice verification
with quantile threshold 0.8 (top 0.8), CoT-S denotes CoT-Score verification with global threshold 8,
and To denotes Tournament verification with 5 rounds.

22

Published as a conference paper at ICLR 2025

E.2 ADDITIONAL RESULTS FOR SECTION 4.3

Model Qwen-1.5
0.5B 1.8B 4B 7B 14B 32B 72B

Generation Accuracy 6.20 11.40 17.16 21.20 26.83 35.79 39.97
MC (top 0.2) -0.62 -0.02 -1.20 -1.15 -1.99 -0.43 -0.75
MC (τ = 0.8) -0.51 -0.32 -0.72 -1.07 -1.21 -0.10 0.32

Model Qwen-2
0.5B 1.5B 7B 72B

Generation Accuracy 6.51 13.87 29.09 41.45
MC (top 0.2) -0.06 0.04 0.79 0.28
MC (τ = 0.8) -0.05 0.02 -0.05 -0.05

Model Llama-2
7B 13B 70B

Generation Accuracy 25.52 41.00 29.09
MC (top 0.2) -0.96 0.76 0.30
MC (τ = 0.8) -0.81 -2.31 -0.44

Model Llama-3
8B 70B

Generation Accuracy 30.40 45.59
MC (top 0.2) 0.27 0.32
MC (τ = 0.8) -0.23 -0.41

Model Llama-3.1
8B 70B

Generation Accuracy 27.75 45.13
MC (top 0.2) 0.42 0.44
MC (τ = 0.8) -0.59 -0.37

Model Yi-1.5
6B 9B 34B

Generation Accuracy 22.82 25.94 35.31
MC (top 0.2) 0.09 0.21 0.24
MC (τ = 0.8) -0.07 0.61 0.30

Table 5: Gap on Natural Question for all models. With non-trivial generation accuracy, all gaps are
near 0, indicating that the task is non-improvable.

E.3 ADDITIONAL RESULTS FOR SECTION 4.4

Model Qwen-1.5
0.5B 1.8B 4B 7B 14B 32B 72B

Generation Accuracy 0.43 1.00 0.88 0.95 1.57 2.67 2.02
Gap 0.02 -0.03 -0.15 -0.64 0.22 0.07 1.23

Relative Gap -0.10 -2.80 -1.39 -3.06 0.67 -1.25 1.14

23

Published as a conference paper at ICLR 2025

Model Qwen-2
0.5B 1.5B 7B 72B 7B-Instruct 72B-Instruct

Generation Accuracy 0.66 0.62 2.09 8.82 2.16 8.15
Gap -0.09 0.04 -0.07 16.99 0.13 22.97

Relative Gap -0.15 -0.61 -0.01 20.81 0.20 26.40

Model Llama-2
7B 13B 70B

Generation Accuracy 0.82 0.89 0.86
Gap -0.13 -0.63 -0.86

Relative Gap 0.45 -2.02 -3.57

Model Llama-3
8B 70B

Generation Accuracy 1.39 1.63
Gap -1.10 -0.84

Relative Gap -15.4 -36.12

Model Llama-3.1
8B 70B

Generation Accuracy 1.11 1.68
Gap -0.19 5.5

Relative Gap -4.52 6.87

Model Yi-1.5
6B 9B 34B

Generation Accuracy 0.59 1.29 4.48
Gap -0.60 0.22 -1.75

Relative Gap -0.94 0.43 -0.77

Table 6: Generation accuracy, gap and relative gap on Sudoku for all models.

E.4 ADDITIONAL RESULTS FOR SECTION 5

In this section we repeat the experiments in Section 5 on the MATH dataset. We observe similar
results as in Section 5: iterative self-improvement saturates (in 4 iterations) with gap diminishing to 0.
We record a partial result at the top of Figure 13. We also observe the same degradation in effective
diversity along the iterative self-improvement and we record the result in the bottom of Figure 13.

24

Published as a conference paper at ICLR 2025

0 1 2 3 4

20

30

40

Ac
cu

ra
cy

 (%
)

0 1 2 3 4
0

1

2

Ga
p

(%
)

7B
14B
32B

Round

Iterative Self-improvement (Qwen-1.5, MATH)

20 21 22 23 24 25 26 27

Number of Generations (k)

20

40

60
Pa

ss
@

k
(%

)

Generation Diversity (Qwen-1.5-7B, MATH)
Iteration 0
Iteration 1
Iteration 2
Iteration 3
Iteration 4

Figure 13: Top: The generation accuracy and gap along the iterative self-improvement process
for Qwen-1.5 model family with CoT-Binary. The horizontal line on the gap plot denotes 0.5%.
Bottom: The change of effective generation diversity along the iterative self-improvement process
for Qwen-1.5 7B model, measured by pass@k for different k.

E.5 ADDITIONAL RESULTS FOR SECTION 6.1

0.1 0.3 0.5 0.7 0.9
20

10

0

MC

0.1 0.3 0.5 0.7 0.9

10

0

MC Quantile

1 3 5 7 9
0

1

2

3 CoT-S

Threshold

Ga
p

(%
)

Qwen-1.5 (GSM8K)

0.5B 1.8B 4B 7B 14B 32B 72B

0.1 0.3 0.5 0.7 0.9

5

0

5
MC

0.1 0.3 0.5 0.7 0.9

0

2

4

6
MC Quantile

1 3 5 7 9

1

2

CoT-S

Threshold

Ga
p

(%
)

Qwen-2 (GSM8K)

0.5B 1.5B 7B 72B

0.1 0.3 0.5 0.7 0.9
0

2

4

MC

0.1 0.3 0.5 0.7 0.9

2

4

MC Quantile

1 3 5 7 90

1

2

3

CoT-S

Threshold

Ga
p

(%
)

Llama-2 (GSM8K)

7B 13B 70B

25

Published as a conference paper at ICLR 2025

0.1 0.3 0.5 0.7 0.9

0

2

4
MC

0.1 0.3 0.5 0.7 0.9

3

4

5
MC Quantile

1 3 5 7 9

1

2

CoT-S

Threshold

Ga
p

(%
)

Llama-3 (GSM8K)

8B 70B

0.1 0.3 0.5 0.7 0.9

0

2

4

6 MC

0.1 0.3 0.5 0.7 0.9
2

4

6

8 MC Quantile

1 3 5 7 9

1

2

3

CoT-S

Threshold

Ga
p

(%
)

Yi-1.5

6B 9B 34B

Figure 14: Change in the gap as we vary the threshold for each verification method. We only present
the results for MC with global threshold, quantile threshold and CoT-Score, because CoT-Binary’s
gap does not change as we change the threshold.

0 2 4 6

20

40

60

80

Ac
cu

ra
cy

 (%
)

2 4 6
4

2

0

2

4

Ga
p

(%
)

Round

Qwen-1.5 Tournament (GSM-8K)

0.5B 1.8B 4B 7B 14B 32B 72B

0 2 4 6

40

60

80

Ac
cu

ra
cy

 (%
)

2 4 6
4

2

0

2

4

Ga
p

(%
)

Round

Qwen-2 Tournament (GSM-8K)

0.5B 1.5B 7B 72B

0 2 4 6
10

20

30

40

50

Ac
cu

ra
cy

 (%
)

2 4 6
4

2

0

2

4

Ga
p

(%
)

Round

Llama-2 Tournament (GSM-8K)

7B 13B 70B

26

Published as a conference paper at ICLR 2025

0 2 4 6

50

60

70

Ac
cu

ra
cy

 (%
)

2 4 6
4

2

0

2

4

Ga
p

(%
)

Round

Llama-3 Tournament (GSM-8K)

8B 70B

0 2 4 6
50

60

70

Ac
cu

ra
cy

 (%
)

2 4 6
4

2

0

2

4

Ga
p

(%
)

Round

Llama-3.1 Tournament (GSM-8K)

8B 70B

0 2 4 6
55

60

65

70

75

Ac
cu

ra
cy

 (%
)

2 4 6
4

2

0

2

4

Ga
p

(%
)

Round

Yi-1.5 Tournament (GSM-8K)

6B 9B 34B

Figure 15: Change in the generation accuracy of the filtered dataset (left) and gap (right) with respect
to the round of tournament. The right figure plots the gap with respect to the accuracy from the
previous round instead of the base accuracy.

0 2 4 6 8 10
Score

0

20000

40000

60000

80000

100000

Fr
eq

ue
nc

y

Score Distribution (Qwen-1.5-1.8B, GSM8K)

0 2 4 6 8 10
Score

0

25000

50000

75000

100000

125000

150000

175000

200000

Fr
eq

ue
nc

y

Score Distribution (Qwen-1.5-7B, GSM8K)

0 2 4 6 8 10
Score

0

50000

100000

150000

200000

250000

300000

Fr
eq

ue
nc

y

Score Distribution (Qwen-1.5-72B, GSM8K)

0 2 4 6 8 10
Score

0

25000

50000

75000

100000

125000

150000

175000

200000

Fr
eq

ue
nc

y

Score Distribution (Qwen-2-7B, GSM8K)

0 2 4 6 8 10
Score

0

50000

100000

150000

200000

Fr
eq

ue
nc

y

Score Distribution (Llama-2-7B, GSM8K)

0 2 4 6 8 10
Score

0

20000

40000

60000

80000

100000

120000

140000

160000

Fr
eq

ue
nc

y

Score Distribution (Llama-2-70B, GSM8K)

0 2 4 6 8 10
Score

0

20000

40000

60000

80000

100000

120000

140000

Fr
eq

ue
nc

y

Score Distribution (Llama-3-8B, GSM8K)

0 2 4 6 8 10
Score

0

50000

100000

150000

200000

250000

Fr
eq

ue
nc

y

Score Distribution (Llama-3-70B, GSM8K)

0 2 4 6 8 10
Score

0

20000

40000

60000

80000

100000

120000

Fr
eq

ue
nc

y

Score Distribution (Llama-3.1-8B, GSM8K)

0 2 4 6 8 10
Score

0

50000

100000

150000

200000

250000

Fr
eq

ue
nc

y

Score Distribution (Llama-3.1-70B, GSM8K)

0 2 4 6 8 10
Score

0

25000

50000

75000

100000

125000

150000

175000

Fr
eq

ue
nc

y

Score Distribution (Yi-1.5-6B, GSM8K)

0 2 4 6 8 10
Score

0
20000
40000
60000
80000

100000
120000
140000
160000

Fr
eq

ue
nc

y

Score Distribution (Yi-1.5-9B, GSM8K)

Figure 16: Score distribution of a subset of models. The mode of the score for all models is 10.

27

Published as a conference paper at ICLR 2025

E.6 ADDITIONAL RESULTS FOR SECTION 6.2

0.5 0.0 0.50

500

1000

1500 : -0.017
: 0.101

0.5 0.0 0.50

1000

2000 : -0.037
: 0.120

0.5 0.0 0.50

500

1000

1500 : -0.000
: 0.014

0.5 0.0 0.50

500

1000
: -0.000
: 0.036

Gap

Fr
eq

ue
nc

y

Distribution of Gaps (Qwen-1.5-0.5B, GSM8K)

MC-Q MC CoT-B CoT-S

0.5 0.0 0.50

250

500

750 : 0.017
: 0.150

0.5 0.0 0.50

1000

2000
: -0.000
: 0.002

0.5 0.0 0.50

250

500

750
: 0.016
: 0.097

0.5 0.0 0.50

500

1000 : 0.010
: 0.055

Gap

Fr
eq

ue
nc

y

Distribution of Gaps (Qwen-1.5-1.8B, GSM8K)

MC-Q MC CoT-B CoT-S

0.5 0.0 0.50

200

400

600 : 0.046
: 0.148

0.5 0.0 0.50

500

1000
: 0.009
: 0.021

0.5 0.0 0.50

500

1000 : 0.024
: 0.053

0.5 0.0 0.50

500

1000 : 0.021
: 0.053

Gap

Fr
eq

ue
nc

y

Distribution of Gaps (Qwen-1.5-4B, GSM8K)

MC-Q MC CoT-B CoT-S

0.5 0.0 0.50

200

400
: 0.074
: 0.158

0.5 0.0 0.50

200

400

600 : 0.061
: 0.156

0.5 0.0 0.50

500

1000 : 0.041
: 0.062

0.5 0.0 0.50

500

1000 : 0.018
: 0.046

Gap

Fr
eq

ue
nc

y

Distribution of Gaps (Qwen-1.5-7B, GSM8K)

MC-Q MC CoT-B CoT-S

0.5 0.0 0.50

200

400
: -0.060
: 0.217

0.5 0.0 0.50

250

500

750 : -0.011
: 0.179

0.5 0.0 0.50

500

1000
: 0.018
: 0.032

0.5 0.0 0.50

500

1000 : 0.017
: 0.055

Gap

Fr
eq

ue
nc

y

Distribution of Gaps (Qwen-1.5-14B, GSM8K)

MC-Q MC CoT-B CoT-S

0.5 0.0 0.50

200

400

600 : -0.022
: 0.180

0.5 0.0 0.50

250

500

750
: 0.011
: 0.112

0.5 0.0 0.50

500

1000 : 0.031
: 0.054

0.5 0.0 0.50

500

1000
: 0.018
: 0.038

Gap

Fr
eq

ue
nc

y

Distribution of Gaps (Qwen-1.5-32B, GSM8K)

MC-Q MC CoT-B CoT-S

28

Published as a conference paper at ICLR 2025

0.5 0.0 0.50

200

400

600
: 0.046
: 0.127

0.5 0.0 0.50

250

500

750
: 0.040
: 0.112

0.5 0.0 0.50

500

1000
: 0.036
: 0.054

0.5 0.0 0.50

500

1000
: 0.025
: 0.040

Gap

Fr
eq

ue
nc

y

Distribution of Gaps (Qwen-1.5-72B, GSM8K)

MC-Q MC CoT-B CoT-S

0.5 0.0 0.50

250

500

750 : 0.029
: 0.130

0.5 0.0 0.50

500

1000 : -0.066
: 0.262

0.5 0.0 0.50

500

1000

1500 : 0.002
: 0.009

0.5 0.0 0.50

500

1000
: 0.006
: 0.030

Gap

Fr
eq

ue
nc

y

Distribution of Gaps (Qwen-2-0.5B, GSM8K)

MC-Q MC CoT-B CoT-S

0.5 0.0 0.50

200

400
: 0.051
: 0.154

0.5 0.0 0.50

200

400

600 : 0.013
: 0.205

0.5 0.0 0.50

500

1000

1500 : 0.013
: 0.030

0.5 0.0 0.50

500

1000 : 0.028
: 0.060

Gap

Fr
eq

ue
nc

y

Distribution of Gaps (Qwen-2-1.5B, GSM8K)

MC-Q MC CoT-B CoT-S

0.5 0.0 0.50

200

400

600
: 0.047
: 0.126

0.5 0.0 0.50

500

1000 : 0.022
: 0.165

0.5 0.0 0.50

500

1000
: 0.024
: 0.038

0.5 0.0 0.50

500

1000 : 0.020
: 0.043

Gap

Fr
eq

ue
nc

y

Distribution of Gaps (Qwen-2-7B, GSM8K)

MC-Q MC CoT-B CoT-S

0.5 0.0 0.50

250

500

750
: 0.024
: 0.095

0.5 0.0 0.50

500

1000
: 0.021
: 0.060

0.5 0.0 0.50

500

1000 : 0.025
: 0.050

0.5 0.0 0.50

500

1000 : 0.023
: 0.051

Gap

Fr
eq

ue
nc

y

Distribution of Gaps (Qwen-2-72B, GSM8K)

MC-Q MC CoT-B CoT-S

0.5 0.0 0.50

200

400
: 0.044
: 0.159

0.5 0.0 0.50

1000

2000
: 0.004
: 0.102

0.5 0.0 0.50

200

400

600
: 0.027
: 0.080

0.5 0.0 0.50

500

1000 : 0.021
: 0.053

Gap

Fr
eq

ue
nc

y

Distribution of Gaps (Llama-3-8B, GSM8K)

MC-Q MC CoT-B CoT-S

29

Published as a conference paper at ICLR 2025

0.5 0.0 0.50

200

400
: 0.044
: 0.169

0.5 0.0 0.50

500

1000 : 0.014
: 0.212

0.5 0.0 0.50

500

1000 : 0.039
: 0.089

0.5 0.0 0.50

500

1000 : 0.026
: 0.051

Gap

Fr
eq

ue
nc

y

Distribution of Gaps (Llama-3-70B, GSM8K)

MC-Q MC CoT-B CoT-S

0.5 0.0 0.50

200

400

600 : 0.038
: 0.155

0.5 0.0 0.50

1000

2000
: -0.002
: 0.104

0.5 0.0 0.50

200

400

600 : nan
: nan

0.5 0.0 0.50

250

500

750
: 0.021
: 0.063

Gap

Fr
eq

ue
nc

y

Distribution of Gaps (Llama-3.1-8B, GSM8K)

MC-Q MC CoT-B CoT-S

0.5 0.0 0.50

200

400

600 : 0.067
: 0.169

0.5 0.0 0.50

500

1000

1500 : 0.009
: 0.173

0.5 0.0 0.50

500

1000 : 0.033
: 0.072

0.5 0.0 0.50

500

1000 : 0.027
: 0.055

Gap

Fr
eq

ue
nc

y

Distribution of Gaps (Llama-3.1-70B, GSM8K)

MC-Q MC CoT-B CoT-S

0.5 0.0 0.50

200

400

600 : 0.043
: 0.122

0.5 0.0 0.50

1000

2000
: -0.010
: 0.095

0.5 0.0 0.50

250

500

750
: 0.020
: 0.060

0.5 0.0 0.50

500

1000 : 0.019
: 0.043

Gap

Fr
eq

ue
nc

y

Distribution of Gaps (Yi-1.5-6B, GSM8K)

MC-Q MC CoT-B CoT-S

0.5 0.0 0.50

200

400
: 0.075
: 0.163

0.5 0.0 0.50

200

400

600 : 0.057
: 0.195

0.5 0.0 0.50

500

1000

1500 : 0.023
: 0.031

0.5 0.0 0.50

500

1000 : 0.036
: 0.060

Gap

Fr
eq

ue
nc

y

Distribution of Gaps (Yi-1.5-9B, GSM8K)

MC-Q MC CoT-B CoT-S

0.5 0.0 0.50

200

400

600 : 0.062
: 0.136

0.5 0.0 0.50

250

500

750
: 0.048
: 0.114

0.5 0.0 0.50

500

1000 : 0.025
: 0.049

0.5 0.0 0.50

500

1000

1500
: 0.029
: 0.047

Gap

Fr
eq

ue
nc

y

Distribution of Gaps (Yi-1.5-34B, GSM8K)

MC-Q MC CoT-B CoT-S

Figure 17: The empirical distribution of gaps of each verification method of each model on GSM8K.
We cluster gaps in bins of intervals with width of 0.005. We label the mean (µ) and standard deviation
(σ) of each distribution.

30

Published as a conference paper at ICLR 2025

MC CoT-B CoT-S

M
C

Co
T-B

Co
T-

S

1.00 0.03 -0.04

0.03 1.00 0.01

-0.04 0.01 1.00

Verification Correlation - Qwen-1.5-0.5B

0.0

0.2

0.4

0.6

0.8

1.0

MC CoT-B CoT-S

M
C

Co
T-B

Co
T-

S

1.00 0.07 0.10

0.07 1.00 0.03

0.10 0.03 1.00

Verification Correlation - Qwen-1.5-1.8B

0.2

0.4

0.6

0.8

1.0

MC CoT-B CoT-S

M
C

Co
T-B

Co
T-

S

1.00 0.14 0.24

0.14 1.00 0.11

0.24 0.11 1.00

Verification Correlation - Qwen-1.5-4B

0.2

0.4

0.6

0.8

1.0

MC CoT-B CoT-S

M
C

Co
T-B

Co
T-

S

1.00 0.24 0.39

0.24 1.00 0.18

0.39 0.18 1.00

Verification Correlation - Qwen-1.5-7B

0.2

0.4

0.6

0.8

1.0

MC CoT-B CoT-S

M
C

Co
T-B

Co
T-

S

1.00 0.40 0.36

0.40 1.00 0.30

0.36 0.30 1.00

Verification Correlation - Qwen-1.5-14B

0.4

0.6

0.8

1.0

MC CoT-B CoT-S

M
C

Co
T-B

Co
T-

S

1.00 0.46 0.41

0.46 1.00 0.39

0.41 0.39 1.00

Verification Correlation - Qwen-1.5-32B

0.4

0.5

0.6

0.7

0.8

0.9

1.0

MC CoT-B CoT-S

M
C

Co
T-B

Co
T-

S

1.00 0.43 0.42

0.43 1.00 0.44

0.42 0.44 1.00

Verification Correlation - Qwen-1.5-72B

0.5

0.6

0.7

0.8

0.9

1.0

MC CoT-B CoT-S

M
C

Co
T-B

Co
T-

S

1.00 0.14 0.21

0.14 1.00 0.09

0.21 0.09 1.00

Verification Correlation - Qwen-2-0.5B

0.2

0.4

0.6

0.8

1.0

MC CoT-B CoT-S

M
C

Co
T-B

Co
T-

S

1.00 0.21 0.20

0.21 1.00 0.07

0.20 0.07 1.00

Verification Correlation - Qwen-2-1.5B

0.2

0.4

0.6

0.8

1.0

MC CoT-B CoT-S

M
C

Co
T-B

Co
T-

S

1.00 0.35 0.31

0.35 1.00 0.17

0.31 0.17 1.00

Verification Correlation - Qwen-2-7B

0.2

0.4

0.6

0.8

1.0

MC CoT-B CoT-S

M
C

Co
T-B

Co
T-

S

1.00 0.39 0.40

0.39 1.00 0.40

0.40 0.40 1.00

Verification Correlation - Qwen-2-72B

0.4

0.5

0.6

0.7

0.8

0.9

1.0

MC CoT-B CoT-S

M
C

Co
T-B

Co
T-

S

1.00 0.10 0.23

0.10 1.00 0.06

0.23 0.06 1.00

Verification Correlation - Llama-3-8B

0.2

0.4

0.6

0.8

1.0

MC CoT-B CoT-S

M
C

Co
T-B

Co
T-

S

1.00 0.46 0.43

0.46 1.00 0.30

0.43 0.30 1.00

Verification Correlation - Llama-3-70B

0.4

0.5

0.6

0.7

0.8

0.9

1.0

MC CoT-B CoT-S

M
C

Co
T-B

Co
T-

S

1.00 0.12 0.30

0.12 1.00 0.07

0.30 0.07 1.00

Verification Correlation - Llama-3.1-8B

0.2

0.4

0.6

0.8

1.0

MC CoT-B CoT-S

M
C

Co
T-B

Co
T-

S

1.00 0.45 0.49

0.45 1.00 0.35

0.49 0.35 1.00

Verification Correlation - Llama-3.1-70B

0.4

0.5

0.6

0.7

0.8

0.9

1.0

MC CoT-B CoT-S

M
C

Co
T-B

Co
T-

S

1.00 0.08 0.26

0.08 1.00 0.08

0.26 0.08 1.00

Verification Correlation - Yi-1.5-6B

0.2

0.4

0.6

0.8

1.0

MC CoT-B CoT-S

M
C

Co
T-B

Co
T-

S

1.00 0.47 0.42

0.47 1.00 0.30

0.42 0.30 1.00

Verification Correlation - Yi-1.5-9B

0.4

0.6

0.8

1.0

MC CoT-B CoT-S

M
C

Co
T-B

Co
T-

S

1.00 0.31 0.48

0.31 1.00 0.21

0.48 0.21 1.00

Verification Correlation - Yi-1.5-34B

0.4

0.6

0.8

1.0

Figure 18: The correlation plot of the output of each verification û.

31

Published as a conference paper at ICLR 2025

MC-Q MC CoT-B CoT-S Gen Acc

M
C-

Q
M

C
Co

T-B
Co

T-
S

Ge
n

Ac
c

1.00 0.36 -0.04 -0.02 -0.18

0.36 1.00 -0.10 -0.12 -0.32

-0.04 -0.10 1.00 0.04 -0.03

-0.02 -0.12 0.04 1.00 -0.02

-0.18 -0.32 -0.03 -0.02 1.00

Gap Correlation - Qwen-1.5-0.5B

0.2

0.0

0.2

0.4

0.6

0.8

1.0

MC-Q MC CoT-B CoT-S Gen Acc

M
C-

Q
M

C
Co

T-B
Co

T-
S

Ge
n

Ac
c

1.00 -0.01 0.09 0.19 -0.13

-0.01 1.00 0.00 0.01 0.03

0.09 0.00 1.00 0.11 0.06

0.19 0.01 0.11 1.00 0.06

-0.13 0.03 0.06 0.06 1.00

Gap Correlation - Qwen-1.5-1.8B

0.0

0.2

0.4

0.6

0.8

1.0

MC-Q MC CoT-B CoT-S Gen Acc

M
C-

Q
M

C
Co

T-B
Co

T-
S

Ge
n

Ac
c

1.00 0.37 0.31 0.35 -0.06

0.37 1.00 0.38 0.41 -0.05

0.31 0.38 1.00 0.37 -0.03

0.35 0.41 0.37 1.00 -0.03

-0.06 -0.05 -0.03 -0.03 1.00

Gap Correlation - Qwen-1.5-4B

0.0

0.2

0.4

0.6

0.8

1.0

MC-Q MC CoT-B CoT-S Gen Acc

M
C-

Q
M

C
Co

T-B
Co

T-
S

Ge
n

Ac
c

1.00 0.77 0.36 0.35 -0.04

0.77 1.00 0.33 0.35 -0.08

0.36 0.33 1.00 0.44 -0.00

0.35 0.35 0.44 1.00 -0.10

-0.04 -0.08 -0.00 -0.10 1.00

Gap Correlation - Qwen-1.5-7B

0.0

0.2

0.4

0.6

0.8

1.0

MC-Q MC CoT-B CoT-S Gen Acc

M
C-

Q
M

C
Co

T-B
Co

T-
S

Ge
n

Ac
c

1.00 0.58 0.34 0.35 -0.17

0.58 1.00 0.32 0.32 -0.19

0.34 0.32 1.00 0.57 -0.14

0.35 0.32 0.57 1.00 -0.08

-0.17 -0.19 -0.14 -0.08 1.00

Gap Correlation - Qwen-1.5-14B

0.0

0.2

0.4

0.6

0.8

1.0

MC-Q MC CoT-B CoT-S Gen Acc

M
C-

Q
M

C
Co

T-B
Co

T-
S

Ge
n

Ac
c

1.00 0.63 0.50 0.49 -0.14

0.63 1.00 0.50 0.49 -0.09

0.50 0.50 1.00 0.81 -0.20

0.49 0.49 0.81 1.00 -0.21

-0.14 -0.09 -0.20 -0.21 1.00

Gap Correlation - Qwen-1.5-32B

0.2

0.0

0.2

0.4

0.6

0.8

1.0

MC-Q MC CoT-B CoT-S Gen Acc

M
C-

Q
M

C
Co

T-B
Co

T-
S

Ge
n

Ac
c

1.00 0.65 0.51 0.50 -0.23

0.65 1.00 0.45 0.45 -0.21

0.51 0.45 1.00 0.86 -0.29

0.50 0.45 0.86 1.00 -0.27

-0.23 -0.21 -0.29 -0.27 1.00

Gap Correlation - Qwen-1.5-72B

0.2

0.0

0.2

0.4

0.6

0.8

1.0

MC-Q MC CoT-B CoT-S Gen Acc

M
C-

Q
M

C
Co

T-B
Co

T-
S

Ge
n

Ac
c

1.00 0.47 0.06 0.04 -0.13

0.47 1.00 -0.02 -0.10 -0.41

0.06 -0.02 1.00 0.16 0.06

0.04 -0.10 0.16 1.00 0.10

-0.13 -0.41 0.06 0.10 1.00

Gap Correlation - Qwen-2-0.5B

0.25

0.00

0.25

0.50

0.75

1.00

MC-Q MC CoT-B CoT-S Gen Acc

M
C-

Q
M

C
Co

T-B
Co

T-
S

Ge
n

Ac
c

1.00 0.57 0.24 0.23 -0.15

0.57 1.00 0.14 0.14 -0.14

0.24 0.14 1.00 0.37 0.04

0.23 0.14 0.37 1.00 0.05

-0.15 -0.14 0.04 0.05 1.00

Gap Correlation - Qwen-2-1.5B

0.0

0.2

0.4

0.6

0.8

1.0

MC-Q MC CoT-B CoT-S Gen Acc

M
C-

Q
M

C
Co

T-B
Co

T-
S

Ge
n

Ac
c

1.00 0.61 0.48 0.47 -0.22

0.61 1.00 0.21 0.22 -0.08

0.48 0.21 1.00 0.65 -0.23

0.47 0.22 0.65 1.00 -0.19

-0.22 -0.08 -0.23 -0.19 1.00

Gap Correlation - Qwen-2-7B

0.2

0.0

0.2

0.4

0.6

0.8

1.0

MC-Q MC CoT-B CoT-S Gen Acc

M
C-

Q
M

C
Co

T-B
Co

T-
S

Ge
n

Ac
c

1.00 0.70 0.56 0.57 -0.22

0.70 1.00 0.65 0.66 -0.26

0.56 0.65 1.00 0.89 -0.29

0.57 0.66 0.89 1.00 -0.27

-0.22 -0.26 -0.29 -0.27 1.00

Gap Correlation - Qwen-2-72B

0.2

0.0

0.2

0.4

0.6

0.8

1.0

MC-Q MC CoT-B CoT-S Gen Acc

M
C-

Q
M

C
Co

T-B
Co

T-
S

Ge
n

Ac
c

1.00 0.04 0.19 0.24 -0.16

0.04 1.00 0.04 0.01 -0.06

0.19 0.04 1.00 0.18 0.06

0.24 0.01 0.18 1.00 0.04

-0.16 -0.06 0.06 0.04 1.00

Gap Correlation - Llama-3-8B

0.0

0.2

0.4

0.6

0.8

1.0

MC-Q MC CoT-B CoT-S Gen Acc

M
C-

Q
M

C
Co

T-B
Co

T-
S

Ge
n

Ac
c

1.00 0.63 0.61 0.56 -0.19

0.63 1.00 0.39 0.34 -0.09

0.61 0.39 1.00 0.76 -0.25

0.56 0.34 0.76 1.00 -0.23

-0.19 -0.09 -0.25 -0.23 1.00

Gap Correlation - Llama-3-70B

0.2

0.0

0.2

0.4

0.6

0.8

1.0

MC-Q MC CoT-B CoT-S Gen Acc

M
C-

Q
M

C
Co

T-B
Co

T-
S

Ge
n

Ac
c

1.00 0.10 0.25 0.34 -0.11

0.10 1.00 0.08 0.02 -0.03

0.25 0.08 1.00 0.24 0.02

0.34 0.02 0.24 1.00 0.01

-0.11 -0.03 0.02 0.01 1.00

Gap Correlation - Llama-3.1-8B

0.0

0.2

0.4

0.6

0.8

1.0

MC-Q MC CoT-B CoT-S Gen Acc

M
C-

Q
M

C
Co

T-B
Co

T-
S

Ge
n

Ac
c

1.00 0.45 0.54 0.55 -0.19

0.45 1.00 0.18 0.16 -0.01

0.54 0.18 1.00 0.79 -0.19

0.55 0.16 0.79 1.00 -0.22

-0.19 -0.01 -0.19 -0.22 1.00

Gap Correlation - Llama-3.1-70B

0.2

0.0

0.2

0.4

0.6

0.8

1.0

MC-Q MC CoT-B CoT-S Gen Acc

M
C-

Q
M

C
Co

T-B
Co

T-
S

Ge
n

Ac
c

1.00 0.09 0.22 0.33 -0.10

0.09 1.00 0.01 -0.04 -0.03

0.22 0.01 1.00 0.24 0.03

0.33 -0.04 0.24 1.00 -0.04

-0.10 -0.03 0.03 -0.04 1.00

Gap Correlation - Yi-1.5-6B

0.0

0.2

0.4

0.6

0.8

1.0

MC-Q MC CoT-B CoT-S Gen Acc

M
C-

Q
M

C
Co

T-B
Co

T-
S

Ge
n

Ac
c

1.00 0.71 0.46 0.47 -0.18

0.71 1.00 0.35 0.39 -0.19

0.46 0.35 1.00 0.66 -0.11

0.47 0.39 0.66 1.00 -0.13

-0.18 -0.19 -0.11 -0.13 1.00

Gap Correlation - Yi-1.5-9B

0.0

0.2

0.4

0.6

0.8

1.0

MC-Q MC CoT-B CoT-S Gen Acc

M
C-

Q
M

C
Co

T-B
Co

T-
S

Ge
n

Ac
c

1.00 0.71 0.57 0.59 -0.23

0.71 1.00 0.57 0.61 -0.24

0.57 0.57 1.00 0.70 -0.16

0.59 0.61 0.70 1.00 -0.25

-0.23 -0.24 -0.16 -0.25 1.00

Gap Correlation - Yi-1.5-34B

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 19: The correlation plot of the gap from each verification and generation accuracy.

32

Published as a conference paper at ICLR 2025

E.7 ADDITIONAL RESULTS FOR SECTION 6.3

Table 7: Relative gaps on GSM-8K for all models. For each verification, “top n” denotes taking
the threshold as the n quantile of the proxy utility for each prompt, and τ = n denotes taking the
threshold as n for all prompts. All numbers denote the percentage

Name Size MC CoT-B CoT-S MC+CoT-B MC+CoT-S CoT-B+CoT-S All

Qwen-1.5

0.5B -1.62 -0.07 -0.01 -1.65 -1.36 -0.08 -1.42
1.8B 2.36 1.04 0.95 2.16 2.22 1.18 2.14
4B 4.55 2.26 2.14 4.81 4.77 3.50 4.90
7B 7.46 3.98 1.84 9.02 7.88 4.88 9.12

14B -6.09 1.79 1.69 -5.73 -5.85 2.45 -5.60
32B -2.30 3.07 1.84 -1.87 -2.21 3.62 -2.00
72B 4.61 3.43 2.47 5.70 5.25 4.46 6.07

Qwen-2

0.5B 3.01 0.18 0.64 3.01 3.13 0.72 3.11
1.5B 5.04 0.86 2.78 5.08 7.68 3.15 7.61
7B 4.68 2.31 1.97 5.25 4.96 3.40 5.46

72B 2.44 2.50 2.28 3.21 3.13 3.35 3.65

Llama-2
7B 2.17 0.13 0.25 2.21 2.42 0.37 2.44

13B 3.19 0.91 0.97 3.47 3.38 1.76 3.21
70B 4.78 3.73 3.44 5.52 5.61 5.79 4.90

Llama-3 8B 4.98 2.59 2.10 5.88 5.81 4.09 5.83
70B 4.37 3.88 2.59 4.91 4.71 4.45 4.98

Llama-3.1 8B 4.34 3.50 2.09 4.47 4.57 3.27 2.96
70B 6.72 3.29 2.71 7.08 7.03 3.94 7.21

Yi-1.5
6B 4.27 2.01 1.88 4.83 4.72 3.16 4.95
9B 7.50 2.32 3.61 7.79 7.87 4.80 8.11

34B 6.23 2.49 2.86 6.32 6.35 3.76 6.41

33

Published as a conference paper at ICLR 2025

F DETAILS ON ITERATIVE SELF-IMPROVEMENT

Here we present the details for RL update: we use Reasoning Preference Optimization (Pang et al.,
2024), which is equivalent to the RL update under Bradley-Terry Model with an SFT regularization.
We set the KL regularization coefficient β to be 0.05 and the SFT regularization coefficient to be 1.

Algorithm 1 Iterative self-improvement with rejection sampling.

require Model class F , prompt set X , threshold τ .
1: Let f0 be the pre-trained model.
2: for t = 1, 2, . . . , T do
3: For each x ∈ X , sample N generations y ∼ ft−1(· | x), and compute the score

s(x, y) = ûft−1(x, y).

4: Get the filtered dataset Dt = {(x, y) | s(x, y) > τ}.
5: Update the model through MLE to get ft:

ft = argmax
f∈F

∑
(x,y)∈Dt

log f(y | x).

Table 8: Hyperparameter for iterative self-improvement.

Minibatch size 64
Learning rate 1e-6

Optimizer AdamW
Gradient step 2000

Max Sequence Length 2048
Data Type bf16

34

Published as a conference paper at ICLR 2025

G GENERATION AND VERIFICATION PROMPTS

Multiple Choice Verification Prompt (GSM8K / nq_open)

Judge the correctness of the following solution of the problem. Answer with either Correct or
Incorrect. Problem: {problem}
Solution: {generation}
Judge:

Chain of Thoughts Binary Prompt (GSM8K)

Review the following math problem and the attempted solution and verify the correctness
of the attempted solution, with a judgement of <correct> or <incorrect>. Your judgement
should follow each criterion below: - The final ANSWER is after the phrase "The answer is
ANSWER", and verify if the answer is correct with respect to the problem. If there is no such
phrase, treat the answer as incorrect. - Each solution contains a derivation before the final
answer, check the soundness of the derivation as well. - Your final judgement should reflect
solely on the correctness of the final answer, but if there are issues in the derivation, please
mention them in your justification.
Problem: {problem}
Attempted Solution: {generation}
After examining the problem and the attempted solution: - Briefly justify your judgement, up
to 50 words. - Conclude with the judgement using the format: "Correctness: <correct> or
<incorrect>".
Remember to assess from the math verifier perspective and be critical and verify carefully.
Judgement:

Chain of Thoughts Score Prompt (GSM8K)

Review the following math problem and the attempted solution and give a score from 1 to 10
to the attempted solution. The final ANSWER is after the phrase "Final Answer: The final
answer is ANSWER". Give the answer a 1 if there is no such phrase or ANSWER is wrong,
and give the answer a 10 if both the answer and the derivation are correct.
Problem: {problem}
Attempted Solution: {generation}
After examining the problem and the attepmted solution: - Briefly justify your score, up to 50
words. - Conclude with the score using the format: "Score: <score>".
Remember to assess from the math verifier perspective and be critical and verify carefully.
Judgement:

Tournament Prompt (GSM8K)

Review the following math problem and two attempted solutions. Your task is to determine
the better solution between the two. Your judgement should follow each criterion below: -
The final ANSWER is after the phrase "The answer is ANSWER", and you should always
prefer correct answers over incorrect answer. - Always prefer solutions with the phrase "The
answer is ANSWER" over ones without it. - If both answers are correct or incorrect, you
should prefer the one with better reasonings. Problem: {problem}
Solution A: {generation1}
Solution B: {generation2}
After examining the problem and the attempted solutions: - Briefly justify your judgement,
up to 50 words. - Conclude with the judgement using the format: "Preferred solution: <A> or
".
Remember to assess from the math verifier perspective and be critical and verify carefully.
Judgement:

35

Published as a conference paper at ICLR 2025

Sudoku Generation Prompt

You are a Sudoku solver specialized in 4x4 puzzles. You will be given a string of 16 digits
representing an initial 4x4 Sudoku puzzle, where 0 represents an empty cell. Your task is to
solve the puzzle and provide the complete solution.
Rules for solving a 4x4 Sudoku:
Each row must contain the numbers 1-4 without repetition.
Each column must contain the numbers 1-4 without repetition.
Each 2x2 quadrant must contain the numbers 1-4 without repetition.
The solution must maintain all the initial non-zero numbers from the puzzle in their original
position.
Input format:
ab cd
ef gh
ij kl
mn op
Where each letter represents a single digit (0-4), and 0 indicates an empty cell. Your tasks:
Analyze the given puzzle.
Fill in all empty cells (0s) with appropriate numbers following Sudoku rules.
Provide your solution in the same format as the input, maintaining the original structure.
Puzzle: {problem}
Answer:

Sudoku Generation Example

Puzzle:
03 21
00 30
04 00
21 00
Answer: I filled A1 with 4 to complete Row 1. In Quadrant 1, the missing numbers 1 and 2
were assigned to B1 and B2 based on Column constraints. B4 was set to 4 to complete Row
2. In Quadrant 3, C1 was filled with 3. Row 3 missing numbers 1 and 2 were placed in C3
and C4. D4 was assigned 3 to complete Column 4, and D3 was set to 4 to finish Row 4.
Solution:
43 21
12 34
34 12
21 43

36

Published as a conference paper at ICLR 2025

Sudoku Verification Prompt

You are a Sudoku validator for 4x4 puzzles. You will be given two strings of 16 numbers
each: the first represents the initial Sudoku puzzle, and the second represents the proposed
solution. Your task is to determine if the solution is correct.
Rules for a valid 4x4 Sudoku solution:
Each row must contain the numbers 1-4 without repetition.
Each column must contain the numbers 1-4 without repetition.
Each 2x2 quadrant must contain the numbers 1-4 without repetition.
The solution must maintain all the initial numbers from the puzzle.
Input format:
Question: Input format:
ab cd
ef gh
ij kl
mn op
Where each letter represents a single digit (0-4), and 0 indicates an empty cell. Answer:
[same format but there should be no 0]
Your task:
Check if the solution maintains all initial numbers from the puzzle.
Verify that each row, column, and 2x2 quadrant contains 1-4 without repetition.
Respond with "Correct" if the solution is valid, or "Incorrect" if it’s not.
Question: {problem}
Answer: {generation}
Judgment:

Sudoku Verification Example

problem:
03 00
21 00
00 01
10 43
generation:
34 12
21 31
34 21
12 44
correctness: Checking if the solution maintains all initial numbers from the puzzle:
Position (Row 1, Column 2): Puzzle has 3, Solution has 3 — Correct
Position (Row 2, Column 1): Puzzle has 2, Solution has 2 — Correct
Position (Row 2, Column 2): Puzzle has 1, Solution has 1 — Correct
Position (Row 3, Column 4): Puzzle has 1, Solution has 1 — Correct
Position (Row 4, Column 1): Puzzle has 1, Solution has 1 — Correct
Position (Row 4, Column 3): Puzzle has 4, Solution has 4 — Correct
Position (Row 4, Column 4): Puzzle has 3, Solution has 3 — Correct
All initial numbers are maintained.
Checking the rows:
Row 1: Numbers are 4, 3, 1, 2 (No repetition) - Correct
Row 2: Numbers are 2, 1, 3, 1 (Number 1 repeats) - Invalid
Row 3: Numbers are 3, 4, 2, 1 (No repetition) - Correct
Row 4: Numbers are 1, 2, 4, 3 (No repetition) - Correct
Checking the columns:
Column 1: Numbers are 4, 2, 3, 1 (No repetition) - Correct
Column 2: Numbers are 3, 1, 4, 2 (No repetition) - Correct
Column 3: Numbers are 1, 3, 2, 4 (No repetition) - Correct
Column 4: Numbers are 2, 1, 1, 3 (Number 1 repeats) - Invalid

37

Published as a conference paper at ICLR 2025

Checking the 2x2 quadrants:
Quadrant 1 (Rows 1-2, Columns 1-2): Numbers are 4, 3, 2, 1 (No repetition) - Correct
Quadrant 2 (Rows 1-2, Columns 3-4): Numbers are 1, 2, 3, 1 (Number 1 repeats) - Invalid
Quadrant 3 (Rows 3-4, Columns 1-2): Numbers are 3, 4, 1, 2 (No repetition) - Correct
Quadrant 4 (Rows 3-4, Columns 3-4): Numbers are 2, 1, 4, 3 (No repetition) - Correct
Conclusion: There are repetitions in Row 2, Column 4, and Quadrant 2, the solution violates
the Sudoku rules.
Therefore, the response is: Incorrect

H INFRASTRUCTURE STATEMENT

All our inferences are performed on a cluster of Nvidia A100 40GiB nodes, and our iterative self-
improvement training experiments are performed on a cluster of Nvidia A100 80GiB nodes.

38

	Introduction
	A Dissection of the Self-improvement Framework
	Three Key Factors of Self-improvement

	Experiment Setup
	Scaling Properties of Generation-verification Gap
	Scaling Results
	Cross Verification
	Unimprovable Tasks
	Sudoku

	Iterative Self-improvement
	A Fine-grained Study on Verification
	Generalization of Verifications
	Correlation Studies between Verification Methods
	Improvement via Ensemble

	Conclusion and Discussion
	Future Directions
	Related Work
	Verification Mechanisms
	Ablation Results
	Sampling Temperature
	Instruct Models
	Fixed Verifier
	Variance of the Verifier

	Additional Results
	Additional Results for Section 4.1
	Additional Results for Section 4.3
	Additional Results for Section 4.4
	Additional Results for Section 5
	Additional Results for Section 6.1
	Additional Results for Section 6.2
	Additional Results for Section 6.3

	Details on Iterative Self-improvement
	Generation and Verification Prompts
	Infrastructure Statement

