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Abstract

Reinforcement learning (RL) has emerged as a strong candidate for implementing
complex controls in energy systems, such as energy pricing in microgrids. But
what happens when some of the microgrid controllers are compromised by a ma-
licious entity? We demonstrate a novel attack in RL. Our attack perturbs each
trajectory to reverse the direction of the estimated gradient. We demonstrate that
if data from a small fraction of microgrid controllers is adversarially perturbed, the
learning of the RL agent can be significantly slowed or (with larger perturbations)
caused to operate at a loss. Prosumers also face higher energy costs, use their
batteries less, and suffer from higher peak demand when the pricing aggregator is
adversarially poisoned.
We address this vulnerability with a defense module; i.e., a “robustification” of
RL algorithms against this attack. Our defense identifies the trajectories with the
largest influence on the gradient and removes them from the training data.

1 Introduction

Artificial Intelligence (AI) heralds great benefits to power systems. In the future, AI-based controls
could manage the use of passive appliances (Zhang et al., 2020; Chen et al., 2019), orchestrate
demand response (Azuatalam et al., 2020), and optimize power flow (Chen et al., 2021; Dall’Anese
et al., 2013). In the context of energy grids, local grid networks (i.e., microgrids) enable refined
control at the cost of increased complexity, necessitating adoption of complex controls at scale.

At the same time, energy grids are known to be lucrative targets for cyberattacks (e.g., Kshetri and
Voas, 2017). Our work investigates the robustness of an AI-based microgrid controller to malicious
actors. We present a novel attack that enables a few compromised microgrid controllers to adversely
affect the behavior of connected controllers by poisoning the data on which it is trained. We pair
this finding with a gradient-based defense that eliminates the threat of this attack.

Concretely, we examine a setting in which a network of microgrid controllers collect supply and
demand data that are continually aggregated by a central agent. The agent uses online reinforcement
learning (RL) to optimize its profits. In our attack, a few microgrid controllers are compromised by
a malicious adversary. The adversary applies a perturbation to the collected data, severely impacting
the provider and the entire network of controllers. The provider is made to operate at a loss, and all
prosumers are made to pay higher energy costs, use their batteries less, and increase peak demand.

Our work is set against a backdrop of developments in energy grid control that hold both promise
and peril: RL-based controllers allow for sophisticated control in unprecedented granularity. Yet,
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we must be careful to minimize risk enabled by the opaque nature of deep learning. Our attack
stands out in its subtlety and its scope. Other forms of large-scale interference such as blackouts
and line disruptions are, by definition, easily detectable and local. Yet our attack causes harm by
interfering with the agent’s learning, and may not be detected until significant financial damage
has been incurred. Furthermore, by interfering with the central agent’s learning, our methods can
damage systems that are physically disconnected from the compromised energy grid.

2 Background

Adversarial Attacks Adversarial attacks have seen great success in supervised learning. Fast
gradient sign-based attacks (Goodfellow et al., 2014; Madry et al., 2018), decision boundary-based
attacks (Moosavi-Dezfooli et al., 2016), and even attacks that learn an adversarial policy (Gleave
et al., 2020) have been proposed to fool supervised learners. It has been shown that similar attacks
can work on reinforcement learning agents (Huang et al., 2017), with the added nuance that these
attacks can be strategically timed to maximize impact or move the agent into a desired state (Lin
et al., 2017). However, these popular works have mostly been focused on so-called evasion attacks,
which focus on generating adversarial examples at test time.

Our work focuses on data poisoning at training time. Usually, training phase attacks can be split into
two categories (Chakraborty et al., 2018): label manipulation and input manipulation. In the context
of RL, most work has been analogous to label manipulation: changing the recorded rewards (Ma
et al., 2018; Liu and Shroff, 2019) rather than the actions or observations. Data poisoning has been
examined in the context of supervised learning (Akhtar and Mian, 2018; Kloft and Laskov, 2010;
Biggio et al., 2011), but not in deep reinforcement learning, to our knowledge.

RL for prosumer energy pricing RL has been applied to a number of demand response situations
in prosumer microgrids; most work centers on agents that directly schedule resources (Vázquez-
Canteli et al., 2019; Vázquez-Canteli and Nagy, 2019) or control appliances (Pinto et al., 2021;
Zhou and Zheng, 2020). Recent works have used an RL controller as a price setter in a market: RL
has been used to estimate dynamic prices in a multi agent environment of demand response assets
(Jang et al., 2022; Agwan et al., 2021).

Demand response, an incentive mechanism geared towards moving consumption, is a no-material
solution to variable wind and solar generation and is thus seen as an important technique in the
energy transition. It has been demonstrated that learning local price controls is an effective de-
mand response mechanism due to its generalizability and optimal local battery resource utilization
(Spangher et al., 2020; Spangher, 2021).

The literature on adversarial attacks for RL in demand response focuses on responding to prices
(Wan et al., 2021) rather than setting them. To our knowledge, there are no works on adversarial
attacks on dynamic price setting for demand response.

3 Techniques

3.1 Threat model

In our setting, N controllers continuously collect data to be aggregated by a centralized agent.
Learning takes place over multiple iterations; in each iteration, each controller collects a trajectory
τ := (oi, ai, ri)i collected according to the agent policy πθ. The agent’s policy πθ is described by a
neural network. Nodes are required to feed observations through πθ so as to collect policy-specified
actions (pricing schemes), so we assume that the network parameters θ and architecture are shared
with the controllers (and therefore the adversary).

The attacker’s power is determined by a fraction of corrupted controllers ε ∈ (0, 1), and a perturba-
tion bound ρ > 0, as follows: An attacker controls ε · N of controllers. The attacker perturbs the
trajectories collected by each compromised controller, causing it to report back a trajectory τ̃ instead
of the collected trajectory τ . Crucially, these perturbations are of small norm, that is, ∥τ̃ − τ∥∞ ≤ ρ,
for some perturbation bound ρ > 0. Note that our attacker adheres to the suggested policy πθ, but
lies about the result to the agent.
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Figure 1: A. The microgrid environment; the brain is the RL agent, the black dot is the microgrid
controller, and the adversary attacks the at that is sent back to the RL agent. B. Effect of the
adversary on the agent’s learning. Note that ε = 1% corresponds to only one adversarial microgrid.
C. Effect of our defense in the presence of an adversary. D. Targeted attacks: the adversary is able
to manipulate the RL agent’s policy such that peak power consistently exceeds 120% of the grid’s
capacity, raising risk of transformer blowout. E. Prosumer costs in the baseline and adversarial
scenarios: the prosumer consistently pays more in energy when the adversary interferes.

In our setting, the attacker perturbs the actions of each trajectory. Observations and rewards remain
unperturbed, because such perturbations would be expensive or easily noticed. This is in contrast to
previous work in RL poisoning in which only rewards are poisoned (Rakhsha et al., 2021).

3.2 Attacks and defense

At a high level, our attack aims to perturb each trajectory to reverse the direction of the estimated
gradient ∇θf(τp). Let θ be the parameters of the agent’s policy, τP be the unperturbed set of compro-
mised trajectories (the trajectories collected by compromised controllers), τ̃P be the set of perturbed
adversarial trajectories (reported back to the agent), and τH be the set of honest trajectories (unaf-
fected by the adversary). Our adversary minimizes the correlation of the gradient post-perturbation
with the honest one by solving the following constrained optimization problem:

min
τ̃P

⟨∇θfθ (τ̃P ) ,∇θ (fθ(τP ) + fθ(τH))⟩ (1)

such that ||τ̃P − τP ||∞ ≤ ρ.

Since compromised controllers report τ̃P instead of τP , the agent will take gradient steps according
to ∇θ (fθ(τ̃P ) + fθ(τH)). Therefore, choosing τ̃P to minimize Equation (1) should maximally
mislead the gradient towards a sub-optimal policy. Equation (1) is optimized by the adversary using
the Fast Gradient Sign Method (FGSM, Goodfellow et al., 2014). Interestingly, we find that our
adversaries can obtain nearly identical results by solving Equation (1) without the τH term, meaning
that the adversary may not need any information about the honest (uncompromised) controllers.

The targeted attack. By tweaking the optimization objective, the adversary can cause the RL
agent to learn optimize an auxiliary target “reward”. Let τ ′ := (oi, ai, r̃i)i, the set of all collected
trajectories with rewards relabeled with (adversarially-chosen) “reward” r̃. Then we formulate our
new constrained optimization problem as:

max
τ̃P

⟨∇θfθ (τ̃P ) ,∇θfθ (τ
′)⟩ (2)

such that ||τ̃P − τP ||∞ ≤ ρ.

By maximizing the correlation between ∇θfθ (τ̃P ) and ∇θfθ (τ
′), we can maximally mislead the

gradient towards a policy that maximizes the adversary’s “reward” instead of the true reward.
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Defense. Our defense works by identifying and removing the trajectories which have the largest
influence on the gradient from the training data. Intuitively, this defense works because honest
trajectories are not expected to have out-sized gradients. Note that the poisoned trajectories are
not easily identifiable at first glance;while the adversarial perturbations significantly influence the
gradient estimate, the perturbations themselves are small. More formally, if the RL agent suspects
that some fraction ε̂ of the microgrids are adversarially controlled, then, when estimating the gradient
∇θf(θ), it ignores the ε̂-fraction of trajectories τ with largest ||∇θfθ(τ)||2 in each training batch.

4 Experimental setup

The Price-Setting Microgrid Problem Consider a setting of 100 microgrids. An Actor–Critic
agent sets the policy parameters θ of all 100 microgrid controllers, which transact within each mi-
crogrid. Each microgrid consists of 7 prosumer office buildings, each of which has a battery, solar
panel array, and baseline energy consumption; each wants to minimize their energy cost. Prosumers
see both grid-set hourly energy buy and sell prices and local microgrid controller-set hourly energy
buy and sell prices. Prosumers choose to transact with either the grid or the RL aggregator at each
hour. Prosumers also decide when to discharge their battery according to both their demand and
the energy prices. The microgrid does not produce or store energy, but sells energy straight from
prosumers producing energy in a timestep to prosumers demanding energy in the same timestep.
The aggregator balances the net load by purchasing from or selling to the energy utility under which
they sit, usually at a loss. As the manager of the RL-aggregator, you see the grid’s prices, and wish
to learn a pricing policy such that you consistently turn a profit. See Figure 1.A for a graphical
depiction of the environment. For a more precise description of the convex optimizations governing
prosumer battery behavior and the reward function training the RL-aggregator, see (Agwan et al.,
2021).

For testing the viability of a targeted attack, we define an auxiliary adversary objective as the maxi-
mization of peak power over the step period.

Hypothetical scenario of adversarial microgrid poisoning Suppose that Eastern Gas & Electric
(EG&E) is piloting a dynamic, local pricing program. To do this, EG&E instantiates an RL agent to
train across a sample of building clusters (i.e., microgrids grouped locally). Unfortunately, there is
an attacker who wishes to disrupt the functioning of EG&E, and they intercept the outflow of data
from one of the local microgrid controllers. In one attack strategy, the attacker wishes to minimize
the extent to which the outgoing prices are perturbed so as to escape detection. In another attack
strategy, the attacker considers high perturbations in order to maximally disrupt profitability.

5 Results

The attack. Figure 1.B shows our attacker can significantly hinder the RL agent’s learning by co-
opting a single microgrid controller. The maximal difference between successive actions taken by
the true policy is around 6, so the strongest attack in the single-trajectory setting requires a relatively
high perturbation budget ρ = 10. However in Figure 1.C, our attack utilizes a smaller perturbation
budget of ρ = 3 with ten (ε = 10%) compromised controllers to achieve significant damage.

The defense. We find that our defense recovers the original performance of the RL agent. In
particular, the defense does not noticeably affect training time, even when ε = 10% of trajectories
are removed. See Figure 1.C.

Characterizations of environmental response. We investigated several ways in which the envi-
ronment responded to adversarial attack beyond sheer profit: individual prosumer energy costs (the
sum of the building’s energy expenditures with the adversary and without), battery utilization (the
number of times batteries were charged and discharged) and peak power draw. Under all measures,
the environment performed worse with an adversary, even those not directly targeted: prosumers
paid on average more for energy, the battery was used less, and there was more peak demand. We
present prosumer prices in Figure 1.E and omit the rest due to space constraints.

Targeted attacks. When we chose an adversarial reward of increasing peak power demanded by
prosumers on the microgrid, we see that with increasing adversarial strength we were able to con-
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sistently exceed 120% of grid capacity. Exceeding thresholds of power consumption on the grid
drastically increases risk of transformer power constraint violation. See Figure 1.D.
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