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Abstract

Multimodal Large Language Models (MLLMs)001
enhance visual tasks by integrating visual repre-002
sentations into large language models (LLMs).003
The textual modality, inherited from LLMs, en-004
ables instruction following and in-context learn-005
ing, while the visual modality boosts down-006
stream task performance through rich seman-007
tic content, spatial information, and grounding008
capabilities. These modalities work synergisti-009
cally across various visual tasks. Our research010
reveals a persistent imbalance between these011
modalities, with text often dominating output012
generation during visual instruction tuning, re-013
gardless of using full or parameter-efficient014
fine-tuning (PEFT). We found that re-balancing015
these modalities can significantly reduce train-016
able parameters, inspiring further optimiza-017
tion of visual instruction tuning. To this end,018
we introduce Modality Linear Representation-019
Steering (MoReS), which re-balances intrin-020
sic modalities by steering visual representa-021
tions through linear transformations in the vi-022
sual subspace across each model layer. We023
validated our approach by developing LLaVA024
Steering, a suite of models using MoReS. Re-025
sults show that LLaVA Steering requires, on026
average, 500 times fewer trainable parameters027
than LoRA while maintaining comparable per-028
formance across three visual benchmarks and029
eight visual question-answering tasks. Finally,030
we introduce the LLaVA Steering Factory, a031
platform that enables rapid customization of032
MLLMs with a component-based architecture,033
seamlessly integrating state-of-the-art models034
and evaluating intrinsic modality imbalance.035
This open-source project facilitates a deeper036
understanding of MLLMs within the research037
community.038

1 Introduction039

Recent advancements in Multimodal Large Lan-040

guage Models (MLLMs) (Liu et al., 2024b; Xue041

et al., 2024; Zhou et al., 2024a; Chen et al., 2023)042

have demonstrated impressive capabilities across 043

a variety of visual downstream tasks. These mod- 044

els integrate visual representations from pretrained 045

vision encoders via various connectors (Liu et al., 046

2024a; Li et al., 2023a; Alayrac et al., 2022) into 047

LLMs, leveraging the latter’s sophisticated reason- 048

ing abilities (Zhang et al., 2024a; Abdin et al., 2024; 049

Zheng et al., 2023a). 050

To better integrate visual representations into 051

LLMs, the most popular MLLMs adopt a two-stage 052

training paradigm: pretraining followed by visual 053

instruction tuning. In the pretraining stage, a con- 054

nector is employed to project visual representations 055

into the textual representation space. We define 056

these two modalities—text and vision—as intrinsic 057

to MLLMs, each carrying rich semantic informa- 058

tion that serves as the foundation for further visual 059

instruction tuning on downstream tasks such as im- 060

age understanding (Sidorov et al., 2020), visual 061

question answering (Goyal et al., 2017a; Lu et al., 062

2022; Hudson and Manning, 2019), and instruction 063

following (Liu et al., 2023). 064

In the visual instruction tuning stage, due to its 065

high computational cost, researchers have pursued 066

two primary strategies. One approach focuses on 067

refining data selection methodologies (Liu et al., 068

2024c; McKinzie et al., 2024) to reduce redundancy 069

and optimize the training dataset, though this pro- 070

cess remains expensive and time-consuming. A 071

more common strategy goes to employ Parameter- 072

Efficient Fine-Tuning (PEFT) methods, such as 073

LoRA (Hu et al., 2021), aiming to reduce the num- 074

ber of trainable parameters, thereby making visual 075

instruction tuning more computationally feasible 076

(Liu et al., 2024a; Zhou et al., 2024a). However, 077

even with PEFT methods like LoRA, large-scale 078

MLLMs remain prohibitively expensive to fine- 079

tuning. 080

This raises a critical question: is there any further 081

possibility to reduce more trainable parameters so 082

that the visual instruction tuning can be further im- 083
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Figure 1: Left: Attention score distributions across layers for three MLLM fine-tuning methods (Full, LoRA, and
MoReS), sampled from 100 instances each. Green represents visual representations, while grey indicates other
(primarily textual) representations. Full fine-tuning and LoRA show strong reliance on textual representations across
most layers. In contrast, the proposed MoReS method demonstrates significantly improved visual representation
utilization, particularly in the middle and lower layers, addressing the intrinsic modality imbalance in MLLMs.
Right: Average visual attention score distribution versus model size for different MLLM fine-tuning methods. The
plot suggests that methods achieving better balanced intrinsic modality tend to require fewer trainable parameters.

proved? Our research offers a novel viewpoint by084

focusing on the intrinsic modality imbalance within085

MLLMs. A closer analysis uncovers an imbal-086

ance in output attention computation (Chen et al.,087

2024a), where textual information tends to domi-088

nate the attention distribution during output gener-089

ation. Specifically, we investigate this issue by an-090

alyzing attention score distributions, which evalu-091

ates the balance between text and visual modalities.092

As shown in Figure 1, visual representations are093

significantly underutilized during visual instruction094

tuning. More importantly, our analysis reveals that095

achieving a better balance between these modalities096

can substantially reduce the number of trainable097

parameters required for fine-tuning. Hereby we098

suppose that intrinsic modality rebalance is the099

Midas touch to unlock further reductions in the100

number of trainable parameters.101

To address this challenge, we introduce Modality102

Linear Representation-Steering (MoReS) to opti-103

mize visual instruction tuning, significantly reduc-104

ing the number of trainable parameters while main-105

taining equivalent performance. Unlike full fine-106

tuning, which modifies the entire model, or other107

popular PEFT methods such as LoRA (Hu et al.,108

2021), OFT (Qiu et al., 2023), Adapter (Houlsby109

et al., 2019), and IA3 (Liu et al., 2022), MoReS110

focuses solely on steering the visual representa-111

tions. Specifically, our approach freezes the entire112

LLM during visual instruction tuning to preserve113

its capabilities in the textual modality. Instead of114

fine-tuning the full model, we introduce a simple115

linear transformation to steer visual representations116

in each layer. This transformation operates within 117

a subspace after downsampling, where visual rep- 118

resentations encode rich semantic information in a 119

compressed linear subspace (Zhu et al., 2024; Shi- 120

momoto et al., 2022; Yao et al., 2015). By continu- 121

ously steering visual representations across layers, 122

MoReS effectively controls the output generation 123

process, yielding greater attention inclined to visual 124

modality. 125

To validate the efficacy of our proposed MoReS 126

method, we integrated it into MLLMs of vary- 127

ing scales (3B, 7B, and 13B parameters) during 128

visual instruction tuning, following the LLaVA 129

1.5 (Liu et al., 2024a) training recipe. The result- 130

ing models, collectively termed LLaVA Steering, 131

achieved competitive performance across three vi- 132

sual benchmarks and six visual question-answering 133

tasks, while requiring 287 to 1,150 times fewer 134

trainable parameters than LoRA, depending on the 135

specific training setup. 136

In our experiments, we observed the need for a 137

comprehensive framework to systematically ana- 138

lyze and compare various model architectures and 139

training strategies in MLLMs. The wide range of 140

design choices and techniques makes it difficult to 141

standardize and understand the interplay between 142

these components. Evaluating each method across 143

different open-source models is time-consuming 144

and lacks consistency due to implementation differ- 145

ences, requiring extensive data preprocessing and 146

careful alignment between architectures and train- 147

ing recipes. To address this issue, we developed the 148

LLaVA Steering Factory, a flexible framework that 149
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reimplements mainstream vision encoders, multi-150

scale LLMs, and diverse connectors, while offering151

customizable training configurations across a vari-152

ety of downstream tasks. This framework simpli-153

fies pretraining and visual instruction tuning, min-154

imizing the coding effort. Additionally, we have155

integrated our attention score distribution analy-156

sis into the LLaVA Steering Factory, providing a157

valuable tool to the research community for further158

studying intrinsic modality imbalance in MLLMs.159

Our work makes the following key contributions to160

the field of MLLMs:161

1. First of all, we propose Modality Linear162

Representation-Steering (MoReS), a novel163

method that addresses intrinsic modality im-164

balance in MLLMs by steering visual rep-165

resentations through linear transformations166

within the visual subspace, effectively miti-167

gating the issue of text modality dominating168

visual modality.169

2. In addition, we present LLaVA Steering,170

where with different sizes (3B/7B/13B), three171

real-world LLaVA MLLMs consisting of dif-172

ferent model components are composed by in-173

tegrating the proposed MoReS method into vi-174

sual instruction tuning. LLaVA Steering mod-175

els based on MoReS method achieve compa-176

rable performance across three visual bench-177

marks and six visual question-answering tasks,178

while requiring 287 to 1, 150 times fewer179

trainable parameters.180

3. Last but not least, we develop the LLaVA181

Steering Factory, a flexible framework de-182

signed to streamline the development and eval-183

uation of MLLMs with minimal coding effort.184

It offers customizable training configurations185

across diverse tasks and incorporates tools186

such as attention score analysis, facilitating187

systematic comparisons and providing deeper188

insights into intrinsic modality imbalance.189

2 Related Work190

Integrating Visual Representation into LLMs:191

Existing approaches for integrating visual represen-192

tations into LLMs broadly fall into three categories:193

(1) Cross-attention architectures (e.g., Flamingo194

(Awadalla et al., 2023), IDEFICS (Laurençon et al.,195

2023)) that inject image features through adapter196

layers while keeping LLM weights frozen; (2)197

Decoder-only architectures like LLaVA (Liu et al.,198

2024b) and Qwen-VL (Bai et al., 2023) that train 199

visual projectors during pretraining and often un- 200

freeze LLMs during fine-tuning; and (3) Vision- 201

encoder-free methods (Chen et al., 2024b; Diao 202

et al., 2024) that process raw pixels directly. Hybrid 203

approaches like NVLM (Dai et al., 2024) combine 204

elements of these paradigms. While effective, these 205

methods incur substantial computational costs dur- 206

ing visual instruction tuning due to large-scale mul- 207

timodal alignment requirements. 208

Visual Instruction Tuning: Fine tuning of multi- 209

modal large language models (MLLMs) for down- 210

stream tasks has gained considerable attention, but 211

remains computationally expensive due to large- 212

scale visual instruction datasets and model sizes 213

(Wang et al., 2022). To tackle this challenge, recent 214

advancements have introduced parameter-efficient 215

fine-tuning (PEFT) methods (Houlsby et al., 2019; 216

Li and Liang, 2021), such as LoRA (Hu et al., 217

2021), enabling more efficient visual instruction 218

tuning. 219

However, many of these PEFT methods primarily 220

focus on optimizing weights but ignore the intrin- 221

sic representation imbalance during visual instruc- 222

tion tuning, thus cannot further reduce the required 223

trainable parameters. This means to look for other 224

novel approaches that can improve the efficiency 225

and effectiveness of visual instruction tuning. 226

Representation Steering: Recent studies (Singh 227

et al., 2024; Avitan et al., 2024; Li et al., 2024; Sub- 228

ramani et al., 2022) have demonstrated that the rep- 229

resentations induced by pre-trained language mod- 230

els (LMs) encode rich semantic structures. Steer- 231

ing operations within this representation space have 232

shown to be effective in controlling model behavior. 233

Unlike neuron-based or circuit-based approaches, 234

representation steering manipulates the representa- 235

tions themselves, providing a clearer mechanism 236

for understanding and controlling the behavior of 237

MLLMs and LLMs. For example, (Zou et al., 238

2023) explores representation engineering to mod- 239

ify neural network behavior, shifting the focus from 240

neuron-level adjustments to transformations within 241

the representation space. Similarly, (Wu et al., 242

2024a) applies scaling and biasing operations to al- 243

ter intermediate representations. Furthermore, (Wu 244

et al., 2024b) introduces a family of representation- 245

tuning methods that allows for interpretable inter- 246

ventions within linear subspaces. 247

In this work, we leverage the concept of repre- 248

sentation steering to introduce a novel approach, 249

MoReS, which enhances attention to visual repre- 250
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Figure 2: Layer-wise Modality Attention Ratio (LMAR)
comparison across training methods, including Full fine-
tuning, LoRA, Adapter, IA3, and our MoReS. Our
MoReS method (red line) consistently demonstrates
the highest LMAR across most layers, with a notable
spike in the final layers. Compared with full fine-tuning
and mainstream PEFT methods, our MoReS needs the
least parameters during visual instruction tuning while
achieving superior modality balance.

sentations, thereby demonstrating superior parame-251

ter efficiency compared to baseline PEFT methods252

(Hu et al., 2021; Houlsby et al., 2019; Liu et al.,253

2022; Qiu et al., 2023).254

3 Intrinsic Modality Imbalance255

This section explores how the two intrinsic modali-256

ties—text and vision—are imbalanced during out-257

put generation across each layer in MLLMs, as258

reflected in the attention score distribution. Further-259

more, we demonstrate that addressing this modality260

imbalance effectively during visual instruction tun-261

ing can guide the design of methods that require262

fewer trainable parameters.263

We begin with calculating the attention score distri-264

bution across both modalities in each layer, as de-265

rived from the generated output. In auto-regressive266

decoding, which underpins decoder-only MLLMs,267

output tokens are generated sequentially, condi-268

tioned on preceding tokens. The probability dis-269

tribution over the output sequence ŷ is formalized270

as:271

p(ŷ) =
L∏
i=1

p(ŷi|ŷ<i, Rtext, Rimage, Rsys) (1)272

where ŷi represents the i-th output token, ŷ<i de-273

notes the preceding tokens, Rtext is the textual rep-274

resentation, Rimage is the visual input representa-275

tion, Rsys accounts for system-level contextual in- 276

formation, and L is the output sequence length. 277

To quantify modality representation imbalance, we 278

calculate the sum of attention scores allocated to 279

visual representations across all layers in MLLMs. 280

Figure 1 illustrates this imbalance across full fine- 281

tuning, LoRA, and our proposed MoReS method. 282

The results indicate that textual representations of- 283

ten dominate the output generation process in both 284

full fine-tuning and LoRA. 285

Further examination of this imbalance across mul- 286

tiple PEFT methods reveals an intriguing trend: 287

methods that make better use of visual represen- 288

tations tend to require fewer trainable parameters 289

during visual instruction tuning. 290

To validate this observation, we introduce the 291

Layer-wise Modality Attention Ratio (LMAR), for- 292

mulated as: 293

LMARl =
1

N

N∑
i=1

α
image,i
l

αtext,i
l

, (2) 294

where l denotes the layer index, N is the total num- 295

ber of samples, and α
image,i
l and αtext,i

l are the mean 296

attention scores allocated to visual and textual to- 297

kens, respectively, in layer l for the i-th sample. 298

LMAR thus provides a robust measure of the at- 299

tention distribution between modalities, averaged 300

over multiple samples to capture general trends in 301

modality representation across layers. 302

In our experiments comparing various existing 303

PEFT methods and full fine-tuning, IA3 (Liu et al., 304

2022) consistently achieves the highest average 305

LMAR score across all layers while requiring the 306

fewest trainable parameters. IA3’s superior per- 307

formance can be attributed to its unique design, 308

which introduces task-specific rescaling vectors 309

that directly modulate key components of the Trans- 310

former architecture, such as the keys, values, and 311

feed-forward layers. 312

Unlike methods that introduce complex adapters 313

or fine-tune all parameters, IA3 optimizes a small 314

but crucial set of parameters responsible for at- 315

tention and representation learning. By applying 316

element-wise scaling to the attention mechanisms, 317

IA3 effectively re-balances the attention distribu- 318

tion across two intrinsic modalities. This design 319

is particularly beneficial during visual instruction 320

tuning, as it allows the model to dynamically re- 321

allocate more attention to visual representations 322

without requiring many trainable parameters. 323

The identified relationship inspires that if the in- 324

trinsic modality imbalance can be addressed, the 325
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Figure 3: Schematic Overview of Modality Linear Representation-Steering (MoReS): Left: The architectural
diagram depicts the integration of textual and visual tokens through transformer layers, leading to output token
generation. Right: The mathematical formulation of MoReS illustrates the steering of visual representations
within a subspace, highlighting its impact on output generation. During visual instruction tuning, the parameters
of the LLM remain frozen, allowing only the parameters associated with the linear transformation in the steering
mechanism to be trainable. With MoReS, the distribution of attention scores becomes more balanced, achieving
intrinsic modality balance.

required number of trainable parameters can be326

potentially reduced further during visual instruc-327

tion tuning. This offers a new direction for future328

improvements in PEFT methods for MLLMs.329

4 MoReS Method330

Based on insights gained from intrinsic modal-331

ity imbalance, we introduce Modality Linear332

Representation-Steering (MoReS) as a novel333

method for visual instruction tuning which can334

rebalance visual and textual representations and335

achieve comparable performance with fewer train-336

able parameters.337

Our approach is grounded in the linear subspace338

hypothesis, originally proposed by Bolukbasi et al.339

(2016), which suggests that information pertain-340

ing to a specific concept is encoded within a linear341

subspace in a model’s representation space. This342

hypothesis has been rigorously validated across nu-343

merous domains, including language understand-344

ing and interpretability (Lasri et al., 2022; Nanda345

et al., 2023; Amini et al., 2023; Wu et al., 2024c).346

Building upon the intervention mechanisms de-347

scribed in Geiger et al. (2024) and Guerner et al.348

(2023), we introduce a simple linear transforma-349

tion that steers visual representations within sub-350

space while keeping the entire LLM frozen during 351

visual instruction tuning. This approach ensures 352

that the language model’s existing capabilities are 353

preserved, while continuously guiding the MLLM 354

to better leverage the underutilized visual modal- 355

ity. By steering visual representations across each 356

layer, MoReS effectively rebalances the intrinsic 357

modality and influences the output generation pro- 358

cess. Figure 3 provides an illustration of the overall 359

concept and architecture behind MoReS. 360

Formally, MoReS method can be formulated as 361

follows: Let H = {hi}Ni=1 ⊂ RD denote the 362

set of visual representations in the original high- 363

dimensional space. We define our steering function 364

MoReS as: 365

MoReS(h) = Wup · ϕ(h) (3) 366

where h ∈ RD is an input visual representation, 367

ϕ : RD → Rd is a linear transformation function 368

that steers h into a lower-dimensional subspace 369

Rd (d < D), and Wup ∈ RD×d is an upsampling 370

matrix that projects from Rd back to RD. The 371

steering function ϕ is defined as: 372

ϕ(h) = Linear(h)−Wdownh (4) 373

where Wdown ∈ Rd×D is a downsampling matrix. 374

To preserve the fidelity of the representation and 375
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Figure 4: Comparison of parameter count vs. perfor-
mance for MoReS and other PEFT methods across four
benchmarks.

ensure a bijective mapping between spaces, we376

impose the following constraint WdownW
T
up = ID.377

Notably, this steering method can dynamically be378

applied to specific visual tokens. Further explo-379

ration of the impact of different steered token ratios380

is discussed in Section 5.6.381

In Section A.4, we further provide theoretical jus-382

tification that elucidates how MoReS effectively383

rebalances the intrinsic modalities while continu-384

ously controlling output generation. Additionally,385

we provide a preliminary estimation of the train-386

able parameters involved during visual instruction387

tuning.388

In the following sections, we first compose real-389

world MLLMs (i.e., LLaVA Steering) with three390

different scales and integrate the proposed MoReS391

method. Based on the composed real-world models,392

we then evaluate how our MoReS method performs393

within the composed models across several popular394

and prestigious datasets.395

5 Experiments396

We incorporate MoReS into each layer of the LLM397

during visual instruction tuning, developing LLaVA398

Steering (3B/7B/13B) based on the training recipe399

outlined in (Liu et al., 2024a). During visual in-400

struction tuning on the LLaVA-665k dataset, we401

apply MoReS to a specific ratio of the total visual402

tokens, specifically using it on only 1% of the to-403

kens. Further details about the model architectures404

and baseline training methods are provided in Ap-405

pendix A.1.406

5.1 Multi-Task Supervised Fine-tuning 407

To assess the generality of our method, we compare 408

it with the baselines using the LLaVA-665K mul- 409

titask mixed visual instruction dataset (Liu et al., 410

2024a). Our evaluation covers several benchmarks, 411

including VQAv2, GQA, VizWiz, ScienceQA, 412

TextVQA, MM-Vet, POPE, and MMMU, to evalu- 413

ate the performance across a range of tasks, from 414

visual perception to multimodal reasoning. Further 415

details can be found in Appendix A.2. 416

Following (Zhou et al., 2024b), we define Sci- 417

enceQA as an unseen task, while VQAv2, GQA, 418

and VizWiz are categorized as seen tasks in LLaVA- 419

665k. To provide a comprehensive evaluation of 420

our MoReS capabilities, we design three configu- 421

rations: MoReS-Base, MoReS-Large, and MoReS- 422

Huge, each based on different ranks. 423

We present the results in Table 1, where our MoReS 424

method achieves the highest scores on POPE (88.2) 425

and MMMU (35.8), as well as the second-best per- 426

formance on ScienceQA (71.9) and MM-Vet (33.3). 427

Notably, MoReS accomplishes these results with 428

287 to 1150 times fewer trainable parameters com- 429

pared to LoRA. The scatter plots in Figure 4 further 430

illustrate that MoReS variants (highlighted in red) 431

consistently achieve Pareto-optimal performance, 432

offering an ideal balance between model size and 433

effectiveness. 434

5.2 Task-Specific Fine-tuning 435

We evaluate the task-specific fine-tuning capabili- 436

ties of our MoReS method in comparison to other 437

tuning methods on multiple visual question an- 438

swering datasets: (1) ScienceQA-Image (Lu et al., 439

2022), (2) VizWiz (Gurari et al., 2018), and (3) 440

IconQA-txt and IconQA-blank (Lu et al., 2021). 441

We present the results in Table 2, showing that 442

MoReS achieves 1200 times fewer trainable param- 443

eters compared to LoRA and 3 times fewer than the 444

previous best, IA3, while maintaining comparable 445

performance or an acceptable decline of less than 446

3%. These results show that MoReS can succeed 447

at Task-Specific Fine-tuning, even unseen tasks 448

during its multitask visual instruciton tuning stage. 449

5.3 Multi-scale Data Fine-tuning 450

During visual instruction tuning, the scale of spe- 451

cific task datasets can vary significantly. To gain a 452

comprehensive understanding of our method com- 453

pared to other training approaches, we follow the 454

methodology of (Chen et al., 2022) and randomly 455

6



Model Method TP* VQAv2 GQA TextVQA SciQA-IMG POPE MM-Vet MMMU Avg

LLaVA Steering

FT 2.78B 79.2 61.6 57.4 71.9 87.2 35.0 38.2 61.5

Adapter 83M 77.1 58.9 53.5 68.1 86.7 29.4 34.2 58.2
LoRA 188.74M 77.6 59.7 53.8 71.6 87.9 33.3 35.6 59.9
OFT 39.3M 75.1 55.3 52.9 69.1 87.6 31.0 35.6 58.3
IA3 0.492M 74.5 52.1 49.3 72.2 86.9 30.9 34.3 57.1

MoReS-B 0.164M 74.1 52.1 48.5 70.0 87.6 30.3 35.3 56.9
MoReS-L 0.328M 74.0 51.6 49.3 71.6 87.2 33.3 34.4 57.3
MoReS-H 0.655M 74.2 51.8 48.3 71.9 88.2 31.1 35.8 57.4

Table 1: Experimental results of Multi-Task Supervised Fine-tuning. For the TP* metric in this evaluation, we
focus solely on the trainable parameters within the LLM. While different training strategies are applied to the
vision encoder and connector across various recipes, we maintain a consistent training recipe for all models and
benchmarks to ensure comparability

Model Method TP* SciQA-IMG VizWiz IconQA-txt IconQA-blank

LLaVA Steering-3B

Adapter 83M 92.3 62.9 93.5 95.8
LoRA 188.7M 93.9 61.6 93.9 96.5
OFT 39.32M 86.3 42.0 87.8 42.0
IA3 0.492M 90.2 58.4 84.5 94.7

MoReS-B 0.164M 89.7 59.2 84.0 94.2

LLaVA Steering-7B

Adapter 201.3M 82.7 59.7 72.1 71.6
LoRA 319.8M 87.6 60.6 77.7 70.2
OFT 100.7M 78.3 55.1 19.4 22.7
IA3 0.614M 83.8 54.3 65.1 70.4

MoReS-B 0.262M 83.6 54.2 64.2 70.2

LLaVA Steering-13B

Adapter 314.6M 87.9 61.4 78.2 73.0
LoRA 500.7M 92.1 62.0 80.2 73.2
OFT 196.6M 82.7 59.5 3.4 22.3
IA3 0.963M 90.5 54.6 73.8 71.7

MoReS-B 0.410M 89.5 54.3 74.9 71.5

Table 2: Results of Task-Specific Fine-tuning, where
higher values correspond to better performance.

sample 1K, 5K, and 10K data points from each456

dataset, defining these as small-scale, medium-457

scale, and large-scale tasks, respectively. Given458

the limited resources available, we choose MoReS-459

L for fine-tuning.460

Table 3 demonstrates that MoReS exhibits strong461

capabilities across all scales. Notably, in small-462

scale tasks, MoReS outperforms full fine-tuning463

performance while using only 575 times fewer pa-464

rameters than LoRA and 8,475 fewer than full fine-465

tuning. In contrast, methods like OFT and IA3 fail466

to surpass full fine-tuning despite utilizing signif-467

icantly more parameters. This result underscores468

the practicality of MoReS in real-world scenarios469

where data collection can be challenging, suggest-470

ing that MoReS is suitable for multi-scale visual471

instruction tuning.472

5.4 Text-only Tasks473

MoReS preserves 100% of the pre-trained world474

knowledge in the LLM by neither modifying its475

parameters nor interfering with textual token in-476

ference. This design allows MoReS to excel in477

understanding both visual and textual information.478

Unlike many existing methods, which often al-479

Scale Method TP* SciQA-IMG VizWiz IconQA

Small

FT 2.78B 33.8 51.2 68.1

Adapter 83M 81.0 57.4 72.4
LoRA 188.74M 84.0 58.5 74.2
OFT 39.32M 79.2 43.2 35.9
IA3 0.492M 79.9 50.5 73.0

MoReS-L 0.328M 78.2 55.0 69.7

Medium

FT 2.78B 78.2 58.9 92.2

Adapter 83M 92.1 60.6 93.2
LoRA 188.74M 92.9 60.5 92.7
OFT 39.32M 86.4 44.4 45.5
IA3 0.492M 91.9 57.1 90.6

MoReS-L 0.328M 92.1 56.6 89.9

Large

FT 2.78B 88.9 59.4 95.7

Adapter 83M 92.4 61.3 95.2
LoRA 188.74M 93.9 61.8 96.0
OFT 39.32M 86.4 44.2 43.7
IA3 0.492M 90.3 57.9 93.8

MoReS-L 0.328M 89.8 57.7 93.5

Table 3: Results of multi-scale tasks.

ter model weights and risk degrading pre-trained 480

knowledge (Zhang et al., 2024b), MoReS employs 481

a representation-steering approach to selectively 482

enhance the performance of the visual modality. 483

Text-only Task LoRA Adapter OFT IA3 MoReS (Ours)

HellaSwag 70.5 66.4 69.1 71.8 71.9
MMLU 55.3 52.9 54.7 56.8 57.0

Table 4: Performance comparison of PEFT methods on
text-only tasks.

Table 4 clearly demonstrate that MoReS excels in 484

text-only tasks, further emphasizing its ability to 485

retain and effectively leverage the inherent world 486

knowledge stored in LLMs. This capability show- 487

cases MoReS’ generalizability not only for multi- 488

modal tasks but also for text-dominant tasks. 489
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Factory Multi-scale LLMs Diverse Vision Encoders PEFTs Text-only Tasks Multimodal Tasks Computational Optimization Multiple Training Strategies

TinyLLaVA ✗ ✓ ✗ ✗ ✓ ✗ ✓

Prismatic ✓ ✓ ✗ ✗ ✓ ✗ ✗

LLaVA Steering (Ours) ✓✓ ✓ ✓ ✓ ✓✓ ✓ ✓

Table 5: Comparison of functionality across different factories.

5.5 Hallucination Mitigation490

Hallucination remains a critical challenge in491

MLLMs, largely due to their strong linguistic bias,492

which can overshadow visual information and lead493

to outputs misaligned with the provided visual con-494

text. MoReS significantly outperforms existing495

tuning approaches in mitigating hallucinations, as496

demonstrated through evaluations on two widely497

recognized benchmarks: POPE and Hallucination-498

Bench. Key metrics include Acc, Hard Acc, Figure499

Acc, and Question Acc. Further details can be found500

in Appendix A.3.501

Table 6 highlights the robustness of MoReS in re-502

ducing hallucination and enhancing the balance be-503

tween linguistic and visual information in MLLMs.504

Metric Full LoRA Adapter OFT IA3 MoReS

POPE Acc↑ 87.2 86.7 87.9 85.1 86.9 88.2
HallucinationBench Hard Acc↑ 37.4 34.6 36.2 33.9 39.3 42.6
HallucinationBench Figure Acc↑ 18.5 16.7 18.2 14.1 18.5 19.4
HallucinationBench Question Acc↑ 44.4 43.0 44.8 36.2 45.0 46.1

Table 6: Comparison of MoReS against other tuning
methods on POPE and HallucinationBench benchmarks.

5.6 Ablation Studies505

To gain deeper insights into our MoReS method,506

we conduct ablation studies focusing on its sub-507

space choice and steered visual token ratio. We508

use LLaVA Steering-3B model as our baseline for509

comparison. Table 7 and 8 summarize the results510

of two types of ablations.511

First, concerning the choice of subspace rank, we512

found that a rank of 1 achieves the highest average513

performance of 81.8 across four visual tasks while514

also requiring the fewest parameters, specifically515

0.164M. Second, regarding the steered visual token516

ratio, we varied this parameter from 100% (dense517

steering) to 1% (sparse steering). The results in-518

dicate that a ratio of 1% is optimal, yielding the519

best or near-optimal performance on four bench-520

marks while also significantly reducing inference521

overhead due to its sparse steering approach.522

6 LLaVA Steering Factory523

The LLaVA Steering Factory addresses the need for524

a comprehensive framework to systematically ana-525

Subspace Rank TP* SciQA-IMG VizWiz IconQA-txt IconQA-blank Avg
1 0.164M 89.6 59.2 84.0 94.2 81.8
2 0.328M 89.7 59.2 83.9 94.0 81.7
4 0.655M 89.5 58.7 83.8 94.1 81.5
8 1.340M 89.6 58.9 83.7 93.9 81.5

Table 7: Results of the subspace rank choice. The grey
shading indicates the best results and our selected pa-
rameters.

Steered Visual Token Ratio SciQA-IMG VizWiz IconQA-txt IconQA-blank
1% 89.7 59.2 84.0 94.1

25% 89.9 59.0 80.2 93.8
50% 88.9 59.0 79.8 92.6
100% 85.8 60.5 67.7 87.8

Table 8: Results of the steered visual token ratio. The
grey shading indicates the best results and our selected
parameters.

lyze and compare various MLLM architectures and 526

training strategies. Standardizing the evaluation 527

of these models is challenging due to implementa- 528

tion differences and diverse design choices. The 529

LLaVA Steering Factory offers standardized train- 530

ing pipelines, flexible data preprocessing, and cus- 531

tomizable model configurations. It supports main- 532

stream LLMs, vision encoders, and PEFT methods, 533

including our MoReS technique, and integrates in- 534

trinsic modality imbalance evaluation. The frame- 535

work aims to optimize visual instruction tuning and 536

simplify the development process for researchers. 537

A detailed comparison with other frameworks, such 538

as TinyLLaVA Factory (Jia et al., 2024) and Pris- 539

matic VLMs (Karamcheti et al., 2024), is shown 540

in Table 5. And an overview of its components is 541

provided in Figure 7 (see Appendix A.8). 542

7 Conclusion 543

This paper introduces Modality Linear 544

Representation-Steering, which significantly 545

reduces trainable parameters while maintaining 546

strong performance across downstream tasks by 547

rebalancing visual and textual representations. 548

Integrating MoReS into LLaVA models validates 549

its effectiveness, supporting the potential of 550

intrinsic modality rebalance for optimizing visual 551

instruction tuning. To support future research, 552

we present the LLaVA Steering Factory, a ver- 553

satile framework enabling customizable training 554

configurations and integrated analytical tools. 555
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Limitations556

MoReS shows promising results, but there are ar-557

eas for improvement. A more detailed analysis of558

its underlying mechanisms is needed to enhance559

interpretability and provide better insight into how560

it balances visual and textual representations. Ad-561

ditionally, further testing is required to evaluate562

its performance in more complex, real-world sce-563

narios and to assess its robustness against noisy564

data.565
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A Appendix963

A.1 Experiment Settings964

A.1.1 LLaVA Steering Architectures965

As illustrated in Figure 3, the architecture of the966

LLaVA Steering models (3B/7B/13B) consists of967

three essential components: a vision encoder, a968

vision connector responsible for projecting visual969

representations into a shared latent space, and a970

multi-scale LLM. The three modules are introduced971

below.972

In our experiments, we utilize the Phi-2 2.7B model973

(Li et al., 2023c) alongside Vicuna v1.5 (7B and974

13B) (Zheng et al., 2023b), sourced from our fac-975

tory, to evaluate the generalizability of our ap-976

proach across models of varying scales. For vision977

encoding, we employ CLIP ViT-L/14 336px (Rad-978

ford et al., 2021) and SigLIP-SO400M-Patch14-979

384 (Zhai et al., 2023), while a two-layer MLP980

serves as the connector. Given the inefficiencies of981

Qformer in training and its tendency to introduce982

cumulative deficiencies in visual semantics (Yao983

et al., 2024), it has been largely replaced by more984

advanced architectures, such as the BLIP series985

(Xue et al., 2024), Qwen-VL series (team, 2024),986

and InternVL series (Chen et al., 2024c), which987

were previously reliant on Qformer.988

A.1.2 Baseline Training Methods989

For comparison, four widely adopted PEFT meth-990

ods (Adapter, LoRA, OFT and IA3) are selected as991

baselines. These methods establish a comparative992

framework to assess both the performance and effi-993

ciency of our proposed approach. Essentially, our994

MoReS method replaces these four PEFT methods995

during visual instruction tuning in LLaVA Steering.996

Adapter: Building on the framework of effi-997

cient fine-tuning (Houlsby et al., 2019), we in-998

troduce adapter layers within Transformer blocks.999

These layers consist of a down-projection matrix1000

Wdown ∈ Rr×d, a non-linear activation function1001

σ(·), and an up-projection matrix Wup ∈ Rd×r,1002

where d is the hidden layer dimension and r is1003

the bottleneck dimension. The adapter output is1004

computed as:1005

Adapter(x) = Wupσ(Wdownx) + x, (5)1006

where the residual connection (+x) preserves the1007

pre-trained model’s knowledge. This formulation1008

enables efficient parameter updates during fine-1009

tuning, offering a balance between computational1010

efficiency and adaptation capacity while minimally 1011

increasing the model’s complexity. 1012

LoRA: We employ the low-rank adaptation method 1013

(LoRA) proposed by (Hu et al., 2021), which effi- 1014

ciently updates the network’s weights with a mini- 1015

mal parameter footprint by leveraging a low-rank 1016

decomposition strategy. For a pre-trained weight 1017

matrix W0 ∈ Rd×k, the weight update is achieved 1018

through the addition of a low-rank decomposition, 1019

as shown in Equation 6: 1020

W0 +∆W = W0 +BA (6) 1021

where B ∈ Rd×r and A ∈ Rr×k are trainable 1022

low-rank matrices, and r ≪ min(d, k). 1023

OFT: We utilize the Orthogonal Finetuning (OFT) 1024

method, which efficiently fine-tunes pre-trained 1025

models by optimizing a constrained orthogonal 1026

transformation matrix (Qiu et al., 2023). For a 1027

pre-trained weight matrix W0 ∈ Rd×n, OFT modi- 1028

fies the forward pass by introducing an orthogonal 1029

matrix R ∈ Rd×d, as illustrated in Equation 7: 1030

z = W⊤x = (R ·W0)
⊤x (7) 1031

where R is initialized as an identity matrix I to 1032

ensure that fine-tuning starts from the pre-trained 1033

weights. 1034

IA3: Building on the framework established by 1035

(Liu et al., 2022), we introduce three vectors vk ∈ 1036

Rdk , vv ∈ Rdv , and vff ∈ Rdff into the attention 1037

mechanism. The attention output is computed as: 1038

Attention = softmax
(
Q(vk ⊙KT )√

dk

)
(vv ⊙ V ),

(8) 1039

where ⊙ denotes multiplication by element. 1040

A.2 Benchmarks Overview 1041

VQAv2 (Goyal et al., 2017b): A benchmark for 1042

evaluating visual perception through open-ended 1043

short answers to visual questions. GQA (Hudson 1044

and Manning, 2019): A dataset for assessing vi- 1045

sual reasoning and question answering. VizWiz 1046

(Gurari et al., 2018): Consists of 8,000 images de- 1047

signed for zero-shot generalization in visual ques- 1048

tions posed by visually impaired individuals. Sci- 1049

enceQA (Lu et al., 2022): A benchmark focus- 1050

ing on zero-shot scientific question answering with 1051

multiple-choice questions. TextVQA (Singh et al., 1052

2019): Evaluates performance on text-rich visual 1053

questions. MM-Vet (Yu et al., 2023): Assesses 1054
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the model’s ability to engage in visual conversa-1055

tions, with correctness and helpfulness evaluated1056

by GPT-4. POPE (Li et al., 2023b): Quantifies hal-1057

lucination in MLLMs. MMMU (Yue et al., 2024):1058

Evaluates core multimodal skills, including percep-1059

tion, knowledge, and reasoning.1060

A.3 Hallucination Evaluation Details1061

POPE (Li et al., 2023b) specifically focuses on1062

object hallucination, using accuracy (Acc) as the1063

primary evaluation metric. By assessing whether1064

the generated outputs accurately correspond to ob-1065

jects present in the visual input, POPE provides a1066

clear measure of hallucination mitigation.1067

HallucinationBench (Guan et al., 2023) offers a1068

broader assessment by covering diverse topics and1069

visual modalities. This benchmark includes two1070

categories of questions: (1) Visual Dependent (VD)1071

Questions, which require detailed understanding1072

of the visual input for correct responses, and (2)1073

Visual Supplement (VS) Questions, where answers1074

depend on contextual visual support rather than1075

direct visual grounding.1076

To evaluate model performance comprehensively,1077

we focus on three main metrics: Hard Acc, which1078

assesses correctness based on strict adherence to1079

the visual context; Figure Acc, measuring accuracy1080

on a per-figure basis; and Question Acc, evaluating1081

the overall accuracy across all questions.1082

A.4 Theoretical Justification1083

Let xtext ∈ Rdt be the text input embedding,1084

ximage ∈ Rdv be the visual input embedding,1085

Rtext ∈ RD be the hidden representation for text,1086

and Rimage ∈ RD be the hidden representation for1087

the visual input. Define Wq,Wk,Wv ∈ RD×D as1088

the query, key, and value projection matrices, and1089

Wo ∈ RD×D as the output projection matrix. Let1090

A ∈ RN×N represent the attention matrix, and1091

y ∈ RV be the output logits.1092

We present a theoretical analysis of the MoReS1093

transformation and its effect on attention redistri-1094

bution in multimodal models. The hidden repre-1095

sentations for text and image inputs are computed1096

as:1097

htext = ftext(xtext), himage = fimage(ximage) (9)1098

where ftext and fimage are encoding functions.1099

The attention mechanism is characterized by1100

scores:1101

Aij = softmax
(
(hiWq)(hjWk)

T

√
D

)
(10) 1102

with Wq,Wk ∈ RD×D being query and key pro- 1103

jection matrices. Output generation follows: 1104

y = Wo(Ctext + Cimage) (11) 1105

where Ctext =
∑

iAi,text(hiWv) and Cimage = 1106∑
iAi,image(hiWv). 1107

The core of our approach is the MoReS transfor- 1108

mation, defined as: 1109

MoReS(h) = Wup · ϕ(h), (12) 1110

where ϕ(h) = Linear(h)−Wdownh (13) 1111

Here, Wup ∈ RD×d, Wdown ∈ Rd×D, and d < 1112

D. When applied to the image representation, we 1113

obtain h′image = MoReS(himage) + himage, leading 1114

to updated attention scores: 1115

A′
i,image = softmax

(
(hiWq)(h

′
imageWk)

T

√
D

)
(14) 1116

This transformation is key to redistributing atten- 1117

tion towards visual inputs. The effect of MoReS 1118

on the output can be quantified by examining the 1119

change magnitude: 1120

∥∆y∥2 = ∥Wo(C
′
image − Cimage)∥2 (15) 1121

≤ ∥Wo∥2∥C ′
image − Cimage∥2 (16) 1122

where C ′
image =

∑
iA

′
i,image(h

′
imageWv). The 1123

significance of this change stems from the MoReS 1124

transformation’s ability to amplify key visual fea- 1125

tures. Specifically, ϕ(h) extracts salient visual in- 1126

formation in a subspace, which is then amplified 1127

by Wup in the original space. This process en- 1128

sures ∥h′image∥2 > ∥himage∥2, leading to increased 1129

A′
i,image values for relevant visual features and 1130

larger magnitudes for (h′imageWv) terms in C ′
image. 1131

To ensure stability while allowing for this sig- 1132

nificant attention redistribution, we consider the 1133

Lipschitz continuity of the model: 1134

∥f(h′image)− f(himage)∥2 ≤ L∥h′image − himage∥2
(17) 1135
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where L is the Lipschitz constant. This property1136

bounds the change in the model’s output, guarantee-1137

ing that the attention redistribution, while substan-1138

tial, remains controlled and does not destabilize the1139

overall model behavior.1140

A key advantage of the MoReS approach lies1141

in its parameter efficiency. The transformation in-1142

troduces O(Dd) parameters, primarily from Wup,1143

Wdown, and the linear transformation in ϕ(h). This1144

is significantly less than the O(D2) parameters re-1145

quired for fine-tuning all attention matrices in tra-1146

ditional approaches. The reduction in trainable pa-1147

rameters not only makes the optimization process1148

more efficient but also mitigates the risk of overfit-1149

ting, especially in scenarios with limited training1150

data.1151

In conclusion, our theoretical analysis demon-1152

strates that our MoReS effectively redistributes at-1153

tention to visual inputs by operating in a carefully1154

chosen subspace. This approach achieves a signif-1155

icant change in output generation while maintain-1156

ing model stability and requiring fewer parameters1157

than full fine-tuning, offering a balance between1158

effectiveness and efficiency in enhancing visual1159

understanding in MLLMs.1160

A.5 Implementation Detail1161

Steered Visual Token

+𝑈𝑃!"#$!(𝐿𝑖𝑛𝑒𝑎𝑟 							 − 𝐷𝑜𝑤𝑛!"#$!(							))=

sys vision question

MoReS

Figure 5: MoReS module flowchart.

Regarding the implementation, we have adopted1162

a highly modular design for the LLM, integrating1163

it with MoReS to enable precise steering at specific1164

token locations. This modular approach ensures1165

that the steering process operates with minimal1166

computational overhead, making it both efficient1167

and scalable. Additionally, the modular nature of1168

this design allows for seamless integration with1169

existing architectures and enables easy customiza-1170

tion of steering strategies tailored to specific down-1171

stream tasks. To provide further clarity, we include 1172

a MoReS module flowchart (Figure 5) and an UML 1173

diagram (Figure 6) here, which detail the imple- 1174

mentation process. 1175

LlavaSteeringForConditionalGeneration

language_model
vision_tower
connector

forward()

SteerDataloader

text_processor
image_processor
steer_pos_getter

encode()

MoresModelShell

llm
mores

moresModelProxy

forward()

MoresModelProxy

get_adapted_args()

SiglipVisionModel

forward()

LlamaForCausalLM

forward()

Connector

forward()

input_ids
image
steer_pos

question
image

image

img_feature

input_embed
steer_pos

Mores

forward()

steered_embedding

Data Flow Direction

Data Exchange by hook()

Figure 6: The UML diagram for MoReS

A.6 Full Attention Maps 1176

In this section, we provide the attention maps (Fig- 1177

ure 8) during the decoding process across each 1178

layer. Notably, the distribution of visual attention 1179

remains sparse in these layers, with only a few to- 1180

kens carrying the majority of the attention. This 1181

sparsity presents an opportunity for token prun- 1182

ing strategies, which can be leveraged to reduce 1183

inference overhead and improve computational ef- 1184

ficiency. By selectively pruning tokens with lower 1185

attention scores, unnecessary computations can be 1186

avoided, leading to faster and more efficient infer- 1187

ence while maintaining the essential information 1188

needed for accurate predictions. 1189

A.7 Runtime Overhead 1190

Unlike LoRA, where the learned weights can be 1191

merged into the model’s original parameters to 1192

achieve zero computational overhead during infer- 1193

ence, MoReS requires the linear transformation 1194

layers to remain in the computation graph of the 1195

MLLM. While this introduces a small overhead, 1196

we have worked to minimize it effectively. 1197

To mitigate runtime overhead, we performed sev- 1198

eral experiments focusing on key factors: Subspace 1199

Rank, Steered Visual Token Rate and Steering 1200

Layer Configuration. These experiments helped us 1201

reduce the additional computational burden. Specif- 1202

ically, by choosing a 1% Steered Visual Token Rate, 1203

a Subspace Rank of 1, and employing a sparse 1204

Steering Layer Configuration, we achieved the min- 1205

imum runtime overhead of about 0.08 seconds each 1206

sample. This is significantly lower compared to 1207
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other PEFT methods, such as Adapter (0.3 seconds)1208

and OFT (2.8 seconds).1209

A.8 LLaVA Steering Factory1210

An overview of the main components of the LLaVA1211

Steering Factory is provided in Figure 7.1212

LLaVA Steering Factory

LLMs

PEFT

LoRA QLoRA IA3

OFT Adapter MoReS

Benchmark

CLIP DINO SigLIP MoF

Vision Encoder

Phi Llama Vicuna Gemma Qwen

SQAGQAVQATQA

VizWizPOPEMM-VetMMMU

Figure 7: Architectural overview of the proposed
LLaVA Steering Factory: A Modular Codebase for
MLLMs.

A.9 Impact of Removing Linear1213

Transformations1214

As shown in Table 9 and 10, we conducted experi-1215

ments applying MoReS with different fixed inter-1216

vals and also evaluated its performance when ap-1217

plied exclusively to the shallow, middle, and deep1218

layers. These experiments highlight that the choice1219

of steering layers can effectively balance compu-1220

tational efficiency and performance. We suggest1221

that, when using MoReS, it is optimal to apply it to1222

all layers initially to achieve the best performance.1223

Then, by skipping fixed intervals, we can further1224

reduce inference overhead while maintaining per-1225

formance. Regarding the choice of shallow, middle,1226

and deep layers, we found that applying MoReS1227

to the deep layers yields better performance. We1228

believe that deep layers encode more abstract con-1229

cepts and are more suitable for steering in the sub-1230

space.1231

Steering Layer VQAv2 GQA TextVQA SciQA-IMG POPE MM-Vet MMMU Avg

[0,2,4,...] 74.1 52.0 48.3 71.6 87.1 32.8 35.3 57.3
[0,3,6,...] 74.1 51.7 48.1 70.7 87.0 32.7 33.2 56.8
[0,4,8,...] 74.1 51.9 48.5 71.2 87.2 31.5 34.4 57.0
All Layer 74.0 51.6 49.3 71.6 87.2 33.3 34.4 57.3

Table 9: Performance of different steering layer strate-
gies across benchmarks.

Steering Layer VQAv2 GQA TextVQA SciQA-IMG POPE MM-Vet MMMU Avg

Shallow (0-15) 74.3 51.6 48.6 70.3 87.5 34.9 34.4 57.3
Middle (8-23) 74.3 52.3 48.3 71.5 87.1 32.0 32.6 56.9
Deep (16-31) 74.2 51.5 48.2 71.8 87.1 33.3 36.7 57.7
All Layer 74.0 51.6 49.3 71.6 87.2 33.3 34.4 57.3

Table 10: Performance comparison of shallow, middle,
and deep steering layers.
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Figure 8: Full Attention Maps of Each Layer
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