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Abstract001

This paper investigates the cross-lingual incon-002
sistencies observed in Large Language Mod-003
els (LLMs), such as ChatGPT, Llama, and004
Baichuan, which have shown exceptional per-005
formance in various Natural Language Pro-006
cessing (NLP) tasks. Despite their successes,007
these models often exhibit significant incon-008
sistencies when processing the same concepts009
across different languages. This study focuses010
on three primary questions: the existence of011
cross-lingual inconsistencies in LLMs, the spe-012
cific aspects in which these inconsistencies013
manifest, and the correlation between cross-014
lingual consistency and multilingual capabili-015
ties of LLMs.To address these questions, we016
propose an innovative evaluation method for017
Cross-lingual Semantic Consistency (xSC) us-018
ing the LaBSE model. We further introduce019
metrics for Cross-lingual Accuracy Consis-020
tency (xAC) and Cross-lingual Timeliness Con-021
sistency (xTC) to comprehensively assess the022
models’ performance regarding semantic, accu-023
racy, and timeliness inconsistencies. By harmo-024
nizing these metrics, we provide a holistic mea-025
surement of LLMs’ cross-lingual consistency.026
Our findings aim to enhance the understanding027
and improvement of multilingual capabilities028
and interpretability in LLMs, contributing to029
the development of more robust and reliable030
multilingual language models1.031

1 Introduction032

In recent years, the rapid development of Large033

Language Models (LLMs) has significantly pro-034

pelled advancements in Natural Language Pro-035

cessing (NLP), exemplified by models such as036

ChatGPT2, Llama (Touvron et al., 2023b), and037

Baichuan (Yang et al., 2023). These models have038

demonstrated exceptional performance across a039

variety of NLP tasks, including machine trans-040

1All code and data released at xxx
2https://chat.openai.com/

< 中文 > < 西班牙语 >

< 日语 >< 英语 >

User: 利昂纳尔·梅西效力于什么
球队? 
GPT: 巴塞罗那足球俱乐部

User: ¿En qué equipo juega Lionel
Messi?
GPT: Paris Saint-Germain Football
Club (PSG)
< 译文: 巴黎圣日尔曼俱乐部 >

User: Which team does Lionel
Messi play for? 
GPT: Paris Saint-Germain Club 
< 译文: 巴黎圣日尔曼俱乐部 >

User:  リオネル・メッシはどこの
チームでプレーしていますか?
GPT: FCバルセロナ
< 译文: 巴塞罗那俱乐部 >

< Chinese >

< Japanese >

< English >

User: 利昂纳尔·梅西效力于什么
球队? 
GPT: 巴塞罗那足球俱乐部
(FC Barcelona)

User: Which team does Lionel
Messi play for? 
GPT: Paris Saint-Germain Club 

User:  リオネル・メッシはどこの
チームでプレーしていますか?
GPT: FCバルセロナ
(FC Barcelona)

User: ¿En qué equipo juega Lionel
Messi?
GPT: Paris Saint-Germain Football
Club (PSG)

< Spanish >

Figure 1: Cross-Lingual Inconsistencies in LLM Re-
sponses.

lation (Jiao et al., 2023) and question answer- 041

ing (Bang et al., 2023). However, as LLMs are 042

increasingly applied globally, issues of consistency 043

and accuracy in processing multilingual informa- 044

tion have become more pronounced. 045

Multilingual LLMs are designed to break down 046

language barriers, enabling users from different lin- 047

guistic backgrounds to access high-quality informa- 048

tion services. Yet, in practice, these models often 049

show notable inconsistencies when dealing with 050

the same concepts across different languages. For 051

instance, as illustrated in Figure 1, GPT-3.5-turbo- 052

0325 provided the correct answer, “Paris Saint- 053

Germain Club (PSG)” to the question “Which team 054

does Lionel Messi play for?” posed in English 055

and Spanish. However, when the same question 056

was asked in Chinese and Japanese, the model in- 057

correctly responded with “FC Barcelona” despite 058

Messi’s transfer to PSG. 059

Such cross-lingual inconsistencies are not lim- 060

ited to factual knowledge queries but may also en- 061

compass sentiment analysis, named entity recog- 062

nition, semantic understanding, and other aspects. 063

Consequently, this paper aims to investigate and 064

evaluate the consistency of LLMs in cross-lingual 065

processing. We will explore the following three 066

key questions: 067

• Do LLMs exhibit cross-lingual inconsistency? 068
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• In what aspects do LLMs’ cross-lingual incon-069

sistencies manifest?070

• Is there a correlation between the cross-071

lingual consistency performance of LLMs and072

their multilingual capabilities?073

To systematically address these questions, we074

first introduce an innovative method for evalu-075

ating Cross-lingual Semantic Consistency (xSC),076

based on the cross-lingual semantic vector encod-077

ing model LaBSE (Feng et al., 2022). This ap-078

proach allows us to verify the existence and stabil-079

ity of cross-lingual inconsistencies within LLMs.080

Furthermore, to better measure models’ cross-081

lingual consistency, we expand upon the proposed082

metric to address three types of inconsistencies083

manifested by LLMs across different linguistic en-084

vironments: semantic inconsistency of responses,085

accuracy inconsistency of responses, and timeli-086

ness inconsistency of responses. We introduce the087

Cross-lingual Accuracy Consistency metric (xAC)088

and the Cross-lingual Timeliness Consistency met-089

ric (xTC) to more comprehensively assess LLMs’090

cross-lingual performance regarding knowledge ac-091

curacy and timeliness. We harmonize the scores of092

these three metrics to holistically measure LLMs’093

cross-lingual consistency capabilities.094

Finally, we will explore the relationship between095

LLMs’ cross-lingual inconsistency issues and their096

multilingual abilities, offering a new perspective097

for understanding and improving the multilingual098

capabilities and interpretability of LLMs.099

2 Related Work100

2.1 Factual Knowledge Probing101

Factual Knowledge Probing In the field of Natural102

Language Processing (NLP), Pretrained Language103

Models (PLMs) have been proven to store a vast104

array of factual knowledge. Petroni et al. (2019)105

examine the capacity of PLMs to store relational106

knowledge without fine-tuning. It was found that107

the BERT model learns some types of facts better108

than others, indicating the potential of language109

models as unsupervised open-domain question an-110

swering systems.111

Heinzerling and Inui (2021) explore the feasi-112

bility of using Pretrained Language Models (LMs)113

as Knowledge Bases (KBs). It outlines two crit-114

ical requirements: the ability to store extensive115

facts involving numerous entities, and the capa-116

bility to query these facts using natural language117

paraphrases. The authors compared three different 118

entity representation methods and demonstrated 119

through experiments that LMs can scale to handle 120

millions of entities and memorize and retrieve a 121

vast amount of facts. 122

Mittal et al. (2023) introduce the first multilin- 123

gual open knowledge base completion dataset, con- 124

taining facts from Wikipedia in six languages, in- 125

cluding English. The research indicates that in- 126

tegrating information across multiple languages 127

and the translation of facts significantly enhances 128

model performance. However, challenges arise for 129

Multilingual Knowledge Graph Embedding (KGE) 130

models when memorizing facts across languages 131

with different scripts. 132

2.2 Knowledge-based Cross-lingual 133

Consistency 134

Multilingual consistency is a crucial metric for eval- 135

uating the performance consistency of multilingual 136

pretrained language models in predicting factual 137

knowledge across different languages. Recent stud- 138

ies have revealed significant inconsistencies even 139

among large multilingual models across various 140

languages. 141

Fierro and Søgaard (2022) discover that multilin- 142

gual models, such as mBERT and XLM-R, exhibit 143

inconsistencies in English comparable to mono- 144

lingual English BERT, but show higher inconsis- 145

tencies across 45 other languages. This reveals 146

the challenges faced by multilingual PLMs in pre- 147

dicting factual knowledge across languages and 148

underscores the importance of addressing cross- 149

lingual consistency issues when building reliable 150

cross-language knowledge bases. 151

Qi et al. (2023) introduce a ranking-based con- 152

sistency metric (RankC) to evaluate cross-lingual 153

knowledge consistency independently of accuracy. 154

The findings suggest that while increasing the 155

model size improves factual probing accuracy in 156

most languages, it does not enhance cross-lingual 157

consistency. Furthermore, when new factual as- 158

sociations are inserted into PLMs through model 159

editing, the new knowledge is only transferred to 160

languages with high English RankC scores. 161

3 Cross-lingual Inconsistency in Large 162

Language Models 163

In an effort to delve into and address the con- 164

sistency issues exhibited by large language mod- 165

els (LLMs) when processing multilingual re- 166
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quests, this study has constructed a multilin-167

gual aligned knowledge-based question-answering168

dataset. Building upon this, we introduce a Cross-169

lingual Semantic Consistency metric (xSC), de-170

signed to quantify the inconsistency in knowl-171

edge representation across multiple languages in172

question-answering scenarios.173

3.1 MAKQA dataset174

Acknowledging the limitations of existing175

datasets such as mOKB6 (Mittal et al., 2023),176

MPARARE (Fierro and Søgaard, 2022), and177

BMLAMA (Qi et al., 2023), which suffer from a178

narrow domain focus, an over-reliance on machine179

translation for expanding language coverage,180

and data structured in triplets not suitable for181

LLM inference, we build a Multilingual Aligned182

Knowledge-based Question-Answering dataset183

(MAKQA) that includes 12 languages: English184

(En), German (De), Dutch (Nl), French (Fr),185

Spanish (Es), Italian (It), Portuguese (Pt), Greek186

(El), Russian (Ru), Chinese (Zh), Japanese (Ja),187

and Korean (Ko). This dataset encompasses188

six major knowledge domains including sports,189

movies, science, history, geography, and literature.190

We utilize Wikidata as the primary data source191

to establish our dataset. Entity names in English192

are collected from diverse sources, and through193

Wikipedia, knowledge triplets associated with these194

entities are acquired. From these triplets, only195

those containing key relations are selectively re-196

tained. We capitalize on the feature that every197

entity in Wikipedia is logged with its multilin-198

gual names, thereby expanding English knowledge199

triples to multilingual aligned knowledge triples.200

Notably, we only employ translation engines as sup-201

plements for specific language names missing from202

some entities in Wikipedia when necessary. Finally,203

knowledge triples are transformed into knowledge204

question-answer pairs using GPT-4 (OpenAI et al.,205

2023), resulting in our Knowledge QA dataset.206

Detailed statistical information about the dataset207

is available in Table 1, and examples of the dataset208

are presented in Table 2.209

3.2 Cross-lingual Semantic Consistency210

metric211

The Cross-lingual Semantic Consistency (xSC)212

evaluation method is designed to assess the de-213

gree of knowledge consistency across different lan-214

guages in Large Language Models (LLMs). Specif-215

ically, this metric examines whether a model can216

Domain #Entity #Rel #QA pairs
Sports 50 9 253
Movie 49 17 432
Science 49 12 492
History 45 12 389
Geography 94 6 286
Literature 50 5 165
Timeliness 129 2 136

Table 1: Satistics of the MAKQA dataset.

provide semantically consistent responses to the 217

same question posed in different languages, thereby 218

evaluating the uniformity of knowledge storage and 219

expression within LLMs across various languages. 220

To measure this, the method employs the mul- 221

tilingual semantic encoding model LASER to en- 222

code the answers generated by LLMs in different 223

languages. It then calculates the cosine similarity 224

distance between these semantic vectors to quantify 225

the model’s performance on cross-lingual semantic 226

consistency. The calculation of xSC, as shown in 227

Equation 1, involves prompting the LLM to gen- 228

erate answers in multiple languages, followed by 229

semantic encoding of these answers. It computes 230

the cosine similarity between pairs of languages 231

and averages the similarity across all language 232

combinations to derive the model’s xSC score. A 233

score closer to 1 indicates better performance of 234

the model in terms of cross-lingual semantic con- 235

sistency. 236

xSC =
1

L(L− 1)

L∑
i=1

L∑
j=1
j ̸=i

Ci,j

Ci,j =
1

N

N∑
s=1

Cos(embis, embjs)

embis = LaBSE(ansis)

(1) 237

In the formula, ansis represents the answer given 238

by the LLM to the sth question in the ith language. 239

L and N denote the total number of languages and 240

the total number of question-answer pairs in the 241

dataset, respectively. LaBSE(.) refers to the vector 242

representation after LaBSE encoding. 243

3.3 Experiments 244

To comprehensively evaluate the performance of 245

LLMs in cross-lingual knowledge consistency, 246

this study tested five representative LLMs, in- 247

cluding the closed-source model GPT-3.5 and 248
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Language Question Answer

English (En) In which country is Buenos Aires located? Argentina

Chinese (Zh) 布宜诺斯艾利斯属于哪个国家？ 阿根廷

German (De) In welchem Staat liegt Buenos Aires? Argentinien

Dutch (Nl) In welk land ligt Buenos Aires? Argentini

Japanese (Ja) ブエノスアイレスはどの国にありますか？ アルゼンチン

Table 2: MAKQA geographical domain showcase.

Model Score
Oracle 0.849
GPT-3.5 0.706
Bloomz-7b 0.414
Llama2-7b 0.577
Baichuan2-7b 0.530
Mistral-7b 0.527

Table 3: LLMs’ cross-lingual semantic consistency
score.

four open-source models: Bloomz (Muennighoff249

et al., 2022), Llama2 (Touvron et al., 2023a),250

Baichuan2 (Baichuan, 2023), and Mistral (Jiang251

et al., 2023, 2024). In addition, to determine the up-252

per limit of model performance, we also calculated253

the xSC score for the actual answers (Groundtruth),254

which serves as a reference for the ideal state, de-255

noted as Oracle.256

In the experiments, we used the LLaMA-Factory257

framework3 to build the LLM’s API call interface,258

replicating the LLM’s performance in real-world259

application scenarios. To minimize the impact of260

the model’s ability to follow instructions, we em-261

ployed a 5-shot context learning strategy, provid-262

ing five relevant examples prior to inference to aid263

the LLM in better understanding the task require-264

ments. For each domain, the experiment randomly265

selected five reference examples from 20 curated266

examples. All experiments were conducted on267

servers equipped with four NVIDIA A100-PCIE-268

40GB GPUs.269

3.4 Main Result270

As shown in Table 5-3, various large language mod-271

els (LLMs) exhibit significant differences in their272

Cross-lingual Semantic Consistency (xSC) scores.273

The proprietary model GPT-3.5 leads all open-274

3https://github.com/hiyouga/LLaMA-Factory

source models with a score of 0.706, demonstrating 275

its superior capability in handling cross-lingual is- 276

sues. Among the open-source models, Llama2-7b 277

scores 0.577, outperforming other models of sim- 278

ilar size, yet still trailing behind GPT-3.5. It is 279

also noted that both proprietary and open-source 280

models, when compared to an ideal state (i.e., the 281

Oracle), have a considerable gap. This outcome re- 282

veals substantial room for improvement, especially 283

in open-source models, in terms of cross-lingual 284

consistency. 285

3.5 Analysis 286

Furthermore, to test the stability of cross-lingual 287

inconsistency issues in LLMs, we conduct further 288

experiments from two dimensions: domain differ- 289

ences and prompt design. 290

Domain-Specific Analysis In this experiment, 291

we independently evaluate the performance of five 292

representative models across six different domains 293

using xSC, as detailed in Table 4. The results indi- 294

cate that despite fluctuations in scores across vari- 295

ous domains, these fluctuations do not significantly 296

affect the overall trend of cross-lingual semantic 297

consistency. GPT-3.5 consistently shows a lead- 298

ing advantage in all domains, while Bloomz-7b 299

generally lags behind other models in each do- 300

main. Among the open-source models, Llama2-7b 301

performs best in four out of six domains. These 302

findings suggest that while there are significant 303

knowledge differences between domains, such dif- 304

ferences do not materially affect the xSC scores of 305

LLMs. In other words, a model that performs well 306

maintains high cross-lingual consistency across dif- 307

ferent domains, indicating that the issue of cross- 308

lingual inconsistency is an inherent and stable be- 309

havior of the model, independent of specific knowl- 310

edge domains. 311

Prompt Design Analysis This experiment com- 312

pares whether LLMs exhibit significant fluctuations 313
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Model Domain
Sports Movie Science History Geography Literature

Oracle 0.834 0.870 0.858 0.817 0.866 0.838
GPT-3.5 0.767 0.647 0.691 0.678 0.804 0.721
Bloomz-7b 0.455 0.332 0.412 0.390 0.558 0.379
Llama2-7b 0.579 0.511 0.657 0.528 0.661 0.476
Baichuan2-7b 0.588 0.427 0.536 0.519 0.653 0.511
Mistral-7b 0.561 0.484 0.559 0.521 0.566 0.438

Table 4: Cross-lingual semantic consistency score in different domains.

Models Prompt1 Prompt2 Prompt3
Bloomz-7b 0.414 0.417 0.426
Llama2-7b 0.577 0.552 0.562
Baichuan2-7b 0.530 0.534 0.519
Mistral-7b 0.527 0.523 0.518

Table 5: Cross-lingual semantic consistency score with
different prompts.

in cross-lingual consistency when facing the same314

question posed by different prompts. In addition to315

the original question (Prompt 1), we construct two316

new sets of prompts for the experiment. Specifi-317

cally, Prompt 2 employs a standardized question318

template, generating standard questions by filling319

in key entities and relations; Prompt 3 derives from320

GPT-4’s adaptation of the original question. Table321

5 shows the performance of five representative mod-322

els under these different prompts. Although there323

are subtle differences in model performance based324

on different prompts, such as Bloomz-7b scoring325

0.414, 0.417, and 0.426 under the three prompts,326

these variations do not alter the overall ranking327

and score differences between models. This further328

confirms that the issue of cross-lingual consistency329

in LLMs is a stable model behavior, not affected330

by different prompt designs, and also validates the331

robustness of the xSC metric.332

4 Manifestations of Cross-lingual333

Inconsistency334

In the previous sections, we demonstrated through335

the Cross-Lingual Semantic Consistency (xSC)336

metric that Large Language Models (LLMs) ex-337

hibit significant cross-lingual semantic inconsisten-338

cies when handling requests in different languages.339

However, semantic inconsistency is just one form340

of cross-lingual inconsistency. As shown in Fig-341

ure 1, the responses of the model in various lan-342

guages not only differ semantically but also show343

discrepancies in accuracy consistency (i.e., whether 344

the model provides the same correct or incorrect 345

answer across languages) and timeliness consis- 346

tency (i.e., whether the model provides timely an- 347

swers across different languages). Therefore, to 348

more comprehensively evaluate the cross-lingual 349

consistency performance of the model, we further 350

propose the Cross-Lingual Accuracy Consistency 351

metric (xAC) and Cross-Lingual Timeliness Con- 352

sistency metric (xTC). These are then combined 353

with xSC to obtain the overall Cross-Lingual Con- 354

sistency metric (xC). 355

4.1 Cross-lingual Accuracy Consistency 356

metric 357

The Cross-lingual Accuracy Consistency (xAC) 358

metric aims to assess whether the answers provided 359

by LLMs to multilingual knowledge queries are 360

consistently accurate. Cross-lingual accuracy re- 361

flects the model’s ability to perform downstream 362

tasks in different language environments and is di- 363

rectly related to its multilingual generalization ca- 364

pability, making it a core metric for evaluating mul- 365

tilingual performance. By evaluating the consis- 366

tency of cross-lingual accuracy, this method reveals 367

whether the model can handle multilingual queries 368

with stable accuracy across language boundaries, 369

which is crucial for assessing the performance of 370

LLMs in multilingual tasks. 371

We measure the accuracy of responses by cal- 372

culating the CHRF score (Popovic, 2017) between 373

the model’s answers and the ground truth in each 374

language. Then, we evaluate the correlation be- 375

tween accuracy scores for different language pairs 376

by calculating the Spearman rank correlation co- 377

efficient for all accuracy scores across languages. 378

The average correlation score across all language 379

pairs serves as the metric for cross-lingual accuracy 380

consistency, calculated as follows: 381
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Model Size Metric
xSC xAC xTC xC

GPT-3.5 – 0.706 0.489 0.508 0.552

BLOOMZ

0.6B 0.353 0.261 0.236 0.275
1B 0.389 0.256 0.199 0.260
3B 0.409 0.298 0.191 0.272
7B 0.414 0.275 0.193 0.267

LLAMA2
7B 0.577 0.243 0.297 0.326

13B 0.563 0.293 0.321 0.361

BAICHUAN2
7B 0.530 0.342 0.413 0.415

13B 0.564 0.367 0.391 0.425
MISTRAL 7B 0.527 0.245 0.349 0.339
MIXTRAL 8x7B 0.666 0.430 0.450 0.496

Table 6: The main result of assessing the cross-lingual consistency of LLMs.

xAC =
1

L(L− 1)

L∑
i=1

L∑
j=1
j ̸=i

CA
i,j

CA
i,j = Spearman(acci, accj)

accit = CHRF(ansit, yt),

for t = 1, 2, ..., n

(2)382

4.2 Cross-lingual Timeliness Consistency383

metric384

The Cross-lingual Timeliness Consistency (xTC)385

metric aims to evaluate the consistency of LLMs386

in answering multilingual knowledge queries that387

are sensitive to timeliness. Ideally, LLMs should388

provide synchronously updated information for the389

same time-sensitive query posed in different lan-390

guages. As shown in Figure 1, when querying391

recent news events or knowledge, the responses of392

LLMs differ in timeliness across languages. The393

xTC metric not only assesses the model’s cross-394

lingual timeliness consistency in time-critical sce-395

narios but also helps in analyzing the model’s in-396

ternal knowledge consistency regarding timeliness397

across languages.398

The xTC evaluation method focuses on the399

model’s performance in handling time-sensitive400

queries. Since regular queries do not involve time-401

liness changes, we use a specially designed dataset402

of time-sensitive questions, with statistical infor-403

mation shown in Table 1. This dataset consists of a404

series of highly time-sensitive questions, each with405

multiple candidate answers ranked by timeliness to406

test the model’s ability to grasp the latest informa-407

tion. The evaluation process is similar to xAC and408

includes the following four steps:409

First, we calculate the CHRF score between the 410

model’s answer and a set of candidate answers with 411

different timeliness to determine the best matching 412

candidate answer and its timeliness ranking r. Next, 413

based on the ranking r, we calculate a timeliness 414

score for each answer, defined as the reciprocal of 415

the timeliness ranking 1/r multiplied by the CHRF 416

score, to quantify the timeliness of the model’s an- 417

swer for a specific question. The higher the score 418

(closer to 1), the more up-to-date the model’s an- 419

swer is; the lower the score, the more outdated the 420

answer is. If the model fails to provide a correct 421

answer, the score is zero. Subsequently, we cal- 422

culate the Spearman rank correlation coefficient 423

for the timeliness scores across different language 424

pairs to assess the model’s cross-lingual timeliness 425

consistency. Finally, by averaging the Spearman 426

correlation coefficients across all language pairs, 427

we obtain the model’s overall xTC score, calculated 428

as follows: 429

xTC =
1

L(L− 1)

L∑
i=1

L∑
j=1
j ̸=i

CA
i,j

CA
i,j = Spearman(Tscorei,Tscorej)

Tscoreit =
maxr CHRF(ansit, yt,r)

R
,

for t = 1, 2, ..., n

(3) 430

In the formula, Tscoreit denotes the timeliness 431

score of answer t in language i. R signifies the 432

maximum possible ranking. 433

6



4.3 Cross-lingual Consistency metric434

After obtaining the xSC, xAC, and xTC scores of435

the LLMs, we compute the harmonic mean of these436

three scores to derive the model’s overall cross-437

lingual consistency score (xC), thereby compre-438

hensively measuring the cross-lingual consistency439

performance of the LLMs. The calculation process440

is as follows:441

xC =
3

1
xSC + 1

xAC + 1
xTC

(4)442

4.4 Experiments443

We adopt the same experimental setup as previ-444

ously described. To better illustrate the cross-445

lingual performance of each model type and to446

explore the impact of model parameters on cross-447

lingual performance, we test all versions of each448

model type with parameters up to 13B.449

4.5 Result450

The experimental results are shown in Table 6. It451

is evident that different models exhibit significant452

differences in cross-lingual consistency, with GPT-453

3.5 performing the best across all metrics. Among454

the open-source models, Baichuan2 demonstrates455

good cross-lingual consistency, showing strong per-456

formance on all three metrics compared to models457

of similar size. However, Bloomz lags behind other458

models in all aspects. Despite using a large multi-459

lingual dataset for both pre-training and fine-tuning,460

this indicates that merely increasing the proportion461

of multilingual training data does not break the462

knowledge barriers between languages.463

Overall, the performance differences between464

models are most balanced in semantic consistency465

(xSC), while accuracy and timeliness consistency466

(xAC and xTC) are more influenced by external467

factors, posing higher demands on the models and468

resulting in more significant differences. Only Mix-469

tral approaches the performance level of GPT-3.5.470

Within different models, performance generally471

improves with an increase in parameters, but the472

degree and effect of this improvement vary by473

model. For instance, in the case of Bloomz, the per-474

formance gains from increasing parameters (from475

0.6B to 7B) are not significant, especially in the476

xAC and xTC metrics. This suggests that the struc-477

ture and training data of the Bloomz model have478

design limitations that cannot be significantly im-479

proved by simply increasing the number of param-480

eters. In contrast, Mixtral enhances model parame-481
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Figure 2: LLM performance in multilingual translation
and average xSC score distribution.

ters using the MOE structure, leading to significant 482

performance improvements across all metrics. In 483

summary, larger datasets and more complex model 484

architectures (such as GPT-3.5 and Mixtral) are 485

effective methods for enhancing cross-lingual con- 486

sistency. 487

5 Relation Between Cross-Lingual 488

Consistency and Translation 489

Capabilities 490

This section aims to explore the proposed third 491

question: Is there a correlation between the cross- 492

lingual consistency performance of LLMs and their 493

multilingual capabilities? 494

We investigate the potential correlation between 495

cross-lingual consistency and multilingual capabili- 496

ties of LLMs through multilingual translation tasks. 497

Using the Flores-200 development test (devtest) 498

dataset (Goyal et al., 2021; NLLB Team, 2022), we 499

selected 12 test languages, creating a comprehen- 500

sive test set with 132 translation directions. Based 501

on this test set, we evaluated the translation capabil- 502

ities of two LLMs: Bloomz-7b and Baichuan2-7b. 503

To mitigate the impact of tokenization on transla- 504

tion metrics for certain languages (such as Chinese, 505

Japanese, and Korean), we used the CHRF met- 506

ric (Popovic, 2017) to quantify the performance of 507

the models in each translation direction. 508

Analysis of the Correlation Between Multilin- 509

gual Translation Performance and Cross-lingual 510

Semantic Consistency (xSC) The left side of 511

Figure 2 presents two heatmaps showing the distri- 512
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Figure 3: LLM performance in multi-language transla-
tion and average xAC score distribution.

bution of xSC scores between different languages513

for two models, while the right side displays the514

zero-shot translation performance scores between515

different languages. The results indicate a consis-516

tent distribution trend between the performance of517

LLMs in multilingual translation tasks and their518

xSC scores. Specifically, these models demonstrate519

higher translation accuracy and cross-lingual se-520

mantic consistency in tasks involving Germanic521

languages (such as English, German, and Dutch)522

and Indo-Romance languages (such as French,523

Spanish, Italian, and Portuguese). In contrast, the524

performance and cross-linguistic consistency are525

relatively weaker in translation tasks that do not526

involve these two language families.527

Analysis of the Correlation Between Multilin-528

gual Translation Performance and Cross-lingual529

Accuracy Consistency (xAC) Figure 3 explores530

the correlation between the multilingual translation531

capabilities of LLMs and xAC. Each data point in532

the figure represents the model’s average perfor-533

mance score for tasks centered on that language.534

Darker points indicate the model’s average perfor-535

mance across all translation tasks involving that536

particular language, while lighter points correspond537

to the model’s average xAC score for that language.538

The results show a clear positive correlation be-539

tween the multilingual translation capabilities of540

LLMs and their average xAC scores. This correla-541

tion is consistent not only across different models,542

indicating that the higher the average xAC score,543

the stronger the overall multilingual translation per-544

formance, but also within the same model across545

different languages, showing that the higher the546

average xAC score for a particular language, the547

stronger the model’s average performance in all548

translation tasks centered on that language.549

The positive correlation observed between the550

xSC and xAC scores and the translation perfor- 551

mance suggests that enhancing cross-lingual con- 552

sistency could be a viable strategy to improve mul- 553

tilingual capabilities of LLMs. Future research 554

could further explore this correlation by including 555

a more diverse set of languages and examining the 556

underlying factors that contribute to cross-lingual 557

consistency. By continuing to refine and test these 558

models, we can better understand the intricacies of 559

multilingual translation and develop LLMs that are 560

more robust and accurate across a wide range of 561

languages. 562

6 Conclusion 563

Our research attempts to address the following 564

three key questions: 565

Do LLMs exhibit cross-lingual inconsistency? 566

To verify the presence of cross-lingual incon- 567

sistency in models, we construct a Multilingual 568

Aligned Knowledge-based Question-Answering 569

dataset (MAKQA). Using this dataset, we intro- 570

duce the Cross-lingual Semantic Consistency met- 571

ric (xSC) and assess five advanced LLMs, demon- 572

strating significant cross-lingual inconsistencies by 573

comparing their scores with those of an ideal state 574

(Oracle). Our experiments consistently confirm the 575

presence of this issue. 576

In what aspects does cross-lingual inconsistency 577

manifest within LLMs? By analyzing the perfor- 578

mance of existing models, we supplement the xSC 579

with the Cross-lingual Accuracy Consistency met- 580

ric (xAC) and the Cross-lingual Timeliness Con- 581

sistency metric (xTC). By harmonically averag- 582

ing these three metrics, we provide a comprehen- 583

sive assessment of cross-lingual inconsistency in 584

LLMs. Our findings indicate that these inconsisten- 585

cies manifest not only in semantic understanding 586

but also in accuracy and timeliness, underscoring 587

the multifaceted nature of this issue. 588

Is there a relationship between the cross-lingual 589

consistency of LLMs and their multilingual ca- 590

pabilities? Our experiments validate a positive 591

correlation between the models’ cross-lingual con- 592

sistency and their multilingual translation abilities, 593

grounded in multilingual translation tasks. This 594

suggests that improvements in multilingual transla- 595

tion capabilities can enhance cross-lingual consis- 596

tency, offering a potential pathway for mitigating 597

the inconsistencies observed. 598
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7 Limitations599

This study is dedicated to exploring how Large600

Language Models (LLMs) perform in terms of601

cross-lingual consistency. We have selected fac-602

tual knowledge-based question-and-answer tasks603

as our evaluative instrument and have experimented604

with five distinct LLMs across a dozen languages.605

It is important to highlight that while such question-606

and-answer tasks can benefit from enhanced per-607

formance through Retrieval-augmented Generation608

(RAG), the true test for LLMs lies in scenarios that609

require reliance on their internal knowledge bases610

to address indirect queries. Our research, therefore,611

zeroes in on these types of tasks intending to eval-612

uate and foster the consistency and precision with613

which LLMs handle cross-lingual information.614

However, the MAKQA dataset currently only615

supports 12 languages, most of which are resource-616

rich. Given the limited performance of LLMs in617

low-resource languages, we think that the current618

collection of languages is sufficient to preliminarily619

demonstrate the model’s cross-lingual consistency620

among common languages. In the future, we plan621

to expand the dataset to include more language622

support, especially for those languages that are less623

resourced, to more comprehensively evaluate the624

cross-lingual capabilities of LLMs.625

Another limitation of this paper is that our work626

is confined to assessing and analyzing the issue627

of cross-lingual consistency in LLMs. In future628

research, we will strive to explore how to enhance629

the cross-lingual consistency of LLMs with lower630

resource consumption. This effort is not only to631

address the inconsistencies LLMs exhibit when632

processing different languages but also to provide633

more stable and reliable support in practical appli-634

cation scenarios. We anticipate that these efforts635

will aid in building intelligent systems without lan-636

guage boundaries.637
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