
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RECTIFIED SPARSE ATTENTION FOR EFFICIENT LONG-
SEQUENCE GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficient long-sequence generation is a critical challenge for Large Language
Models. While recent sparse decoding methods improve efficiency, they suffer
from KV cache misalignment, where approximation errors accumulate and degrade
generation quality. In this work, we propose Rectified Sparse Attention (ReSA),
a simple yet effective method that combines block-sparse attention with periodic
dense rectification. By refreshing the KV cache at fixed intervals using a dense
forward pass, ReSA bounds error accumulation and preserves alignment with the
pretraining distribution. Experiments across math reasoning, language modeling,
and retrieval tasks demonstrate that ReSA achieves near-lossless generation quality
with significantly improved efficiency. Notably, ReSA delivers up to 3.77× end-
to-end speedup under decoding at 256K sequence length, making it a practical
solution for scalable long-context inference.

1 INTRODUCTION

The ability to process long contexts has become a core requirement for Large Language Models,
with context lengths up to millions of tokens (Reid et al., 2024; Yang et al., 2025). In particular,
long sequence generation has received growing attention, especially due to the demand for test-time
scaling (Guo et al., 2025; Jaech et al., 2024).

Despite this progress, efficient long-sequence generation remains a significant challenge. In standard
autoregressive decoding, each token must attend to the full KV cache, leading to frequent memory
access and increased IO pressure. This bottleneck severely limits throughput, especially in long-
context scenarios where memory access dominates latency.

Recent works (Liu et al., 2024; Tang et al., 2024) used sparse decoding to alleviate this issue, which
selectively attends to a subset of the context, achieving accuracy comparable to dense attention on
long inputs while reducing computational cost. However, as shown in Figure 1, they often suffer
from worse performance with increasing length. Since computation errors accumulate in the KV
cache during sparse decoding, the attention computation suffers from the misalignment between
training and inference, contributing to performance degradation.

0 1000 2000 3000 4000
Decoding Length

0.76

0.77

0.78

0.79

0.80

To
p-

3 
Ac

cu
ra

cy
(L

an
gu

ag
e 

M
od

el
in

g)

Dense Attention
Block Sparse Attention
ReSA(Ours)

Figure 1: Sparse decoding performance be-
comes worse with increasing decoding length
due to error accumulation of KV cache.

In this work, we propose Rectified Sparse Attention
(ReSA), a simple yet effective approach that achieves
near-lossless long-sequence generation quality while
maintaining high inference efficiency. ReSA lever-
ages block-sparse attention (Tang et al., 2024) for fast
retrieval and further improves memory efficiency by
applying shared grouping (Yuan et al., 2025), allow-
ing query heads to reuse attention patterns. To address
the error accumulation issue, we introduce dense rec-
tification, where the sparse KV cache is periodically
refreshed with a parallel dense forward pass. This
ensures that approximation errors are bounded within
a constant range, preventing long-term degradation.

We conduct experiments to demonstrate the effective-
ness of ReSA. On math reasoning benchmarks, ReSA

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Prefilling

Block Sparse Decoding

Dense Rectification

Block Sparse Decoding

𝑡 = 1

𝑡 = 2

𝑡 = 3

𝑡 = 4

Attended Token Ignored Token Cached by Dense Attention Cached by Sparse Attention

Refresh KV caches 

with dense attention 

every 𝑓 timesteps (only 

for the last 𝑓 tokens)

Figure 2: Overview of ReSA. After completing the prefill stage, the model enters sparse decoding.
Once the number of generated tokens reaches the rectification frequency, a rectification step is
performed to construct a lossless compact KV cache, after which sparse decoding resumes.

achieves strong test-time scaling and matches dense attention in long-sequence settings. In language
modeling, ReSA significantly closes the quality gap between sparse and dense decoding. On the
efficiency side, our approach yields up to 3.77× end-to-end speedup at 256K context length, showing
strong practical utility for real-world deployment.

2 RECTIFIED SPARSE ATTENTION

ReSA primarily involves two alternating phases, sparse decoding and periodic rectification. During
the decoding phase, we employ the group block sparse attention mechanism, which significantly
reduces computational and memory overhead, enabling fast autoregressive inference. During the
rectification stage, the decoding tokens are forwarded in parallel to correct approximation errors
in KV cache introduced by sparse decoding. By alternating between sparse generation and dense
rectification, ReSA enables scalable long-context inference while ensuring the generation quality.

2.1 GROUP BLOCK SPARSE ATTENTION

Self-attention mechanisms are the core component of Transformer architectures, enabling each token
to attend to all previous tokens.

We adopt a block-sparse attention design that selectively attends to a small number of relevant
memory blocks rather than the entire context. Formally, in Group-Query Attention (GQA) (Ainslie
et al., 2023), given a sequence of n tokens, the query Q ∈ Rh×g×n×d, key K ∈ Rh×n×d, and
value V ∈ Rh×n×d, the block size b and block sparse mask M ∈ {0, 1}h×n×n/b, the block-sparse
attention is computed as:

GBSA(Q,K, V,M)ij = softmax

(
QijK

⊤
i ·M i√
d

)
Vi, M ijk = Mij⌊k/b⌋ (1)

GBSA adopts a query-dependent sparsity pattern, where each query attends to a limited set of key
blocks determined by M . Since each selected key block corresponds to a contiguous memory region
in the KV cache, this design ensures both high performance and memory efficiency during inference.
Note that we further accelerate decoding by maintaining a shared sparse pattern within each GQA
group (Yuan et al., 2025).

Block Representation Following Quest (Tang et al., 2024), we represent the key-value memory
using blocks to enable efficient retrieval. Specifically, given a key matrix k ∈ Rn×d, we partition it
into non-overlapping blocks of size b, where each block contains b consecutive tokens. For the i-th
block, we compute two block descriptors:

kblock_min,i = min(kib:(i+1)b)

kblock_max,i = max(kib:(i+1)b)
(2)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Block 1 Block 2 Block 3 Block N-1 Block N

···
Select Top-! Blocks for Sparse Attention Local Window

Current Query
Head 1

Head 2

Head 3

Head 4

Pooling

KV Cache

G
roup "

Figure 3: Overview of Group Block Sparse Attention. For each group of query heads, we perform
average pooling and enforce the selection of the same KV blocks across all heads within the group.

where min(·) and max(·) are applied element-wise across the block dimension.

Notably, the block representation is entirely training-free, relying solely on statistical descriptors.
Our method remains compatible with more advanced block representation strategies, such as SeerAt-
tention (Gao et al., 2024), where block keys are fine-tuned jointly with the model to achieve higher
retrieval precision if needed.

Block Selection During decoding, given a pooling query q ∈ Rd for each GQA group and a
set of block descriptors {(kblock_min,i, kblock_max,i)}Mi=1, we compute similarity scores following the
Quest algorithm (Tang et al., 2024). Specifically, the score between the pooling query and block i is
calculated as:

scorei =
d∑

j=1

max
(
qj × (kblock_max,i)j , qj × (kblock_min,i)j

)
(3)

where qj denotes the j-th dimension of the pooling query, and (kblock min,i)j , (kblock max,i)j are the
j-th dimensions of the minimum and maximum vectors of block i, respectively.

To select the attended blocks, we adopt a dynamic top-n strategy. First, a fixed number of recent
blocks, denoted as nlocal, are always preserved by setting their scores to +∞, ensuring that the
latest context is available for local coherence. Second, we enforce a minimal block number nmin to
avoid significant performance degradation on short sequences. Finally, the value of n is dynamically
determined based on a active ratio p, following:

n = max (nmin, ⌈M × p⌉) , (4)

where M is the total number of available memory blocks.

2.2 DENSE RECTIFICATION

Transformer inference implicitly consists of two distinct phases: context encoding, realized through
the construction of the KV cache, and next-token prediction, realized through the forward pass of
the current token. While sparse attention effectively approximates the next-token prediction phase, it
inevitably introduces errors. Crucially, these prediction errors accumulate in the KV cache during
decoding, leading to compounding inaccuracies over long sequences. To mitigate this issue, we
propose Dense Rectification, a lightweight mechanism that periodically refreshes the KV cache to
maintain its quality. This design constrains error accumulation within a constant window size and
enables efficient sparse decoding without compromising generation consistency.

Rectification Algorithm Given a rectification frequency f , we perform standard sparse decoding
for up to f tokens, appending newly generated tokens into the KV cache. After every f token, we
batch these recent tokens and re-encode them using dense attention to reconstruct an updated KV
cache. This two-phase approach — serial sparse decoding followed by parallel rectification — ensures
that errors introduced by approximate attention are corrected at regular intervals, keeping the memory
quality close to that of dense decoding. Importantly, the rectification step amortizes efficiently
over large batches, maintaining high throughput even when dense recomputation is involved. To
maintain consistency, we also refresh the associated block keys during rectification. otherwise, the
misalignment between the block keys and the updated KV cache would degrade subsequent sparse
retrieval accuracy.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 Rectified Sparse Decoding
Require: Initial prompts P , modelM, rectification frequency f , maximum generation steps T
Ensure: Generated tokens G

Initialize KV cache K by Prefill(P,K)
Initialize block key cache B
Initialize output sequence G ← empty
for i = 1 to T do
t← SparseForward(G[i− 1],K,B)
Append t to G
Update KV cache K with t
Update block key cache B with t
if i mod f = 0 then
K,B ← DenseForward(G[i− f : i],K,B)
Update block key cache B

end if
end for

Relation to Speculative Decoding Our rectification strategy is conceptually similar to specula-
tive decoding (Leviathan et al., 2023), as both frameworks balance fast, approximate generation
with slower, accurate validation. However, a key difference is that speculative decoding performs
accept/reject decisions for each token using a secondary verification model. In contrast, our method
directly accepts all tokens generated within a rectification window without any rejection or regen-
eration. This simplification is effective because sparse attention maintains high predictive quality
within reasonably small windows (e.g., f = 32 or f = 64), thereby avoiding speculative failures and
reducing control overhead.

Compatibility with LLM Serving Systems Dense Rectification is naturally compatible with
modern LLM serving optimizations such as continuous batching (Yu et al., 2022) and chunked
prefill (Agrawal et al., 2023; Holmes et al., 2024). Since rectification only requires periodic batched
re-encoding, it seamlessly fits into systems that dynamically group decoding and prefill workloads to
maximize GPU utilization. By maintaining a fixed rectification frequency per request, our method
can operate within the batching and scheduling pipelines without introducing special synchronization
barriers or inefficiencies.

2.3 DECODING PROCEDURE

Our decoding procedure alternates between sparse decoding and periodic rectification to achieve
a balance between efficiency and generation quality. The process begins with a standard dense
prefill phase, where the initial prompt is encoded into a complete key-value memory for subsequent
decoding. During the decoding phase, tokens are generated sequentially using sparse attention,
which restricts memory access to a dynamically selected subset of context blocks. This enables fast
autoregressive generation with reduced computational and memory costs.

To correct for approximation errors introduced by sparse attention, we periodically perform rectifi-
cation. Specifically, after a fixed number of decoding steps, we batch the recently generated tokens
and re-encode them using dense attention. This refreshes the key-value memory and ensures that
accumulated errors are bounded within a constant window, maintaining memory quality close to
dense decoding.

The pipeline continues by alternating between sparse generation and rectification until the genera-
tion process completes. The design enables scalable long-context inference while preserving the
consistency and reliability of the generated outputs.

Memory Access Analysis In each sparse decoding step, the memory access consists of two
parts: retrieving block keys for selection, proportional to mem(KV cache)/b, and performing sparse
attention, proportional to mem(KV cache) × p, where b denotes the block size and p denotes the
sparsity ratio. For every f steps, a dense rectification is performed, whose amortized cost per step is

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

mem(KV cache)/f . Therefore, the average memory access per decoding step is approximated as:

Avg(mem) = mem(KV cache)×
(
1

b
+ p+

1

f

)
.

Compared to dense decoding, which requires accessing the entire KV cache at every step, our design
achieves a theoretical memory access reduction factor of 1

b + p+ 1
f . By adjusting b, p, and f , the

pipeline can flexibly trade-off between memory efficiency and generation fidelity.

2.4 KERNEL IMPLEMENTATION

We develop a custom kernel optimized for the decoding phase, following a split-execution strategy
similar to Flash Decoding and incorporating shared KV fetching techniques (Yuan et al., 2025). The
key design principle is to assign each GQA group to an individual streaming multiprocessor (SM),
ensuring efficient resource utilization and minimal inter-SM communication.

The decoding workload is batch_size×num_kv_heads. Given the total number of SMs available on
the GPU, the workload is split accordingly to balance the computation between SMs. The splitting is
performed at the level of block indices. For each decoding step, a batch of queries typically activates
k memory blocks. We evenly partition k active blocks among the available SMs, so that each SM is
responsible for approximately k/split blocks. Each SM independently fetches the required KV entries
corresponding to its assigned blocks and performs sparse attention locally. The kernel implementation
is described in Section A.

The design achieves high decoding throughput by minimizing memory contention, maximizing SM
occupancy, and fully exploiting intra-GQA key sharing during sparse decoding.

3 EXPERIMENTS

We evaluate ReSA from different perspectives. First, we make test-time scaling inference on math
reasoning tasks (Section 3.1). Second, we simulate inference-time attention pattern on language
modeling (Section 3.2). Third, we verify the effectiveness on retrieval (Section 3.3) tasks. Fourth, we
analyze the inference advantages (Section 3.4, including kernel-level and end-to-end accelerations.

We choose Qwen2.5 (Yang et al., 2024), a widely-used standard Transformer pre-trained model
as evalutaion architectures. We apply ReSA on all of the layers, rather than skipping the first two
layers in Quest (Tang et al., 2024). The block size is 16 and the minimal selected block number is
nmin = 16, nlocal = 1 to avoid performance degradation in short context. For longer sequences, the
default sparsity ratio is p = 0.9. The default rectification frequency is f = 32.

3.1 LONG REASONING

We evaluate test-time scaling performance on math reasoning tasks. The validation datasets in-
clude Minerva Math (Lewkowycz et al., 2022), Gaokao 2023 En (Liao et al., 2024), Olympiad-
Bench (He et al., 2024), AIME24, and AMC23. We exclude some well-known math datasets such
as GSM8K (Cobbe et al., 2021), and MATH (Hendrycks et al., 2021) since these datasets’ average
inference length is below 512. We choose DeepSeek-R1-Qwen-Distill 7B (Guo et al., 2025) as the
evaluation model. The number of attention head is 28 and KV head is 4. The hidden size is 3584 and
the number of layers is 28.

Table 1 shows that while ReSA achieves performance comparable to the dense baseline. In contrast,
block-sparse decoding without dense rectification (“Block Sparse”) consistently underperforms dense
attention. Because StreamingLLM (Xiao et al., 2023) and H2O (Zhang et al., 2023) are query-
independent sparse patterns, their results are large behind “Block Sparse”, showing the importance
of being content-aware. ReSA maintains near-lossless performance in long-context reasoning tasks,
whereas Sparse Decoding leads to performance degradation as decoding progresses. Following
Quest (Tang et al., 2024), “Block Sparsedense2” in Table 1 applies dense attention to the first two
Transformer layers. It shows that manually enforcing dense layers for the first two layers does not
result in a significant improvement in math-reasoning tasks.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Minerva Gaokao2023En OlympiadBench AIME24 AMC23 Avg
R1-Qwen-Distill 1.5B
Dense 28.7 71.6 40.8 27.4 65.6 46.82
StreamingLLM 2.9 11.2 1.8 0.0 1.9 3.56
H2O 2.6 14.2 3.3 0.0 4.4 4.90
Block Sparse 29.0 67.9 38.7 21.3 60.6 43.50
ReSA 28.1 71.8 39.5 23.0 65.4 45.56

Avg Length 6390.8 4915.8 8991.6 12126.4 7866.4 8058.2

R1-Qwen-Distill 7B
Dense 40.4 73.8 52.3 48.1 89.0 60.72
StreamingLLM 7.2 23.1 4.1 0.2 3.8 7.68
H2O 2.9 13.9 3.1 0.0 6.3 5.24
Block Sparse 38.1 72.9 48.4 46.1 83.1 57.72
Block Sparsedense2 37.9 72.5 48.8 44.6 83.1 57.38
ReSA 39.7 73.5 52.3 51.1 86.0 60.52

Avg Length 4018.7 2889.9 7520.0 10474.5 5732.2 6127.1

Table 1: Performance comparison on math reasoning tasks. While simple sparse decoding methods
show a gap with dense decoding, ReSA achieves near lossless long-sequence generation. We compare
with StreamingLLM (Xiao et al., 2023), H2O (Zhang et al., 2023), and “Block Sparse” (i.e., ablating
dense rectification). Similar to Quest (Tang et al., 2024), “Block Sparsedense2” uses dense attention
for the first two Transformer layers.

3.2 LANGUAGE MODELING

We evaluate language modeling performance under simulated sparse decoding patterns. Specifically,
we divide each input sequence into two parts. Given a total sequence length L, we split it into a prefix
of length L − x and a suffix of length x. The prefix is processed using dense attention, while the
suffix uses sparse attention. Here, x effectively controls the rectification frequency. When x = L, it
corresponds to the sparse decoding baseline, where no rectifying is performed and the entire sequence
is encoded using sparse attention.

We conduct our experiments using long-sequence book data. These texts are typically full-length
books, often exceeding 64k tokens, making them well suited for evaluating models’ performance
on long-range dependency modeling. For each target sequence length, we use the same data and
truncate from the left to ensure that the prediction tokens are perfectly aligned across all settings. We
report the perplexity computed over the final 32 tokens of each sequence to focus on the model’s
performance in the later decoding stages.

Figure 4 compares the impact of different rectification frequencies on model perplexity. The setting
labeled Decode Only corresponds to the case where all KV cache entries are generated using dense
attention, and sparse attention is only used for decoding. This serves as the upper bound for ReSA.
We observe that ReSA significantly reduces the performance gap between dense and sparse decoding.
Notably, when x = 32, the model’s performance almost approaches the upper bound, demonstrating
the effectiveness of rectification in mitigating the error accumulation issue inherent in sparse decoding.

In Figure 5, we further examine the effect of different sparsity ratios under a fixed rectification
frequency of x = 32. We find that there is a noticeable performance gap between the p = 0.98 and
p = 0.95. Although p = 0.8 sparsity achieves perplexity comparable to the dense setting, we adopt
p = 0.9 as the default due to its better trade-off between performance and efficiency. Additionally,
since effective block selection strategies can lead to higher achievable sparsity, our method can be
further combined with advanced attention selection mechanisms such as SeerAttention (Gao et al.,
2024) to enhance runtime efficiency.

3.3 LONG-SEQUENCE RETRIEVAL

We conduct experiments on the RULER benchmark to further evaluate the impact of different sparsity
levels. Unlike the long-sequence generation tasks, where rectification plays a critical role in mitigating

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4K 8K 16K 24K 32K
Sequence Length

4

5

6

7

8

9

Pe
rp

le
xi

ty

Dense
Decode Only
ReSA (Ours)
Block Sparse

Figure 4: Language modeling perplexity with
different rectification frequency.

4K 8K 16K 24K 32K
Sequence Length

4

5

6

7

8

9

Pe
rp

le
xi

ty

Dense
ReSAp = 0.8
ReSAp = 0.9
ReSAp = 0.95

Figure 5: Language modeling perplexity with
different sparsity ratio.

Setting QA MultiQuery FWE VT MultiKey MultiValue CWE Single Avg
Dense 0.563 0.211 0.833 0.719 0.688 0.246 0.134 1.000 0.549

ReSAp=0.95 0.500 0.180 0.740 0.719 0.750 0.238 0.125 1.000 0.531
ReSAp=0.9 0.625 0.203 0.760 0.719 0.750 0.234 0.178 1.000 0.559
ReSAp=0.8 0.594 0.195 0.771 0.719 0.719 0.246 0.175 1.000 0.552

Table 2: RULER benchmarks under different sparsity ratios. Dense represents the fully-attended
baseline, while ReSAp=x denotes our method with sparsity level x.

cumulative error, the RULER benchmark focuses on relatively short output sequences. As a result,
the final accuracy is primarily determined by the quality of the sparse attention estimation.

Table 2 shows the long-sequence retrieval results. We observe that as the sparsity ratio increases
from p = 0.95 to p = 0.9, there is a consistent improvement in average accuracy, with ReSAp=0.9

achieving comparable performance to the dense baseline (0.559 vs. 0.549). The performance under
p = 0.8 remains similar to that under p = 0.9, indicating that moderate increases in sparsity do not
substantially degrade accuracy in short-generation settings. Considering that a lower sparsity ratio
generally leads to faster inference, ReSAp=0.9 represents a better trade-off between performance and
efficiency on the RULER benchmark.

3.4 INFERENCE EFFICIENCY

We evaluate the efficiency of ReSA on standard GPU hardware. Specifically, we use Qwen-3 1.7B
as the evaluation model and conduct all experiments on NVIDIA H100-80G GPUs. The primary
baseline is FlashAttention, a highly optimized dense attention implementation. To ensure a fair
comparison and prevent memory overflow issues caused by excessively large KV caches during
long-sequence evaluation, we adopt a shared KV cache strategy across all layers during efficiency
measurements. The batch size is fixed at 16 by default throughout all experiments.

We integrate ReSA into Nano-vLLM (GeeeekExplorer, 2025), a simplified inference engine which
shows similar decoding efficiency as standard vLLM (Kwon et al., 2023). For latency measurement,
we report average decoding time. CUDA graph capture is enabled to reduce the CPU overhead.

3.4.1 ATTENTION EFFICIENCY

Figure 6 shows the detailed latency breakdown across different sequence lengths (16k, 64k, and 256k
tokens). We compare ReSA, and dense attention under the same settings. The latency is decomposed
into three parts: sparse estimation, attention computation, and rectification overhead.

Compared to dense attention, ReSA significantly reduces the total latency, especially at longer
sequence lengths. As the sequence grows, dense attention exhibits longer latency with increasing

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 5 10 15
Latency (ms)

Dense

ReSA
Sequence Length: 16384

0 20 40 60
Latency (ms)

Sequence Length: 65536

0 100 200
Latency (ms)

Sequence Length: 262144

Sparse Estimation Attention Rectification

Figure 6: Kernel-level latency breakdown across different sequence lengths. While sparse decoding
achieves effective acceleration, rectification only requires a small additional overhead.

context length, leading to substantial latency increase, while ReSA maintains much flatter scaling
due to its sparsified attention computation.

Moreover, sparse estimation and attention computation consume comparable amounts of time,
because the memory access pattern for sparse estimation scales with mem(KV cache)/block, while
for attention it scales with mem(KV cache) × p. Given our experimental settings (block = 16,
p = 0.9), both operations operate on similar memory volumes. Notably, under fixed block size,
further increasing the sparsity ratio can not bring significant speed-up.

The overhead of rectification is relatively small compared with sparse decoding part. Specifically, the
rectification module accounts for up to 14.0% of the total attention-related latency at 256k lengths,
while at 64k, this proportion drops to 16.6%. When the sequence length is scaling, the latency ratio
will converge to the memory access ratio 1/f . These results indicate that while sparse estimation and
attention computation remain efficient, the rectification does not bring big overhead.

3.4.2 END-TO-END INFERENCE SPEEDUP WITH NANO-VLLM

4K 16K 64K 256K
Context Length

0

100

200

La
te

nc
y

1.15x 2.12x 3.34x

3.77x

Dense
ReSA

Figure 7: End-to-end latency of LLMs using
dense attention and ReSA at various con-
text length. The results are estimated with
Nano-vLLM (GeeeekExplorer, 2025), which
simulates the product deployment setup.

Figure 7 reports the end-to-end throughput of LLMs
with dense attention and ReSA. The results are esti-
mated under the Nano-vLLM (GeeeekExplorer, 2025)
inference framework, so the evaluation setup is similar
to real-world deployment. We evaluate the throughput
across different context lengths (4K, 16K, 64K, and
256K tokens).

The results are consistent with the kernel-level eval-
uation as presented in Section 3.4.1. ReSA signifi-
cantly improves overall throughput as the sequence
length grows, achieving up to 3.77× speedup over
dense attention. In particular, the benefits of ReSA be-
come more prominent in longer sequences due to the
quadratic scaling bottleneck of dense attention, while
the overhead of sparse estimation and rectification re-
mains modest even under quantized inference. These
results demonstrate that ReSA is highly effective in
improving the real-world end-to-end generation speed.

3.5 ABLATION STUDIES

We conduct ablation studies to examine the effect of rectification frequency and sparsity ratio on
performance. As shown in Figure 8, we evaluate ReSA across five math reasoning benchmarks under
varying sparsity levels (p ∈ {0.9, 0.95, 0.98}) and rectification frequencies (f ∈ {16, 32, 64, 128}).
Compared to the sparse decoding baseline, ReSA consistently outperforms the baseline across all
sparsity levels. Notably, when the attention computation ratio is reduced to 0.1, ReSA achieves
accuracy that is remarkably close to the dense decoding upper bound. This demonstrates that ReSA

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.98 0.95 0.90
Sparsity Ratio

70.0

72.5
Ac

cu
ra

cy
 (%

)

Gaokao2023En

0.98 0.95 0.90
Sparsity Ratio

45

50

OlympiadBench

0.98 0.95 0.90
Sparsity Ratio

30

40

50
AIME24

0.98 0.95 0.90
Sparsity Ratio

75
80
85

AMC23

Dense Block Sparse ReSAf = 16 ReSAf = 32 ReSAf = 64 ReSAf = 128

Figure 8: Ablation studies on different rectification frequencies f and sparsity ratios p across five
math reasoning benchmarks. ReSA consistently improves over the sparse baseline. Frequencies
f = 32 or f = 64 achieve the best trade-off between performance and overhead.

effectively mitigates the quality drop typically associated with sparse decoding while maintaining
high computational efficiency.

Among the frequencies, f = 32 achieves accuracy close to the dense baseline on most datasets,
striking a favorable balance between quality and efficiency. While f = 16 offers marginal gains,
it incurs higher rectification overhead and is therefore less practical. Notably, even with f = 128,
a large portion of the performance gain is retained, highlighting the robustness of the rectification
mechanism under infrequent updates.

4 RELATED WORK

Sparse Attention Recent efforts in sparse decoding for large language models can be broadly
categorized into training-free and training-aware approaches. Training-free methods enhance infer-
ence efficiency without substantial retraining. Quest (Tang et al., 2024) and InfLLM (Xiao et al.,
2024) both adopt query-aware block-sparse attention, selectively retrieving critical memory blocks
based on query relevance. MagicPig (Chen et al., 2024) and ClusterKV (Tactic) (Liu et al., 2024)
employ similarity-based techniques, using hashing or clustering to approximate attention relevance.
In contrast, training-aware architectures such as NSA (Yuan et al., 2025) and MoBA (Lu et al.,
2025) integrate sparsity into model design, aligning structures with hardware during pretraining. Our
method complements training-free sparse attention by improving memory quality through lightweight
rectification, avoiding the high retraining cost required by training-aware approaches.

Speculative Decoding Speculative decoding (Leviathan et al., 2023) accelerates generation by
drafting multiple tokens and verifying them with the target model. Methods like Medusa (Cai
et al., 2024) and EAGLE (Li et al., 2024) reuse the hidden states of the target model for drafting.
TriForce (Sun et al., 2024) and MagicDec (Sadhukhan et al., 2024) propose self-speculation, using
the model’s own sparse KV cache for drafting and a dense cache for verification. Although they share
similar compute characteristics with sparse KV-based self-speculation, the methods are orthogonal
and complementary. In comparison, self-speculation uses sparse attention for drafting rather than
generating final output. Moreover, ReSA does not have per-token accept/reject decisions and
resampling overhead. So ReSA is about two times faster than sparse KV-based self-speculation as
discussed in Appendix B.

5 CONCLUSION

We introduced Rectified Sparse Attention, a simple yet effective method for efficient long-sequence
generation. ReSA combines group block sparse attention for decoding latency, and dense rectification
to bound error accumulation. Extensive experiments on math reasoning and language modeling
tasks show that ReSA achieves near-lossless performance compared to dense decoding. After
integrating into Nano-vLLM, ReSA can still deliver up to 3.77× end-to-end inference speedup at
256K context length. These results highlight ReSA’s practical effectiveness in long-context language
model deployment. By providing a practical, training-free solution that maintains accuracy, ReSA
significantly advances the feasibility of deploying large language models for reliable and efficient
long-context generation.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Amey Agrawal, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav S Gulavani, and Ra-
machandran Ramjee. Sarathi: Efficient llm inference by piggybacking decodes with chunked
prefills. arXiv preprint arXiv:2308.16369, 2023.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Training generalized multi-query transformer models from multi-head checkpoints. arXiv
preprint arXiv:2305.13245, 2023.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Zhuoming Chen, Ranajoy Sadhukhan, Zihao Ye, Yang Zhou, Jianyu Zhang, Niklas Nolte, Yuandong
Tian, Matthijs Douze, Leon Bottou, Zhihao Jia, et al. Magicpig: Lsh sampling for efficient llm
generation. arXiv preprint arXiv:2410.16179, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tri Dao, Daniel Haziza, Francisco Massa, and Grigory Sizov. Flash-Decoding for long-context
inference. https://crfm.stanford.edu/2023/10/12/flashdecoding.html, 2023.

Yizhao Gao, Zhichen Zeng, Dayou Du, Shijie Cao, Peiyuan Zhou, Jiaxing Qi, Junjie Lai, Hayden
Kwok-Hay So, Ting Cao, Fan Yang, et al. Seerattention: Learning intrinsic sparse attention in your
llms. arXiv preprint arXiv:2410.13276, 2024.

GeeeekExplorer. nano-vllm. https://github.com/GeeeekExplorer/nano-vllm/tree/main,
2025. Accessed: 2025-09-09.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021.

Connor Holmes, Masahiro Tanaka, Michael Wyatt, Ammar Ahmad Awan, Jeff Rasley, Samyam
Rajbhandari, Reza Yazdani Aminabadi, Heyang Qin, Arash Bakhtiari, Lev Kurilenko, et al.
Deepspeed-fastgen: High-throughput text generation for llms via mii and deepspeed-inference.
arXiv preprint arXiv:2401.08671, 2024.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th symposium on operating systems principles,
pp. 611–626, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

10

https://crfm.stanford.edu/2023/10/12/flashdecoding.html
https://github.com/GeeeekExplorer/nano-vllm/tree/main


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in Neural Information Processing Systems,
35:3843–3857, 2022.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty. arXiv preprint arXiv:2401.15077, 2024.

Minpeng Liao, Wei Luo, Chengxi Li, Jing Wu, and Kai Fan. Mario: Math reasoning with code
interpreter output–a reproducible pipeline. arXiv preprint arXiv:2401.08190, 2024.

Guangda Liu, Chengwei Li, Jieru Zhao, Chenqi Zhang, and Minyi Guo. Clusterkv: Manipulating llm
kv cache in semantic space for recallable compression. arXiv preprint arXiv:2412.03213, 2024.

Enzhe Lu, Zhejun Jiang, Jingyuan Liu, Yulun Du, Tao Jiang, Chao Hong, Shaowei Liu, Weiran He,
Enming Yuan, Yuzhi Wang, et al. Moba: Mixture of block attention for long-context llms. arXiv
preprint arXiv:2502.13189, 2025.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini
1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Ranajoy Sadhukhan, Jian Chen, Zhuoming Chen, Vashisth Tiwari, Ruihang Lai, Jinyuan Shi, Ian En-
Hsu Yen, Avner May, Tianqi Chen, and Beidi Chen. Magicdec: Breaking the latency-throughput
tradeoff for long context generation with speculative decoding. arXiv preprint arXiv:2408.11049,
2024.

Hanshi Sun, Zhuoming Chen, Xinyu Yang, Yuandong Tian, and Beidi Chen. Triforce: Lossless
acceleration of long sequence generation with hierarchical speculative decoding. arXiv preprint
arXiv:2404.11912, 2024.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. arXiv preprint arXiv:2406.10774,
2024.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan
Liu, and Maosong Sun. Infllm: Training-free long-context extrapolation for llms with an efficient
context memory. arXiv preprint arXiv:2402.04617, 2024.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

An Yang, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoyan Huang, Jiandong Jiang,
Jianhong Tu, Jianwei Zhang, Jingren Zhou, et al. Qwen2. 5-1m technical report. arXiv preprint
arXiv:2501.15383, 2025.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca: A
distributed serving system for Transformer-based generative models. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 22), pp. 521–538, 2022.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively
trainable sparse attention. arXiv preprint arXiv:2502.11089, 2025.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36:34661–34710, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A PSEUDO CODE OF FLASH DECODING KERNEL

The proposed group block sparse attention (Section 2.1) can be easily integrated into the Flash
Decoding (Dao et al., 2023) kernel implementation. The modified parts are highlighted as follows.

Algorithm 2 Flash Decoding with Block-Sparse Attention
Require: Queries Q, Keys K, Values V , block_indices
Ensure: Attention outputs Outpartial, logsumpartial, Out

1: for Grid indexed by (num_splits, num_kv_heads, batch_size) do
2: Load query vectors q in a GQA group
3: Compute partial_block_indices with block_indices and num_splits
4: Initialize accumulators: mi ← −∞, li ← 1.0, acc← 0
5: for block_id in partial_block_indices do
6: Load keys k and values v from KV cache in block block_id
7: Compute scaled attention scores qk ← (qk)× sm_scale
8: Apply masking to invalid positions (qk ← −1e6)
9: Compute and update mi, li, acc

10: end for
11: Store partial logsum and attention outputs into logsumpartial,Outpartial
12: end for
13: Combine different splits Combine(logsumpartial,Outpartial,Out)
14: return Attention output tensor Out

B COMPARISON WITH SELF-SPECULATION

As discussed in Section 4, ReSA shares similar computational characteristics with sparse KV cache-
based self-speculation. The rectification phase in ReSA resembles the verification phase used in
self-speculative methods. However, unlike these methods, ReSA does not rely on output logits to
make per-token accept / reject decisions. This design choice is motivated by the observation that,
when sparse attention achieves high generation quality, this kind of token-wise strict verification can
significantly increase latency without providing proportionate accuracy gains.

To validate this, we compare ReSA and sparse KV-based self-speculation on mathematical reasoning
tasks. We set the speculation length to 16, meaning that the model drafts 16 tokens using the
sparse KV cache. Similarly, we set ReSA’s rectification frequency to 16. Across all tasks, ReSA
achieves nearly 2× speedup over self-speculation while maintaining comparable accuracy. This
is because, in each verification step of speculative decoding, only about 8 tokens are typically
accepted—effectively halving the generation rate compared to ReSA. Although this strict verification
ensures that speculative decoding matches the accuracy of dense attention, we have previously shown
that ReSA also approaches the accuracy of dense attention. Therefore, we believe that the marginal
accuracy gains of speculative decoding do not justify its substantial latency overhead.

Task Sparse KV Self-Spec. Rectified Sparse Attention
Minerva 1× 1.93×
Gaokao2023En 1× 1.87×
OlympiadBench 1× 1.98×
AIME24 1× 1.96×
AMC23 1× 1.86×

Average 1× 1.92×

Table 3: Decoding speedup comparison. We set the throughput of self-speculation as baseline. ReSA
achieves larger speedup compared with sparse self-speculative decoding.

12


	Introduction
	Rectified Sparse Attention
	Group Block Sparse Attention
	Dense Rectification
	Decoding Procedure
	Kernel Implementation

	Experiments
	Long Reasoning
	Language Modeling
	Long-Sequence Retrieval
	Inference Efficiency
	Attention Efficiency
	End-to-End Inference Speedup With Nano-vLLM

	Ablation Studies

	Related Work
	Conclusion
	Pseudo Code of Flash Decoding Kernel
	Comparison with Self-Speculation

