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Abstract
Partial observability presents a significant chal-
lenge for safe reinforcement learning, as it im-
pedes the identification of potential risks and re-
wards. Leveraging specific types of privileged
information during training to mitigate the effects
of partial observability has yielded notable empir-
ical successes. In this paper, we propose Asym-
metric Constrained Partially Observable Markov
Decision Processes (ACPOMDPs) to theoretically
examine the advantages of incorporating privi-
leged information. Building upon ACPOMDPs,
we propose the Privileged Information Guided
Dreamer, a model-based safe reinforcement learn-
ing approach that leverages privileged information
to enhance the agent’s safety and performance
through privileged representation alignment and
an asymmetric actor-critic structure. Our empiri-
cal results on the Safety-Gymnasium benchmark
demonstrate that our approach significantly out-
performs existing methods in terms of safety and
task-centric performance. Meanwhile, compared
to alternative privileged model-based reinforce-
ment learning methods, our approach exhibits su-
perior performance and ease of training.

1. Introduction
Safety presents a significant challenge to the real-world
applications of reinforcement learning (RL) (Feng et al.,
2023; Ji et al., 2024; OpenAI et al., 2019; Papadimitriou
& Tsitsiklis, 1987). Several researches (Liu et al., 2021;
Thomas et al., 2022; Achiam et al., 2017) has been dedicated
to addressing this in reinforcement learning, relying on
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constrained Markov decision processes (CMDPs) (Altman,
2021), in which agents operate on the underlying states
with the objective of maximizing rewards while ensuring
that costs remain below predefined constraint thresholds.
However, existing approaches overlook the inherent partial
observability in real-world applications, thereby leading to
the suboptimal deployment of Safe Reinforcement Learning
(Safe RL) algorithms.

To mitigate partial observability in Safe RL, recent stud-
ies (Hogewind et al., 2022; As et al., 2022; Huang et al.,
2024) have investigated the application of world models
(LeCun & Courant, 2022), resulting in remarkable success.
These methods are situated within a more realistic frame-
work: Constrained Partially Observable Markov Decision
Processes (CPOMDPs) (Lee et al., 2018), where the agent
operates on a history of previous observations and actions,
without direct access to the underlying states. Thus, world
models (Hafner et al., 2023) which learn environmental dy-
namics and task-specific predictions from past observations
and actions, have been shown to effectively memorize histor-
ical information and enhance sample efficiency. However,
despite enabling agents to utilize historical information,
these models introduce computational (Papadimitriou &
Tsitsiklis, 1987) and statistical (Krishnamurthy et al., 2016;
Jin et al., 2020) chanllengs under partial observations.

To address these challenges, recent studies (Hu et al., 2024;
Lambrechts et al., 2024) investigate methods for leveraging
privileged information within world models. The utilization
of privileged information is a practical solution, as in the
real-world deployment of RL, only a subset of sensors is
accessible during testing (Hu et al., 2024) while a greater
number of sensors is available during training. Furthermore,
for agents trained in simulators and subsequently transferred
to the real world through Sim2Real approaches (Yamada
et al., 2023; Pinto et al., 2017), the underlying states in
the simulators can be effectively leveraged to enhance the
agents. Despite their remarkable empirical successes, these
approaches still encounter two challenges: (1) The theo-
retical understanding of leveraging privileged information
in the world models remain relatively limited (Cai et al.,
2025); (2) These approaches exhibit limited efficiency in
leveraging privileged information (Hu et al., 2024). These
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issues raise a crucial question:

How can we achieve safe, high-performance, theoretically
guaranteed and easily trainable agents under conditions of
partial observability by leveraging privileged information?

To address these problems, we propose a novel framework
Asymmetric Constrained Partially Observable Markov Deci-
sion Processes (ACPOMDPs), elucidating the mechanisms
for integrating privileged information. Our theoretical anal-
ysis within this framework demonstrates that agents will
underestimate potential risks in the absence of privileged in-
formation. Furthermore, building upon our framework, we
present a solution Privileged Information Guided Dreamer
(PIGDreamer) for developing safe, high-performance,
and easily trainable model-based reinforcement learning
algorithms. Our PIGDreamer enhances the world models,
predictors, representations, and critics with privileged infor-
mation generally (i.e., the underlying states, past actions,
and proprioceptive sensors). We integrate PIGDreamer
with the Lagrangian method (Nocedal & Wright, 2006; Li
et al., 2021) to ensure the satisfaction of safety constraints.
Experiments on the diverse Safety-Gymnasium benchmarks
demonstrated that our PIGDreamer outperforms existing
model-based safe reinforcement learning methods as well
as privileged model-based reinforcement learning methods,
in terms of safety, performance, and training efficiency.

Our key contributions are summarized as follows:

• We introduce a novel theoretical framework ACPOMDPs,
an extension of CPOMDPs that grants the value function
access to the underlying states. We theoretically prove that
asymmetric inputs reduce the number of critic updates and
lead to a more optimal policy compared to the standard
CPOMDPs framework.

• Built upon our analysis, we present PIGDreamer, a safe
model-based reinforcement learning approach that lever-
ages privileged information to achieve safety, high perfor-
mance, and ease of training.

• Experiments on the Safety-Gymnasium benchmark (Ji
et al., 2023b) demonstrate that our PIGDreamer outper-
forms existing safe model-based reinforcement learning
methods and state-of-the-art reinforcement learning meth-
ods that utilize privileged world models.

2. Preliminaries
Constrained Partially Observable Markov Decision
Processes (CPOMDPs) Sequential decision making
problems under partial observations are typically formu-
lated as Partially Observable Markov Decision Processes
(POMDPs) (Egorov et al., 2017), represented as the tuple
(S,A, P,R,Z,O, γ). The state space is denoted as S and
the action space as A. The transition probability function

is denoted as P (s′|s, a). Let Z be the observation space,
O (z|s′, a) stands for the observation probability. The re-
ward function is represented by R (s, a). The discount factor
is represented by γ. In POMDPs framework, the agent has
access only to the observations zt and actions at at each
time step t, without direct knowledge of the underlying state
of the environment.

As a result, the agent must maintain a belief state bt,
where bt (s) = Pr(st = s|ht, b0) represents the proba-
bility distribution over possible states s, given the history
ht = {z0, a0, z1, a1, . . . , at−1, zt} of past actions and ob-
servations, and the initial belief state b0. We denote the set
consisting of all possible belief states as B, the belief reward
function as RB (b, a) =

∑
s∈S b(s)R(s, a), the transition

function as τ(b, a, z). For simplicity, we write τ(b, a, z) as
ba,z . Crucially, let agent policy denote πθ, which defines
the probability distribution over actions a given the current
belief state b, i.e., πθ (a | b), where θ is a learnable network
parameter. The objective in POMDP is to maximize the
long-term belief expected reward VR (b0) as follows:

max
π

VR (b0) = at∼π[
∑∞
t=0γ

tRB (bt, at) |b0], (1)

Constrained POMDPs (CPOMDPs) is a generalization of
POMDPs defined by (S,A, P,R,Z,O, , d, γ). The cost
function set = {(Ci, bi)}mi=1 comprises individual cost func-
tions Ci and their corresponding cost thresholds bi. The goal
is to compute an optimal policy that maximizes the long-
term belief expected reward VR (b0) while bounding the
long-term belief expected costs VCi

(b0) as follows:

max
π

VR (b0) = at∼π[
∑∞
t=0γ

tRB (bt, at) |b0],

s.t.VCi
(b0) = at∼π[

∑∞
t=0γ

tCiB (bt, at) |b0] ≤ bi,∀i ∈ [m]
(2)

where in practical implementations, VR (b0) is updated by
the following Bellman optimal equation:

V ∗
R(b) = max

a∈A

[
RB(b, a) + γ

∑
z∈Z

Pr(z|b, a)V ∗
R(b

a,z)

]
,

(3)
and the VCi

(b0) is updated equivalently.

Safe Model-based Reinforcement Learning Model-
based reinforcement learning (MBRL) approaches (Mo-
erland et al., 2022; Polydoros & Nalpantidis, 2017;
Berkenkamp et al., 2017) provide significant advantages
for addressing safe RL problems by facilitating the model-
ing of environmental dynamics. Jayant & Bhatnagar (2022);
Thomas et al. (2022) enhance the integration of model-
free safe reinforcement learning algorithms with dynamic
models by employing ensemble Gaussian models. Alterna-
tively, Zanger et al. (2021) utilize neural networks (NNs)
to quantify model uncertainty and constrain this error mea-
sure through constrained model-based policy optimization.
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Recently, As et al. (2022) has integrated Bayesian meth-
ods with the Dreamer framework (Hafner et al., 2020) to
quantify uncertainty in the estimated model, employing the
Lagrangian method to incorporate safety constraints. How-
ever, these works overlook the issue of partial observability
in safe reinforcement learning, which presents a more re-
alistic setting in real-world applications. In this context,
Hogewind et al. (2022) addresses the problem of partial
observability in safe reinforcement learning by integrating
the Lagrangian mechanism into the SLAC framework (Lee
et al., 2020). Huang et al. (2024) achieved zero-cost per-
formance by integrating the Lagrangian method with the
Dreamerv3 framework. From the perspective of POMDPs
(Kaelbling et al., 1998), constructing world models solely
from partial observations does not fully exploit the potential
of these models. In this work, we aim to address partial
observability by leveraging privileged information that is ac-
cessible during training, thereby ensuring the agent’s safety
and enhancing its performance.

World Models with Privileged Information While exten-
sively studied in the literature on model-free reinforcement
learning (Pinto et al., 2017; Salter et al., 2021; Baisero &
Amato, 2021; Baisero et al., 2022; Li et al., 2020), leverag-
ing privileged information is seldom addressed in MBRL.
Yamada et al. (2023) represent the first attempt to utilize
privileged information in the training of world models, em-
ploying it by distilling the learned latent dynamics model
from the teacher to the student world model. Since the under-
lying state transitions of privileged information and partial
observations differ, direct model distillation may eliminate
essential features from partial observations. Lambrechts
et al. (2024) incorporate privileged information solely by in-
troducing an auxiliary objective that predicts the privileged
information exclusively. Inspired by scaffolding teaching
mechanisms in psychology, Hu et al. (2024) developed an
approach to exploit privileged sensing in critics, world mod-
els, reward estimators, and other auxiliary components used
exclusively during training, achieving outstanding empirical
results. However, this approach adds too many components,
resulting in low training efficiency. In summary, the current
exploration of world models utilizing privileged information
remains inadequate.

3. Asymmetric Constrained Partially
Observable Markov Decision Processes
(ACPOMDPs)

In this section, we introduce our formulation of the Asym-
metric Constrained Partially Observable Markov Decision
Processes (ACPOMDPs) and compare it with the standard
CPOMDPs. This comparison highlights the advantages of
utilizing an asymmetric architecture, particularly in terms
of improving sample efficiency and policy learning.

3.1. Framework Setup

We propose ACPOMDPs, a relaxed variant of CPOMDPs.
The key distinction is that ACPOMDPs assumes the avail-
ability of the underlying states when computing the long-
term expected values. Thus, ACPOMDPs are formulated by
a tuple (S,B,A, τ,RB , , d, γ), and aims to maximize the
long-term belief expected reward VR (b) while bounding the
long-term belief expected costs VCi (b):

π⋆ = argmax
a∈A

VR(b).

s.t.VCi
(b) ≤ bi,∀i ∈ [m]

(4)

Benefiting from the availability of the underlying states,
at each time step, the critic receives and the action a and
the underlying state s, and updates the V ∗

R(s) using the
following equation:

V ∗
R(s) = max

a∈A

[
R(s, a) + γ

∑
s′

P (s′|s, a)V ∗
R(s

′)

]
. (5)

Consequently, the VR(b) and VCi
(b) in the optimization

problem (4) are estimated using this updated V ∗
R(s):

V ∗
R(b) =

∑
s∈S

b(s)V ∗
R(s). (6)

Notice that the update of the VCi
(b) is not presented, which

is equivalent to (6).

3.2. Comparison with CPOMDPs

We compare the different estimations of the VR(b) and
VC(b) to demonstrate the superiority of ACPOMDPs. Since
the VR(b) and VC(b) are equivalent in their estimations,
we Collectively refer to them as V (b). For clarity, we
rewrite the V (b) in CPOMDPs as Vsym(b) and V (b) in
ACPOMDPs as Vasym(b).

Lemma 3.1. Kaelbling et al. (1996) showed that the
value function at time step t can be expressed by a set
of vectors: Γt = {α0, α1, . . . , αm}. Each α-vector repre-
sents an |S| -dimensional hyper-plane, and defines the value
function over a bounded region of the belief:

V ∗
t (b) = max

α∈Γt

∑
s∈S

α(s)b(s). (7)

Lemma 3.2. Assume the state space S, action space A,
and observation space Z are finite. Let |S|, |A|, and |Z|
represent the number of states, actions, and observations,
respectively. Let |Γt−1| denote the size of the solution set
for the value function Vt−1(b) at time step t − 1. The
minimal number of elements required to express the value
function Vt(b) at time step t, denoted as |Γt|, grows as
|Γt| = O(|A||Γt−1||Z|) (Pineau et al., 2006).
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Figure 1. Overview of PIGDreamer. The components highlighted in purple are trained using privileged information, which is collected
from the simulators during exploration. We enhance the estimation of the critics by granting access to privileged information, thereby
improving the actor’s policy. Additionally, privileged representations are constructed to provide the actor with more information.

We conclude that, at each time step t, the belief state space
can be represented as a discrete representation space that
exactly captures the value function Vt(b). The size of this
space is given by |Γt| = O(|A||Γt−1||Z|). Furthermore,
as derived from (6), in the ACPOMDPs framework, the
required size of the representation space is reduced to |S|.
Clearly, |S| ≪ |Γt| = O(|A||Γt−1||Z|).

Thus, ACPOMDPs significantly reduce the size of the repre-
sentation space required to express the value function V (b),
eliminating observation-related uncertainties to the greatest
extent possible. This, in turn, reduces the number of updates
required for the critic to estimate the value function V (b).

Theorem 3.3. Let V ∗
asym(b) and V ∗

sym(b) represent the op-
timal long-term expected values under the ACPOMDPs and
CPOMDPs frameworks, respectively. Then, for all belief
states b ∈ B, the inequality holds: V ∗

asym(b) ≥ V ∗
sym(b).

(The proof is provided in Appendix A)

The conclusion indicates that the ACPOMDPs framework,
by leveraging asymmetric information, yields superior poli-
cies compared to the CPOMDPs framework. This is be-
cause, for any belief state b ∈ B, the optimal long-
term expected reward under ACPOMDPs is always greater
than or equal to that under CPOMDPs. Regarding safety,
ACPOMDPs provide more accurate estimations due to ad-
ditional information, while long-term expected costs un-
der CPOMDPs are consistently lower or equal to those of
ACPOMDPs. This implies that CPOMDPs tend to underes-
timate future safety risks.

4. Methodology
Grounded in the ACPOMDP framework, we now present
PIGDreamer, a model-based safe reinforcement learning
approach that utilizes privileged information to improve the
policy of an agent operating under partial observability.

4.1. Overview

We base our model on DreamerV3 (Hafner et al., 2023),
a renowned algorithm noted for its cross-domain general-
ity and insensitivity to hyperparameters, wherein the world
models are implemented as a Recurrent State-Space Model
(RSSM) (Hafner et al., 2019). In our framework, we in-
corporate additional components trained using privileged
information to enhance policy training, subsequently dis-
abling these components during deployment to ensure that
the policy operates solely on partial observations. Specifi-
cally, during training, we concurrently develop two world
models that serve as environment simulators: the naive
world model and the privileged world model. The naive
world model learns from the agent’s observations, while
the privileged world model learns from the underlying state.
Subsequently, the actor and the critics are trained using the
abstract sequences generated by these world models, where
the actor operates exclusively on partial observations, while
the critics are granted access to privileged information. Fi-
nally, during deployment, only the naive world model and
the actor, which operates on partial observations, are acti-
vated. Figure 1 provides a clear visualization of our training
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pipeline. In summary, we leverage privileged information
in three distinct ways:

Privileged Representations. Intuitively, the more infor-
mative the representation the actor receives, the better the
resulting policy will be. Inspired by this notion, we enhance
the state representations in the naive world model by align-
ing it with the state representations derived from privileged
information.

Privileged Predictors. Accurate prediction of rewards and
costs from partial observations is infeasible, as they do not
contain comprehensive information about the underlying
states. We address this challenge by providing the predictors
with privileged information.

Privileged Critics. Based on our Theorem 3.3, granting
critics access to privileged information can enhance policy
performance. Consequently, we provide the critics with
privileged information to refine their estimations.

4.2. Privileged Information Guided World Model

The world models are parameterized by learnable network
parameters ϕ. Each world model operates on its model
state s. At each time step t, the world models receive an
observation ot, an action at, and privileged information it
as inputs. Encoders map ot and it to embeddings z−t and
z+t , respectively. The dynamics predict the next states ŝt+1

based on the action at. The posteriors utilize embeddings
z−t and z+t and the predicted states ŝt+1, to predict the true
underlying states st+1. Finally, reward and cost predictors
use the concatenation of s∗t and s+t to predict rewards and
costs, while decoders employ their corresponding s∗t and
s+t to reconstruct the inputs ot and it. Detailed definitions
of these components are provided below:

Naive World Model
Encoder: pϕ(z−t | ot)
Decoder: pϕ(ôt, ît | s∗t )
Dynamics: pϕ(ŝ−t | s−t−1, at−1)
Posterior: qϕ(s−t | ŝ−t , z−t )
Oracle Posterior: qϕ(s∗t | ŝ−t , z−t , z+t )

Privileged World Model

Encoder: pϕ(z+t | it)
Decoder: pϕ(̂it | s+t )
Dynamics: pϕ(ŝ+t | s+t−1, at−1)
Posterior: qϕ(s+t | ŝ+t , z+t )
Reward Predictor: pϕ(r̂t | s∗t , s−t )
Cost Predictor: pϕ(ĉt | s∗t , s−t )

(8)

The world models are classified into two categories: the
naive world model and the privileged world model. The
naive world model, which relies solely on the observation ot
as input, is available to agents. As depicted in the Figure 2,

the world models predicts state transitions using the dynam-
ics by minimizing the dynamic loss between the predicted
states ŝt and the true underlying states st. The dynamic loss
is presented in Equation 10.

Lrep(q, p) = αKL [q ∥ sg(p)] + βKL [sg(q) ∥ p] (9)

Ldyn = Lrep(ŝ−t , s−t ) + Lrep(ŝ+t , s+t ). (10)

In the above expressions, sg(·) represents the stop-gradient
operator, and KL [·] denotes the Kullback-Leibler (KL) di-
vergence.

Representation Alignment Specially, in the naive world
model, at each time step t, the oracle posterior predicts
the oracle representations s∗t , which encapsulate both the
observation ot and the privileged information it. We enforce
the alignment between the states s− and the oracle states
s∗ with the align loss defined in Equation 11 to enhance the
state representations of the naive world model as follows:

Lalign = Lrep(s∗t , s−t ). (11)

Privileged Predictors In the PIG World Model, the predic-
tors predict rewards and costs utilizing the most informative
state representations s∗ and s+. Here, s∗ encompasses the
observational information upon which the agent operates,
while s+ contains the privileged information that enhances
prediction capabilities. The predictors are optimized with
the following loss:

Lpred = − ln p+ϕ (r̂t | s
∗
t , s

−
t )︸ ︷︷ ︸

reward loss

− ln p+ϕ (r̂t | s
∗
t , s

−
t )︸ ︷︷ ︸

cost loss

. (12)

Afterwards, the decoders are supervised to reconstruct their
corresponding inputs using the reconstruction loss in Equa-
tion (13). Specifically, the decoder in the naive world model
reconstructs the inputs ot and it using the oracle representa-
tions s∗t to capture all relevant information. This information
is then distilled into s−t . Compared to previous works (Lam-
brechts et al., 2024; Hu et al., 2024) that directly reconstruct
privileged information it from the state representations s−t ,
this method is significantly more robust when the privileged
information is excessively informative for reconstruction:

Ldec = − ln p−ϕ (ôt, ît | s
∗
t )︸ ︷︷ ︸

observation

− ln p+ϕ (̂it | s
+
t )︸ ︷︷ ︸

privileged information

. (13)

Finally, the objective of the privileged information guided
world model can be summarized as follows:

Lϕ = Ldyn + Lalign + Ldec + Lpred. (14)

4.3. Privileged Safe Actor Critic Learning

The actor and critic models learn purely from the abstract
sequences generated by world models. Specifically, at time
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KL
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Figure 2. Visualization of the world model learning pipeline. Blue
represents the components belonging to the naive world model, while
purple indicates the components associated with the privileged world
model.

 Privileged CriticsActor

Optimize

Figure 3. Visualization of the actor critic learning pipeline. The lower
part of the figure presents the generation process of the abstract
sequences, dubbed Twisted Imagination. The upper part of the figure
demonstrates the learning mechanism of the actor-critic model.

step t, the actor model, parameterized with the learnable
network parameter θ, operates on the state s−t to predict the
policy distribution πθ(at | s−t ). The critic models, on the
other hand, operate on the state s−t and s+t to estimate the
long-term expected returns vψr

(s−t , s
+
t ) and vψr

(s−t , s
+
t ).

Figure 4.2 is presented for a clear visualization of our train-
ing pipeline. In summary, the key components of the actor-
critic model are:

Actor: at ∼ πθ(at | s−t )
Reward Critic: vψr (s

−
t , s

+
t ) ≈ Eπθ

[
Rλt

]
Cost Critic: vψc

(s−t , s
+
t ) ≈ Eπθ

[
Cλ
t

] (15)

Twisted Imagination is a procedure for generating ab-
stract sequences from the world model, leveraging low-
dimensional privileged information. As illustrated in Figure
4.2, starting from the representations of replayed inputs s−t
and s+t , the actor samples an action at from the policy distri-
bution πθ(at | s−t ), utilizing s−t from the naive world model.
Subsequently, each world model predicts its next representa-
tions s−t+1 and s+t+1. The cost ĉt and reward r̂t can then be
predicted by the respective predictors until the time step t
reaches the imagination horizon H = 15. This synchroniza-
tion of the imagination process across the two world models
enables the actor and critic to learn from coherent simulated
trajectories.

Privileged Critics After the Twisted Imagination, an ab-
stract trajectory

{
s−t , s

+
t , at, r̂t, ĉt

}
1:H

is provided to the
actor and the critics. Similar to privileged predictors, the
critics are supplied with privileged information s+t and the
state s−t to generate more accurate estimations. Specifically,
based on the abstract trajectory, the critics can estimate the
long-term expected returns vψr (s

−
t , s

+
t ) and vψc(s

−
t , s

+
t ),

while the actor optimizes its policy according to a speci-

fied objective. From the given imaginary trajectory, the
bootstrapped TD(λ) value Rλ(st) for the reward critic is
calculated as follows:

Rλ(s−t , s
+
t ) = r̂t + γ((1− λ)Vψr

(
s−t+1, s

+
t+1

)
(16)

+ λRλ(s−t , s
+
t )),

Rλ(s−T , s
+
T ) = Vψr

(
s−T , s

+
T

)
. (17)

These values are used to assess the long term expected
reward, where Vψr

(st) is approximated by the reward critic
to consider the returns that beyond the imagination horizon
H . Note that, we show here only the calculation of Rλ(st),
the calculation of Cλ(st) is equivalent to (16).

Lagrangian Constrained Policy Optimization With the
calculated TD(λ) values Rλ(st) and Cλ(st), we follow
Equation (27) to define the policy optimization objective:

L(θ) = −
T∑
t=1

sg
(
Rλ(st)

)
+ ηH

[
πθ

(
at | s−t

)]
−Ψ

(
Cλ(st), λ

p
k, µk

)︸ ︷︷ ︸
penalty term

. (18)

This policy optimization objective encourages the actor to
maximize the expected reward while simultaneously satis-
fying the specified safety constraints. The penalty term is
formulated using the Augmented Lagrangian method (Dai &
Zhang, 2021), which penalizes behaviors that violate safety
constraints. Additionally, an entropy term is included in
the objective to promote exploration. Further details regard-
ing the policy optimization objective and the Augmented
Lagrangian method can be found in Appendix C.
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Figure 4. Aggregate metrics for summarizing benchmark performance. We utilize the rliable library (Agarwal et al., 2021) to compute
the median, inter-quartile mean (IQM), and mean estimates for normalized reward and cost returns, accompanied by 95% bootstrap
confidence intervals (CIs) based on three runs across five tasks.

5. Experiments
Experimental Setup In all our experiments, the agent ob-
serves a 64x64 pixel RGB image from the onboard camera.
We assess the task objective performance and safety using
the following metrics:

• Average undiscounted episodic return for E episode:
Ĵ(π) = 1

E

∑E
i=1

∑Tep

t=0 rt.

• Average undiscounted episodic cost return for E

episode: Ĵc(π) = 1
E

∑E
i=1

∑Tep

t=0 ct.

We compute Ĵ(π) and Ĵc(π) by averaging the sum of costs
and rewards across E = 10 evaluation episodes of length
Tep = 1000. The results for all methods are recorded once
the agent reached 4M environment steps. Detailed designs
of privileged information, descriptions of all baselines, and
additional experiments can be found in Appendix D.

Results As illustrated in Figure 4, our algorithm achieves
state-of-the-art performance on the Safety-Gymnasium
benchmark by leveraging privileged information. In terms
of safety, PIGDreamer not only meets the safety constraints
at convergence, similar to alternative methods, but also at-
tains near-zero-cost performance. Concerning task-centric
rewards, PIGDreamer outperforms all methods, especially
its unprivileged variant, SafeDreamer, which demonstrates

significant improvements. Conversely, as depicted in Fig-
ure 5, LAMBDA matches PIGDreamer in rewards but fails
to ensure safety and does not produce a practical policy
for the PointButton1 task. Additionally, Safe-SLAC per-
forms worse, failing in the PointPush1 and RacecarGoal1
tasks and exhibiting considerable safety constraint viola-
tions. Compared to alternative methods that also utilize priv-
ileged information, PIGDreamer consistently outperforms
them in terms of safety and rewards. This underscores the
superiority of our approach to leveraging privileged infor-
mation.

Analysis of Privileged information We now examine Scaf-
folder (Lag), Informed-Dreamer (Lag), and PIGDreamer.
Each of these algorithms, which leverage privileged informa-
tion, outperforms its unprivileged variant, SafeDreamer, to
varying extents. This suggests that utilizing privileged infor-
mation enhances the agent’s ability to learn a superior policy,
even with limited observations, consistent with our Theorem
3.3. However, comparisons reveal that different approaches
to exploiting privileged information yield disparate results.
Informed-Dreamer, which relies solely on reconstructing
privileged information from partial observations, achieves
the lowest safety and task-centric performance. In contrast,
Scaffolder builds on Informed-Dreamer by providing pre-
dictors and critics with privileged access and incorporating
an additional privileged actor for exploration, leading to
significantly improved outcomes. Nonetheless, these en-
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Figure 5. The experimental results for the Safety-Gymnasium Benchmark. The upper figures illustrate the curves of episodic reward for
all algorithms, while the lower figures depict the curves of episodic cost for each algorithm. The red solid line indicates the cost constraint
for this task.

hancements result in extended training times. Our analysis
in Table 6 demonstrates that Scaffolder requires an average
training time that is 74% longer compared to SafaDreamer,
while Informed-Dreamer necessitates only 5% longer av-
erage training time. Our algorithm, PIGDreamer, achieves
the best outcomes with only a 22.4% increase in average
training time. This indicates that our algorithm exhibits the
highest efficiency in utilizing privileged information.

10.5 12.0 13.5
PIGDreamer(Ours)
PIG -Unprivileged

PIG -No Rep
IQM

Human Normalized Scores

Figure 6. The ablation study results for the Safety-Gymnasium
Benchmark. The aggregate metrics for five tasks on the Safety-
Gymnasium Benchmark, with each task conducted across 5 runs.

Ablation Study Now we assess the component-wise con-
tributions of the privileged components in our algorithm.
Our ablation study includes the following settings: (1) PIG-
Dreamer: The complete version of PIGDreamer, in which
all privileged components are enabled. (2) PIG -No Rep:
In this variant, the naive world model does not align the
state representations with the oracle representation. (3) PIG
-Unprivileged: In this variant, we remove the privileged
critics, and no privileged information is accessible during
training.

Figure 6 presents the results of the ablation study conducted
on the Safety-Gymnasium Benchmark, while detailed ex-
perimental results can be referenced in 8. As illustrated in
Figure 8, PIG - No Rep, which relies solely on privileged

information within the critics, shows only marginal improve-
ment compared to PIG - Unprivileged. This limited en-
hancement occurs because the privileged critic mainly im-
proves the agent’s policy by accurately estimating the value
function, which guides decision-making but is insufficient
for substantial improvements. Conversely, PIGDreamer,
utilizing privileged representations, achieves significant im-
provements. This is because the privileged representations
enable the agent to predict privileged information from its
observations, allowing the agent to operate on more infor-
mative representations.

6. Conclusion
We propose PIGDreamer, a model-based safe reinforce-
ment learning approach specifically proposed for par-
tially observable environments with safety constraints.
This approach is formalized within the Asymmetric Con-
strained Partially Observable Markov Decision Processes
(ACPOMDPs) framework, providing theoretical advantages
in addressing the challenges of partial observability and
safety. By leveraging privileged information through priv-
ileged representation alignment and an asymmetric actor-
critic structure, PIGDreamer achieves competitive perfor-
mance using vision-only input on the Safety-Gymnasium
benchmark. Our experiments show that PIGDreamer is the
most effective approach for utilizing privileged informa-
tion within world models, excelling in performance, safety,
and training efficiency. We believe PIGDreamer marks a
significant advancement in harnessing model-based safe re-
inforcement learning for real-world applications. However,
we noted that privileged information did not always lead
to improvements in certain tasks, necessitating further re-
search to explore the relationships between specific types of
privileged information and particular tasks.
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A. Proof
In this section, we prove Theorem 3.3. First, we donate the optimal long-term values in the belief space under the
ACPOMDPs framework as V ∗

asym(b):

V ∗
asym(b) =

∑
s∈S

b(s)V ∗(s)

V ∗(s) = max
a∈A

[
R(s, a) + γ

∑
s′

P (s′|s, a)V ∗(s′)

] (19)

where V ∗(s) represents the optimal long-term values in the state space. Similar to V ∗
asym(b), the optimal long-term values

in the belief space under the CPOMDPs framework are represented as V ∗
sym(b):

V ∗
sym(b) = max

a∈A

[
R(b, a) + γ

∑
z∈Z

Pr(z|b, a)V ∗
sym(ba,z)

]
(20)

Since
Pr(z|b, a) =

∑
s′∈S

Pr(z|a, s′)
∑
s∈S

Pr(s′|s, a)b(s) (21)

V ∗
sym(b) can be rewritted as:

V ∗
sym(b) = max

a∈A

[
R(b, a) + γ

∑
z∈Z

V ∗
sym(ba,z)

∑
s′∈S

Pr(z|a, s′)
∑
s∈S

P (s′|s, a)b(s)

]

= max
a∈A

[
R(b, a) + γ

∑
z∈Z

V ∗
sym(ba,z)

∑
s∈S

∑
s′∈S

Pr(z|a, s′)P (s′|s, a)b(s)

] (22)

Proof. According to Lemma 3.1, V ∗(s′) can be expressed by a set of vectors: Γt = {α0, α1, . . . , αm}. As a result, V ∗(s′)
can be rewrite as the following equation:

V ∗(s) = max
a∈A

[
R(s, a) + γ

∑
s′

P (s′|s, a)max
α∈Γt

α(s′)

]
(23)

Similarly, V ∗
sym(b) can be rewritten as:

V ∗
sym(b) = max

a∈A

[∑
s∈S

R(s, a)b(s) + γ
∑
z∈Z

max
α∈Γt−1

∑
s∈S

∑
s′∈S

Pr(z|a, s′)P (s′|s, a)b(s)α(s′)

]
(24)

Then:
V ∗
asym(b) =

∑
s∈S

b(s)V ∗(s)

=
∑
s∈S

b(s)max
a∈A

[
R(s, a) + γ

∑
s′

P (s′|s, a)max
α∈Γt

α(s′)

]

≥ max
a∈A

[∑
s∈S

b(s)R(s, a) + γ
∑
s∈S

b(s)
∑
s′∈S

P (s′|s, a)max
α∈Γt

α(s′)

]

= max
a∈A

[
R(b, a) + γ

∑
s∈S

∑
s′∈S

∑
z∈Z

Pr(z|a, s′)P (s′|s, a)b(s)max
α∈Γt

α(s′)

]

≥ max
a∈A

[
R(b, a) + γ

∑
z∈Z

max
α∈Γt

∑
s∈S

∑
s′∈S

Pr(z|a, s′)P (s′|s, a)b(s)α(s′)

]
= V ∗

sym(b)

(25)
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B. Hyperparameters
B.1. PIGDreamer & SafeDreamer & Informed-Dreamer & Scaffolder

Table 1. Hyperparameters

Name Symbol Value

World Model
Number of latent classes 48
Classes per latent 48
Batch size B 64
Batch length T 16
Learning rate 10−4

Coefficient of KL divergence in loss αq, αp 0.1, 0.5
Coefficient of decoder in loss βo, βr, βc 1.0, 1.0, 1.0

Planner
Planning horizon H 15
Number of samples NπN 500
Mixture coefficient M 0.05
Nπθ = M ·NπN

Number of iterations J 6
Initial variance σ0 1.0

PID Lagrangian
Proportional coefficient Kp 0.01
Integral coefficient Ki 0.1
Differential coefficient Kd 0.01
Initial Lagrangian multiplier λp0 0.0
Lagrangian upper bound 0.75
Maximum of λp

Augmented Lagrangian
Penalty term ν 5−9

Initial penalty multiplier µ0 1−6

Initial Lagrangian multiplier λp0 0.01

Actor Critic
Sequence generation horizon 15
Discount horizon γ 0.997
Reward lambda λr 0.95
Cost lambda λc 0.95
Learning rate 3 · 10−5

General
Number of other MLP layers 5
Number of other MLP layer units 512
Train ratio 512
Action repeat 4

B.2. Safe-SLAC

Hyperparameters for Safe-SLAC. We maintain the original hyperparameters unchanged, with the exception of the action
repeat, which we adjust from its initial value of 2 to 4.
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Table 2. Hyperparameters for Safe-SLAC

Name Value

Length of sequences sampled from replay buffer 15
Discount factor 0.99
Cost discount factor 0.995
Replay buffer size 2× 105

Latent model update batch size 32
Actor-critic update batch size 64
Latent model learning rate 1× 10−4

Actor-critic learning rate 2× 10−4

Safety Lagrange multiplier learning rate 2× 10−4

Action repeat 4
Cost limit 2.0
Initial value for α 4× 10−3

Initial value for λ 2× 10−2

Warmup environment steps 60× 103

Warmup latent model training steps 30× 103

Gradient clipping max norm 40
Target network update exponential factor 5× 10−3

B.3. LAMBDA

Hyperparameters for LAMBDA. We maintain the original hyperparameters unchanged, with the exception of the action
repeat, which we adjust from its initial value of 2 to 4.

Table 3. Hyperparameters for LAMBDA

Name Value

Sequence generation horizon 15
Sequence length 50
Learning rate 1× 10−4

Burn-in steps 500
Period steps 200
Models 20
Decay 0.8
Cyclic LR factor 5.0
Posterior samples 5
Safety critic learning rate 2× 10−4

Initial penalty 5× 10−9

Initial Lagrangian 1× 10−6

Penalty power factor 1× 10−5

Safety discount factor 0.995
Update steps 100
Critic learning rate 8× 10−5

Policy learning rate 8× 10−5

Action repeat 4
Discount factor 0.99
TD(λ) factor 0.95
Cost limit 2.0
Batch size 32
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C. The Augmented Lagrangian
The Augmented Lagrangian method incorporates the safety constraints into the optimization process by adding a penalty
term to the objective function. This allows the actor model to optimize the expected reward while simultaneously satisfying
the specified safety constraints. As a result, by adopting the Augmented Lagrangian method, we transform the optimization
problem in (4) into an unconstrained optimization problem:

max
π∈Π

min
λ≥0

[
R(π)−

C∑
i=1

λi (Ci(π)− bi) +
1

µk

C∑
i=1

(
λi − λik

)2]
(26)

where λi are the Lagrange multipliers, each corresponding to a safety constraint measured by Ci(π), and µk is a non-
decreasing penalty term corresponding to gradient step k. We take gradient steps of the following unconstrained objective:

R̃(π;λk, µk) = R(π)−
C∑
i=1

Ψ(Ci(π), λ
i
k, µk) (27)

We define ∆i = Ci(π)− bi. The update rules for the penalty term Ψ(Ci(π), λ
i
k, µk) and the Lagrange multipliers λi are as

follow:

∀i ∈ [m] : Ψ(Ci(π), λ
i
k, µk), λ

i
k+1 =

{
λik∆i +

µk

2 ∆2
i , λ

i
k + µk∆i if λik + µk∆i ≥ 0

− (λi
k)

2

2µk
, 0 otherwise.

(28)

D. Experiments
D.1. Privileged Information Design

In different tasks, it is necessary to customize the use of different privileged information, and different privileged information
will have different impacts, we show our privileged information settings in our experiments.

Privileged Information Name Dimension Description
hazards (n, 3) Represents the relative positions of hazards in the environment, containing 3D coordinates [x, y, z].
velocimeter (3, ) Provides the agent’s velocity information in three-dimensional space [vx, vy, vz].
accelerometer (3, ) Provides the agent’s acceleration information in three-dimensional space [ax, ay, az].
gyro (3, ) Provides the agent’s angular velocity information [ωx, ωy, ωz].
goal (3, ) Represents the relative coordinates of the target position that the agent needs to reach [xgoal, ygoal, zgoal].
robot m (3, 3) Represents the rotation matrix of the robot, describing the robot’s orientation and rotation in three-dimensional space.
past 1 action (4, ) Represents the action information from the previous time step.
past 2 action (4, ) Represents the action information from the second-to-last time step.
past 3 action (4, ) Represents the action information from the third-to-last time step.
euler (2, ) Represents the agent’s pose information given in Euler angles [roll, pitch].

Table 4. Privileged Information: SafetyQuadrotorGoal1

D.2. Experimental Setup

Setup. Our experiments were conducted using the following configuration: a single A100-PCIE-40GB GPU (40GB), a 10
vCPU Intel Xeon Processor (Skylake, IBRS), and 72GB of memory.

Baselines. We compared PIGDreamer to several competitive baselines to demonstrate the superior results of using privileged
information. The baselines include: 1. Scaffolder(Lag): (Hu et al., 2024) Integrates Scaffolder with the Lagrangian methods.
2. Informed-Dreamer(Lag): (Lambrechts et al., 2024) Integrates Informed-Dreamer with the Lagrangian methods.
3. SafeDreamer: (Huang et al., 2024) Integrates Dreamerv3 with the Lagrangian methods. 4. LAMBDA: (As et al., 2022)
A novel model-based approach utilizes Bayesian world models and the Lagrangian methods. 5. Safe-SLAC: (Hogewind
et al., 2022) Integrates SLAC with the Lagrangian methods. 6. CPO: Achiam et al. (2017) the first general-purpose policy
search algorithm for constrained reinforcement learning with guarantees for near-constraint satisfaction at each iteration.
7. PPO Lag: Achiam & Amodei (2019) Integrates PPO with the Lagrangian methods. 8. TRPO Lag: Integrates TRPO
with the Lagrangian methods. 9. FOCOPS: Zhang et al. (2020) initially determines the optimal update policy by addressing
a constrained optimization problem within the nonparameterized policy space. Subsequently, FOCOPS projects the update
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policy back into the parametric policy space. Notably, the OSRP, OSRP Lag and SafeDreamer are three algorithms proposed
by SafeDreamer.

D.3. model-free

We also compare our results with several model-free algorithms. In our experiments, the baseline algorithm results are
derived from SafePO Ji et al. (2023a), which is configured with a cost limit of 25, whereas PIGDreamer is set with a cost
limit of 2. The comparison results are presented in the Table 5.

CPO FOCOPS PPO Lag TRPO Lag PIGDreamer(Ours)

Tasks Reward Cost Reward Cost Reward Cost Reward Cost Reward Cost

CarGoal1 23.2±1.9 28.2±4.6 21.5±0.0 28.1±0.0 13.8±3.3 23.4±10.8 22.2±3.9 26.2±6.1 14.5±0.5 4.2±1.2
PointButton1 6.8±1.6 29.8±6.1 8.9±10.7 10.2±4.5 4.0±1.4 28.2±13.8 7.5±1.4 26.3±6.0 9.6±3.5 12.5±2.3
PointPush1 4.8±0.0 25.5±0.0 0.7±0.7 23.0±21.1 0.6±0.3 26.2±25.1 0.6±0.1 21.7±11.2 15.6±0.8 0.4±0.2
RacecarGoal1 10.4±1.2 29.4±7.0 4.5±2.2 93.7±33.3 2.3±2.1 28.3±12.7 9.5±3.0 25.1±5.7 18.2±1.2 6.8±1.2
Average 11.3 28.3 8.9 38.8 5.2 26.6 9.9 24.9 14.5 6.0

Table 5. Comparison with model-free algorithms

As illustrated in Table 5, the model-free algorithm encounters difficulties in achieving higher rewards, even with a more
relaxed cost threshold. This challenge arises partly from the inability of these algorithms to leverage historical information,
as well as their lack of access to essential privileged information. In contrast, PIGDreamer significantly outperforms the
baseline algorithm in both reward and safety, owing to its effective utilization of privileged information.

D.4. Addition Experiments
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Figure 7. Privileged Agent in PointButton1 Task.

Discussion Although Figure 7 demonstrates the superior performance of exploiting privileged information, it does not
achieve significant improvements in certain tasks. To provide more detail regarding our experiments, Figure 5 presents
the learning curves of all algorithms. Notably, we observe that PIGDreamer does not outperform SafeDreamer in the
PointButton1 task. We conducted further experiments to investigate this phenomenon, and our findings indicate that even
when the agent is granted access to privileged information, it still fails to achieve higher performance. Consequently, this
finding reveals that, in the PointButton1 task, which involves moving objects in the environment, such privileged information
does not yield any information gain.

D.5. Training efficiency

Since our model requires modeling two world models, we will compare the training efficiencies of the different algorithms
to determine if the addition of a world model results in a significant increase in training time. Table 6 displays the hours
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Figure 8. Aggregate metrics for summarizing benchmark performance. We utilize the rliable library (Agarwal et al., 2021) to compute
the median, inter-quartile mean (IQM), and mean estimates for normalized reward and cost returns, accompanied by 95% bootstrap
confidence intervals (CIs) based on three runs across five tasks.

LAMBDA Safe-SLAC Informed-Dreamer(Lag) Scaffolder(Lag) SafeDreamer Ours Incremental

CarGoal1 34.1 18.3 25.77 45.12 25.51 36.02 41.2%
PointButton1 28.4 31.4 31.61 51.02 29.42 34.59 17.6%
PointGoal2 31.1 22.5 31.51 50.68 29.52 34.52 16.9%
PointPush1 36.7 18.3 25.80 43.87 23.51 29.43 25.2%
RacecarGoal1 34.1 20.7 31.08 49.54 29.59 33.84 14.3%
Average 33.2 17.7 29.16 48.05 27.51 33.68 22.4%

Table 6. Comparison of Training Time

required to train all algorithms for 2 million iterations on each task. The comparison between SafeDreamer and PIGDreamer
reveals that the inclusion of an additional world model in PIGDreamer resulted in an average increase of 22.4% in training
hours.
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