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Abstract

Portfolio optimization is a ubiquitous problem in financial mathematics that relies
on accurate estimates of covariance matrices for asset returns. However, estimates
of pairwise covariance are notoriously poor and calculating time-sensitive optimal
portfolios is energy-intensive for digital computers. We present an energy-efficient,
fast, and fully analog pipeline for solving portfolio optimization problems that over-
comes these limitations. The analog paradigm leverages the fundamental principles
of physics to recover accurate optimal portfolios in a two-step process. Firstly,
we utilize equilibrium propagation, an analog alternative to backpropagation, to
train linear autoencoder neural networks to calculate low-rank covariance matrices.
Then, analog continuous Hopfield networks output the minimum variance portfo-
lio for a given desired expected return. The entire efficient frontier may then be
recovered, and an optimal portfolio selected based on risk appetite.

1 Introduction

Portfolio optimization involves creating an investment portfolio that balances risk and return. The
objective is to allocate assets optimally to maximize expected returns while minimizing risk. Natu-
rally, this problem is of great interest to financial organizations and is pivotal in risk management.
However, the problem, formulated by Markowitz’s mean-variance model [1], suffers from prob-
lems in practice. Namely, it is well known that estimates of pairwise covariance between assets
are notoriously poor [2]. Data samples tend to include significant amounts of noise, distorting the
underlying relationships between assets. To overcome this issue, factor models were introduced that
vastly reduce the dimensionality [3]. Factor methods produce low-rank covariance matrices that
retain only the largest eigenvalues and discard small eigenvalues associated with noise. Despite this
development, the computation of optimal portfolios remains energy-intensive as the efficient frontier
is mapped out in return-variance space. In high-frequency trading, this becomes a time-sensitive
computation as assets are purchased and sold on microsecond timescales [4], and portfolios must be
regularly rebalanced so as not to exceed risk appetites. Much attention has been focused on portfolio
optimization in the high-frequency domain [5, 6, 7], including the use of evolutionary algorithms
to update efficient frontiers [8]. While algorithmic enhancements provide incremental gains, the
exploration of alternative hardware paradigms has the potential to drive significant advancements.
By using fundamental principles such as minimizing entropy, energy, and dissipation [9], or, per-
haps, incorporating quantum phenomena like superposition and entanglement [10], we can advance
and surpass classical computations of these problems. At the forefront of this drive to alternate
architectures is the integration of analog, physics-based algorithms and hardware, which involve
translating complex optimization problems into universal spin Hamiltonians [11, 12, 13]. Indeed,
the mean-variance portfolio optimization framework can be encoded into a Hamiltonian’s coupling
strengths with the physical system recovering the Hamiltonian’s ground state, which corresponds to
the optimal portfolio solution [14, 15]. Efficient mapping from the original problem description to
spin Hamiltonian enables the problem to remain manageable despite increasing complexity [16].
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2 Mean-variance optimization

We define µi as the expected return of asset i, and [Σ]ij = σij = Cov(i, j) as the covariance between
assets i and j. The decision variables are wi, the proportion of the total investment in asset i. For a
universe of securities with n assets, the Markowitz mean-variance portfolio optimization problem is

min
w

wTΣw

s.t. µTw = R,

1Tw = 1,

0 ≤ wi ≤ 1,

(1)

for i = 1, . . . , n, and the condition wi ≥ 0 prohibits shorting [14]. The variance wTΣw quantifies
the portfolio risk for positive semidefinite matrix Σ, while R is the desired expected return of the
portfolio. µ and Σ are not known a priori and must be estimated from historical data. The efficient
frontier is calculated by solving (1) for various R. The efficient frontier is the set of portfolios that
minimize the risk for a given R. We illustrate a frontier in Appendix A for a toy model with n = 2
assets. It was recently suggested that portfolio optimization problems could be solved on analog
spatial-photonic Ising machines for equal-weighted portfolios, that is, wi ∈ {0, 1/q} for q selected
assets [15]. We go beyond this constraint by utilizing analog Hopfield networks and consider the
quadratic continuous optimization problem (1). In Section 3, we aim to recover the optimal asset
weights w, given known expected returns µ and covariance matrix Σ.

3 Continuous Hopfield network

A continuous Hopfield network is a type of Hopfield neural network which has continuous states
and dynamics [17]. It is an analog computational network for solving optimization problems. For
a network of size n, the i-th network element at time t is described by a real input xi(t), and the
network dynamics are governed by

dxi

dt
= −p(t)xi +

n∑
j=1

Jijvj +mi, (2)

where vi = g(xi) is a nonlinear activation function, p(t) is an annealing parameter, mi are the offset
biases, and Jij are elements of the symmetric coupling matrix J. Should g(x) be a non-decreasing
function, then the steady states of the continuous Hopfield network (2) are the minima of the Lyapunov
function

E = p(t)

n∑
i=1

∫ vi

0

g−1(x)dx− 1

2

n∑
i,j=1

Jijvivj −
n∑

i=1

mivi, (3)

We choose the functional form of g(x), such that when p(t) → 0, the minima of E occur for vi ∈ [0, 1]
and correspond to the minima of −vTJv. Therefore, by setting J = −Σ, we can minimize the
variance wTΣw of problem (1). To satisfy the constraints in problem (1) we introduce Lagrange
multiplier-like scalars λ1, λ2 and seek to minimize the expression H = wTΣw+ λ1(µ

Tw−R)2 +
λ2(1

Tw − 1)2. Therefore, after discarding constants, we seek to minimize

H = −1

2
wTJw −mTw, (4)

where J = −2Σ − 2λ1µµ
T − 2λ211

T, and m = 2Rλ1µ + 2λ21. Equation (4) can be directly
encoded into the Hopfield network (2), and if required, m can be absorbed into J by introducing
an additional auxiliary spin. The non-decreasing monotonic function g(x) is chosen to be the
logistic function g(x) = 1/[1 − exp(−x)] to limit possible values of vi such that 0 ≤ vi ≤ 1.
We illustrate the Hopfield network dynamics in Appendix B for a randomly generated covariance
matrix Σ and expected return vector µ. The energy minimization properties of Hopfield networks
make them particularly suitable for solving combinatorial optimization problems. Further extensions
have been proposed to increase convergence to optimal states in challenging optimization problems.
For example, the first-order Eq. (2) can be momentum-enhanced and replaced with a second-order
equation leading to Microsoft’s analog iterative machine [18] or Toshiba’s bifurcation machine [19].
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4 Low-rank approximation

We now focus on calculating a low-rank approximation of the covariance matrix, which will be
used in (1). If xi ∈ Rn are the i-th sample of asset returns over N total samples, and we assume
that E[x] = 0, then the sample covariance matrix is S = 1

N

∑N
i=1 xix

T
i . When the number of

samples N is of the same magnitude as n, then the sample covariance matrix usually suffers a large
estimation error [2, 20]. Many low-rank factor analysis techniques exist to improve the covariance
matrix estimate. Here, we consider asset returns x as random variables that follow the model

x = As+ e, (5)

where x ∈ Rn is the observed data, A ∈ Rn×r is a factor loading matrix, s ∈ Rr is the vector of
latent variables, and e ∈ Rn is uncorrelated random noise, where r ≪ n [21]. Here, s represents
macroeconomic factors like the growth rate of the GDP, unemployment, inflation etc. Under the
assumption that s and e are uncorrelated, the covariance matrix is then Σ = E[xxT]. This gives

Σ = AE[ssT]AT + E[eeT] (6)

= APAT +Ψ, (7)

where P ≡ E[ssT] ∈ Rr×r has rank(P) ≤ r, rank(A) ≤ r, and Ψ is a diagonal matrix con-
taining the variance of noise on its diagonal. Since rank(AB) ≤ min(rank(A), rank(B)), then
rank(APAT) ≤ r. Therefore, we have decomposed the covariance matrix Σ into a positive semidef-
inite low-rank matrix plus a positive semidefinite diagonal matrix. Defining M ≡ APAT, low-rank
factor analysis concerns the estimation of M and Ψ. To calculate M and Ψ we solve the minimization
problem

min
M,Ψ

||S−M−Ψ||2F

s.t. rank(M) ≤ r,

Σ ⪰ 0,

(8)

where || · ||F denotes the Frobenius norm [22]. We present a common digital computing method
in Appendix (C) for solving problem (8) based on principal component analysis (PCA). The eigen-
decomposition in PCA becomes computationally expensive as the data size grows. Alternatively,
autoencoders – particularly when implemented using stochastic gradient descent – can handle larger
datasets and higher-dimensional data more efficiently than PCA [23]. Additionally, when integrating
dimensionality reduction as part of a larger neural network framework, an autoencoder can be easily
embedded within the pipeline, whereas PCA would need to be applied as a separate pre-processing
step [24].

5 Linear autoencoders

A linear autoencoder is a classic neural network model for unsupervised learning that is trained to learn
the identity function. The input and output layers have the same number of nodes, while the middle
layer has fewer nodes. It aims to approximate the input through learning linear encodings and decod-
ings between input and latent space. The encoder B ∈ Rr×n maps input X = [x1, . . . ,xN ] ∈ Rn×N

into a low-dimensional latent space [s1, . . . , sN ], and the decoder A ∈ Rn×r maps [s1, . . . , sN ] back
to the original representation X. We therefore recover the same model as in Eq. (5), and training the
linear autoencoder becomes the minimization problem [25]

min
A,B

||X−ABX||2F. (9)

We do not explicitly express the learnable biases in the network as these may be absorbed into the
encoder B and decoder A by introducing an auxiliary row into X that is permanently clamped to
values of 1. We illustrate the training of a linear autoencoder in Fig. (1)(a)-(c) with the backpropaga-
tion method and compare it to PCA in Fig. (1)(h). A linear autoencoder is related to PCA. Indeed,
under mild nondegeneracy conditions, any A at a local minimizer recovers the top rank-r eigenspace
of XXT [26]. However, unlike actual PCA, the coordinates of the output of the middle layer in
the network are correlated and are not sorted in descending order of variance [27]. Autoencoder
neural networks typically use backpropagation to train the weights. However, backpropagation is
energy-intensive and not biologically plausible.
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Figure 1: Training a linear autoencoder via (a)-(c) backpropagation (BP), and (d)-(f) with equilibrium
propagation (EP). Input and output layers have size 50, while the single hidden layer has size 5. The
networks are trained on 50 vectors x1, . . . ,x50 of size 50 whose elements are randomly sampled
from the normal distribution N(0, 1). (a)-(f) illustrate the element-wise absolute difference between
the 50 × 50 matrix X = [x1, . . . ,x50] and its reconstructed output ABX at different epochs. (g)
An illustrative example of the encoder/decoder Hopfield network structure trained with EP. (h) The
overall network loss for BP and EP over epoch time. The black horizontal dashed line corresponds to
the loss of the equivalent PCA method described in Appendix C.

6 Equilibrium propagation

On dedicated analog hardware, equilibrium propagation is an energy-efficient alternative to backprop-
agation [28]. Therefore, in the supervised learning setting studied here, it may be used to train the
weights of a linear autoencoder. Equilibrium propagation is an energy-based model because it relies
on the concept of energy minimization to learn and make predictions. We consider the continuous
Lyapunov function (3) with p(t) = 1 and mi = 0 for all i, where here the symmetric coupling
weights Jij are to be learned, and nonlinear activation function g(x) need not be the same as in
Section 3. Neurons xi are split in three sets: the input neurons, which are always clamped, the hidden
neurons, and the output neurons. The discrepancy between the desired output y and the realized
output x̂ is measured by the cost function

C =
1

2
||y − x̂||22, (10)

which forms part of the total energy function F = E + βC. The clamping factor β ≥ 0 is a
real-valued scalar that allows the output neurons to be weakly clamped [29]. The continuous-time
dynamical system evolves according to the differential equation of motion

dxi

dt
= − ∂F

∂xi
= − ∂E

∂xi
− β

∂C

∂xi
, (11)

which is formed of two parts. The first is the internal force induced by the internal Hopfield energy,
given by Eq. (2) for all i, and the second, the external force, is induced by the cost function C as

−β
∂C

∂xi
= β(yi − xi), i ∈ Y, (12)

for nodes in the output layer Y . Equilibrium propagation has two modes: the free phase and the
weakly clamped phase. In the free phase β = 0 and only the inputs are clamped. The network
then converges to a fixed point x∗ and the output units are read out. In the weakly clamped phase
β > 0, which induces an external force that acts on the output units as in Eq. (12). This force nudges
the outputs from their fixed point values in the direction of the target values yi. This perturbation
propagates among the hidden neurons before a new fixed point x∗

β is found. Then, another weakly
clamped phase is executed, this time with β → −β leading to the weakly clamped equilibrium x∗

−β .
It was shown that the weakly clamped phase implements the propagation of error derivatives with
respect to the synaptic weights [29]. In the limit β → 0, the update rule is

∆Jij ∝
1

β

(
∂F

∂Jij

∣∣∣∣
x∗
β

− ∂F

∂Jij

∣∣∣∣
x∗
−β

)
, (13)
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which is a second-order approximation to the standard backpropagation derivative [30]. The process is
iterated, at each step updating the weights Jij to minimize the loss function C. We choose activation
function

g(x) =

{
x if |x| ≤ c

c · sgn(x) otherwise,
(14)

with constant c, so that under the condition that |xi| ≤ c for all i, Eq. (2) is linear and can thus
represent a linear autoencoder. In this case, the output x̂ of Eq. (2) is then the solution to the linear
differential equation dx/dt = (J− I)x, and therefore

x̂ = lim
t→∞

x(t) = lim
t→∞

exp{(J− I)t}x(0). (15)

The constant c in Eq. (14) is chosen to be large enough such that after training, all neurons obey
|xi| ≤ c, and we can associate the Hopfield network as a linear autoencoder. To achieve a steady state
in Eq. (15), at least one eigenvalue of J− I should be zero, with all others having a negative real part.

Proposition. We state, with proof given in Ref. [26], that for any fixed n× r matrix A, Eq. (9) attains
its minimum for B = (ATA)−1AT.

Lemma. The n× n matrix J− I, where J = AB, has at least one zero eigenvalue, with all others
having negative real part.

Proof. J = AB = A(ATA)−1AT, and therefore
J2 = A(ATA)−1ATA(ATA)−1AT (16)

= A(ATA)−1AT, (17)
which shows that J is idempotent, that is J2 = J. It follows that J is a projection operator on
the column space C(J) along its null space N(J). The n eigenvalues λi of J are either 0 or 1:
λixi = Jxi = J2xi = λiJxi = λ2

ixi, which implies λi ∈ {0, 1}. By construction, J has rank at
most r, and therefore there are at least n− r zero eigenvalues. It follows that there are between 1 and
r nonzero eigenvalues of J, which must have value λi = 1. Since J− I has eigenvalues µi = λi − 1,
then µi ∈ {−1, 0}. Therefore, J − I has between 1 and r zero eigenvalues, with all others being
equal to −1.

The Lemma guarantees that should equilibrium propagation learn the weights that minimize Eq. (9),
the corresponding Hopfield network will converge to a steady state. Yet, during training, this will, in
general, not be the case, and positive eigenvalues of J−I will produce exponential growth in Eq. (15).
However, Eq. (15) only holds in the linear regime of the activation function (14). Exponential growth
is prevented by the symmetric clipping incorporated into the nonlinear activation function g(x) for
neurons with |xi| > c.

In the linear regime, the overall network dynamics is represented by the square matrix
limt→∞ exp{(J − I)t}, which for linear autoencoders we seek to decompose into its non-square
constituent parts: encoder B and decoder A. We achieve this by treating the encoder and decoder
as separate Hopfield networks, as shown in Fig. (1)(g), each with their own energy function. The
encoder settles into an equilibrium representing the latent vector s without taking into account the
decoder. s is then used as a fixed input to the decoder which then settles into its own equilibrium. The
decoder then undergoes the weakly clamped phases, and its weights are updated according to Eq. (13).
The encoder weights also need to be optimized to lower the reconstruction loss at the decoder output,
which is achieved by setting

∂C

∂xi
= lim

β→0

1

2β

(
∂F

∂xi

∣∣∣∣
x
(dec)
β

− ∂F

∂xi

∣∣∣∣
x
(dec)
−β

)
, i ∈ Y, (18)

in Eq. (11), where x(dec)
β is the weakly clamped decoder equilibrium state, and Eq. (18) only pertains

to neurons in the encoder output layer Y . Equation (18) follows from the fact that it can be shown
that equilibrium propagation also allows for finding the gradient of the loss with respect to the input
[31]. We note that J, which contains the couplings of the continuous Hopfield network, is now a
(n+ r)× (n+ r) matrix on account of the number of nodes in the encoder and decoder networks.
Nonetheless, the factor loading matrix A can be recovered as the n× r block corresponding to the
nodes of the decoder output layer. The equilibrium propagation training procedure is illustrated in
Fig. (1)(d)-(f) and compared to backpropagation and PCA in Fig. (1)(h).

5



7 Results

We collect real data samples xi ∈ Rn from stock returns of a selection of n = 100 stocks in
the S&P 500 index. We restrict ourselves to only N = 100 observations such that the sample
covariance matrix has a tendency to contain significant noise. Two continuous Hopfield networks,
structured as the encoder and decoder parts of a linear autoencoder, are trained using equilibrium
propagation. The latent variables [s1, . . . , sN ] are calculated as the subset Y of steady-state solutions
of the encoder network, while the factor loading matrix A is the n× r block of the decoder matrix
representation limt→∞ exp{(J−I)t} corresponding to its output layer Y . In practice, we cannot take
the limit to infinity, and instead, we use a suitably large value of t such that exp{(J− I)t} changes
minimally from t to t + 1. We depict the full-rank sample covariance matrix and the equilibrium
propagation-based low-rank approximation in Figs. (2)(a) and (b) respectively. Figure (2)(c) then
illustrates the element-wise absolute difference between these two covariance matrices. The low-rank
approximation is plugged into (1) and solved for the portfolio weights w using the continuous
Hopfield network of Eq. (2). We minimize the portfolio variance subject to the constraint µTw = R
for incremental values of R. In Fig. (2)(d), we plot the corresponding variances and returns for range
R = [0, 1]. The efficient frontier is identified, and an optimal portfolio can be selected based on risk
appetite.

Figure 2: (a) The sample covariance matrix S for n = 100 financial stocks selected from the S&P
500 index using N = 100 time series samples. (b) The r = 10 low-rank approximation APAT

of the covariance matrix, as calculated by training a continuous Hopfield network via equilibrium
propagation. (c) The element-wise absolute difference between the sample covariance matrix and its
low-rank approximation. (d) The hyperbola in variance-return space for possible optimal portfolios.
Each point along the hyperbola is calculated by solving (1) for a specific return value R.

Analog Hopfield networks can be implemented as electronic circuits [32] and photonic neural
networks [33]. Photonic systems operate on picosecond to femtosecond timescales as high bandwidth
signals flow through a single optical waveguide. Consequently, such implementations can have
dense connectivity while maintaining fast convergence times. However, physical analog platforms
are subject to noise sensitivity, thermal effects, and non-idealities in circuit components which can
degrade performance. In addition, real-world portfolio optimization problems often involve complex
constraints such as transaction costs, market liquidity, regulatory requirements, and cardinality
constraints. While some of these can be readily incorporated into the objective function (4), for
example, an ℓ1-norm can enforce sparsity to satisfy a cardinality constraint, others take more complex
forms. To address the limitations, a hybrid approach that combines analog Hopfield networks with
digital computing could be explored.

8 Conclusions

This paper introduces a fully analog pipeline for portfolio optimization problems. Starting with raw
data samples, the proposed pipeline leverages the energy-efficient analog operation of continuous
Hopfield networks to calculate optimal portfolio weights. The analog pipeline distinguishes itself from
traditional digital methods by its speed and scalability, with applications in time-sensitive domains
such as high-frequency trading. At the heart of the pipeline are continuous Hopfield networks, used
in two separate applications: autoencoder neural networks and minimum variance portfolios. By
shifting to analog architectures, we reduce the reliance on binary logic operations typical of digital
systems, paving the way for a more energy-efficient approach to computation. This efficiency can
reduce power consumption in data centers and other computing environments, addressing the growing
energy demands of digital computing. Specifically, companies can reduce their energy consumption
while optimizing large portfolios as part of their risk management processes.
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A Efficient frontier

The efficient frontier represents the set of optimal portfolios that offer the highest expected return
for a given level of risk, or the lowest risk for a given return. It is derived by plotting the risk-return
profiles of various portfolios, with the frontier itself being the curve where no portfolio exists with
both a higher return and lower risk. For the toy model in Fig. (3) with n = 2 assets, the entire set of
possible portfolios lies on a single hyperbola.

Figure 3: (a) The hyperbola in variance-return space for a portfolio of n = 2 assets A and B. The
positively sloped portion of this hyperbola is the efficient frontier. The expected returns are µA = 0.1
and µB = 0.6. The (co)variances are σAA = 0.2, σBB = 0.4, and σAB = σBA = −0.1. The blue
circle represents the portfolio consisting only of asset A, and the corresponding investment weights
are w = [1, 0]T. Likewise, the red circle is the portfolio consisting only of asset B. The minimum
variance portfolio, shown as a green circle, is the combination of weights w that minimizes the total
variance wTΣw. The purple circle is the portfolio that maximizes the Sharpe ratio Sr. The Sharpe
ratio is a measure of risk-adjusted return and is defined as Sr = µTw/

√
wTΣw. (b) The Sharpe

ratio Sr for each portfolio in the efficient frontier. We now see that the purple circle is indeed the
portfolio that maximizes the Sharpe ratio.

B Hopfield network dynamics

The quadratic continuous optimization problem (4) is solved using continuous Hopfield network
(2). The trajectories of the neurons xi(t) are illustrated in Fig. (4) along with the value of objective
function (4) in time for a portfolio of n = 25 assets.

Figure 4: (a) Hopfield network dynamics for a portfolio of n = 25 assets with R = λ1 = λ2 = 1. The
dynamical system evolves according to Eq. (2), which in turn minimizes Eq. (4). Each line represents
one asset weight wi. (b) The value of expression (4) during the network dynamics. Covariance matrix
Σ and expected return vector µ are calculated from sampling N = 10 observations of returns x from
IID random normal variables xj ∼ N(1, 1), where j = 1, 2, . . . , N . The low number of observations
N results in a noisy positive semidefinite covariance matrix Σ whose pairwise entries σij are nonzero.
The externally controlled annealed parameter has form p(t) = p0(1 − t/T ), where T is the total
annealing period. Here, p0 = 0.01 and T = 100.
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C Low-rank method

A common classical procedure for calculating matrix M in problem (8) using digital computers is
given by the following steps:

1. Construct the singular value decomposition (SVD) of S. Since S is symmetric, its eigende-
composition is the same as the SVD, and we write S = UΛUT, where U is the matrix of
eigenvectors and Λ is the diagonal matrix of eigenvalues.

2. Derive from Λ the matrix Λr formed by replacing with zeros the n− r smallest eigenvalues
on the diagonal of Λ.

3. Compute and output M = UΛrU
T as the rank-r approximation to S.

Under the assumption E[x] = 0, the SVD method exactly replicates PCA. The rank of M is at most
r: this follows from the fact that Λr has at most r non-zero values. Indeed, the Eckart-Young-Mirsky
theorem proves that this procedure yields the matrix of rank less than or equal to r with the lowest
possible Frobenius error [34]. The diagonal matrix is estimated as Ψ = diag(S−M), where diag(·)
represents a diagonal matrix whose elements are [Ψ]ii = [S−M]ii and [Ψ]ij = 0 for i ̸= j [35]. In
addition, we constrain [Ψ]ii ≥ 0, since the diagonal elements correspond to variances of the error
variables. This guarantees that Σ is positive semidefinite.
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