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Abstract

We show that inequalities of many commonly used fairness metrics (true/false posi-
tive/negative rates, predicted positive/negative rates, and positive/negative predictive val-
ues) are guaranteed for groups with different outcome rates under a monotonically calibrated
model whose risk distributions have a monotone likelihood ratio, extending existing impossi-
bility results. We further provide lower bounds on the FNR/FPR disparities and PPR/PNR
disparities in the same setting, showing that either the FNR disparity or FPR disparity is at
least as large as the positive outcome rate disparity (for FNR disparity) or negative outcome
rate disparity (for FPR disparity), and either the PPR disparity or PNR disparity is at least
as large as the positive outcome rate disparity (for PPR disparity) or negative outcome rate
disparity (for PNR disparity). While incompatibilities of some combinations of these met-
rics have been demonstrated previously, we are unaware of any work that has demonstrated
direct incompatibility of calibration with these individual equalities, equivalence of these in-
equalities, or lower bounds for the disparity in these values under distributional assumptions
about a model’s predictions.

1 Introduction

In 2016, ProPublica published an analysis (Angwin et al., 2016) of the COMPAS recidivism prediction
algorithm, which assesses a defendant’s risk of committing another crime and is used to assist judges in
making pre-trial release and sentencing decisions. Using publicly available data on the algorithm’s predictions
and outcomes in Broward County, Florida, they determined that the false positive rate for Black defendants
was significantly higher than for White defendants, i.e. a non-recidivating Black defendant was almost
twice as likely to be asssessed as high-risk than a non-recidivating White defendant. The false negative
rate for White defendants was also significantly higher than for Black defendants, meaning a recidivating
White defendant was much more likely to be incorrectly labeled as low risk than a recidivating Black
defendant. Based on these results, they concluded that the algorithm was biased against Black defendants.
Northpointe, the developer of the COMPAS software, rebutted that the algorithm is fair because it satisfies
predictive parity (equal positive predictive values) across the two groups (Dieterich et al., 2016). Shortly
after, both Chouldechova (2017) and Kleinberg et al. (2017) established that these notions of fairness (equal
false positive/negative rates and predictive parity) are impossible to satisfy simultaneously, except in trivial
cases. Kleinberg et al. (2017) further prove the impossibility of well-calibration (scores equaling the outcome
probabilities across groups) and balance for the positive/negative class (equality of average scores for members
in the positive/negative class). Pleiss et al. (2017) demonstrated additional conflict between error rate
equality and well-calibration by showing that well-calibration is compatible with only a single error rate
constraint, but achieving this compatibility essentially requires randomizing predictions from an existing
classifier, an intuitively disturbing procedure.

While well-calibration is clearly a desirable condition for both the fairness and effectiveness of such an
algorithm (Pleiss et al., 2017; Corbett-Davies et al., 2023), the same is not necessarily true of false pos-
itive/negative rate equality. Many authors have identified both technical and social issues resulting from
reliance on these metrics (Corbett-Davies et al., 2023; Chohlas-Wood et al., 2023; Pierson, 2024), including
“the problem of infra-marginality” (Ayres, 2002; Simoiu et al., 2017), the sensitivity of these metrics to
model behavior and population distributions far away from the decision margin. Nonetheless, they are still
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commonly relied upon by machine learning practitioners for detecting potential bias in models. For exam-
ple, many popular algorithmic fairness toolkits, including Microsoft’s Fairlearn (Bird et al., 2020), IBM’s
AI Fairness 360 (Bellamy et al., 2019), and Aequitas (Saleiro et al., 2019), calculate ratios of these met-
rics across groups as part of their fairness reports, with some identifying the ratios as the disparity in the
corresponding metric. Some of these further instruct users that these disparities and/or the disparities in
predicted positive/negative rates must be between 80% and 125% in order for the model to be fair, a range
derived from disparate impact law in a process that has been deemed “epistemic trespassing” (Watkins &
Chen, 2024). If the toolkit or end user determines that a given disparity between two groups is sufficiently
large, mitigation algorithms (such as those described by Agarwal et al. (2018) and Hardt et al. (2016)) are
provided that can adjust the model’s predictions or choose group-specific thresholds to achieve a specified
level of parity, at the cost of (potentially substantial) performance degradation at both the population and
group level (Pfohl et al., 2021).

When an algorithm satisfies calibration across two groups (where predictions correspond to equal outcome
rates across groups, but not necessarily the exact outcome probabilities), differences in these metrics are
direct consequences of differences in group risk distributions under the algorithm. In what follows, we ex-
amine scenarios where these two risk distributions satisfy the monotone likelihood ratio property (MLRP),
a frequently considered property in statistical problems that is satisfied by many commonly encountered
families of distributions, including the exponential, binomial, Poisson, or normal with a fixed σ (Karlin &
Rubin, 1956). Any two beta or gamma distributions that cross exactly once also satisfy the MLRP (Gaebler
& Goel, 2025), and the property is preserved under monotone transformations (e.g. the above statements
also hold for the corresponding log-families) and sums, if the distributions are log-concave (see Shaked &
Shanthikumar (2007) for details of these and other properties). Gaebler & Goel (2025) considered distri-
butions satisfying the MLRP in the context of testing outcomes for fairness, and they provide empirical
evidence that the property holds in domains including recidivism, loan approvals, police searches, and law
school admissions, by demonstrating that predictive models developed on data from those domains have
group risk distributions satisfying the property. Chiang et al. (2025) proposed a method for developing
disease progression models that account for systemic disparities, using the MLRP to reason about the effects
of differences in initial severity, rates of progression, or visit frequency across groups on model outcomes.
The property has also been studied in contexts such as measuring treatment effects in randomized control
trials (Chemla & Hennessy, 2019) and identifying racial disparities in police searches (Anwar & Fang, 2006;
Feigenberg & Miller, 2022). While the MLRP is often assumed as a property of the underlying risk distri-
butions, an assumption that is difficult or impossible to verify in many situations, our results only require
that the risk distributions under the examined model satisfy the property. This has the advantages of being
both easily verifiable and at least equally reasonable, as a sufficiently appropriate model will approximate
the true risk distributions.

The contributions of this paper are as follows: we introduce a slightly stronger version of calibration (but
still significantly weaker than well-calibration) called monotonic calibration, which requires increasing model
predictions to correspond to increasing outcome probabilities, but not the exact outcome probabilities as
required by well-calibration. We then show that if a model is monotonically calibrated for two groups and
the risk distributions of the groups under the model satisfy the MLRP, then for any non-trivial decision
threshold, the group with the higher outcome rate will have:

• a larger predicted positive rate (equivalently, a smaller predicted negative rate),

• a larger false positive rate and smaller false negative rate,

• a larger positive predictive value (unless the likelihood ratio or outcome probabilities are constant
above the decision threshold, in which case the PPVs are equal), and

• a smaller negative predictive value (unless the likelihood ratio or outcome probabilities are constant
below the decision threshold, in which case the NPVs are equal).

We further show that either:

• the disparity in predicted positive rates is greater than the disparity in positive outcome rates, or
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• the disparity in predicted negative rates is greater than the disparity in negative outcome rates

and also that either

• the disparity in false negative rates is greater than the disparity in positive outcome rates, or

• the disparity in false positive rates is greater than the disparity in negative outcome rates.

In particular, for many commonly encountered distributions of model predictions, calibration is incompatible
with equality of any of these metrics when outcome rates are unequal, and even approximate equalized
odds (equal false negative and false positive rates) and approximate demographic parity cannot be satisfied
between groups with large differences in outcome rates. We conclude with an example of how these results
guarantee large disparities in the error rates studied in the COMPAS dataset, and discuss the dangerous
consequences of reliance on these metrics for detecting bias.

2 Main Results

In what follows we discuss a model M intended to predict the probability of a binary outcome, but we do
not require that M take values only in [0, 1], so M may be a more general risk score (as in the COMPAS
example).
Definition 1. Let M be a model defined on groups P and Q and used to predict the probability of a binary
outcome O(r) : P ∪ Q → {0, 1} for r ∈ P ∪ Q. M is calibrated for groups P and Q if for each predicted value
x

Pr(O(pi) = 1 | pi ∈ P, M(pi) = x) = Pr(O(qi) = 1 | qi ∈ Q, M(qi) = x)

and M is well-calibrated for P and Q if for each predicted value x

Pr(O(pi) = 1 | pi ∈ P, M(pi) = x) = Pr(O(qi) = 1 | qi ∈ Q, M(qi) = x) = x.

The term calibration is often used to mean well-calibration as given above. We distinguish between the two
properties here because well-calibration is not necessary for the results that follow; however, we do require
a slightly stronger version of calibration, that ensures that increasing predictions correspond to increasing
outcome rates. This avoids degenerate cases where predictions do not correspond to outcomes in any natural
way. Such cases rarely occur in practice, and most models satisfying (not necessarily well-)calibration for
groups will also satisfy this stronger property.
Definition 2. Let M be a model defined on groups P and Q and used to predict the probability of a binary
outcome O(r) : P ∪ Q → {0, 1} for r ∈ P ∪ Q. M is monotonically calibrated for groups P and Q if it is
calibrated for those groups, and the function c : Range(M) → [0, 1] given by

c(x) = Pr(O(pi) = 1 | pi ∈ P, M(pi) = x) = Pr(O(qi) = 1 | qi ∈ Q, M(qi) = x)

is increasing and not almost everywhere constant.

For what follows we treat a model M as a real-valued random variable on a probability space P ∪ Q, and
assume the cumulative distribution functions FP (x) = Pr(M(pi) ≤ x | pi ∈ P ) and FQ(x) = Pr(M(qi) ≤ x |
qi ∈ Q) are absolutely continuous with associated density functions p(x) and q(x).
Definition 3. Two probability density functions p(x) and q(x) satisfy the monotone likelihood ratio property

(MLRP) with p dominating, denoted p ⪰lr q, if for almost every pair x0 < x1, p(x0)
q(x0) ≤ p(x1)

q(x1) . We denote

p ≻lr q if p ⪰lr q but q ⪰̸lr p, or equivalently if p ⪰lr q and p(x)
q(x) is not constant almost everywhere.

Note that if p ⪰lr q, then p first-order stochastically dominates q. See Shaked & Shanthikumar (2007) for
more general properties of distributions satisfying the MLRP.
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Lemma 1. Let p(x) and q(x) be the probabilty density functions of the predictions of a model M on groups
P and Q, and let O(P ) = Pr(O(pi) = 1 | pi ∈ P ) and O(Q) = Pr(O(qi) = 1 | qi ∈ Q) denote the binary
outcome rates for groups P and Q. If M is monotonically calibrated for groups P and Q (via function c(x))
and p and q satisfy the MLRP (with either p ⪰lr q or q ⪰lr p) then O(P ) > O(Q) iff p ≻lr q.

Proof. (⇐) Letting c0 = infx c(x) ≥ 0 and using that c(x) and p(x)/q(x) are increasing and not almost
everywhere constant, we must have both c(x) > c0 and p(x) > q(x) on some set of non-zero measure, so we
have O(P ) − O(Q) =

∫
c(x)(p(x) − q(x))dx >

∫
c0(p(x) − q(x))dx = 0.

(⇒) From the proof of the direction above, if q ≻lr p then O(Q) > O(P ), so we must have that
p ⪰lr q. If p(x)/q(x) is constant almost everywhere then using that

∫
p(x) =

∫
q(x) = 1 we obtain

O(P ) =
∫

c(x)p(x) =
∫

c(x)q(x) = O(Q), thus p ≻lr q.

Definition 4. The predicted positive rate PPRM,t,P of a model M with decision threshold t (so that a
prediction less than t is considered a predicted negative, and a prediction at least t is considered a predicted
positive) on a group P is the proportion of P with predicted value at least t. The predicted negative rate
PNRM,t,P = 1 − PPRM,t,P is the proportion of P with predicted value less than t.

The predicted positive rate defined above is sometimes called selection rate, admission rate, or various other
terms, depending on the application of the model under discussion. Equality of these rates across groups is
also know by various terms including demographic parity, group fairness, and statistical parity. The following
lemma demonstrates that inequality of these rates is an immediate consequence of (strict dominance under)
the MLRP, without any assumptions about the calibration of the model.
Lemma 2. Let p(x) and q(x) be the probabilty density functions of the predictions of a model M on two
groups P and Q. Let t be a decision threshold for the predictions of M . If p ≻lr q then PPRM,t,Q ≤
PPRM,t,P (with equality only if both are 0 or 1) and PNRM,t,P ≤ PNRM,t,Q (with equality only if both are
0 or 1).

Proof. The desired inequality is:

PPRM,t,Q =
∫

x≥t

q(x)dx ≤
∫

x≥t

p(x)dx = PPRM,t,P

which follows directly from the first-order stochastic dominance of p over q. To obtain strictness of the
inequality when both are not 0 or 1, note that if

∫
x≥t

q(x)dx =
∫

x≥t
p(x)dx, integrating both sides of the

MLRP inequality p(x0)q(x1) ≤ p(x1)q(x0) for x0 ≤ t ≤ x1 over the region x1 ≥ t gives q(x) ≥ p(x) on
x < t. But since

∫
q(x)dx =

∫
p(x)dx = 1, we have

∫
x<t

q(x)dx =
∫

x<t

p(x), implying q(x) = p(x)

almost everywhere on x < t. Integrating both sides of p(x0)q(x1) ≤ p(x1)q(x0) over the region x0 < t gives
p(x) ≥ q(x) on x ≥ t, which then implies q(x) = p(x) almost everywhere on x ≥ t, contradicting that
p ≻lr q.

As the PPR for any group must approach 1 as the decision threshold t decreases, the PPR disparity across
groups is necessarily small for sufficiently small t. Similarly, the PNR disparity is necessarily small for
sufficiently large t. However, the next lemma shows that the MLRP and monotonic calibration guarantee
that for a non-trivial decision threshold, one of these disparities is at least as large as the positive outcome
rate disparity (for PPR) or negative outcome rate disparity (for PNR).
Lemma 3. Let p(x) and q(x) be the probabilty density functions of the predictions of a model M on two
groups P and Q. If M is monotonically calibrated for groups P and Q (by a function c(x)) and p ≻lr q,
then for any decision threshold t where the ratios below are defined, we have either

PPRM,t,P

PPRM,t,Q
≥ O(P )

O(Q)
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or
PNRM,t,Q

PNRM,t,P
≥ 1 − O(Q)

1 − O(P ) .

Proof. Using that M is monotonically calibrated the first inequality is∫
x≥t

p(x)dx

∫
c(x)q(x)dx ≥

∫
x≥t

q(x)dx

∫
c(x)p(x)dx (i)

and substituting
∫

x<t
p(x)dx = 1 −

∫
x≥t

p(x)dx and
∫

x<t
q(x)dx = 1 −

∫
x≥t

q(x)dx the second inequality
becomes ∫

x≥t

q(x)dx

∫
c(x)p(x)dx +

∫
x≥t

p(x)dx +
∫

c(x)q(x)dx ≥∫
x≥t

p(x)dx

∫
c(x)q(x)dx +

∫
x≥t

q(x)dx +
∫

c(x)p(x)dx.

(ii)

From the MLRP,
∫

x≥t
p(x)dx∫

x≥t
q(x)dx

is increasing in t (by the mediant inequality), so if (i) holds for a given t0, it

holds for t ∈ [t0, 1]. Similarly if (ii) holds for t0, it holds for t ∈ [0, t0]. Let t0 be the minimum t such that∫
x≥t

p(x)dx =
∫

c(x)p(x)dx. At t0, both (i) and (ii) reduce to
∫

c(x)q(x)dx ≥
∫

x≥t0

q(x)dx. Writing

∫
x≥t0

q(x)dx =
∫

x≥t0

(1 − c(x))q(x)dx +
∫

x≥t0

c(x)q(x)dx,

(i) and (ii) further reduce to
∫

x<t0

c(x)q(x)dx ≥
∫

x≥t0

(1 − c(x))q(x)dx. We have

∫
x≥t0

p(x)dx =
∫

x≥t0

c(x)p(x)dx +
∫

x≥t0

(1 − c(x))p(x)dx =
∫

c(x)p(x)dx

so ∫
x<t0

c(x)p(x)dx =
∫

x≥t0

(1 − c(x))p(x)dx.

Now, if
∫

x<t0

c(x)q(x)dx <

∫
x≥t0

(1 − c(x))q(x)dx, there must be t1 ≥ t0 where the set

{t | (t < t1 & p(t1)q(t) ≥ p(t)q(t1)) or (t > t1 & p(t)q(t1) ≥ p(t1)q(t))}

has full measure and
∫

x<t1

c(x)q(x)dx <

∫
x≥t1

(1 − c(x))q(x)dx. Note that if p(t1) = 0 for all such

t1, then either O(P ) = 0, contradicting that p ≻lr q, or O(P ) = 1, contradicting that the ratio
(1 − O(Q))/(1 − O(P )) is defined, so t1 can be chosen such that p(t1) > 0. But using the MLRP at t1

and that
∫

x<t1

c(x)p(x)dx ≥
∫

x≥t1

(1 − c(x))p(x)dx we have:

∫
x<t1

c(x)q(x)p(t1)dx ≥
∫

x<t1

c(x)p(x)q(t1)dx ≥∫
x≥t1

(1 − c(x))p(x)q(t1)dx ≥
∫

x≥t1

(1 − c(x))q(x)p(t1)dx.

Thus (i) and (ii) must hold at t0, and we therefore have (ii) on [0, t0] and (i) on [t0, 1], as required.

We note that the lower bounds provided in Lemma 3 are reached in the discrete case when c(x) takes only
values 0 and 1, so these bounds are tight in general.

5



Under review as submission to TMLR

Definition 5. The false negative rate FNRM,t,P of a model M with decision threshold t on a group P is
the proportion of the positive outcomes in P that have predicted value less than t. The false positive rate
FPRM,t,P of a model M with decision threshold t on a group P is the proportion of the negative outcomes
in P that have predicted value at least t.

The following lemma demonstrates that inequality of these rates across groups is an immediate consequence
of monotonic calibration and (strict dominance under) the MLRP.
Lemma 4. Let p(x) and q(x) be the probabilty density functions of the predictions of a model M on two
groups P and Q. Let t be a decision threshold for the predictions of M . If M is monotonically calibrated for
groups P and Q (by a function c(x)) and p ≻lr q, then FNRM,t,P ≤ FNRM,t,Q (with equality only if both
are 0 or 1) and FPRM,t,Q ≤ FPRM,t,P (with equality only if both are 0 or 1).

Proof. Using that M is monotonically calibrated on P and Q the first desired inequality becomes:

FNRM,t,P =
∫

x<t
c(x)p(x)dx∫

c(x)p(x)dx
≤

∫
x<t

c(x)q(x)dx∫
c(x)q(x)dx

= FNRM,t,Q

or equivalently ∫
x<t

c(x)p(x)dx

∫
c(x)q(x)dx ≤

∫
x<t

c(x)q(x)dx

∫
c(x)p(x)dx

Subtracting
∫

x<t

c(x)p(x)dx

∫
x<t

c(x)q(x)dx from both sides gives

∫
x<t

c(x)p(x)dx

∫
x≥t

c(x)q(x)dx ≤
∫

x<t

c(x)q(x)dx

∫
x≥t

c(x)p(x)dx

∫
x0<t

c(x0)p(x0)dx0

∫
x1≥t

c(x1)q(x1)dx1 ≤
∫

x0<t

c(x0)q(x0)dx0

∫
x1≥t

c(x1)p(x1)dx1∫
x0<t

∫
x1≥t

c(x0)c(x1)p(x0)q(x1)dx1dx0 ≤
∫

x0<t

∫
x1≥t

c(x0)c(x1)p(x1)q(x0)dx1dx0

which follows directly from the MLRP. To obtain strictness of the inequality, observe that if p(x0)q(x1) =
p(x1)q(x0) almost everywhere on the rectangle [x0 < t]× [x1 ≥ t] (which is nontrivial if both FNR values are
not 0 or 1), then integrating both sides with respect to x0 over x0 < t and using the stochastic dominance
of p over q gives p(x1) = q(x1) almost everywhere on x1 ≥ t, and integrating both sides with respect to x1
over x1 ≥ t gives p(x0) = q(x0) almost everywhere on x0 < t, contradicting that p ≻lr q.

The second desired inequality follows in an identical manner, by reducing

FPRM,t,Q =
∫

x≥t
(1 − c(x))q(x)dx∫

(1 − c(x))q(x)dx
≤

∫
x≥t

(1 − c(x))p(x)dx∫
(1 − c(x))p(x)dx

= FPRM,t,P

to ∫
x0<t

∫
x1≥t

(1 − c(x0))(1 − c(x1))p(x0)q(x1)dx1dx0 ≤∫
x0<t

∫
x1≥t

(1 − c(x0))(1 − c(x1))p(x1)q(x0)dx1dx0.

As with PPR and PNR disparities, FNR and FPR disparities are necessarily small for sufficiently small
and large decision thresholds, respectively. The next lemma shows that they are also subject to the same
pairwise lower bounds, under the ongoing assumptions.
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Lemma 5. Let p(x) and q(x) be the probabilty density functions of the predictions of a model M on two
groups P and Q. If the model M is monotonically calibrated for groups P and Q (by a function c(x)) and
p ≻lr q, then for any decision threshold t where the ratios below are defined, we have either

FNRM,t,Q

FNRM,t,P
≥ O(P )

O(Q)

or
FPRM,t,P

FPRM,t,Q
≥ 1 − O(Q)

1 − O(P ) .

Proof. Observe that whenever
∫

x<t

c(x)q(x)dx ≥
∫

x<t

c(x)p(x)dx, we have

FNRM,t,Q

FNRM,t,P
=

∫
x<t

c(x)q(x)dx
∫

c(x)p(x)dx∫
x<t

c(x)p(x)dx
∫

c(x)q(x)dx
≥ O(P )

O(Q) .

So if the first inequality in the lemma does not hold, we have
∫

x<t

c(x)q(x)dx <

∫
x<t

c(x)p(x)dx, from which

it follows that p > q almost everywhere in some neighborhood of t (else p(x) ≤ q(x) for all x < t from the
MLRP). Similarly, whenever

∫
x≥t

(1 − c(x))p(x)dx ≥
∫

x≥t

(1 − c(x))q(x)dx,

FPRM,t,P

FPRM,t,Q
=

∫
x≥t

(1 − c(x))p(x)dx
∫

x
(1 − c(x))q(x)dx∫

x≥t
(1 − c(x))q(x)dx

∫
x
(1 − c(x))p(x)dx

≥ 1 − O(Q)
1 − O(P ) .

So if the second inequality in the lemma does not hold,∫
x≥t

(1 − c(x))p(x)dx <

∫
x≥t

(1 − c(x))q(x)dx, giving q > p almost everywhere in some neighborhood of t.

Thus at least one of the inequalities holds.

Both lower bounds in Lemma 5 can be reached simultaneously in the discrete case if p(x) and q(x) disagree
only when c(x) ∈ {0, 1}, meaning that these bounds are also tight in general. Intuitively, the FNR inequality
will fail to hold as t becomes sufficiently large and FNR values approach 1, and the FPR inequality will fail
to hold as t becomes sufficiently small and FPR values approach 1. From the first line in the proof, the

ratio of FNRs is
∫

x<t
c(x)q(x)dx∫

x<t
c(x)p(x)dx

higher than the ratio of the outcome rates, and this factor is just the ratio

of false negative prevalences within the two populations. Similarly, the relationship of FPRs to the ratio of
non-outcome rates is determined by the ratio of false positive prevalences within the two populations. These
relationships follow directly from the definitions of FNR and FPR, and Lemma 5 simply shows that, under
the given assumptions, at any (non-trivial) threshold the group with a higher outcome rate has either a lower
false negative prevalence or higher false positive prevalence. Note that, following the proof, for a threshold t
where q(t) = p(t) (and where t is not in the zero-measure set where the MLRP relationship is not satisfied),
both inequalities must hold, and in most cases they will both tend to hold in some neighborhood of such a
threshold.
Definition 6. The positive predictive value PPVM,t,P of a model M with decision threshold t on a group
P is the proportion of the predicted positives (i.e. with predicted value at least t) in P that have positive
outcome. The negative predictive value NPVM,t,P of a model M with decision threshold t on a group P
is the proportion of the predicted negatives (i.e. with predicted value less than t) in P that have negative
outcome.

The next lemma shows that these metrics are also unequal across groups under the MLRP and monotonic
calibration assumptions, except when the outcome rate or likelihood ratio is (almost everywhere) constant
above or below the decision threshold. With any guarantee of strictness in these functions (e.g. strict MLRP
and well-calibration), inequality in these metrics is similarly impossible at non-trivial decision thresholds.
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Lemma 6. Let p(x) and q(x) be the probabilty density functions of the predictions of a model M on two
groups P and Q. Let t be a decision threshold for the predictions of M . If M is monotonically calibrated
for groups P and Q (by a function c(x)) and p ≻lr q, then for any t where both sides of the inequality are
defined,

• PPVM,t,Q ≤ PPVM,t,P , with equality only if p(x)/q(x) or c(x) is constant almost everywhere on
x ≥ t and

• NPVM,t,P ≤ NPVM,t,Q, with equality only if p(x)/q(x) or c(x) is constant almost everywhere on
x < t.

Proof. Using that M is monotonically calibrated on P and Q the first desired inequality becomes:

PPVM,t,Q =
∫

x≥t
c(x)q(x)dx∫

x≥t
q(x)dx

≤
∫

x≥t
c(x)p(x)dx∫

x≥t
p(x)dx

= PPVM,t,P

or equivalently ∫
x≥t

c(x)q(x)dx

∫
x≥t

p(x)dx ≤
∫

x≥t

c(x)p(x)dx

∫
x≥t

q(x)dx∫
x1≥t

c(x1)q(x1)dx1

∫
x0≥t

p(x0)dx0 ≤
∫

x1≥t

c(x1)p(x1)dx1

∫
x0≥t

q(x0)dx0∫
x1≥t

∫
x0≥t

c(x1)q(x1)p(x0)dx0dx1 ≤
∫

x1≥t

∫
x0≥t

c(x1)p(x1)q(x0)dx0dx1

0 ≤
∫

x1≥t

∫
x0≥t

c(x1)(p(x1)q(x0) − q(x1)p(x0))dx0dx1

If p(x)/q(x) or c(x) is constant almost everywhere for x ≥ t the right hand side is 0; otherwise, by the MLRP
we have that p(x1)q(x0) − q(x1)p(x0) ≥ 0 for almost every pair x1 > x0 and p(x1)q(x0) − q(x1)p(x0) ≤ 0 for
almost every x1 < x0. Viewing the integral as a nonnegative and nonpositive component across these two
regions:

0 <

∫
x1≥t

∫
x1>x0≥t

c(x1)(p(x1)q(x0)−q(x1)p(x0))dx0dx1+
∫

x1≥t

∫
x0>x1

c(x1)(p(x1)q(x0)−q(x1)p(x0))dx0dx1

and interchanging x1 and x0 in the second integral we obtain

0 <

∫
x1≥t

∫
x1>x0≥t

c(x1)(p(x1)q(x0)−q(x1)p(x0))dx0dx1−
∫

x1≥t

∫
x1>x0≥t

c(x0)(p(x1)q(x0)−q(x1)p(x0))dx0dx1

which follows immediately using that c(x) is increasing and nonconstant. The NPV inequality follows in an
identical fashion.

The following theorem unifies the lemmas proven previously, showing that strict inequality in outcome rates
or any of the examined metrics implies all of the inequalities or pairs of inequalities given by the earlier
lemmas.
Theorem 1. Let p(x) and q(x) be the probabilty density functions of the predictions of a model M on two
groups P and Q. Let t be a decision threshold for the predictions of M where the ratios in (7)-(10) all exist.
If M is monotonically calibrated for groups P and Q and p and q satisfy the MLRP (with either p ⪰lr q or
q ⪰lr p), then any of (1)-(4) or strict inequality in (5) or (6) implies all of (1)-(6):

1. O(Q) < O(P )

2. PPRM,t,Q < PPRM,t,P (equivalently PNRM,t,P < PNRM,t,Q)

3. FNRM,t,P < FNRM,t,Q (equivalently TPRM,t,Q < TPRM,t,P )

8
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4. FPRM,t,Q < FPRM,t,P (equivalently TNRM,t,P < TNRM,t,Q)

5. PPVM,t,Q ≤ PPVM,t,P

6. NPVM,t,P ≤ NPVM,t,Q.

Any of (1)-(4) or strict inequality in (5) or (6) further implies at least one of (7) or (8), and at least one of
(9) and (10):

7. PPRM,t,P

PPRM,t,Q
≥ O(P )

O(Q)

8. PNRM,t,Q

PNRM,t,P
≥ 1 − O(Q)

1 − O(P )

9. FNRM,t,Q

FNRM,t,P
≥ O(P )

O(Q)

10. FPRM,t,P

FPRM,t,Q
≥ 1 − O(Q)

1 − O(P ) .

Proof. Inequality in any of (2)-(6) implies that p and q are not equal almost everywhere, and the direction
of the inequality then implies that p ≻lr q. This then implies (1)-(6) from Lemmas 1, 2, 4 and 6, and further
implies at least one of (7) and (8) from Lemma 3 and at least one of (9) and (10) from Lemma 5.

3 COMPAS Analysis
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Figure 1: Calibration of the COMPAS risk score

Using ProPublica’s COMPAS data (Larson et al., 2016), we observe first that the algorithm is approximately
calibrated for the groups of Black and White defendants (Figure 1), and approximately monotonically cali-
brated for the two groups as well. In addition, viewing the histogram of risk scores across races (Figure 2), we
would expect that the distributions of risk scores of these two groups would satisfy the MLRP. Letting p(x)

9
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scores by race
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Figure 4: FPR, FNR, PPR, and PNR disparities across different decision thresholds for the COMPAS risk
scores

denote the pdf of risk scores for Black defendants and q(x) denote the pdf of risk scores for White defendants,
we confirm that p(x)/q(x) is increasing as required (Figure 3). Figure 4 provides the ratios compared in
Lemmas 3 and 5 across the possible decision thresholds. The ProPublica analysis used decile scores of 5 or
higher (corresponding to “Medium” or “High” risk) as a decision threshold, and because p(5) and q(5) are
approximately equal, from the proof of Lemma 5, we can expect both inequalities from Lemma 5 to hold,
instead of just one of them. We observe that both inequalities from Lemma 3 hold at this threshold as well.

If significant disparities in false negative/positive rates are guaranteed due to the shapes of the risk dis-
tributions of White and Black defendants, is it possible that these differences in distribution, instead of
the behavior of the model itself, provide evidence of systemic unfairness? Consider a hypothetical county
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with identical distributions of Black and White defendants found in the COMPAS data, except where Black
residents are far more likely to be arrested for minor offenses, resulting in the addition of many more
lower-risk Black defendants and approximately equalizing the distributions of risk, and therefore the false
positive/negative rates, for the resulting Black and White defendants (Corbett-Davies & Goel, 2018). If
additionally, White residents are far more likely to not be arrested for minor offenses, we could see the
distributions in Figure 2 flip; as a result, in this hypothetical county, the COMPAS algorithm would have
a far higher false positive rate for White defendants than for Black defendants. But this would be due to
explicit systemic unfairness changing the relative distributions of lowest-risk defendants, where the model’s
predictions likely have no meaningful impact on the resulting pre-trial decisions, an example of the problem
of infra-marginality (Ayres, 2002; Simoiu et al., 2017).

Similar results arise in other contexts, such as the loan approval data examined by Gaebler & Goel (2025).
They found that, for a well-calibrated model predicting loan repayment, risk distributions for Black and
White borrowers satisfy the MLRP, which would, by Theorem 1, guarantee a higher false negative rate (i.e.
more denied loans for applicants who would actually repay) and lower false positive rate (i.e. fewer approved
loans for applicants who would not repay) for the group with the lowest repayment rate. A bank that
explicitly discriminates against Black borrowers by holding them to a much higher standard for acceptance
would see a significantly higher repayment rate for those borrowers, and fail the traditional “outcome test”
for discrimination. However, in a setting where data on false negatives is available (e.g. collected from other
banks who granted loans to rejected applicants), the model predicting repayment evaluated on that bank’s
outcomes would have a higher false negative rate for White borrowers, leading one to incorrectly believe
the model and/or bank is somehow unfair to White borrowers. Reliance on false positive/negative rates to
reveal unfairness in an algorithm or underlying institution can mask, or even further exacerbate, systemic
bias.

4 Conclusion

We have shown that, in many cases, inequalities of commonly used algorithmic fairness metrics are imme-
diate consequences of differences in outcome rates between groups, and large disparities in at least some of
these metrics are guaranteed for groups with large differences in outcome rates. We emphasize that these
results should not be the basis for testing group distributions for the MLRP prior to comparing false pos-
itive/negative rates or used to help set expected ranges for the disparities in these metrics. Nor should
they be viewed as justification for not assessing algorithms for appropriate performance or potential harms
across groups, in the numerous ways such harms can arise (Suresh & Guttag, 2021). Instead, they should be
taken as further evidence that the specific metrics discussed here, as well as many other metrics commonly
used to assess model performance, are highly sensitive to differences in distribution. In contexts where such
differences are expected, the ability of these metrics to quantify unfairness seems extremely limited, if not
non-existent. While it is straightforward to understand how enforcing demographic parity between groups
ignores that different groups may have different outcomes, the same clarity does not appear to exist for
false positive/negative rate parity, even though disparities in these metrics are very often due to the same
phenomena. Attempts to enforce parity of these metrics will result in sub-optimal decision-making which
may harm members of all groups involved (Corbett-Davies et al., 2023), and may actually widen existing
disparities. For example, comparing the predictions of a model on two groups under the assumptions of
Theorem 1, a group with a significantly lower outcome rate will necessarily have a significantly higher false
negative rate. If the model’s intended use is to offer, say, a screening for those at highest risk of a certain
medical condition, and the model designer determines that false negative rate parity is a necessary goal
and “mitigates” the disparity in the optimal model, the group at highest risk of the condition will be most
negatively impacted by the change to the model (i.e most under-screened relative to their actual need). The
determination that such a model is always unfair to the lowest-risk group, and increasingly unfair as the risk
of this group decreases, is clearly inconsistent with any reasonable notion of fairness.

In the presence of sufficient calibration, disparities in these metrics are direct consequences of differences
in group distributions of risk, which are most commonly symptoms of actual differences between groups.
Even when these distributional differences are the direct result of systemic inequities, the solution to these
inequities is not to mitigate an error rate difference via intentional mis-calibration or enforce metric parity

11



Under review as submission to TMLR

at the cost of model efficacy (Pfohl et al., 2021). Instead, developers should seek to understand the sources
of these differences and ensure their models are ultimately used in ways that close gaps instead of widening
them, a process which cannot be reduced to computation and comparison of standard algorithmic fairness
metrics.
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