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Abstract

While many speakers of low-resource lan-
guages regularly code-switch between their lan-
guages and other regional languages or English,
datasets of codeswitched speech are too small
to train bespoke acoustic models from scratch
or do language model rescoring. Here we pro-
pose finetuning self-supervised speech repre-
sentations such as wav2vec 2.0 XLSR to recog-
nize code-switched data. We find that finetun-
ing self-supervised multilingual representations
and augmenting them with n-gram language
models trained from transcripts reduces abso-
lute word error rates by up to 20% compared to
baselines of hybrid models trained from scratch
on code-switched data. Our findings suggest
that in circumstances with limited training data
finetuning self-supervised representations is a
better performing and viable solution.

1 Introduction

Over half of the world’s population uses at least two
languages regularly (Ansaldo et al., 2008). Despite
this common occurrence, automatic speech recog-
nition (ASR) models don’t work well with speech
that includes code-switching: when a speaker alter-
nates between two or more languages or varieties
within utterances (Myers-Scotton, 2017). For low-
resource languages, we encounter two issues when
attempting to address this problem: insufficient
data for end-to-end-training and insufficient data
for language modelling.

Recently, self-supervised pre-training of speech
such as wav2vec 2.0 (Baevski et al., 2020) have
proven to give very low error rates for English
ASR. Although very costly to pre-train, the English
models and cross-lingual (XLSR) representations
(Conneau et al., 2020) are available for finetuning
to efficiently make speech recognisers for many
languages.

In this work we ask: Does fine-tuning XLSR
improve recognition of code-switched data over

traditional training on code-switched data? To
test this phenomenon, we look at four African
languages (isiZulu, isiXhosa, Sesotho, Setswana)
code-switched with English. We also explore three
questions about how to go about this fine-tuning
process. We first experiment with different types
of data to add to the codeswitched dataset in order
to improve ASR performance, asking 1. Should
we add monolingual data? Many other methods
incorporate language identification (language ID)
into models, so we ask: 2. Does it help to add
language identification in our pipeline (either ex-
plicitly or implictly)? . We test this by augmenting
utterances to implicitly identify the language and
use a multi-task learning setup to learn frame-level
language ID and ASR simultaneously. Finally, we
ask: 3. Does a simple n-gram language model
trained on the code-switched data improve perfor-
mance despite the tiny amount of data?. We use the
codeswitched corpus to train bigram and trigram
models which we use when decoding the models.

We find that finetuning multilingual pretrained
models, augmented with a simple trigram language
model, works well for recognizing code-switched
data in low-resource languages, significantly bet-
ter than prior methods of training bespoke models
(CNN-TDNN-F acoustic model + LSTM language
model) from scratch. We find that neither language
ID nor adding monolingual data adds further perfor-
mance gains and perhaps surprisingly, that adding
monolingual data worsened model performance.
Our findings suggest that in circumstances with
limited training data, finetuning self-supervised
representations are likely a better performing and
viable solution.

2 Related Work

In speech processing, work on code-switching can
be divided into code-switching detection (Ralla-
bandi et al., 2018; Yılmaz et al., 2016; Wang
et al., 2019) using language identification (Choud-



hury et al., 2017) and end-to-end recognition (In-
dra Winata et al., 2018). In this work, we look at
both methods via finetuning of self-supervised rep-
resentations, namely wav2vec 2.0 (Baevski et al.,
2020). Language identification methods either
identify the language before doing the ASR on
the speech or have language ID trained in tandem
with the acoustic model of representations. End-to-
end recognition splits into two main approaches: a
multilingual modelling with cross lingual represen-
tations (Li et al., 2019a; Luo et al., 2018; Zhang
et al., 2022) and parallel modelling generating mul-
tiple transcriptions which are interpolated to re-
sult in one transcription with the highest likelihood
(Ahmed and Tan, 2012; Lyu et al., 2006).

For low-resource languages, we encounter two
issues when attempting to apply these methods:
a lack of sufficient data for end-to-end training
and a lack of sufficient data for neural language
modelling in the low-resource language or the
codeswitched language pair. The absence of a lan-
guage model for the codeswitched pair leads to
prior less computationally expensive methods to
fail and the lack of sufficient data for the model to
generalise, resulting in poor performance of mod-
els.

In our work, we focus on leveraging a pre-
trained self-supervised acoustic model, wav2vec
2.0 (Baevski et al., 2020) to finetune an existing
multilingual acoustic model for our chosen lan-
guage pairs. We incorporate language identifica-
tion to see if this additional signal can improve
performance given the small datasets.

3 Background

3.1 Languages

The languages used in this work are four South
African languages and English. The South African
languages are all Southern Bantu (SB) languages,
in the Nguni and Sotho-Tswana branches. The
English used in this work is English spoken with a
South African accent.

3.2 Data

We use the South African corpus of multilingual
code-switched soap opera speech (Niesler et al.,
2018). It is a corpus of speech collected from 626
South African soap opera episodes, with utterances
from four South African languages: isiZulu, isiX-
hosa, Sesotho and Setswana codeswitched with
English.

Language No. speakers
(millions) Language Family

isiXhosa 11.6 SB: Nguni
isiZulu 8.2 SB: Nguni
Sesotho 4.0 SB: Sotho-Tswana
Tswana 3.8 SB: Sotho-Tswana
English 380 IE: Western Germanic

Table 1: An overview of the languages used in this
work. The South African languages are in the Nguni
and Sotho-Tswana branches of the Southern Bantu (SB)
language family and English is in the Western Germanic
branch of the Indo-European (IE) language family.

For additional monolingual data in the languages,
we use the isiZulu, isiXhosa, Sesotho, Setswana
and English portions of the NCHLT Speech Corpus
(Barnard et al., 2014) to add as monoingual supple-
mentary finetuning data. We use the NCHLT-clean
partition of the dataset. The datasets used in this
work are summarised in Table 2.

Lang(s) No. utts Duration (hrs)

Soap
Opera
Corpus

Eng-Zul 9347 5.45
Eng-Xho 7941 3.14
Eng-Sot 6303 2.86
Eng-Tsn 6563 2.83

NCHLT
Corpus

isiZulu 44673 56.2
isiXhosa 46651 56.3
Sesotho 57539 56.3

Setswana 58414 56.3
English 77412 56.4

Table 2: Summary of the data used in experiments from
both the South African corpus of multilingual code-
switched soap opera speech (Soap Opera Corpus) and
NCHLT-clean Speech Corpus (NCHLT Corpus).

3.3 Baseline Model

We compare our models to those trained from
scratch on this data by Biswas et al. (2022). Their
best performing acoustic model is a Kaldi-based
(Povey et al., 2011) CNN-TDNN-F trained on
all 5 languages and finetuned for each language
pair. For language model decoding, the authors
used a bidirectional LSTM architecture with a 256-
dimensional embedding and 256-dimensional ma-
trices. The LSTMs are trained on language pairs,
resulting in four separate language models. We
compare our methods to the best performing model
for each language pair in this work.

4 Which additional data is helpful?

Given the low-resource natural of codeswitched
speech datasets, we ask which type of data can best



supplement the codeswitched dataset to improve
downstream results. To test this, we “pre-finetune”
the model with additional data other than the Soap
Opera Corpus data for each language pair, before
finetuning it on the codeswitched language pair.

To test whether in-domain data is most useful,
we pre-finetune the model with Soap Opera Corpus
data from all four language pairs for 42000 steps.
This model is then further finetuned with the Soap
Opera Corpus data for each individual language
pair alone for 12000 steps, resulting in the +all 4
pairs models.

To test whether adding monolingual data im-
proves performance, we use NCHLT monolingual
data from each language in a language pair, plus the
data from the corresponding language pair in the
Soap Opera Corpus data to pre-finetune models for
42000 steps. We then further finetune these models
with Soap Opera Corpus data from that specific
language pair, resulting in +monolingual models.

To compare the proposed methods with finetun-
ing with solely Soap Opera Corpus data in the
desired language pair, we finetune the model for
15000 steps with the Soap Opera Corpus data for
that language pair, resulting in the One pair mod-
els.

Table 3 shows the results for these experiments
with greedy decoding.

Lang pair Model type WER

xho-eng
One pair 72.2

+all 4 pairs 59.0
+monolingual 77.5

zul-eng
One pair 60.8

+all 4 pairs 50.8
+monolingual 67.6

sot-eng
One pair 59.4

+all 4 pairs 50.2
+monolingual 63.3

tsn-eng
One pair 51.4

+all 4 pairs 42.7
+monolingual 60.4

Table 3: Effects of additional data used in “pre-
finetuning” on ASR performance. WER is word error
rate of models. +all 4 lang pairs is “pre-finetuned” with
in-domain codeswitched data from the Soap Opera Cor-
pus and +monolingual is “pre-finetuned” with monolin-
gual data in each language in the lamguage pair along
with the Soap Opera Corpus data for that specific pair.

We see that across languages, using
codeswitched-data from all four languages

(i.e., “pre-finetuning” with Soap Opera Corpus
data from all 4 languages) gives the best results
on each South African language pair. The fact
that adding data from three different languages
helps on the 4th language is somewhat surprising,
and points both to the importance of the similarity
of the 4 languages, and to the fact that all data
are from a single Soap Opera genre. By contrast,
the genre difference from the monolingual read
speech data is enough to severely hurt performance.
In summary, when finetuning multilingual,
self-supervised ASR models on low-resource
codeswitched data, we find that matching domain
and genre properties (such as the presence of
codeswitching) is more important than adding
monolingual data from the same language if the
genre is a mismatch.

5 Does adding implicit or explicit
language id information help?

Prior work has shown that for codeswitched ASR,
simultaneously learning the language identification
(language ID) and ASR improved the ASR perfor-
mance (Luo et al., 2018; Li et al., 2019b; Zeng
et al., 2019). Here we try to add language ID infor-
mation in two ways: by augmenting the data and
by training a classifier.

We experiment with augmenting the Soap Opera
Corpus utterances to encapsulate the bilingualism
in the utterances in lieu of explicit language labels
or timestamps. For each language pair, we use two
methods: language specific casing and language
specific tags. For language specific casing, we dou-
ble the vocabulary size by giving each language a
specific case, e.g., English in uppercase and isiZulu
in lowercase. We then finetune wav2vec 2.0 XLSR
300M with this data for 12000 steps resulting in
+casingID models for each language pair. For lan-
guage specific tags, we put opening and closing
tags on either side of the text in a specific language.
We then finetune wav2vec 2.0 XLSR 300M with
this data for 12000 steps resulting in +tagsID mod-
els for each language pair.

Casing: WHAT IF etholwa amaphoyisa
kuqala

Tags: <eng> what if </eng> <zul> etholwa
amaphoyisa kuqala </zul>

Example 1: Demonstration of implicit addition



of language information to our models through
language-specific casing and language-specific
tags.

To train a language ID classifier on our data,
we add a frame-level classification head to the
wav2vec 2.0 XLSR encoder. We use the times-
tamps in the corpus to label frames with either
English or the South African language, and train a
model with cross-entropy loss. The results of the
language ID models are in Table 4.

Language Pair Lang ID Accuracy
English-isiZulu 97%

English-isiXhosa 98%
English-Sesotho 96%

English-Setswana 97%

Table 4: Results from frame-level language identifica-
tion of the four South African languages and English

The frame-level language ID models work well,
so we try a multi-task setting in hopes of improv-
ing the model performance. We learn language ID
and ASR at the same time, summing the weighted
loss of the two tasks. The loss calculation is sum-
marised in Equation 1. As ASR is the priority,
we always keep the CTC weight higher than the
language ID weight. The resulting models are the
+multitaskID models, with each language pair fine-
tuned for 12 00 steps. The model architecture is
visualised in Figure 1 .

LossCTC+LID = λCTCLCTC+(1−λCTC)LLID

(1)

Figure 1: Our multi-task learning setup for combining
frame-level language ID with CTC by a weighted sum
of the losses.

Lang pair Model type WER

xho-eng

One pair 72.2
+tagsID 83.4
+casingID 87.9
+multitaskID 75.2

zul-eng

One pair 60.8
+tagsID 80.8
+casingID 80.9
+multitaskID 64.2

sot-eng

One pair 59.4
+tagsID 76.3
+casingID 89.4
+multitaskID 65.6

tsn-eng

One pair 51.4
+tagsID 72.6
+casingID 86.6
+multitaskID 64.5

Table 5: Effects of incorporating language ID on ASR
performance. WER is word error rate of models.
+tagsID uses language specific tags around utterances
in the dataset and +casingID uses one case per lan-
guage (e.g. uppercase for English and lowercase for
isiZulu). Models trained to learn both language ID and
ASR at the same time during finetuning are referred to
as +multitaskID models. The +multitaskID models
work better that +tagsID and +casingID. But none of
the language ID models work as well as the baseline of
not using Language ID at all (the “One pair" row).

The results of our experiments are in Table 5.
For the multi-task setup, the results with the best
language ID and CTC weights are reported.

The multi-task learning setup improves perfor-
mance downstream over language specific casing
and tags, but not over further fine-tuning, possibly
due to the model being hindered rather than helped
trying to learn two tasks at once.

Language specific casing does not improve
model performance, it actually worsens the models
compared to the baselines. This is likely due to the
unnecessary doubling of the vocabulary.

Language ID tags work better than the casing
across languages, however they do not outperform
finetuning without tags. This is likely due to the
fact that the tags do not correspond to any speech,
so the introduction of them creates initial confu-
sion.

In summary, adding language identification in-
formation does not improve ASR performance on
our code-switched dataset. This could be due due
to the lack of data available for training, the fact



that the character sets for our 5 languages are all
overlapping, or the fact that our experiments con-
sist of finetuning and not end-to-end pretraining.
Other work that uses multitask learning for code-
switched speech recognition (Li et al., 2019b; Zeng
et al., 2019; Song et al., 2022; Winata et al., 2018)
has shown success with a language pair with an
non-overlapping character set: English and Man-
darin Chinese. Those English/Chinese models are
also trained from scratch end-to-end, so it is possi-
ble that incorporation of language ID is more useful
during training and less useful at later stages such
as finetuning.

6 Does a language model improve
performance?

For our experiments thusfar, we do greedy decod-
ing from the wav2vec 2.0 model finetuned with a
CTC head. Could adding language model infor-
mation improve performance? The baseline sys-
tem with which we are comparing used an LSTM
language model, suggesting that this information
might be useful.

In this section, we study whether using the tran-
scripts from the Soap Opera Corpus as training data
for a small n-gram language model could improve
accuracy. We train separate bigram and trigram
(word) language models using KenLM (Heafield,
2011) from each of the 4 language-pair datasets,
and then use this language model in decoding.

The language model results for the best finetuned
models per language pair are presented in Table 6.

xho-eng zul-eng sot-eng tsn-eng
Baseline 48.7 43.3 48.5 43.5
Greedy 59.0 50.8 50.2 42.7
2-gram 26.7 25.5 30.6 28.9
3-gram 22.1 22.3 23.4 21.7

Table 6: Effect of language modelling on ASR perfor-
mance (measured in WER). The numbers in the baseline
raw are taken from (Biswas et al., 2022); their system
(which includes an LSTM language model) is compared
to wave2vec 2.0 finetuned on the Soap Opera Corpus
data, using greedy decoding (no LM) as well as bi-
gram, and trigram n-gram models trained with the Soap
Opera Corpus data. Without n-gram language models,
the baseline model outperforms finetuning wav2vec 2.0.
However, training an n-gram language model with the
ASR data improves over the baseline.

Although greedy decoding does not work better
than the baseline (CNN-TDNN-F acoustic model
plus a bidirectional LSTM model) since the base-

line has a language model, we find that the fine-
tuned models equipped with a simple n-gram lan-
guage model consistently beat baseline models.
These results suggest that fine-tuning large pre-
trained models with only very simple language
model support can be a better solution in low-
resource scenarios.

7 Conclusion

In this work, we have finetuned wav2vec 2.0 XLSR
with codeswitched data of South African languages
and English. We found that this system augmented
with a simple bigram or trigram language model
beats baseline models trained with LSTM language
models. We also found that it helps to add data
from other languages, albeit very related languages
and in the exact the same genre/domain.

We were not able to improve the model with
various kinds of language ID information; these
methods may see more success for languages with
character sets that overlap less, or when there is
enough data to train an end-to-end model from
scratch.

This work demonstrates a method to train ASR
models on codeswitching data with relatively mini-
mal computation and a very basic n-gram language
model, suggesting a direction for addressing an im-
portant task in the low-resource settings that char-
acterise many of the world’s languages.
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