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Abstract

The reliability of artificial intelligence (AI) systems in open-world
depends heavily on their ability to flag out-of-distribution (OOD) in-
puts, which are unseen during the training phase. Recent advances
in large-scale vision-language models (VLMs) have enabled promis-
ing few-shot OOD detection frameworks using only a handful of in-
distribution (ID) samples. However, existing prompt learning-based
OOD methods rely solely on softmax probabilities, overlooking the
rich discriminative potential of the feature embeddings learned by
VLMs trained on millions of samples. To address this limitation,
we propose a novel context optimization (CoOp)-based framework
that integrates subspace representation learning with prompt tun-
ing. Our approach improves ID-OOD separability by projecting
the ID features into a subspace spanned by prompt vectors, while
projecting ID-irrelevant features into an orthogonal null space. To
train such OOD detection framework, we design an easy-to-handle
end-to-end learning criterion that ensures strong OOD detection
performance as well as high ID classification accuracy. Experiments
on real-world datasets showcase the effectiveness of our approach.
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1 Introduction

Deep learning models often exhibit overconfidence when exposed
to inputs from unseen, out-of-distribution (OOD) categories [6].
This overconfidence can lead to critical failures in open-world and
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safety-sensitive applications such as autonomous driving [5] and
medical diagnostics [21]. Traditional OOD detection approaches
[9-11, 13] typically rely on designing scoring functions or incorpo-
rating auxiliary outlier datasets during training. While such meth-
ods have demonstrated promise in controlled settings, they often
fail to generalize in dynamic, real-world environments where the
nature of the OOD data is unpredictable.

Recently, large-scale vision-language models (VLMs) such as
contrastive language-image pretraining (CLIP) [20] have shown
strong zero-shot performance on downstream tasks by aligning vi-
sual and textual modalities in a shared embedding space. This opens
a new direction for OOD detection, particularly in low-resource
or few-shot settings. However, CLIP’s zero-shot approach depends
heavily on manually crafted prompts, where even slight variations
(e.g., “a flower” vs. “a type of a flower”) can significantly impact
performance. To reduce this sensitivity, a class of prompt tuning
methods called context optimization has been introduced. For ex-
ample, CoOp [31] and CoCoOp [30] replace hand-crafted textual
embeddings with learnable context vectors that are optimized to
enhance alignment between in-distribution (ID) image features
and class text embeddings, leading to improved the classification
accuracy.

However, context optimization methods face a significant lim-
itation in their direct applicability towards OOD detection tasks.
By focusing on bringing ID image features closer to their text em-
beddings, they may inadvertently include background or semanti-
cally irrelevant regions, corrupting the learned representations. Lo-
CoOp [16] addresses this limitation by leveraging CLIP’s spatially-
aware local features. It identifies ID-irrelevant regions—those where
the true class is not among the top predictions—and treats them as
proxy OOD features. By applying an entropy-maximization strat-
egy to the predictions associated with ID-irrelevant features, this
approach enhances the separation between ID and OOD samples
without relying on any specific OOD data. A related method was
proposed in [27], where adaptive weighting is incorporated into
the LoCoOp optimization framework to dynamically balance ID-
and OOD-specific loss terms based on the model’s prediction confi-
dence.

Our contributions. LoCoOp and its variants [16, 27] have made
promising progress in prompt learning-based OOD detection. How-
ever, they rely solely on softmax probabilities computed from the
cosine similarities between image and text embeddings. While soft-
max outputs are known to be overly confident on OOD inputs,
feature embeddings typically preserve more calibrated and discrim-
inative information [3, 7, 22, 23]. Motivated by this, our approach
aims to improve ID-OOD separability by leveraging the rich dis-
criminative structure of the feature embeddings. To achieve this,
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Figure 1: The proposed Subspace learning-based Context Optimization (SubCoOp) framework for prompt learning-based OOD

detection.

we exploit the subspace geometry in context optimization frame-
work: ID features are projected into a subspace spanned by the
prompt vectors, while ID-irrelevant features are projected into the
orthogonal null space. We design an end-to-end learning objective
that is easy to implement and enables improved OOD detection
performance without compromising ID classification accuracy. Ex-
periments on large-scale real-world datasets such as ImageNet-1K
[2] demonstrate the effectiveness of our method.

2 Proposed Method

Our goal is to design a prompt learning-based OOD detection frame-
work that works under few-shot settings to effectively detect the
OOD samples from ID samples.
Problem Statement. We consider an ID dataset D™ = {(x®, y*)},
where x™ € RL denotes the input features of an image and y™ €
Yin = {1,...,K}is its corresponding class label. AI models are
typically trained under the closed-world assumption, where test
samples are expected to come from the same distribution as the
ID data. In practice, however, models frequently encounter OOD
samples—data that deviates from the training distribution [8]. In
classification settings, there may occur a semantic-shift such that
test samples may belong to an unknown label space Y °%, where
Y0 N YOout = (. The objective of OOD detection is to build a clas-
sifier that, given a test sample x, predicts whether it belongs to an
ID class or not, thereby preventing models from assigning high-
confidence predictions to OOD samples. OOD detection can be
framed as a binary classification problem. Formally, this is achieved
through a detection function dy; : RE — {ID, OOD} such that
dy (%) = {ID s(x) > n
s(x) <n,

where s(x) is a scoring function associated with the input feature x
and 7 is the threshold. In this work, we focus on a few-shot setting,
using only 16 annotated examples per class from D™ for training.

00D @

The model’s effectiveness is evaluated on a test set which consists
of both ID and OOD samples.

Prompt Learning with Positive Class Labels. Context optimiza-
tion (CoOp) [31] leverages pre-trained VLMs, such as CLIP [20],
for open-vocabulary visual recognition tasks. While CLIP typically
uses static, hand-crafted prompts, CoOp learns a set of positive
prompt vectors in a data-driven manner. These vectors are opti-
mized as part of the model parameters during training, enabling
few-shot learning for the downstream task.

Let x™ € RE be an ID input image. The image is processed by
the visual encoder f : RE — RP of CLIP to extract the visual
feature vector f = f(x'"). The textual prompt is composed as
ty = {w1, w2, ..., 0y, ¢}, where each wy, € RD is a learnable
context vector, ¢j € RP is the class name embedding of the image,
for each class k € [K], and M is the number of positive prompt
vectors. The textual encoder g processes the prompt ¢ to yield the
textual feature g, = g(t;). With these notations, we can define the
probability of the input being classified as class k as follows:

exp (sim(fi“, 90/ r)
Zlk(’:l exp (sim(fi“, gk/)/r) ’

where sim(+, -) denotes cosine similarity and 7 > 0 is a temperature
parameter. In the final objective function, we will use the cross-
entropy loss Lcg to match between the probabilities in (2) and the
true label 4.

ply=k|x™) = ©)

Prompt Vector-induced Subspace. In order to utilize the feature
embedding space to efficiently enable ID-OOD separability, we
consider the matrix formed by the prompt vectors w1, ..., wps. Let
W = [w1,w2,...,0p]. Our idea is to project the visual feature
embeddings of the ID data to a low-dimensional subspace spanned
by the columns of W € RP*M | denoted as R(W). At the same
time, if the embeddings corresponding to the OOD data lie outside
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this subspace, such criterion can enhance the ID-OOD separability
in the feature space. However, achieving this in practice poses
several challenges. First, we operate in a few-shot setting, where
only a limited number of labeled ID samples are available, making
it difficult to reliably estimate a representative subspace. Second,
without access to OOD samples during training, the model struggles
to learn a well-defined subspace boundary due to the absence of
explicit supervision.

OOD Local Features Extraction. Recently, LoCoOp [16] intro-
duced a novel perspective to prompt optimization-based OOD de-
tection by extracting local features that serve as proxy OOD sig-
nals, thereby preventing the model from assigning high ID con-
fidence scores to OOD features. To detect local features not cor-
responding to ID classes (i.e., ID-irrelevant features), the method
in [16] examine a set of spatial indices from the feature map: 7 =
{0,1,2,...,HX W — 1}, where H and W are the height and width
of the feature map, respectively. Following a strategy inspired by
semantic segmentation [20], the class probabilities associated to
each region i € 7 can be computed based on the similarity between
local visual features and text embeddings:

exp (sim(fiin, gk)/z')
Zlk(,:l exp (sim(fii“,gk,)/r) ’

where f;“ € RP denotes the feature extracted from the ith local re-
gion of the image and g corresponds to the text prompt embedding
for the kth class as defined in (2).

For any region i, if it corresponds to an ID class, its ground-
truth label y™ is expected to appear among the top-C predicted
classes. Conversely, if the region is unrelated to any ID class (e.g.,
background noise), the true class is unlikely to rank within the
top-C, due to the lack of strong semantic alignment. Leveraging
this observation, one can define an index set J to identify such
ID-irrelevant regions:

jz{ie[:rank(pi(yzym |xi“)) >C}. (4)

pily=k|x") = ®)

Here, rank(p; (y = y™ | 1)) denotes the rank of the true class y™
among the predicted scores over all ID classes and C is a hyperpa-
rameter or can be fixed based on prior knowledge about the number
of fine-grained classes or semantic relationships in the dataset.

Subspace-based Regularization Loss. Based on the extracted
local features for both ID and OOD data, we design regulariza-
tion losses to improve the separability between them. Specifically,
the local feature vectors corresponding to ID data are projected
onto an M-dimensional subspace spanned by the column vectors
of W € RP*M | denoted by R(W). On the other hand, the fea-
tures from ID-irrelevant or OOD regions are projected to lie in
the null space N (W) orthogonal to R(W), defined as N (W) =
{f eRP:WTf= 0}, which has dimension D — M. It is important
to keep M < D, since when M = D, the null space becomes trivial
(containing only the zero vector), thus limiting our ability to sep-
arate ID and OOD samples effectively. This condition is typically
satisfied in practice, as the number of prompt vectors M is usually
small (e.g., M = 16 as suggested in [16, 31]), whereas the dimen-
sionality of CLIP embeddings is relatively large (e.g., D = 512).
The proposed regularization losses for the ID and OOD regions are
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defined as follows:

v, [eroiw ()],

Lsub-p = Z Z — ; (5a)
jeg’ n=1 ‘ il
3 e ()]
-1/ 1l2
Lsub-00D = Z - ; (5b)
jeg n=1 njlly

where N denotes the total number of training samples, f;l“ i denotes
the ith local region feature for the nth image, J is the complement
oftheset J,ie,J’ =7\ ={i€ 1 |i¢ J},andtheprojections
Projyy. and Projyy are given by:

Projy (f) = (IM —W(WTW)_IWT)f,
Projw (f) = (W (WTW)_IWT)f.

Here, the loss term Lgy},-1p encourages ID features to lie within
the column space R(W) by minimizing their projected components
in the orthogonal complement, N (W). Conversely, the loss term
Lsub-00p promotes OOD features to lie in (W) by suppressing
their projections onto R(W).

To regularize ID-irrelevant feature regions, we further apply an
entropy-based loss over the set J. For each ID-irrelevant region
Jj € J, the goal is to encourage the model to exhibit low confidence
in its predictions based on the local image feature fijn. To achieve
this, inspired by entropy maximization techniques [16, 28], we en-
force high entropy on the predicted class distribution p; (xi1), j e
J, which is a K-dimensional probability vector where each entry
represents p;j(y = k | xi,?), as defined in (3). The entropy-based
regularization loss is defined as:

N
Lent-00D = —Z Z H(p;(xp)). ©)
n=1jeJg
where H(-) denotes the entropy function.
Overall Loss Function. The overall training loss combines the
cross-entropy loss with the above discussed regularization losses
as follows:

L = Lcg + M Lpreg + A2 Lsreg D + A3 LsReg 00D, (7)

where Lcg is discussed after (2), other regularization terms are
defined in (5) and (6), and A1, 42,43 > 0 are the regularization
parameters. We name our approach as Subspace learning-based
Context Optimization (SubCoOp).

3 Experiments

Dataset. For our experiments, we utilize ImageNet-1k dataset [2]
as ID data. For OOD data, we use a number of commonly used
benchmark datasets such as iNaturalist [24], SUN [26], Places [29],
and Texture [25]. For the few-shot training, we use 16 images per
ID class, and evaluate the model using the whole OOD datasets and
the test ID dataset.

Implementation Details. We adopt the CLIP ViT-B/16 model [4]
as the backbone of the visual encoder for the pretrained network.
For ID-irrelevant feature extraction, we set the rank threshold pa-
rameter to C = 200. In addition, we fix M = 16, A; = 0.25, A2 = 2,
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Table 1: Comparison of FPR95 and AUROC scores (%) on various OOD datasets with ID dataset ImageNet-1k.

Method iNaturalist SUN Places365 Textures Average
FPR95|  AUROCT  FPR95|  AUROCT  FPR95|  AUROCT  FPR95|  AUROCT  FPR95|  AUROCT
Zero-shot methods
MCM 30.94 94.61 37.67 92.56 44.76 89.76 57.91 86.10 42.82 90.76
GL-MCM 15.18 96.71 30.42 93.09 38.85 89.90 57.93 83.63 35.47 90.83
CLIP-based post-hoc methods
MspT 74.57 77.74 76.95 73.97 79.72 72.18 73.66 74.84 74.98 76.22
ODINT 98.93 57.73 88.72 78.42 87.80 76.88 85.47 71.49 90.23 71.13
Energy’ 64.98 87.18 46.42 91.17 57.40 87.33 50.39 88.22 54.80 88.48
ReAct " 65.57 86.87 46.17 91.04 56.85 87.42 49.88 88.13 54.62 88.37
MaxLogit" 60.88 88.03 44.83 91.16 55.54 87.45 48.72 88.63 52.49 88.82
Prompt tuning based methods (16-shot)
LSN 46.40%176 91.91%273 3186156 93 21%132 40612005 90055193 47.212088  gg 9gF0.97 47 52#1.21 g gg*1.64
NegPrompt 38.11%1-15 90 22%0-78 31 44%0.29 93 59*0.18 36 152205 9 g7#0.78 44 64#1.34 g7 49#0.52 37 59*1.21 g 37%0.57
CoOp 26.72%2:09 94 ,53%0:36 36 96087 g9 34#0.15 45 01*1.45 g9 43+0.15 40 38+145 90 95%0-18 37 g7+1.47 g g1+0.21
LoCoOp  18.70¥212 96.09%0-38 23 83+0.98 95 19+0.07 34 78%347 97 5+0.63 43 75+0.22 g9 g1*0.33 30 0p*1.70 g3 14035
SubCoOp  14.337070  96.99%0-08 95 1431.96 95 10044 33 04+2.82  gp g7#0-6T 4 35+3.04 g9 g7*0.53 97 79+2.15 g3 51+0.42

and A3 = 5. We employ the SGD optimizer with a learning rate of
0.002, a batch size of 32, and train the model for 50 epochs. We use
Nvidia 3090 Ti GPU for all the experiments.

OOD Detection Score: While testing, we adopt the global-local
maximum concept matching (GL-MCM) score [18] for OOD detec-
tion (i.e., the score function s(x) as employed in (1)). This metric in-
tegrates the maximum softmax probability scores from both whole
image feature and local image features and is defined as follows:

exp (sim(f, gy)/7)
K exp (sim(f. g4 /7)
+may P (sim(f;, 9x)/7)

ki ZIk(’:I exp (sim(f;, gp)/7)

where f is the vision encoder output for the test image x and f;’s
are its features corresponding to the local regions.

Evaluation Metrics. We evaluate the OOD detection performance
using the following metrics: (i) false positive rate (FPR) at %95 refers
to the false positive rate of OOD samples when the true positive
rate of ID samples is at 95%; (ii) area under the receiver operat-
ing characteristic curve (AUROC), measures the model’s ability to
distinguish between ID and OOD samples; and (iii) classification
accuracy on ID data.

Baselines. To evaluate our proposed method, we compare it with
zero-shot learning approaches, post-hoc CLIP based methods, and
few-shot prompt learning methods. For the zero shot baseline, we
use the state-of-the-art MCM [15] and GL-MCM [17] methods. For
the post-hoc methods, we adopt MSP [8], ReAcT [22], ODIN [12],
Maxlogit [1], and Energy Score [14] as baselines. These methods
leverage CLIP’s pretrained representations and combining them
with simple post-processing techniques/scores for OOD detection.
For few-shot prompt tuning based baselines, we consider CoOp
[31], LSN [19], NegPrompt [12], and LoCoOp [16]. CoOp, LoCoOp,
and our approach SubCoOp are based on learning a set of positive

SGL-McM (%) = max

®

prompts. On the other hand, NegPrompt and LSN each learn a set
of negative prompts per ID class in addition to the positive prompt
vectors.

Results. We report the OOD detection performance of our method
and the baselines, as shown in Table 1, averaged over three ran-
dom trials. Prompt tuning—based methods outperform other line
of approaches as they encourage the model to align visual features
with more discriminative and dynamically learned text prompts.
Our subspace-based prompt tuning strategy, SubCoOp, consistently
outperforms competing methods, achieving superior results with
a notable margin. On the ImageNet-1K dataset, SubCoOp attains
the best OOD detection performance, with an average FPR95 of
27.72%, AUROC of 93.51%, while maintaining high ID classification
accuracy (see Table 2 in the supplementary material). Similarly,
strong OOD performance is observed on the ImageNet-100 dataset,
as reported in Table 3 of the supplementary. These results demon-
strate that when combined with proxy OOD feature extraction,
our subspace regularization significantly enhances the separability
between ID and OOD samples.

4 Conclusion

In this work, we propose a novel approach that integrates subspace
representation learning with prompt optimization for few-shot
OOD detection using VLMs. Our method induces a distinctive ge-
ometry in the feature embedding space by projecting ID features
onto a subspace spanned by learnable prompt vectors, while push-
ing ID-irrelevant features toward the orthogonal null space. Experi-
ments on several OOD benchmarks based on ImageNet-1K demon-
strate that our prompt tuning framework, SubCoOp, consistently
outperforms state-of-the-art methods in OOD detection, without
sacrificing ID classification accuracy. As future work, we plan to de-
velop a subspace-projection-inspired OOD detection score, which
can serve as either a surrogate or a complement to the current
state-of-the-art GL-MCM score
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