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ABSTRACT

Contemporary neural networks are limited in their ability to learn from evolving
streams of training data. When trained sequentially on new or evolving tasks,
their accuracy drops sharply, making them unsuitable for many real-world appli-
cations. In this work, we shed light on the causes of this well known yet unsolved
phenomenon - often referred to as catastrophic forgetting - in a class-incremental
setup. We show that a combination of simple components and a loss that balances
intra-task and inter-task learning can already resolve forgetting to the same extent
as more complex measures proposed in literature. Moreover, we identify poor
quality of the learned representation as another reason for catastrophic forgetting
in class-IL. We show that performance is correlated with secondary class infor-
mation (dark knowledge) and it can be improved by an appropriate regularizer.
With these lessons learned, class-incremental learning results on CIFAR-100 and
ImageNet improve over the state-of-the-art by a large margin, while keeping the
approach simple.

1 INTRODUCTION

The ability to learn from continuously evolving data is important for many real-world applications.
Latest machine learning models, especially artificial neural networks, have shown great ability to
learn the task at hand, but when confronted with a new task, they tend to override the previous con-
cepts. Deep networks suffer heavily from this catastrophic forgetting (Mccloskey & Cohen (1989))
when trained with a sequence of tasks, impeding continual or lifelong learning.

In this work, we focus on class-incremental learning (class-IL) (Rebuffi et al., 2017). It is one of
the three scenarios of continual learning as described in van de Ven & Tolias (2019), where the
objective is to learn a unified classifier over incrementally occurring sets of classes. Since all the
incremental data cannot be retained for unified training, the major challenge is to avoid forgetting
previous classes while learning new ones.

The three crucial components of a class-IL algorithm include a memory buffer to store few exemplars
from old classes, a forgetting constraint to keep previous knowledge while learning new tasks, and
a learning system that balances old and new classes. Although several methods have been proposed
to address each of these components, there is not yet a common understanding of best practices.

Contributions. In this work, we propose a compositional class-IL (CCIL) model that isolates the
underlying reasons for catastrophic forgetting in class-IL and combines the most simple and most
effective components to build a robust base model. It employs plain knowledge distillation (Hinton
et al., 2015) as a forgetting constraint and selects samples simply randomly. For the loss evaluation,
we propose important changes in the output normalization. This simple model already exceeds
state-of-the-art results.

In addition, we study the influence of the learned representation’s generalization properties on for-
getting and find that the degree of feature specialization (overfitting) correlates with the degree of
forgetting. We study some common regularization techniques and find that only those that keep,
or even improve, the so-called secondary class information – also referred as dark knowledge by
Hinton et al. (2015) – have a positive influence on class-incremental learning, whereas others make
things much worse.
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2 RELATED WORK

iCaRL was the first approach that formally introduced the class-IL problem (Rebuffi et al. (2017)).
iCaRL is a decoupled approach for feature representation learning and classifier learning. It alle-
viates catastrophic forgetting via knowledge distillation and a replay-based approach. Later Castro
et al. (2018) extended it to an end-to-end learning model based on a combination of distillation and
cross-entropy loss to show improved results over iCaRL. Successive works usually dedicated their
contribution to one of the three components in class-IL.

Exemplar selection: A memory buffer is allocated to store exemplar samples for replaying old
classes. Many works (Rebuffi et al. (2017); Castro et al. (2018); Hou et al. (2019); Wu et al. (2019))
use herding heuristics (Welling (2009)) for exemplar selection. Herding selects and retains samples
closest to the mean sample for each class. Liu et al. (2020) parameterized the exemplars to make
optimize them jointly with the model. Iscen et al. (2020) introduced a memory efficient approach to
store feature descriptors instead of images. In our work, we simply sample from each class randomly
to compile the exemplar set.

Forgetting-constraint: Knowledge distillation (KD) was first introduced by Li & Hoiem (2018) for
multi-task incremental learning. Thereafter, various works (Rebuffi et al., 2017; Castro et al., 2018;
Wu et al., 2019) have adopted it in class-IL to restore previous knowledge. Lately, several works
have proposed new forgetting constraints with an objective to preserve the structure of old-class
embeddings. Hou et al. (2019) proposed the usage of feature-level distillation by penalizing change
is the feature representation from the old model. Yu et al. (2020) utilized an embedding network to
rectify the semantic drift, Tao et al. (2020) proposed a Hebbian graph-based approach to retain the
topology of the feature space. We utilize plain knowledge distillation in this work.

Bias removal methods: Various works (Wu et al., 2019; Hou et al., 2019; Zhao et al., 2020) have
pointed out that class-imbalance between old and new classes creates a bias in the class weight
vectors in the last linear layer, due to which the network predictions are biased towards new classes.
To rectify this bias, Wu et al. (2019) trained an extra bias-correction layer using the validation set,
Belouadah & Popescu (2019) proposed to rectify the final activations using the statistics of the old
task predictions, Zhao et al. (2020) adjusted the norm of new class-weight vectors to those of the
old class-weight vectors, and Hou et al. (2019) applied cosine normalization in the last layer. The
focus of these works is limited to the bias in the last layer, but ultimately catastrophic forgetting
is an issue that affects the entire network: class imbalance causes the model to overfit to the new
task, deteriorating the performance on the old ones. Some works (Castro et al., 2018; Lee et al.,
2019) also fine-tune the model to avoid overfitting to the current task. We propose a learning system
that resolves this bias without the need of any post-processing, by fixing the underlying issues; see
Section 4.

3 CLASS-INCREMENTAL LEARNING

3.1 PROBLEM DEFINITION

The objective of class-incremental learning (class-IL) is to learn a unified classifier from a se-
quence of data from different classes. Data arrives incrementally as a batch of per-class sets X
i.e. (X1, X2, ..., Xt), where Xy contains all images from class y. Learning from a batch of classes
can be considered as a task T . At each incremental step, the data for the new task Ti arrives, which
contains samples of the new set of classes. At each step, complete data is only available for new
classes X i.e. (Xs+1, ..., Xt). Only a small amount of exemplar data Pold i.e. (P 1, ..., P s) from pre-
vious classes i.e. (X1, ..., Xs) is retained in a memory buffer of limited size. The model is expected
to classify all the classes seen so far.

The problem definition with strictly separated batches may appear a bit specific. In many practical
applications, the data will arrive in a more mixed-up fashion. However, this strict protocol allows
the comparison of techniques and it covers the key issues with class-incremental learning. Improve-
ments on this protocol also serve less strict applied settings.
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3.2 EVALUATION METRICS FOR CLASS-IL

Class-IL models are evaluated using three metrics: average incremental accuracy and two forgetting
rate metrics. After each incremental step, all classes seen so far are evaluated using the latest model.
After N incremental tasks, the accuracy An over all (N + 1) steps is averaged and reported. It
is termed as average incremental accuracy (Avg Acc), introduced by Rebuffi et al. (2017). We
also evaluate the forgetting rate F proposed by Liu et al. (2020). The forgetting rate measures the
performance drop on the first task. It is the accuracy difference on the classes of the first task X0:s

test,
using Θ0 and ΘN . Therefore, it is independent of the absolute performance on the initial task T0. We
introduce another metric, referred as Fφ, to measure forgetting in the feature extractor φ(·). After
the final incremental step, parameters of the feature extractor are frozen and the last linear layer is
learned using all the data from all the classes. Fφ is the accuracy difference between this model and
a model where the whole network is trained on all the classes.

3.3 A BASIC CLASS-IL FRAMEWORK

The network model Θ consists of a feature extractor φ(·) and a fully-connected layer fc(·) for
classification. Similar to a standard multi-class classifier, the output logits o are processed through
a softmax activation function σ(·) before cross-entropy loss LCE is evaluated corresponding to
the correct class. For the initial base task T0, the model Θs learns a standard classifier for the
first (y ∈ y[1 : s]) classes. In the incremental step, the fc layer is adapted to learn new classes
(y ∈ y[s + 1 : t]) by adding new output nodes, whereas the other part of the network remains
unchanged, resulting into a new model Θt. The three main elements of class-IL are set up as follows.

Exemplar selection: We compile the exemplar set by randomly selecting an equal number of sam-
ples (m) for each class. The samples are sorted in ascending order according to the distance from
the mean of the feature vectors µi for each class separately. Since the size of the limited memory is
fixed (K), some samples of old classes are removed to accommodate exemplars from new classes.
Samples with larger distances to the mean vector are removed first.

Algorithm 1: CCIL: INCREMENTAL_STEP

Input: X = (Xs+1, ..., Xt),Ps = (P1, ..., Ps) // new classes data, old exemplar sets
Input: K,Θs, Θ̂s // memory size, current model, frozen current model
Output: Θt // model trained on t classes

1 m← K/t // number of exemplars per class
2 Θt ← Θs // add output nodes for new classes
3 Pt ← UPDATEEXEMPLARSETS(Xs+1, ..., Xt;Ps,m,Θs)
4 for (x, y) ∈ X do // update for mini-batch data in X
5 o = Θt(x) // output logits o = {oold, onew}
6 pnew = σnew(onew) // softmax over new class logits only
7 LCEX = −

∑t
i=s+1 y[i] · log(pnew[i]) // cross-entropy loss

8 pold = σold(oold) // softmax over old class logits only
9 p̂ = σold(Θ̂

s(x))

10 LKDX = DKL(pold||p̂) // distillation loss (old classes)

11 (x′, y′) ∼ Pt // load a mini-batch from exemplars set
12 o = Θt(x′)
13 q = σ(o) // softmax over all class logits
14 LCEP = −

∑t
i=1 y

′[i] · log(q[i])

15 q̂ = σold(Θ̂
s(x′))

16 qold = σold(oold) // softmax over old class logits only
17 LKDP = DKL(qold||q̂)

18 L = (LCEX + LCEP ) + λ ∗ (LKDX + LKDP )
19 end
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Figure 1: The comparison between a standard loss system (left) and our proposed compositional loss system
(right). σ shows the softmax function span over all the network output logits. σold and σnew shows softmax
span over the set of old and new class logits respectively.

Forgetting constraint: Our model uses knowledge distillation as the forgetting constraint. Knowl-
edge distillation penalizes the change with respect to the output of the old model (Θs) using KL-
divergence, thus preserving the network’s knowledge about the old classes. The distillation loss
(LKD) is computed for the exemplar sets as well as for samples from the new classes. The final loss
for our CCIL model is a combination of cross-entropy loss LCE for classification and distillation
loss LKD for mitigating catastrophic forgetting as shown in Algorithm 1-Line 18.

Learning system: We propose a new compositional learning system which addresses the bias issue
in class-IL. The proposed loss isolates inter-task and intra-task learning for a balanced processing
of data by appropriately normalizing the output logits. The task-agnostic parts are shared to yield
improved efficiency; see Figure 1. The details are presented in the next section.

4 COMPOSITIONAL LEARNING SYSTEM

Intra-task Learning: For each gradient update, the CCIL model receives data in separate batches
from the set of new classes X and the set of exemplars P . Instead of merging the batches, we
propose to compute two separate losses (LCEX , LCEP ). The loss for the new classes (LCEX ) is com-
puted using a dedicated softmax function σnew comprising logits of new classes only (Figure 1,
Algorithm 1:Line 4-10). This allows the classifier weights for the new classes to be learned inde-
pendently of the previous classes - while sharing the feature extractor, effectively eliminating the
weight bias. In case of a unified softmax, the weights of the old classes are suppressed by the larger
amount of new class samples during training. A similar analysis has been shown by Ahn & Moon
(2020) for a fine-tuning setup.

Inter-task Learning: The separate softmax helps intra-task learning for the new classes, but this
does not yet discriminate the new from the old classes. Therefore, we compile an exemplar set which
contains equal numbers of samples from all classes including old and new classes. However small,
such exemplar set enables the model to capture the inter-task relationship through the loss LCEP ,
which uses a combined softmax function σ evaluated on all classes (shown in Algorithm 1:Line 13).
This exemplar set is compiled before learning the incremental task, contrary to previous works,
where it is always compiled after the incremental step. Figure 1 shows how the loss terms are
calculated using a separate softmax function and also compares it to the unified model used in
previous works.

Transfer Learning: We observed that a separate softmax does not remove the bias completely. An-
other cause for unbalanced class-weight vectors, and catastrophic forgetting in general, is the change
in the data distribution between different tasks. We hypothesize that the effect of this distribution
shift in the training data is more harmful to the previous knowledge when the transfer learning from
old to new classes is poor, resulting in strong alteration of the parameters of the network. We propose
to reduce the learning rate for the incremental steps as a simple way to improve transfer learning and
mitigate the adverse effect of distribution shift. This further helps reduce the weight bias. Although
lowering the learning rate is a standard technique when fine-tuning a network on a new dataset, its
importance is underestimated and often missing in incremental learning works.

5 IMPROVING FEATURE REPRESENTATIONS FOR INCREMENTAL LEARNING

Intuitively, poorly transferable embeddings will force the model to alter its parameters significantly
in order to learn new concepts. This destroys the knowledge accumulated for the previous tasks.
In this section, we further explore this direction - which, to the best of our knowledge, has not yet
been addressed in literature - aiming to further improve the feature representations for class-IL. In
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Epoch SS- SS- F ↓ Fφ↓NLL ↓ Acc ↑
100 2.54 38.68 16.03 9.04
200 2.89 32.88 16.04 9.27
300 3.03 30.09 16.94 9.51
400 3.09 29.04 18.38 9.68
500 3.11 27.97 18.57 10.00

(b)

Figure 2: The effect of overfitting on class-IL performance and its correlation with secondary information,
on the CIFAR-100 dataset. Figure (a) shows the overfitting behavior as the validation loss (red curve) starts
increasing after the 100th epoch. The class-IL performance decreases monotonically (green curve). Table (b)
shows the performance of the snapshots taken at every 100th epoch. SS-Acc decreases and SS-NLL increases
as more overfitted models are evaluated. Forgetting rates F and Fφalso correlate with overfitting.

particular, we study the detrimental effects of overfitting and loss of secondary class information.
We find that: 1) both phenomena strongly correlate with catastrophic forgetting; 2) regularization
methods can significantly improve robustness against forgetting, but only as long as they enhance
the secondary class information of the learned model. All the experiments presented in Sections 5.2
and 5.3 are obtained on the CIFAR-100 dataset using a ResNet-32 architecture.

5.1 MEASURING THE QUALITY OF SECONDARY LOGITS

In literature, the term secondary information is interchangeably used to denote the non-target and
non-maximum scores of a classifier (Chenglin Yang & Yuille (2019)). Here, for evaluation pur-
poses, the term denotes the non-maximum scores produced by the networks. In both cases the un-
derlying idea is that the secondary output scores reflect the semantic relationships among classes in
the data, as learned by the model. No proper annotations exist for secondary information, therefore
we define a proxy evaluation objective, exploiting the coarse-labeling of the CIFAR-100 dataset,
which partitions the 100 fine-classes into 20 superclasses. The 5 classes belonging to each su-
perclass are mostly semantically related, and have been previously used for evaluating secondary
information (Chenglin Yang & Yuille (2019)). As a proxy evaluation measure for secondary class
information we propose to use the classification performance on the superclasses, restricting the
network output to the non-maximum logits. We define two new metrics for this purpose: Secondary
Superclass NLL and Secondary Superclass Accuracy.

Secondary Superclass-NLL (SS-NLL): Negative Log Likelihood is a commonly used cost func-
tion for classification, also known as Cross-Entropy Loss. Here we compute the NLL induced by
the secondary (non-maximum) logits on the superclass classification problem. Given a set of super-
classes S, we can group the fine-grained classes into subsets C according to their coarse-label, and
compute:

SS-NLL(x, y) = −
∑
j∈S

[
1Cj (y) log

∑
k∈Cj

σ̂
(
fk(x)

)]
, (1)

where 1Cj (y) is an indicator function which evaluates to 1 if the true class y belongs to superclass
j, σ̂ is a softmax function over the secondary fine-logits (i.e. it suppresses the maximum logit), and
finally fk(x) is the k-th logit computed by the model f . A lower SS-NLL indicates better superclass
classification and thus higher secondary information quality.

Secondary Superclass-Accuracy (SS-Acc): Secondary superclass accuracy computes the percent-
age of correct superclass predictions. As for SS-NLL, the largest logit score is excluded from the
prediction to focus the measure on the quality of secondary information. Higher SS-Acc values
indicate higher quality of the secondary information.
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5.2 FORGETTING STARTS BEFORE THE INCREMENTAL STEP

In this section, we study how the quality of the representations learned during the initial base task
correlates with incremental learning performance. We show how a decline in quality of the learned
features - measured as overfitting and loss of secondary information - leads to higher catastrophic
forgetting, motivating our following search for a suitable regularizer.

We set up a standard class-IL experiment (with 5 incremental tasks) on CIFAR-100, using a ResNet-
32 model. The initial base network is trained for up to 500 epochs. Figure 2a shows that the
validation loss (red curve) starts increasing after about 100 epochs, showing an overfitting effect.
Thereafter, we perform five different class-IL experiments, each based on a different snapshot of
the base network (every 100th epoch). As the validation loss of the snapshot increases, incremental
learning performance of the corresponding class-IL model drops (green curve) and both forgetting
metrics (F and Fφ) worsen (Figure 2b). The worsening Fφ metric indicates that the issue is
rooted in the feature representations, and cannot be mitigated by acting on the last layer bias. Along
with the forgetting metrics, we observe that overfitting causes the quality of secondary information
to deteriorate (SS-Acc decreases and the SS-NLL increases, Figure 2b). This loss of secondary
information could also be linked to increasing overconfidence of the network, measured as Expected
Calibration Error (ECE) (Guo et al., 2017) (details in Appendix A).

These results indicate that: 1) the quality of the features learned during the first base task influences
the performance of the class-IL model, and as such it should be expressly addressed. 2) secondary
information can be considered as an indicator of the features’ quality and their fitness for incremental
learning. In the next section we will show experimental evidence in support of these hypotheses.

5.3 ANALYZING CATASTROPHIC FORGETTING WITH REGULARIZATION

Having established a link between early feature quality and catastrophic forgetting, we hypoth-
esize that the application of adequate regularization techniques can improve model performance
on the task at hand. We apply four common regularization techniques to our CCIL model: self-
distillation (Furlanello et al., 2018), data-augmentation (including cropping, cutout (DeVries &
Taylor (2017)) and an extended set of AutoAugment (Cubuk et al., 2019) policies), label smooth-
ing (Szegedy et al., 2016), and mixup (Zhang et al., 2018). All these regularizers have been shown
to improve generalization on the held-out validation data. We report details about the application of
said regularization methods in Appendix A.

Analysis Table 1 shows the Average Accuracy after finishing the last incremental step, secondary
information quality of the first task model, forgetting rates (Section 3.2) and Expected Calibration
Error (Guo et al. (2017)). We can divide the regularization methods into two groups: the ones which
improve class-IL performance (self-distillation, augmentation) and the ones which harm it (label
smoothing, mixup). The first group also shows consistent improvements in secondary information
and reduction in forgetting, with augmentation performing the best across all metrics - by a sig-
nificant margin. In the second group, label smoothing harms secondary information the most. It
has been observed that label smoothing encourages representations to be closer to their respective
class centroid and equidistant to the other class centroids (Müller et al., 2019), and this comes at
the expense of inter-class sample relationships, i.e., secondary information. Mixup also harms the

Model Avg. Acc.↑ SS Metrics Forgetting ECE↓5 tasks 10 tasks SS-NLL ↓ SS-Acc. ↑ F ↓ Fφ↓
CCIL 66.44 64.86 2.784 34.83 17.13 9.7 0.100
CCIL + SD 67.17 65.86 2.675 37.26 16.81 8.88 0.094
CCIL + H-Aug 71.66 69.88 2.051 47.69 13.37 6.73 0.018
CCIL + LS 63.08 61.99 3.103 24.25 18.79 12.83 0.049
CCIL + Mixup 62.31 57.75 2.791 31.57 24.56 16.01 0.024

Table 1: Effect of regularization class-IL average accuracy, secondary information (on the first-task model)
and forgetting rates (5 tasks), on CIFAR-100. All the values are averaged over 3 runs. Values that are better
than the CCIL baseline are marked in green whereas the worse ones are marked in red. SD:self-distillation,
LS:label-smoothing. Standard deviation in Appendix A.
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quality of secondary information: we believe this is because it artificially forces arbitrary distances
between classes, which modifies the natural output distribution - similarly to label smoothing. In-
terestingly, all regularizers improve network calibration, but ECE is not a good indicator of class-IL
performance, unlike secondary information.

In summary, label smoothing and mixup - despite their proven regularization effects - harm sec-
ondary class information and have clear negative consequences for class-incremental learning. On
the other hand, regularization methods that enhance secondary class information (self distillation
and data augmentation) boost the average incremental accuracy. Analogously to the analysis of Sec-
tion 5.2 we show that the quality of secondary information negatively correlates to the forgetting
rate (Table 1), further indicating the importance of secondary class information.

6 RESULTS

6.1 TRAINING DETAILS

We follow the protocol used in previous works (Hou et al., 2019; Liu et al., 2020). The protocol
involves learning of 1 initial base task followed by N incremental tasks. We evaluate with two
incremental settings: where the model learns N = 5 and N = 10 incremental tasks. We conduct
experiments on CIFAR-100 (Krizhevsky, 2009), ImageNet-100 and ImageNet (Deng et al., 2009)
datasets. For CIFAR-100 and ImageNet-100, 50 classes are selected as the base classes for the initial
task and the remaining classes are equally divided over the incremental steps. A similar format is
followed for ImageNet with 500 base classes. ResNet-32 is trained for CIFAR, and ResNet-18 is
trained for ImageNet. Exemplar memory size is set to K = 2k for 100 class datasets and K = 20k
for the full ImageNet dataset. We will publish the code after acceptance.

6.2 ABLATION STUDIES

Elements of the compositional learning system We evaluate the contributions of each element in
the proposed learning system by training multiple class-IL models featuring them. The incremental
learning in these experiments is conducted in a simple fine-tuning setup (without distillation), in
order to single out the effects of the proposed changes. In Figure 3a we compare the average L2
norm of the class weight vectors for old and new classes after 5 incremental training steps, while
in Figure 3b we provide the average accuracies and forgetting rates of the respective models. We
notice a major difference in the weight norms of old and new classes for the default combined
softmax (Comb) setting (Figure 1(left)). Using separate-softmax (Sep) substantially reduces this
difference and improves class-IL performance, but does not resolve the problem completely. Lower
learning rate (Comb+LowLR) also removes the bias and improves the performance, although to a
lesser extent. When both approaches are combined (Sep+Low-LR) most of the bias is resolved and
the best class-IL results are produced.

Drawing parallels with iCaRL We compare different components of our CCIL model with the
baseline approach proposed by Rebuffi et al. (2017). Table 2 summarizes these changes. We first
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Comb 47.97 46.44
Sep 52.86 38.2

Comb+LowLR 52.79 43.46
Sep+LowLR 58.60 32.3

(b)

Figure 3: (a) compares the average L2 norm of the classification weight vectors for old and new classes. We
evaluate standard combined softmax (Comb) against proposed separate softmax (Sep) and we assess the effect
of reduced learning rate (LowLR). (b) contains the corresponding class-IL results without distillation (KD) in
terms of average accuracy and forgetting rate. All experiments use the linear classification layer. Results shown
on CIFAR-100.
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Method Layer Softmax Low AW Classifier KD Avg AccCos Dot Sep Comb LR NME CNN

Comb X X X 47.97
iCaRL X X X X 56.50

iCaRL++ X X X X X 59.78
CCIL X XXX XXX X X X 66.44

Table 2: Drawing parallels between iCaRL and our proposed model. Average accuracy is reported for 5-task
class-IL experiments on CIFAR-100 dataset. Last row highlights our proposed changes. All methods use
random exemplar selection, Dot: linear layer, KD: knowledge distillation, NME: nearest-mean-of-exemplars.

isolate the contributions of some follow-up methods by creating another baseline as iCaRL++. It
consists of a (1) cosine-normalized layer (cos) (Gidaris & Komodakis, 2018; Luo et al., 2018), where
the class-weight vectors in the final layer are normalized, and (2) adaptive weighting (AW), where
the weight of the distillation loss increases with incremental steps. The last row shows that replacing
the combined-softmax (comb) with the proposed separate-softmax (sep) and reducing the learning
rate (LowLR) yields a major improvement.

6.3 COMPARISON TO SOTA

Results for CIFAR-100, ImageNet-100 and ImageNet datasets are shown in Table 3. Results are
also compared to ‘Joint-training’, where at every incremental step all the data for the classes seen
until then is accessible. Our simple CCIL model compares favorably to previous results on all
datasets. Our regularized CCIL-SD closes the gap to joint training further and achieves state-of-
the-art performance across all datasets. Since the CCIL model is based only on simple components,
we believe that the application of advanced methods for mitigating forgetting (Hou et al., 2019; Tao
et al., 2020) and more informative exemplar selection (Liu et al., 2020) can further improve the
performance.

Method CIFAR-100 ImageNet-100 ImageNet
No. of incremental tasks→ 5 10 5 10 5 10
iCaRL∗ (Rebuffi et al. (2017)) 57.17 52.57 65.04 59.53 51.5 46.89
BIC (Wu et al. (2019)) 59.36 54.20 70.07 64.96 62.65 58.72
WA (Zhao et al. (2020)) 63.25 58.57 — — — —
LUCIR (Hou et al. (2019)) 63.12 60.14 70.47 68.09 64.34 61.28
Mnemonics (Liu et al. (2020)) 63.34 62.28 72.58 71.37 64.54 63.01
TPCIL (Tao et al. (2020)) 65.34 63.58 76.27 74.81 64.89 62.88
CCIL (ours) 66.44 64.86 77.65 74.80 65.11 62.98
CCIL-SD (ours) 67.17 65.86 79.39 76.68 66.73 64.88
Joint-training 74.12 73.80 84.72 84.67 69.72 69.75

Table 3: Comparing average incremental accuracy computed using different methods on CIFAR-100,
ImageNet-100 and ImageNet dataset. *as reported in Hou et al. (2019)

7 CONCLUSIONS

We presented a straightforward class-incremental learning system that focuses on the essential com-
ponents and already exceeds the state of the art without integrating sophisticated modules. This
makes it a good base model for future research on advancing class-incremental learning.

Moreover, we showed that countering catastrophic forgetting during the incremental step is not
enough: the quality of the feature representation prior to the incremental step considerably deter-
mines the amount of forgetting. This suggests that representation learning is a promising direction
to maximize also incremental performance. In this regard we showed that boosting secondary infor-
mation is key to improve the transferability of features from old to new tasks without forgetting.
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A EXPERIMENT DETAILS

This section includes details concerning experiments included in the paper: hyperparameter details,
ablation study for each module in the baseline model and standard deviation for all the results. We
report all the evaluation metrics averaged over 3 run trials (unless mentioned otherwise) to capture
the variance in the class-IL training process.

A.1 DATASETS

We ran experiments on CIFAR100( Krizhevsky (2009)), ImageNet-100 Subset (Deng et al. (2009))
and full ImageNet datasets. CIFAR-100 contains 60K images from 100 classes of size 32 × 32,
with 50K images for training and 10K for evaluation. CIFAR-100 classes are shuffled using a fixed
seed (Numpy van der Walt et al. (2011) seed:1993) across all methods for fair comparison. The
ImageNet-100 dataset has 100 randomly sampled classes (using Numpy seed:1993) from ImageNet
and further shuffled (using Numpy seed:1993). It contains around 128K images of size 224 × 224
for training and 5K images for evaluation. The classes of ImageNet dataset are also shuffled using
the same seed (Numpy seed:1993) following previous works. We use default data augmentation
including random cropping and horizontal flipping for CIFAR-100, and resized-random cropping
and horizontal flipping for ImageNet datasets. All the randomization seeds are selected following
the experiments in previous works Hou et al. (2019); Liu et al. (2020).

A.2 CCIL CLASS-IL MODEL

Adaptive Weighting (AW) In each incremental step, training a network comprises a classification
loss and a distillation loss to preserve knowledge about previous classes. Our baseline contains an
adaptive weighting function λ (similar to Hou et al. (2019)) between two losses:

λ = λbase

(
Cn + Co
Cn

)2/3

(2)

,where Cn denotes number of new classes, Co denotes number of old classes, λbase is fixed constant
for each method. It dynamically increases weightage on preserving old knowledge as incremental
training continues. It improves the baseline model by 0.45% for 5 task experiment on CIFAR-100.
λbase = 5 is set for CIFAR-100, λbase = 20 for ImageNet-100 and λbase = 600 for ImageNet.

Network: We use a 32-layer ResNet He et al. (2016) for CIFAR-100 dataset, and a 18-layer
ResNet for ImageNet-100 and ImageNet datasets. The last layer is cosine normalized following
the recommendations of Hou et al. (2019).

Optimizer: On CIFAR-100, the base network is trained for 120 epochs using a cosine learning
rate schedule, where the base learning rate is 1e-1. Subsequent N tasks are trained for 240 epochs
with a base learning rate of 1e-2. The learning rate is decayed until 1e-4. We use a batch size
of 100 for CIFAR-100 experiments. Networks for CIFAR-100 dataset is optimized using the SGD
optimizer with a momentum of 0.9 and weight decay of 5e-4.

For ImageNet-100, the network is trained for 90 epochs using a step learning rate schedule, where
the base learning rate is 1e-1 for the base task and 1e-2 for the subsequentN tasks. The base learning
rate is divided by 10 at {30, 60} epochs.

For ImageNet, base task is trained for 70 epochs following a step learning rate, where the base
learning is 1e-1. The base learning rate is divided by 10 at {30, 60} epochs. The incremental task
is trained for 40 epochs following a step learning rate, where the base learning rate starts from 1e-2.
The base learning rate is divided by 10 at {25, 35} epochs. Networks for ImageNet datasets are
optimized using the SGD optimizer with a momentum of 0.9 and weight decay of 1e-4. We use a
batch size of 128 for both ImageNet datasets.
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Epoch SS-NLL ↓ SS-Acc ↑ Avg Acc ↑ F ↓ Fφ↓
100 2.54 ± 0.04 38.68 ± 0.89 65.42 ± 0.06 16.03 ± 0.36 9.04 ± 0.24
200 2.89 ± 0.06 32.88 ± 0.59 65.05 ± 0.08 16.04 ± 0.26 9.27 ± 0.42
300 3.03 ± 0.06 30.09 ± 0.53 64.72 ± 0.07 16.94 ± 0.61 9.51 ± 0.23
400 3.09 ± 0.07 29.04 ± 0.68 64.3 ± 0.12 18.38 ± 0.19 9.68 ± 0.17
500 3.11 ± 0.03 27.97 ± 0.54 62.92 ± 0.11 18.57 ± 0.39 10.00 ± 0.20

Table 4: The effect of overfitting on class-IL performance and its correlation with secondary information.
Table shows the performance of the network snapshots taken at every 100th epoch. Accuracy decreases and
SS-NLL increases, both monotonically, as more severely overfitted models are evaluated. Forgetting rate F
also correlates with overfitting. Results are computed over 5 runs.

Epoch ECE
100 0.093±0.003
200 0.118±0.003
300 0.126±0.004
400 0.131±0.005
500 0.137±0.002

Table 5: Expected Calibration Error for different snapshots (every 100th epoch) of the overfitted model.

A.3 EXEMPLAR SELECTION ALGORITHM

Algorithm 2: UPDATEEXEMPLARSETS

Input: X ,Pold // new class data, old exemplar set
Input: Θs,m // old model, new exemplar size per class
Output: Pnew // new Exemplar sets

1 for i = 1, ..., s do
2 Pi ← (p1, ..., pm) // keep first m samples
3 end
/* add new class exemplars */

4 for i = s+ 1, ..., t do
5 Pi ← (p1, ..., pm) ⊂ Xi) // randomly pick m samples
6 µi ← 1

m

∑m
j=1 φ(pj) // mean feature

/* sort exemplars based on distance from µi */
7 for k = 1, ...,m do
8 pk ← arg minpk ||µi − φ(pk)||
9 end

10 end

A.4 OVERFITTING EXPERIMENT

Training Details: In the experiment showing overfitting, we train the network longer than usual
with a step learning rate schedule. We employ a SGD optimizer with a base learning rate of 1e-1,
weight decay of 5e-4 and momentum 0.9. We use a step learning rate schedule, where the learning
rate is divided by 10 at 60th and 90th epochs. The training continues at the learning rate of 1e-3
further up to 500 epochs.

Results with standard deviation Table 4 shows class-IL performance using average accuracy and
forgetting rate, and quality of secondary information using SS-NLL and SS-Acc for each class-IL
runs using increasingly overfitted model snapshots. Average incremental accuracy and forgetting
rate is computed for class-IL model trained over different snapshots (every 100th) from the above
run. Table 5 shows expected calibration error (ECE) with standard deviation for different snapshots
of the overfitted model. It shows that ECE monotonically increases with the number of training
epochs. Tables includes values averaged over 5 runs with respective standard deviation.
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A.5 REGULARIZATION

All the regularizers are applied at base and all incremental steps, however major improvement is
observed due its usage in the initial base task.

Self-distillation In the experiments, self-distillation is conducted over 4 generations (optimized
using validation performance) for CIFAR-100 and ImageNet-100 dataset, and over 2 generations
for ImageNet dataset. In the beginning of each self-distillation generation, the network snapshot
(student) becomes the teacher network and the student continues to train (fine-tuned) with a combi-
nation of classification and distillation loss.

For CIFAR-100 experiments, the first base model is trained for 120 epochs following a cosine learn-
ing rate schedule, decaying from a learning rate 1e-1 to 1e-4. From first generation onward the
model is trained for 70 epochs with a decaying (cosine) learning rate from 1e-1 to 1e-3. All other
optimizer settings are the same as the baseline model.

For ImageNet-100 experiments, first base model is trained for 70 epochs following a step learning
rate schedule. Starting from a base learning rate of 1e-1, it is divided by 10 at 30th and 60th epoch.
From first generation onward the model is trained for 30 epochs each where base learning rate is
1e-2 and it is divided by 10 at 10, 20 epochs.

For ImageNet experiments, the first base model is trained for 40 epochs following a step learning
rate schedule. Starting from a base learning rate of 1e-1, it is divided by 10 at 25th and 35th epoch.
From first generation onward the model is trained for 15 epochs each where base learning rate is
1e-2 and it is divided by 10 at 8, 12 epochs.

Results with standard deviations Table 6 shows the effect of different regularization on the qual-
ity of secondary class information. Table 7 shows the effect of different regularization on class-IL
performance in terms of average incremental accuracy and forgetting rate. All experiments are con-
ducted on CIFAR-100 dataset.

Model SS Metrics (5 tasks)

SS-NLL ↓ SS-Acc. ↑
CCIL 2.784 ± 0.014 34.827 ± 0.654
CCIL + SD 2.675 ± 0.037 37.26 ± 0.251
CCIL + H-Aug 2.051 ± 0.013 47.69 ± 0.590
CCIL + LS 3.103 ± 0.013 24.25 ± 0.278
CCIL + Mixup 2.791 ± 0.006 31.57 ± 0.256

Table 6: Effect of regularization on secondary information. All the metrics are evaluated on the network trained
on the first task. ↓ and ↑ in the column headings indicate that lower and higher values are better respectively.
Values that are better than the baseline CCIL method are marked in green whereas the worse ones are marked
in red. SD:self-distillation, LS:label-smoothing.

Model Avg. Acc. ↑ Forgetting (5 tasks)

5 tasks 10 tasks F ↓ Fφ ↓
CCIL 66.44 ± 0.31 64.86 ± 0.40 17.13 ± 1.12 9.70 ± 0.15
CCIL + SD 67.17 ± 0.14 65.86 ± 0.29 16.81 ± 0.25 8.88 ± 0.35
CCIL + H-Aug 71.66 ± 0.23 69.88 ± 0.36 13.37 ± 0.60 6.73 ± 0.45
CCIL + LS 63.08 ± 0.21 61.99 ± 0.30 18.79 ± 0.29 12.83 ± 0.41
CCIL + Mixup 62.31 ± 0.46 57.75 ± 1.64 24.56 ± 2.52 16.01 ± 0.16

Table 7: Effect of regularization on class-IL performance. All the metrics are evaluated on the network trained
on the first task. ↓ and ↑ in the column headings indicate that lower and higher values are better respectively.
Values that are better than our baseline method (CCIL ) are marked in green whereas the worse ones are marked
in red. SD:self-distillation, LS:label-smoothing.
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B REPRESENTATIONS: QUALITATIVE ANALYSIS

This section provides a qualitative analysis on the effect of different regularizers on the feature rep-
resentations (penultimate-layer activations). We analyze the representations of the network trained
on 50 classes (first task) of CIFAR-100 dataset using ResNet-32 network.
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Figure 4: Effect of regularizers on the distance between mean class representations. The numbers shown in the
plot are the ratios between the class means distances of each method and of the default CCIL model. Similar
classes are marked in bold. Dotted circle at 1.0 depicts distances between classes in the baseline CCIL model
and other distances are depicted relative to the baseline model. Positive and negative cases indicate similar and
dissimilar classes respectively.

B.1 CLASS-MEAN REPRESENTATIONS

We argue that the classes which are semantically similar must be closer in the representation space
as compared to the dissimilar classes since they share more features. Based on this argument we
analyze the effect of different regularization methods on the relative distances between class-mean
representations. We utilize the fine- and coarse-label structure of the CIFAR-100 dataset to compare
the effect on the distance between semantically similar and dissimilar classes relative to the default
baseline model. Classes associated with the same coarse label or superclass are considered as similar
classes, whereas dissimilar classes are picked from different superclasses. L2 distance is used as the
distance metric.

Figure 4 show this qualitative analysis for two classes: cup and tulip. For example cup and can are
semantically similar classes. When self-distillation and augmentation are used as regularizers, the
relative distance reduces to 0.9 and 0.8 respectively, whereas when label-smoothing and mixup are
applied, the relative distance increases to 1.2 and 1.1 respectively. Other similar classes follow a
similar trend, whereas dissimilar pairs show an opposite behavior. Overall we find that regularizers:
self-distillation and heavy data-augmentation reduce the relative distance between the similar classes
(marked in bold) while not affecting or increasing distance between dissimilar classes. Whereas
mixup and label smoothing increase the relative distance between similar classes and reduce the rel-
ative distance between dissimilar classes. We notice that these observations agree with the findings
on secondary class information presented in the main paper.

Earlier in the main paper, we argued that label-smoothing and mixup regularization deteriorate sec-
ondary class information since they dismantle the natural output distribution. This qualitative anal-
ysis supports our argument showing how they conversely hamper the distances between similar and
dissimilar classes.
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B.2 REPRESENTATION VISUALIZATION USING t-SNE

Figure 5 shows representations learned using mixup and label-smoothing regularization. It can be
noticed in the label-smoothing case (on validation set), that the representations of the samples are
heavily altered. As discussed in the paper, this happens because label smoothing objective forces
samples of the same class to be equidistant from the samples of other classes. Although mixup
regularization also alters the representations as argued in the paper and Appendix B.1, such an effect
is not clearly visible in the corresponding visualization. Figure 6 shows representations learned
using self-distillation and heavy data-augmentation.
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Figure 5: Representations learned using different regularization methods. Top-Bottom: Baseline CCIL , CCIL
+ mixup, CCIL + label-smoothing. Left and right columns show the representations on the training set and
validation set respectively. Visualization is based on 50 classes of CIFAR-100, where each color is a different
class.
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Figure 6: Representations learned using different regularization methods. Top-Left - Bottom-Right: baseline
CCIL , CCIL + Self-distillation, CCIL + Heavy-augmentation. Left and right columns show the representations
on the training set and validation set respectively.Visualization is based on 50 classes of CIFAR-100, where each
color is a different class.
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