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ABSTRACT

Accelerated stochastic gradient descent (ASGD) is a workhorse in deep learn-
ing and often achieves better generalization performance than SGD. However,
existing optimization theory can only explain the faster convergence of ASGD,
but cannot explain its better generalization. In this paper, we study the general-
ization of ASGD for overparameterized linear regression, which is possibly the
simplest setting of learning with overparameterization. We establish an instance-
dependent excess risk bound for ASGD within each eigen-subspace of the data
covariance matrix. Our analysis shows that (i) ASGD outperforms SGD in the
subspace of small eigenvalues, exhibiting a faster rate of exponential decay for
bias error, while in the subspace of large eigenvalues, its bias error decays slower
than SGD; and (ii) the variance error of ASGD is always larger than that of SGD.
Our result suggests that ASGD can outperform SGD when the difference between
the initialization and the true weight vector is mostly confined to the subspace of
small eigenvalues. Additionally, when our analysis is specialized to linear regres-
sion in the strongly convex setting, it yields a tighter bound for bias error than the
best-known result.

1 INTRODUCTION

Momentum (Nesterov, 1983) is an important technique in optimization. In the context of convex and
smooth optimization, Nesterov’s momentum (accelerated gradient descent (AGD)) achieves the min-
imax optimal convergence rate (Nesterov, 2014) and provably accelerates the vanilla GD method.
Recent work by Liu & Belkin (2018) shows that stochastic gradient descent (SGD) can also be
accelerated by momentum in the overparameterized setting. However, the effect of momentum on
the generalization performance is less studied. It has been empirically shown that ASGD does not
always outperform SGD (Wang et al., 2023), but there has been little theoretical work justifying
this observation. Notable exceptions are Jain et al. (2018) and Varre & Flammarion (2022), which
provide excess risk bounds for accelerated SGD (ASGD) (a.k.a., SGD with momentum) for least
squares problems in the strongly convex (Jain et al., 2018) and convex settings (Varre & Flammar-
ion, 2022), respectively. However, both of their results are limited to the classical, finite-dimensional
regime, and cannot be applied when the number of parameters exceeds the number of samples. On
the other hand, a recent line of work completely characterizes the excess risk of SGD for least
squares, even in the overparameterized regime (Dieuleveut & Bach, 2015; Défossez & Bach, 2015;
Jain et al., 2017b; Berthier et al., 2020; Zou et al., 2021b; Wu et al., 2022). In particular, Zou et al.
(2021b); Wu et al. (2022) provide finite-sample and dimension-free excess risk bounds for SGD
that are sharp for each least squares instance. Given these results, it becomes imperative to thor-
oughly investigate whether the inclusion of momentum proves beneficial in terms of generalization,
particularly in the context of least squares problems.
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Contributions. In this paper, we tackle the question by considering ASGD for (overparameter-
ized) linear regression problems and comparing its performance with SGD.

• Our main result provides an instance-dependent excess risk bound for ASGD that can be ap-
plied in the overparameterized regime. Similar to the bounds for SGD in Zou et al. (2021b);
Wu et al. (2022), our bound for ASGD is independent of the ambient dimension and compre-
hensively depends on the spectrum of the data covariance matrix. When applied to the classical,
strongly-convex regime, our results recover the excess risk upper bounds in Jain et al. (2018), with
significant improvements on the coefficient of the bias error.1

• Based on the excess risk bounds, we then compare the excess risk of ASGD and SGD. We find
that the variance error of ASGD is always no smaller than that of SGD. Moreover, the bias error
of ASGD is smaller than that of SGD along the small eigenvalue directions, but is larger than that
of SGD along the large eigenvalue directions, with respect to the spectrum of the data covariance
matrix. Thus momentum can help with generalization only if the main signals are aligned with
small eigenvalue directions of the data covariance matrix and if the noise is small.

• From a technical perspective, we extend the analysis of the stationary covariance matrix in Jain
et al. (2018) to the overparameterized setting, where we remove all dimension-dependent factors
with a fine-grained analysis of the ASGD iterates. Our techniques might be of independent interest
for analyzing ASGD in other settings.

Notation. In this paper, scalars are denoted by non-boldface letters. Vectors and matrices are
denoted by lower-case and upper-case boldface letters, respectively. Denote linear operators on
matrices by upper-case calligraphic letters. Denote the inner product of vectors by ⟨u,v⟩. For a
vector v, denote its j-th entry as (v)j ; For a matrix M, denote its ij-entry as (M)ij . For a PSD
matrix M, define ∥u∥2M = u⊤Mu. Denote the 2-norm of vector v as ∥v∥2 =

√
v⊤v. Denote the

inner product of matrices A,B ∈ R2d×2d as ⟨A,B⟩ =
∑2d

i,j=1(A)ij(B)ij . The Kronecker product
of matrices is denoted by ⊗. The operation of a linear matrix operator on a matrix is denoted by ◦.

2 RELATED WORK

The generalization performances of SGD and ASGD applied to underparameterized linear regres-
sion have been studied in a line of works, based on the technique of bias-variance decomposition. It
is shown that for SGD with iterate averaging from the beginning, bias error has a convergence rate
of O(1/N2) and variance has a convergence rate of O(d/N), where N is the number of calls of the
stochastic oracle and d is the model dimension (Défossez & Bach, 2015; Dieuleveut et al., 2017;
Jain et al., 2017a). If the eigenvalue of the data covariance matrix is bounded away from zero, then
the convergence rate of the bias error can be further improved with additional exponential shrinkage
by taking tail averaging of the iterates (Jain et al., 2017b).
For ASGD applied to linear regression, there are two cases: one with the assumption that the eigen-
value spectrum of the data covariance matrix is bounded away from zero (strongly convex) and the
other without such assumption (general convex). For strongly convex linear regression, Jain et al.
(2018) show an accelerated convergence rate for the bias error of ASGD with constant stepsize and
tail averaging, compared to that of tail-averaged SGD in Jain et al. (2017b). We extend the use of
linear operators and the techniques for bounding the operator spectrum in Jain et al. (2018).
Recently, the generalization of ASGD applied to general convex linear regression is studied by Varre
& Flammarion (2022). Their result shows the acceleration of ASGD with time-varying parameters
and weighted iterate averaging, especially for large N . The case of general convex linear regression
is closer to the overparameterized setting where fast-decaying eigenspectrum is of special interest.
However, their result is not applicable to the overparameterized linear regression because of the
dimensionality dependence. Additionally, their result does not reveal the exponential bias decay of
ASGD with constant stepsize.
The generalization performance of overparameterized linear regression has been studied by a line
of works (Bartlett et al., 2020; Tsigler & Bartlett, 2020). For SGD applied to overparameterized
linear regression, Zou et al. (2021b) replace the model dimensionality dwith the effective dimension
defined in terms of the eigenspectrum. This work manages to deal with any data covariance matrix,
while prior works require certain assumptions (Dieuleveut & Bach, 2015). Wu et al. (2022) show a
similar result for the last iterate of SGD with exponentially decaying stepsize.

1Our excess risk bound contains an extra term, which can be removed by a fine-grained analysis used by
Jain et al. (2018) in the classical regime.
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3 PRELIMINARIES

3.1 LINEAR REGRESSION AND ASGD

The goal of linear regression is to minimize the following risk:

L(w) := 1/2 · E(x,y)∼D
[
(y − ⟨w,x⟩)2

]
,

where x is an input feature vector belonging to a Hilbert space (denoted by H, which could be either
d-dimensional for a finite d, or countably infinite dimensional), y ∈ R is the response, w ∈ H is the
weight vector to be optimized, and D is an underlying unknown distribution of the data.
We consider the ASGD algorithm with tail averaging. In detail, in the t-th iteration, a sample
(xt, yt) ∼ D is observed. Then the stochastic gradient is calculated by

∇̂L(w) = −(yt − ⟨w,xt⟩)xt. (3.1)

We follow the classical ASGD scheme (Nesterov, 2014), which maintains three sequences wt, vt

and ut. Let N be the number of samples observed, then for any 1 ≤ t ≤ N , the update rules of
wt,vt,ut are as follows.

ut−1 = αwt−1 + (1− α)vt−1, (3.2)

wt = ut−1 − δ∇̂L(ut−1), (3.3)

vt = βut−1 + (1− β)vt−1 − γ∇̂L(ut−1), (3.4)

where α, β, γ, δ > 0 are hyperparameters. The vt sequence is initialized at w0 ∈ H. We remark
that ASGD reduces to stochastic heavy ball (SHB, Polyak (1964)) when δ = 0, so our results can be
directly applied to SHB by setting δ = 0 (see Appendix C for details). We also remark that ASGD
reduces to SGD when δ = γ.
In this work, following Jain et al. (2018) and Zou et al. (2021b), we consider ASGD with tail aver-
aging. The tail-averaged final output is ws,s+N := N−1

∑s+N−1
t=s wt. With certain assumptions,

L(w) admits a unique global optimum denoted by w∗ := argminw L(w). We focus on the overpa-
rameterized setting, where d≫ N (or possibly countably infinite).

Define the centered ASGD iterate as ηt :=

[
wt −w∗

ut −w∗

]
. Denote the noise in each sample as ϵt :=

yt − ⟨w∗,xt⟩. By (3.1), the stochastic gradient at ut−1 can be expressed as

∇̂L(ut−1) = −(ϵt + ⟨w∗,xt⟩ − ⟨ut−1,xt⟩)xt = xtx
⊤
t (ut−1 −w∗)− ϵtxt. (3.5)

By substituting (3.5) into (3.3) and (3.4) and eliminating vt using (3.2), we have

ηt = Âtηt−1 + ζt, where Ât :=

[
0 I− δxtx

⊤
t

−cI (1 + c)I− qxtx
⊤
t

]
, ζt :=

[
δ · ϵtxt

q · ϵtxt

]
,

and c := α(1− β), q := αδ + (1− α)γ. Denote the expectation of Ât as

A := E[Ât] =

[
0 I− δH

−cI (1 + c)I− qH

]
,

where H = Ex∼D|x [xx
⊤] is the second-order moment matrix of the distribution D, which is also

the Hessian of L(w). Let the eigen-decomposition of the Hessian be H =
∑d

i=1 λiviv
⊤
i , where

{λi}di=1 are the eigenvalues of H sorted in descending order with vi’s being the corresponding
eigenvectors. Similar to Jain et al. (2018), we assume that H is diagonal, then A is block diagonal

with each block being Ai :=

[
0 1− δλi
−c 1 + c− qλi

]
. In this work, we are particularly interested in

analyzing the eigenvalues of Ai, since the spectral norm of Ai determines the decay rate of the bias
error in the subspace of λi.

3.2 ASSUMPTIONS

We then introduce assumptions required in our analysis, following those of Zou et al. (2021b); Wu
et al. (2022). Our first assumption regularizes the moments of the data distribution.
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Assumption 3.1 (Regularity conditions). The second moment H exists, and tr(H) is finite. H
is strictly positive definite, i.e., H ≻ 0. Thus, L(w) admits a unique global optimum w∗. The
second-order moment of labels E[y2] is also finite. Let M denote the fourth moment of x:

M := E(x,y)∼D[x⊗ x⊗ x⊗ x].

Then M exists and is finite.
Our second assumption is a proposition of the fourth moment of x, viewed as a linear operator M
on PSD matrices.
Assumption 3.2 (Fourth moment condition). Assume there exists a positive constant ψ > 0, such
that for any PSD matrix A, it holds that

Ex∼D[xx
⊤Axx⊤] ⪯ ψ tr(HA)H.

A special case of Assumption 3.2 is when D is a Gaussian distribution. For that case, we have
ψ = 3. We remark that although Assumption 3.2 does not cover some special cases, e.g., the one-
hot distribution discussed in Zou et al. (2021a), similar results can still be obtained by applying our
techniques with minor modifications (see Appendix J for details).
The following assumption characterizes the noise of the stochastic gradient.
Assumption 3.3 (Noise condition). Assume that

Σ := E(x,y)∼D[∇̂L(w∗)⊗ ∇̂L(w∗)] = E(x,y)∼D[(y − ⟨w∗,x⟩)2xx⊤],

and σ2 := ∥H− 1
2ΣH− 1

2 ∥2 exist and are finite. Here, Σ is the covariance matrix of the gradient
noise at w∗. For well-specified models where yt − ⟨w∗,xt⟩ ∼ N (0, σ2

noise), we have Σ = σ2
noiseH

and thus σ2 = σ2
noise.

4 MAIN RESULTS

We now provide an excess risk upper bound for ASGD.

4.1 RISK BOUND OF ASGD IN THE HIGH-DIMENSIONAL SETTING

Before we present the results, we first introduce three quantities which are cutoffs of the spectrum of
H. The eigenvalues of Ai can be either complex or real, which depends on the range of λi. Define

k‡ := max{i : λi ≥ (
√
q − cδ +

√
c(q − δ))2/q2},

k† := max{i : λi > (
√
q − cδ −

√
c(q − δ))2/q2}.

(4.1)

It is easy to see that k‡ ≤ k†. For any i ≤ k‡ and any i > k†, Ai has real eigenvalues x1 ≤ x2,
and for i between k‡ and k†, Ai has complex eigenvalues x1, x2 with the same magnitude. We also
define k̂ as

k̂ := max {i : λi ≥ (1− c)/δ} .
Parameter choice. We select hyperparameters of ASGD as follows: We first pick a non-negative
integer κ̃. We then select parameters δ, γ, β, α as follows, based on κ̃:

δ ≤ 1

2ψ tr(H)
, γ ∈

[
δ,

1

2ψ
∑

i>κ̃ λi

]
, β =

δ

ψκ̃γ
, α =

1

1 + β
. (4.2)

We can show that with our choice of paramters, we have k‡ ≤ k̂ ≤ k† (see Appendix E.1 for details).
For convenience, we introduce the following notations for submatrices of H: for any non-negative
integers k1 ≤ k2, denote

Hk1:k2
:=

k2∑
i=k1+1

λiviv
⊤
i , Hk1:∞ :=

d∑
i=k1+1

λiviv
⊤
i .

Now we present the main result, which gives a finite excess risk bound for ASGD under the specific
parameter choice (4.2).
Theorem 4.1. Under Assumptions 3.1, 3.2 and 3.3, with the parameter choice in (4.2), ifN(1−c) ≥
2, the excess risk of tail-averaged iterate from ASGD satisfies:

E[L(ws,s+N )]− L(w∗) ≤ 2 · EffectiveVar + 2 · EffectiveBias. (4.3)
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where the effective variance is bounded by

EffectiveVar ≤ σ2r

[
27k∗

2N
+ 18(s+N)γ2

∑
i>k∗

λ2i

]
+
ψr

N

[
9k∗

N
+ 36Nγ2

∑
i>k∗

λ2i

]
·
[
14

δ
∥w0 −w∗∥2I

0:k̂

+
10

1− c
∥w0 −w∗∥2H

k̂:k†
+

2

γ + δ
∥w0 −w∗∥2I

k†:k∗
+ 4(s+N)∥w0 −w∗∥2Hk∗:∞

]
,

and the effective bias is bounded by

EffectiveBias ≤ 8(cδ/q)2s

N2δ2
∥w0 −w∗∥2

H−1

0:k‡
+

4s2

N2
cs∥(I− δH)s/2(w0 −w∗)∥2H

k‡:k†

+
16cs

N2δ2
∥(I− δH)s/2(w0 −w∗)∥2

H−1

k‡:k̂

+
100cs

N2(1− c)2
∥(I− δH)s/2(w0 −w∗)∥2H

k̂:k†

+
18

N2(γ + δ)2

∥∥∥(I− γ + δ

2
H
)s

(w0 −w∗)
∥∥∥2
H−1

k†:k∗

+ 18
∥∥∥(I− γ + δ

2
H
)s

(w0 −w∗)
∥∥∥2
Hk∗:∞

,

with k∗ = max{k : λk ≥ 1/((γ + δ)N)}, and

r :=
1

1− ψl
, l :=

δ tr(H)

2
+

1

2ψ
+
γ

4

∑
i>κ̃

λi.

Theorem 4.1 establishes the excess risk bound of ASGD under the overparameterized setting. To
our knowledge, this is the first instance-dependent bound of ASGD within each eigen-subspace of
H. Our excess bound includes both the variance term, which depends on the randomness coming
from the data distribution D, and the bias term, which includes “accelerated convergence” terms
brought by the ASGD.
Remark 4.2. The cutoff index k∗ is referred to as the effective dimension, which can be much
smaller than the model dimensionality d, especially when the eigenvalues decay fast. We want to
emphasize that similar effective dimension has also appeared in the previous work which analyzes
the convergence of SGD under the overparameterized model setting (Zou et al., 2021b; Wu et al.,
2022). Nevertheless, the effective dimension of SGD is k∗SGD := max{k : λk ≥ 1/(δN)}, which is
smaller than that in ASGD. In Section 5, we will provide a comparison of the risk bounds between
SGD and ASGD.
Remark 4.3. It is worth noting that under the parameter selection (4.2), one can verify that ψl < 1.
Such a condition guarantees that r = 1/(1− ψl) is finite, which further guarantees that our derived
risk bound for effective variance is valid.

4.2 IMPLICATION IN THE CLASSICAL SETTING

In this subsection, we show that Theorem 4.1 implies the excess risk bound in the strongly convex
setting and can recover a similar result as Jain et al. (2018). The hyperparameters of ASGD are
chosen to be

δ =
1

2ψ tr(H)
, γ =

√
2δ

ψµd
, β =

√
µδ

2ψd
, α =

1

1 + β
, (4.4)

where µ := λd is the smallest eigenvalue of H. We remark that the parameter choice in (4.4) is
different from the choice under the overparameterized setting given in (4.2) because κ̃ is chosen
as the model dimension d, and the upper bound of γ in (4.2), which is 1/(2ψ

∑
i>κ̃ λi), becomes

vacuous. Instead, we require γ = 2β/µ to guarantee that no eigenvalue falls in the region of small
eigenvalues such that Ai has real eigenvalues (i.e., when i > k†, see Section I for detailed proof).
The following corollary provides the excess risk bound in the strongly convex setting:
Corollary 4.4. Under Assumptions 3.1, 3.2 and 3.3, and with the parameter choice in (4.4), the
excess risk of tail-averaged iterate from ASGD in the classical regime satisfies:

E[L(ws:s+N )]− L(w∗) ≤ 100

N2β2
exp

(
− βs

2

)
[L(w0)− L(w∗)]︸ ︷︷ ︸

Effective Bias

+
1008ψd

N2β
[L(w0)− L(w∗)] +

36σ2d

N
+

128σ2d

N2β︸ ︷︷ ︸
Effective Variance

.
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Denote κ := tr(H)/µ, then β = Θ(1/
√
κκ̃). Assuming that L(w0) − L(w∗) = O(σ2), then

the bound given in Corollary 4.4 fully recovers the excess risk upper bound given in Theorem 1 of
Jain et al. (2018) in terms of exponential decay rate, leading-order variance and lower-order vari-
ance. Moreover, the coefficient of effective bias is O(κκ̃/N2), which significantly improves upon
O(κ13/4κ̃9/4d/N2) given in Jain et al. (2018). It is worth noting that Liu & Belkin (2018) proved
O(1) coefficient for effective bias of ASGD. Our result can also recover the constant coefficient
when N(1 − c) ≥ 2, because 1 − c = 2αβ ≤ 2β and 1/(N2β2) ≤ 1. The difference in this
coefficient between the bound in Liu & Belkin (2018) and ours is mainly due to slightly different
treatments of terms in the form of N−1

∑N−1
i=0 (1− β)i, which is not essential.

5 COMPARISON BETWEEN ASGD AND SGD
In this section, we first introduce the SGD update, which is given by

wSGD
t = wSGD

t−1 − δ∇̂L(wSGD
t−1 ),

where δ satisfies the requirement in (4.2). Analogous to ASGD, tail-averaged SGD is defined as
wSGD

s:s+N := N−1
∑s+N−1

t=s wSGD
t . The excess risk of tail-averaged SGD is then E[L(wSGD

s:s+N )] −
L(w∗). We then present the following theorem, which shows the existence of linear regression
instances where ASGD outperforms SGD (the proof is given in Appendix D.2):
Theorem 5.1 (Informal). There exists a class of linear regression instances and corresponding
choice of parameter such that the excess risk bound of tail-averaged ASGD satisfies

E[L(ws:s+N )]− L(w∗) = O(σ2(N−1/2 +N−2 · 0.9873s)),
and the excess risk bound of tail-averaged SGD satisfies

E[L(wSGD
s:s+N )]− L(w∗) = Ω(σ2(N−1/2 +N−2 · 0.996s)).

Theorem 5.1 is inspired by the following comparison of the effective variance and bias of SGD and
ASGD with the assumption that s = O(N). This is a technical assumption that helps to simplify
excess risk bounds, and the comparison can be extended to the case of s = Ω(N). Under the same
set of assumptions as Theorem 4.1, Zou et al. (2021b) prove that, with a bias-variance decomposition
similar to (4.3), effective variance and effective bias of SGD satisfy:

EffectiveVar ≤ σ2rSGD ·
[
k∗SGD

N
+ (s+N)δ2

∑
i>k∗

SGD

λ2i

]

+
4ψrSGD

N
·
[1
δ
∥w0 −w∗∥2I0:k∗

SGD

+ (s+N)∥w0 −w∗∥2Hk∗
SGD

:∞

]
·
[
k∗SGD

N
+Nδ2

∑
i>k∗

SGD

λ2i

]
,

EffectiveBias ≤ 1

δ2N2
∥(I− δH)s(w0 −w∗)∥2

H−1
0:k∗

SGD

+ ∥(I− δH)s(w0 −w∗)∥2Hk∗
SGD

:∞
,

where rSGD = (1− ψδ tr(H))−1 and k∗SGD = max {i : λi ≥ 1/(δN)}.
Comparison of effective variance. Assuming that the initial variance w0 − w∗ is bounded, the
effective variance of ASGD is dominated by

σ2r

[
24k∗

N
+ 18(s+N)γ2

∑
i>k∗

λ2i

]
,

and effective variance of SGD is dominated by

σ2rSGD

[
k∗SGD

N
+ (s+N)δ2

∑
i>k∗

SGD

λ2i

]
.

Thus, ignoring σ2, r and rSGD and constants, effective variance of ASGD in the subspace of λi is
O(min

{
1/N,Nγ2λ2i

}
), compared to O(min

{
1/N,Nδ2λ2i

}
) for SGD. With γ ≥ δ according to

the choice of parameters in (4.2), we conclude that the excess variance of ASGD in every subspace
is larger than that of SGD.
The following corollary characterizes the effective variance of ASGD when the eigenvalue spectrum
decays with a polynomial or exponential rate. These examples have been studied for SGD in Zou
et al. (2021b) and Wu et al. (2022).
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Corollary 5.2. Under the same assumptions as Theorem 4.1, suppose that ∥w0−w∗∥2 is bounded.

1. If the spectrum is λi = i−(1+r) for some r > 0, then the effective variance is O((κ̃/N)r/(1+r)).
2. If the spectrum is λi = e−i, then the effective variance is O((κ̃+ logN)/N).

Remark 5.3. For SGD, the effective variance is O((1/N)r/(1+r)) if the eigenvalue spectrum is
λi = i−(1+r), and O(logN/N) if the eigenvalue spectrum is λi = e−i (Zou et al., 2021b). There-
fore, the effective variance of ASGD is larger than that of SGD under both eigenvalue spectra.

Comparison of effective bias. Effective bias of both SGD and ASGD decay exponentially in s
within each subspace. The decay rate of SGD is (1− δλi)

s in the subspace of λi. For ASGD,

1. When i ≤ k‡, the decay rate in the subspace of λi is (cδ/q)s. By definition of k‡, we have
1− δλi ≤ cδ/q (see Appendix E.1 for detailed proof).

2. When k‡ < i ≤ k†, the decay rate in the subspace of λi is [c(1 − δλi)]
s/2. According to the

definition of k̂, when k‡ < i ≤ k̂, we have 1− δλi ≤
√
c(1− δλi); When k̂ < i ≤ k†, we have

1− δλi ≥
√
c(1− δλi).

3. When i > k†, the decay rate in the subspace of λi is (1− (γ + δ)λi/2)
s. By the choice of

parameters (4.2), we have γ ≥ δ, so 1− (γ + δ)λi/2 ≤ 1− δλi.

Eigenvalues of         (complex/real) 

Real RealComplex

Bias Contraction
Acceleration Slow down

Cuto�:
SGD: 

Figure 1: Illustration of the eigenspectrum.

Combining the three cases above, we conclude that
the effective bias of ASGD decays faster than that of
SGD in eigen-subspaces of λi where i > k̂, while
it decays slower than SGD in subspaces of λi where
i ≤ k̂. This phenomenon is illustrated in Figure 1.
Therefore, ASGD can perform better than SGD if
w0 −w∗ is mostly refined to the eigen-subspaces of
λi where i > k̂.
We remark that this result is consistent with the acceleration of bias decay presented in Jain et al.
(2018). Without instance-specific analysis, the exponential decay rate of bias is determined by the
decay rate in subspace of the smallest eigenvalue. As the effective bias of ASGD decays faster than
that of SGD in the eigen-subspace of small eigenvalues, the worst-case decay rate of the bias error
of ASGD enjoys acceleration compared to SGD.

6 EXPERIMENTS

In this section, we empirically verify that ASGD can outperform SGD when w0 − w∗ is mainly
confined to the eigen-subspace of small eigenvalues.
Data model. Our experiments are based on the setting of overparameterized linear regression, where
the model dimenstion is d = 2000. The data covariance matrix H is diagonal with eigenvalues
λi = i−2. The input xt follows Gaussian distribution N (0,H), so Assumption 3.2 holds with
ψ = 3. The ground truth weight vector is w∗ = 0, and the label yt follows the distribution N (0, σ2)
where σ2 = 0.01.
Hyperparameters of ASGD and SGD. We select parameters of ASGD so that it satisfies the re-
quirements in (4.2). We first let κ̃ = 5. According to (4.2), δ satisfies δ ≤ 1/π2, so we pick δ = 0.1,
which is also the stepsize of SGD. We then let α = 0.9875, so that (1 − c)/δ = 2(1 − α)/δ =

0.25 = λ2, which implies that k̂ = 2. Finally, we select β = (1− α)/α and γ = δ/(ψκ̃β). We can
verify that the parameters satisfy all requirements in (4.2).
We fix the length of tail averaging as N = 500, and conduct experiments on different s where
s = 50, 100, 150, . . . , 500. In each experiment, we measure w⊤

s:s+NHws:s+N . For each s, we run
the experiment 10 times and take the average of the test results.
We examine three different initializations: (a) w0 = 10 · e1, representing the case where w0 −w∗

is mainly refined to the subspace of large eigenvalues, (b) w0 = 10 · e2, representing the case where
w0−w∗ is mainly refined to the subspace of λk̂, and (c) w0 = 10 ·e20, representing the case where
w0 − w∗ is mainly refined to the subspace of small eigenvalues. Experiment results are shown
in Figure 2. We observe that ASGD indeed outperforms SGD in the scenario where w0 − w∗ is
mostly refined to the subspace of small eigenvalues, and performs worse than SGD when w0 −w∗

is refined to the subspace of large eigenvalues. Additionally, the excess risks of SGD and ASGD are
similar when w0 −w∗ aligns with the subspace corresponding to λk̂, which is also aligns with the
implication of Theorem 4.1.
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(a) w0 = 10 · e1.
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(b) w0 = 10 · e2.
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(c) w0 = 10 · e20.
Figure 2: Comparison of excess risk of ASGD and SGD. The noise scale is σ2 = 0.01. We run each experiment
10 times and take the average of the excess risk in the 10 trials.

7 PROOF SKETCH

In this section, we present the high-level ideas in our proof. We mainly introduce two main ideas of
the proof, including (i) bias-variance decomposition, and (ii) analysis of excess risk bounds within
each eigen-subspace, based on the eigenvalues of Ai.
Define the tail averaged centered ASGD iterate as ηs,s+N := N−1

∑s+N−1
t=s ηt. The excess risk is

then

E[L(ws,s+N )]− L(w∗) =
1

2

〈[
H 0
0 0

]
,E[ηs,s+N ⊗ ηs,s+N ]

〉
.

We also define the linear operators B := E[Ât ⊗ Ât] and B̃ := A ⊗ A, which are both PSD
operators. Additionally, the difference B − B̃ is also a PSD operator, which contributes to the effect
of the fourth moment in the excess risk bound. The reader can refer to Appendix F for details of the
linear operators.

7.1 BIAS-VARIANCE DECOMPOSITION

Following the techique used extensively in previous works (Dieuleveut & Bach, 2015; Jain et al.,
2018; Zou et al., 2021b; Wu et al., 2022; Liang & Rakhlin, 2020), we decompose the centered iterate
ηt into the bias sequence ηbias

t and the variance sequence ηvar
t , defined recursively as

ηbias
t = Âtη

bias
t−1, ηbias

0 = η0; (7.1)

ηvar
t = Âtη

var
t−1 + ζt, ηvar

0 = 0. (7.2)

The tail averaged iterate is then ηs:s+N = ηbias
s:s+N + ηvar

s:s+N , where

ηbias
s:s+N :=

1

N

s+N−1∑
t=s

ηbias
t , ηvar

s:s+N :=
1

N

s+N−1∑
t=s

ηvar
t . (7.3)

The excess risk can be decomposed into bias and variance:

E[L(ws:s+N )]− L(w∗) =
1

2

〈[
H 0
0 0

]
,E[ηs:s+N ⊗ ηs:s+N ]

〉
≤ 2 · Bias + 2 · Variance,

where

Bias :=
1

2

〈[
H 0
0 0

]
,E[ηbias

s:s+N ⊗ ηbias
s:s+N ]

〉
, Variance :=

1

2

〈[
H 0
0 0

]
,E[ηvar

s:s+N ⊗ ηvar
s:s+N ]

〉
.

Define the covariance matrices Bt := E[ηbias
t ⊗ηbias

t ] and Ct := E[ηvar
t ⊗ηvar

t ]. The recursive forms
of Bt and Ct then satisfy

Bt = B ◦Bt−1, B0 = η0 ⊗ η0; (7.4)

Ct = B ◦Ct−1 + Σ̂, C0 = 0. (7.5)

7.2 PROOF OF THE BIAS BOUND

In this part, we provide an overview of the analysis of the bias bound in a simplified problem setting.
We consider the last bias iterate (i.e., N = 1) and assume that B = B̃. The analysis of the general
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cases is given in Appendix H. According to the recursive form of Bs in (7.4), we have Bs = Bs◦B0.
With the assumptions that B = B̃, we have

Bs = B̃s ◦B0 = As
([

1 1
1 1

]
⊗ (w0 −w∗)(w0 −w∗)⊤

)
(As)⊤.

Note that A is block-diagonal with each block being Ai, so bias can be expressed as

Bias =
1

2

〈[
H 0
0 0

]
,E[ηbias

s:s+N ⊗ ηbias
s:s+N ]

〉
=

1

2

〈[
H 0
0 0

]
,Bs

〉
=

1

2

d∑
i=1

λiw
2
i

(
As

i

[
1
1

])2

1

,

where wi := (w0 −w∗)i. The following lemma explicitly characterizes Ak
i :

Lemma 7.1. Let the eigenvalues of Ai be x1 and x2. Then, for any integer k ≥ 1, we have

Ak
i =

[
−c(1− δλi) · xk−1

2 −xk−1
1

x2−x1
(1− δλi) · xk

2−xk
1

x2−x1

−c · xk
2−xk

1

x2−x1

xk+1
2 −xk+1

1

x2−x1

]
.

The detailed proof of Lemma 7.1 is given as the proof of Lemma E.3. With Lemma 7.1, we have

I :=

(
As

i

[
1
1

])
1

= (1− δλi)
xs−1
2 (x2 − c)− xs−1

1 (x1 − c)

x2 − x1
.

For i ≤ k‡ and i > k†, i.e., Ai has real eigenvalues x1 < x2, I decays exponentially with the same
rate of xs2. For k‡ < i ≤ k†, i.e., Ai has complex eigenvalues with |x1| = |x2|, |I| is bounded by

|I| = (1− δλi)

∣∣∣∣xs−1
2 (x2 − c)− xs−1

1 (x1 − c)

x2 − x1

∣∣∣∣ ≤ ∣∣∣∣xs−1
1 + xs−1

2

2
+
x1 + x2 − 2c

2
· x

s−1
2 − xs−1

1

x2 − x1

∣∣∣∣
≤ |x2|s−1 +

|x1 + x2 − 2c|
2

·
∣∣∣∣xs−1

2 − xs−1
1

x2 − x1

∣∣∣∣ ,
where the first inequality holds because 0 ≤ 1 − δλi ≤ 1, and the second inequality holds due to
triangle inequality. For the term |(xs−1

2 − xs−1
1 )/(x2 − x1)|, note that∣∣∣∣xs−1

2 − xs−1
1

x2 − x1

∣∣∣∣ = ∣∣∣∣ s−2∑
k=0

xk2x
s−2−k
1

∣∣∣∣ ≤ s−2∑
k=0

|xk2 | · |xs−2−k
2 | =

s−2∑
k=0

|x2|k · |x1|s−2−k = (s−1)|x2|s−2,

where the inequality holds due to triangle inequality, and the second inequality holds because |x1| =
|x2|. Therefore, the exponential decay rate of |I| is |x2|s. The following lemma provides tight bounds
of x2, thus characterizing the exponential rate of bias decay within each eigen-subspace:
Lemma 7.2. Let x1, x2 be the eigenvalues of Ai. Then

(a) When i ≤ k‡, (cδ −
√
c(q − δ)(q − cδ))/q ≤ x2 ≤ cδ/q.

(b) When k‡ < i ≤ k†, |x2| =
√
c(1− δλi).

(c) When i > k†, 1− (γ + δ)λi ≤ x2 ≤ 1− (γ + δ)λi/2.

The detailed proof of Lemma 7.2 is given in Appendix E.1. We can thus obtain the exponential
decay rate of the effective bias.

8 CONCLUSION

In this work, we consider accelerated SGD with tail averaging for overparameterized linear regres-
sion. We provide instance-dependent risk bounds for accelerated SGD that are comprehensively
dependent on the spectrum of the data covariance matrix. We show that the variance error of accel-
erated SGD is always larger than that of SGD. We also show that the bias error of accelerated SGD
is smaller than that of SGD along the small eigenvalues subspace but is larger than that of SGD
along the small eigenvalues subspace. These together suggest that accelerated SGD outperforms
SGD only if the signals mostly align with the small eigenvalues subspaces of the data covariance
and that the noise is small. Our results also improve a best-known bound for accelerated SGD in the
classic regime (Jain et al., 2018).
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