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Abstract

In Bayesian persuasion, an informed sender strategically discloses information to
a receiver so as to persuade them to undertake desirable actions. Recently, Markov
persuasion processes (MPPs) have been introduced to capture sequential scenarios
where a sender faces a stream of myopic receivers in a Markovian environment.
The MPPs studied so far in the literature suffer from issues that prevent them
from being fully operational in practice, e.g., they assume that the sender knows
receivers’ rewards. We fix such issues by addressing MPPs where the sender has no
knowledge about the environment. We design a learning algorithm for the sender,
working with partial feedback. We prove that its regret with respect to an optimal
information-disclosure policy grows sublinearly in the number of episodes, as it
is the case for the loss in persuasiveness cumulated while learning. Moreover, we
provide a lower bound for our setting matching the guarantees of our algorithm.

1 Introduction

Bayesian persuasion [Kamenica and Gentzkow, 2011] studies how an informed sender should
strategically disclose information to influence the behavior of a self-interested receiver. Bayesian
persuasion has received a growing attention over the last years, since it captures several fundamental
problems arising in real-world applications, such as, e.g., online advertising [Bro Miltersen and
Sheffet, 2012, Emek et al., 2014, Badanidiyuru et al., 2018, Bacchiocchi et al., 2022], voting [Cheng
et al., 2015, Alonso and Câmara, 2016, Castiglioni et al., 2020a, Castiglioni and Gatti, 2021], traffic
routing [Vasserman et al., 2015, Bhaskar et al., 2016, Castiglioni et al., 2021a], recommendation sys-
tems [Mansour et al., 2016], e-commerce [Castiglioni et al., 2022], security [Rabinovich et al., 2015,
Xu et al., 2016], marketing [Babichenko and Barman, 2017, Candogan, 2019], clinical trials [Kolotilin,
2015], and financial regulation [Goldstein and Leitner, 2018].

The vast majority of works on Bayesian persuasion focuses on one-shot interactions, where informa-
tion disclosure is performed in a single step. Despite the fact that real-world problems are usually
sequential, there are only few exceptions that consider multi-step information disclosure [Wu et al.,
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2022, Gan et al., 2022, 2023, Bernasconi et al., 2022, 2023b, Iyer et al., 2023, Lin et al., 2024].
Specifically, Wu et al. [2022] initiated the study of Markov persuasion processes (MPPs), which
model scenarios where a sender sequentially faces a stream of myopic receivers in an unknown
Markovian environment. In each state of the environment, the sender privately observes some
information—encoded in an outcome stochastically determined according to a prior distribution—and
faces a new receiver, who is then called to take an action. The outcome and receiver’s action jointly
determine agents’ rewards and the next state. In an MPP, sender’s goal is to disclose information at
each state so as to persuade the receivers to take actions that maximize long-term sender’s rewards.

The MPP formalism finds application in several real-world settings, such as e-commerce and rec-
ommendation systems [Wu et al., 2022]. For example, an MPP can model the problem faced by an
online streaming platform recommending movies to its users. The platform has an informational
advantage over users (e.g., it has access to views statistics), and it exploits available information to
induce users to watch suggested movies, so as to maximize views. However, the MPPs studied by Wu
et al. [2022] rely on some limiting assumptions that prevent them from being fully operational in
practice. For instance, they make the assumption that the sender has perfect knowledge of receiver’s
rewards. In the online streaming platform example described above, such an assumption requires that
the platform knows everything about users’ (private) preferences over movies.

1.1 Original contributions

We relax the assumptions of Wu et al. [2022], by addressing MPPs where the sender does not
know anything about the environment. We consider settings in which they have no knowledge
about transitions, prior distributions over outcomes, sender’s stochastic rewards, and receivers’ ones.
Ideally, the goal is to design learning algorithms that are persuasive and attain regret sublinear in
the number of episodes T . The regret is the difference between sender’s rewards cumulated over the
episodes and what they would have been obtained by always using an optimal information-disclosure
policy. Persuasiveness is about ensuring receivers are correctly incentivized to take desired actions.
Learning in MPPs without knowledge of receivers’ rewards begets considerable additional challenges
compared to the case of Wu et al. [2022]. Indeed, the latter design a sublinear-regret algorithm that
is persuasive at every episode with high probability, while we show that this is not attainable in our
setting. Intuitively, this is due to the fact that, since the sender does not know receivers’ rewards,
some episodes must be used to learn how to be “approximately” persuasive. As a consequence, in this
work, we look for algorithms that attain sublinear regret while ensuring that the cumulative violation
of persuasiveness grows sublinearly in T . This is the most natural requirement in all cases in which
persuasiveness cannot be achieved at every episode, and it has already been addressed in settings
related to MPPs (see, e.g., [Bernasconi et al., 2022, Cacciamani et al., 2023, Gan et al., 2023]).

As a warm-up, we start studying a full feedback case where, after each episode, the sender observes
the reward associated with every possible action in all the state-outcome pairs encountered during the
episode. We propose an algorithm, called Optimistic Persuasive Policy Search (OPPS), which uses
information-disclosure policies computed by being optimistic with respect to both sender’s expected
rewards and persuasiveness requirements. We show that, under full feedback, OPPS attains Õ(

√
T )

regret and violation. Then, we switch to the partial feedback case, where the sender only observes the
rewards for the state-outcome-action triplets actually visited during the episode. We extend the OPPS
algorithm to this setting, by adding a preliminary exploration phase having the goal of gathering as
much feedback as possible about persuasiveness. After that, the algorithm switches to an optimistic
approach over information-disclosure policies that are “approximately” persuasive. We prove that
OPPS with partial feedback attains Õ(Tα) regret and Õ(T 1−α/2) violation, where α ∈ [1/2, 1] is a
parameter controlling the amount of exploration. Finally, we provide a lower bound showing that the
trade-off between regret and violation achieved by means of OPPS is tight.

1.2 Related works

We refer the reader to Appendix A for additional details on related works.

The work most related to ours is [Wu et al., 2022], studying MPPs where the sender knows everything
about receivers’ rewards, with the only elements unknown to them being their rewards, transition
probabilities, and prior distributions. Moreover, Wu et al. [2022] also assume that the receivers know
everything about the environment, so as to select a best-response action, and that all rewards are
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deterministic. In contrast, we consider MPPs in which sender and receivers have no knowledge of
the environment, including their rewards, which we assume to be stochastic. Other related works
are [Gan et al., 2022], studying Bayesian persuasion problems where a sender sequentially interacts
with a myopic receiver in a multi-state environment, and [Bernasconi et al., 2023b], addressing MPPs
with a farsighted receiver. These two works considerably depart from ours, as they both assume that
the sender knows everything about the environment, including transitions, priors, and rewards. Thus,
they are not concerned with learning problems. Finally, [Bernasconi et al., 2022] studies settings
where a sender faces a farsighted receiver in a sequential environment with a tree structure, addressing
the case in which the only elements unknown to the sender are the prior distributions over outcomes,
while rewards are deterministic and known. The tree structure considerably eases learning, as it
intuitively allows to factor the uncertainty about transitions in the rewards at the leaves of the tree.

Our work is also related to learning in one-shot Bayesian persuasion played repeatedly [Castiglioni
et al., 2020b, 2021b, Zu et al., 2021, Bernasconi et al., 2023a], and works on online learning in Markov
decision processes (MDPs) [Auer et al., 2008, Even-Dar et al., 2009, Neu et al., 2010, Rosenberg and
Mansour, 2019, Jin et al., 2020], in particular those on constrained MDPs [Wei et al., 2018, Zheng
and Ratliff, 2020, Efroni et al., 2020, Qiu et al., 2020, Germano et al., 2023].

2 Preliminaries

2.1 Bayesian persuasion

The classical Bayesian persuasion framework introduced by Kamenica and Gentzkow [2011] models
a one-shot interaction between a sender and a receiver. The latter has to take an action a from a finite
set A, while the former privately observes an outcome ω sampled from a finite set Ω according to a
prior distribution µ ∈ ∆(Ω), which is known to both the sender and the receiver.2 The rewards of
both agents depend on the receiver’s action and the realized outcome, as defined by the functions
rS , rR : Ω × A → [0, 1], where rR(ω, a) and rS(ω, a) denote the rewards of the sender and the
receiver, respectively, when the outcome is ω ∈ Ω and action a ∈ A is played. The sender can
strategically disclose information about the outcome to the receiver, by publicly committing to a
signaling scheme ϕ, which is a randomized mapping from outcomes to signals being sent to the
receiver. Formally, ϕ : Ω → ∆(S), where S denotes a suitable finite set of signals. For ease of
notation, we let ϕ(·|ω) ∈ ∆(S) be the probability distribution over signals employed by the sender
when the realized outcome is ω ∈ Ω, with ϕ(s|ω) being the probability of sending signal s ∈ S.

The sender-receiver interaction goes as follows: (i) the sender publicly commits to a signaling
scheme ϕ; (ii) the sender observes the realized outcome ω ∼ µ and draws a signal s ∼ ϕ(·|ω);
and (iii) the receiver observes the signal s and plays an action. Specifically, after observing
s under a signaling scheme ϕ, the receiver infers a posterior distribution over outcomes and
plays a best-response action bϕ(s) ∈ A according to such distribution. Formally, bϕ(s) ∈
argmaxa∈A

∑
ω∈Ω µ(ω)ϕ(s|ω)rR(ω, a), where the expression being maximized encodes the (un-

normalized) expected reward of the receiver. As it is customary in the literature (see, e.g., [Dughmi
and Xu, 2016]), we assume that the receiver breaks ties in favor of the sender, by selecting a best
response maximizing sender’s expected reward when multiple best responses are available.

The goal of the sender is to commit to a signaling scheme ϕ that maximizes their expected reward,
which is computed as follows:

∑
ω∈Ω µ(ω)

∑
s∈S ϕ(s|ω)rS(ω, bϕ(s)).

2.2 Markov persuasion processes

An MPP [Wu et al., 2022] generalizes one-shot Bayesian persuasion to settings where the sender
faces a stream of receivers in an MDP, with each receiver myopically taking an action maximizing
immediate reward. An (episodic) MPP is a tupleM :=

(
X,A,Ω, µ, P, {rS,t}Tt=1, {rR,t}Tt=1

)
, where:

• T is the number of episodes.3
• X , A, and Ω are finite sets of sates, actions, and outcomes, respectively.
• µ : X → ∆(Ω) is a prior function defining a probability distribution over outcomes at each

state. We let µ(ω|x) be the probability of sampling outcome ω ∈ Ω in state x ∈ X .

2In this work, we denote by ∆(X) the set of all the probability distributions having set X as support.
3We denote an episode by t ∈ [T ], where [a . . . b] is the set of all integers from a to b and [b] := [1 . . . b].
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• P : X ×Ω×A→ ∆(X) is a transition function. We let P (x′|x, ω, a) be the probability of
going from x ∈ X to x′ ∈ X by taking action a ∈ A, when the outcome in state x is ω ∈ Ω.

• {rS,t}Tt=1 is a sequence specifying a sender’s reward function rS,t : X ×Ω×A→ [0, 1] at
each episode t. Given x ∈ X , ω ∈ Ω, and a ∈ A, each rS,t(x, ω, a) for t ∈ [T ] is sampled
independently from a distribution νS(x, ω, a) ∈ ∆([0, 1]) with mean rS(x, ω, a).

• {rR,t}Tt=1 is a sequence defining a receivers’ reward function rR,t : X × Ω×A→ [0, 1] at
each episode t. Given x ∈ X , ω ∈ Ω, and a ∈ A, each rR,t(x, ω, a) for t ∈ [T ] is sampled
independently from a distribution νR(x, ω, a) ∈ ∆([0, 1]) with mean rR(x, ω, a).4

We focus w.l.o.g. on loop-free episodic MPPs, as customary in online learning in MDPs (see,
e.g., [Rosenberg and Mansour, 2019]). In a loop-free MPP, states are partitioned into L+ 1 layers
X0, . . . , XL such that X0 := {x0} and XL := {xL}, with x0 being the initial state starting the
episode and xL being the final one, in which the episode ends. Moreover, by lettingK := [0 . . . L−1]
for ease of notation, P (x′|x, ω, a) > 0 only when x′ ∈ Xk+1 and x ∈ Xk for some k ∈ K.5

At each episode of an episodic MPP, the sender commits to a signaling policy ϕ : X × Ω→ ∆(S),
which defines a probability distribution over a finite set S of signals for the receivers for every
state x ∈ X and outcome ω ∈ Ω. For ease of notation, we denote by ϕ(·|x, ω) ∈ ∆(S) such
probability distributions, with ϕ(s|x, ω) being the probability of sending a signal s ∈ S in state x
when the realized outcome is ω. Similarly to one-shot Bayesian persuasion, a myopic receiver acting
at state x ∈ X and receiving signal s ∈ S infers a posterior distribution over outcomes and plays a
best-response action. We denote by bϕ(s, x) ∈ A the best response played by such a receiver under
the signaling policy ϕ (assuming ties are broken in favor of the sender).

As customary in Bayesian persuasion (see, e.g., [Arieli and Babichenko, 2019]), a revelation-principle-
style argument allows to focus w.l.o.g. on signaling policies that are direct and persuasive. Formally,
a signaling policy is direct if the set of signals coincides with the set of actions, namely S = A. Intu-
itively, signals should be interpreted as action recommendations for the receivers. Moreover, a direct
signaling policy is said to be persuasive if it incentivizes the receivers to follow recommendations.
Formally, ϕ : X × Ω→ ∆(A) is persuasive if for every state x ∈ X and recommendation a ∈ A:∑

ω∈Ω

µ(ω|x)ϕ(a|x, ω)
(
rR(x, ω, a)− rR(x, ω, bϕ(a, x))

)
≥ 0.

Intuitively, the inequality above states that a receiver acting at state x is better off following sender’s
recommendation to play action a, since by doing so they get an (unnormalized) expected reward
greater than or equal to what they would obtain by playing a best-response action bϕ(a, x).

Algorithm 1 Sender-Receivers Interaction at t ∈ [T ]

1: The rewards rS,t(x, ω, a), rR,t(x, ω, a) are sampled
2: Sender publicly commits to ϕt : X × Ω → ∆(A)
3: The state of the MPP is initialized to x0

4: for k = 0, . . . , L− 1 do
5: Sender observes outcome ωk ∼ µ(xk)
6: Sender draws recommendation ak ∼ ϕ(·|xk, ωk)
7: A new Receiver observes ak and plays it
8: The MPP evolves to xk+1 ∼ P (·|xk, ωk, ak)
9: Sender observes the next state xk+1

10: end for
11: Sender observes feedback for every k ∈ [0 . . . L− 1]:

• full → [rS,t(xk, ωk, a), rR,t(xk, ωk, a)]a∈A

• partial → rS,t(xk, ωk, ak), rR,t(xk, ωk, ak)

Algorithm 1 shows the interaction between
sender and receivers at t ∈ [T ]. Sender
and receivers do not know anything about
the transition function P , the prior function
µ, and the rewards rS,t(x, ω, a), rR,t(x, ω, a)
(including their distributions). At the end of
each episode, the sender gets to know the
triplets (xk, ωk, ak)—for all k ∈ K—that
are visited during the episode, and an addi-
tional feedback about rewards. In this work,
we consider two types of feedback. The first
one—called full feedback—encompasses all
agents’ rewards for the pairs (xk, ωk) visited
during the episode, i.e., the rewards for all the
triplets (xk, ωk, a) for a ∈ A. The second
type—called partial feedback—only consists in agents’ rewards for the visited triplets (xk, ωk, ak).6

4Wu et al. [2022] consider MPPs in which rewards are deterministic and do not change across episodes, while
we address the more general case in which the rewards are stochastic and sampled at each episode independently.

5The loop-free property is w.l.o.g. since any episodic MPP with finite horizon H that is not loop-free can be
cast into a loop-free one by duplicating states H times, i.e., x ∈ X is mapped to new states (x, k) with k ∈ [H].

6In this work we use the adjective full to refer to a type of feedback that is not the most informative one.
Indeed, a full feedback according to the classical terminology used in online learning [Cesa-Bianchi and Lugosi,
2006, Orabona, 2019] would encompass agents’ rewards for all the possible triplets (x, ω, a), while full feedback
in our terminology only consists in the rewards for the triplets with x = xk and ω = ωk for some k ∈ K.
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Algorithm 1 assumes that receivers always play recommended actions. This is standard in settings
where the sender has not enough information to be persuasive, and it motivates why learning algo-
rithms are designed to guarantee that the per-round violation of persuasiveness goes to zero as T
grows [Bernasconi et al., 2022, Cacciamani et al., 2023, Gan et al., 2023]. Indeed, this ensures that it
is in the receivers’ best interest to stick to recommendations.

3 The learning problem

In this section, we formally introduce the learning problem tackled in the rest of the paper. First, in
Section 3.1, we extend the notion of occupancy measure to MPPs. In Section 3.2, we formally intro-
duce learning objectives. Finally, in Section 3.3, we provide some preliminary elements needed by our
algorithms, developed in Sections 4 and 5. The proofs of all our results are in Appendixes D and E.

3.1 Occupancy measures in MPPs

Next, we extend the well-known notion of occupancy measure of an MDP [Rosenberg and Mansour,
2019] to MPPs. Given a transition function P , a signaling policy ϕ, and a prior function µ, the
occupancy measure induced by P , ϕ, and µ is a vector qP,ϕ,µ ∈ [0, 1]|X×Ω×A×X| whose entries are
specified as follows. For every x ∈ Xk, ω ∈ Ω, a ∈ A, and x′ ∈ Xk+1 with k ∈ K, it holds:

qP,ϕ,µ(x, ω, a, x′) := P
{
(xk, ωk, ak, xk+1) = (x, ω, a, x′) | P, ϕ, µ

}
,

which is the probability that the next state of the MPP is x′ after the receiver plays action a in state x
when the realized outcome is ω, under transition function P , signaling policy ϕ, and prior function
µ. Moreover, for ease of notation, we also define qP,ϕ,µ(x, ω, a) :=

∑
x′∈Xk+1

qP,ϕ,µ(x, ω, a, x′),
qP,ϕ,µ(x, ω) :=

∑
a∈A q

P,ϕ,µ(x, ω, a), and qP,ϕ,µ(x) :=
∑

ω∈Ω q
P,ϕ,µ(x, ω).

The following lemma characterizes the set of valid occupancy measures and it is a generalization to
the MPP setting of a similar lemma by Rosenberg and Mansour [2019].

Lemma 1. A vector q ∈ [0, 1]|X×Ω×A×X| is a valid occupancy measure of an MPP if and only if:

1
∑
x∈Xk

∑
ω∈Ω

∑
a∈A

∑
x′∈Xk+1

q(x, ω, a, x′) = 1 ∀k ∈ K

2
∑

x′∈Xk−1

∑
ω∈Ω

∑
a∈A

q(x′, ω, a, x) = q(x) ∀k ∈ [1 . . . L− 1],∀x ∈ Xk

3 P q = P

4 µq = µ,

where P is the transition function of the MPP and µ its prior function, while P q and µq are the
transition and prior functions, respectively, induced by q (see definitions below).

As it is the case in standard MDPs, a valid occupancy measure q ∈ [0, 1]|X×Ω×A×X| induces a
transition function P q and a signaling policy ϕq. Moreover, in an MPP, a valid occupancy measure
also induces a prior function µq . These are defined as follows:

P q(x′|x, ω, a) := q(x, ω, a, x′)

q(x, ω, a)
, ϕq(a|x, ω) := q(x, ω, a)

q(x, ω)
, and µq(ω|x) := q(x, ω)

q(x)
.

Thus, using valid occupancy measures is equivalent to using signaling policies. In the following, we
denote by Q ⊆ [0, 1]|X×Ω×A×X| the set of all the valid occupancy measures of an MPP.

3.2 Learning objectives

Our goal is to design learning algorithms for the sender in an episodic MPP. We would like algorithms
that prescribe sequences of signaling policies ϕt that maximize sender’s cumulative reward over
the T episodes, while at the same time guaranteeing that the violation of persuasiveness constraints
is bounded. Notice that, differently from Wu et al. [2022], we do not aim at designing learning
algorithms whose policies ϕt are persuasive at every episode t with high probability, since this is
unattainable in our setting in which the sender does not know anything about the environment (see
Theorem 5). Thus, in this paper we pursue a different objective, formally described in the following.
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Baseline First, we introduce the baseline used to evaluate sender’s performances. This is defined as
the value of the optimization problem faced by the sender in the offline version of the MPP. Such a
problem is concerned with expectations of the stochastic quantities in the episodic MPP. By exploiting
occupancy measures, the problem can be formulated as the following linear program:

max
q∈Q

∑
x∈X

∑
ω∈Ω

∑
a∈A

q(x, ω, a)rS(x, ω, a) s.t. (1a)

∑
ω∈Ω

q(x, ω, a)
(
rR(x, ω, a)−rR(x, ω, a′)

)
≥0 ∀x ∈ X,∀ω ∈ Ω,∀a ∈ A,∀a′ ̸= a ∈ A. (1b)

Intuitively, Problem (1) computes an occupancy measure (or, equivalently, signaling policy) maximiz-
ing sender’s expected reward subject to persuasiveness constraints. By letting rS ∈ [0, 1]|X×Ω×A| be
the vector whose entries are the mean values rS(x, ω, a) of sender’s rewards, our baseline is defined
as OPT := r⊤S q

∗, where q∗ ∈ Q denotes an optimal solution to Problem (1). In the following, we
also denote by ϕ∗ an optimal signaling policy, which is defined as ϕ∗ := ϕq

∗
.

Metrics We evaluate the performances of learning algorithms by means of two distinct metrics.
The first one is the (cumulative) regret RT , which accounts for the difference between the cumulative
sender’s expected reward obtained by always playing ϕ∗ and that achieved by using the signaling
policies ϕt prescribed by the algorithm. Formally:

RT := T · OPT −
∑
t∈[T ]

r⊤S qt =
∑
t∈[T ]

r⊤S
(
q∗ − qt

)
,

where we let qt := qP,ϕt,µ be the occupancy measure induced by ϕt. The second metric used to
evaluate learning algorithms is the (cumulative) violation VT , which is formally defined as:

VT :=
∑
t∈[T ]

∑
x∈X

∑
ω∈Ω

∑
a∈A

qt(x, ω, a)
(
rR(x, ω, b

ϕ(a, x))− rR(x, ω, a)
)
.

Intuitively, VT encodes the overall expected loss in persuasiveness over the T episodes.

In this paper, our goal is to develop learning algorithms that prescribe signaling policies ϕt which
guarantee that both RT and VT grow sublinearly in T , namely RT = o(T ) and VT = o(T ).

3.3 Estimators and confidence bounds

Before delving in algorithm design, we introduce estimators and confidence bounds for the stochastic
quantities involved in an MPP, namely, transitions, priors, sender’s rewards, and receivers’ ones. As
we show in the following sections, these are extensively used by our learning algorithms.

We let Nt(x, ω, a, x
′) ∈ N be the number of episodes up to episode t ∈ [T ] (this excluded) in which

the tuple (x, ω, a, x′) is visited. Formally, Nt(x, ω, a, x
′) :=

∑
τ∈[t−1] 1τ{x, ω, a, x′}, where the

indicator function is 1 if and only if the tuple is visited at τ . Similarly, we define the counters
Nt(x, ω, a, ), Nt(x, ω), and Nt(x) in terms of their respective indicator functions 1τ{x, ω, a},
1τ{x, ω}, and 1τ{x}, which are1 if and only if (x, ω, a), (x, ω), and x, respectively, are visited at τ .

Next, we define the estimators employed by our algorithms. At the beginning of each episode
t ∈ [T ], the estimated probability of going from x ∈ X to x′ ∈ X by playing a ∈ A, when the
outcome realized in state x is ω ∈ Ω, is equal to P t (x

′|x, ω, a) := Nt(x,ω,a,x′)
max{1,Nt(x,ω,a)} . Moreover,

for every x ∈ X and ω ∈ Ω, the estimated probability of sampling outcome ω from the prior
probability distribution at state x is defined as µt(ω|x) := Nt(x,ω)

max{1,Nt(x)} . Finally, for every state
x ∈ X , outcome ω ∈ Ω, and action a ∈ A, the estimated sender’s and receivers’ rewards are defined
as rS,t(x, ω, a) :=

∑
τ∈[t−1] rS,τ (x,ω,a)1τ{x,ω,a}

max{1,Nt(x,ω,a)} , and rR,t(x, ω, a) :=
∑

τ∈[t−1] rR,τ (x,ω,a)1τ{x,ω,a}
max{1,Nt(x,ω,a)} .

For reasons of space, we refer to Appendix B for the definitions of the confidence bounds employed
by our algorithms. For the transition function P , at each episode t ∈ [T ], for every x ∈ X , ω ∈ Ω,
and a ∈ A, we provide a confidence bound ϵt(x, ω, a) for the probability distribution over next
states associated with the triplet (x, ω, a), where the distance between distributions is expressed in
∥ · ∥1-norm (see Lemma 4). Similarly, we provide a confidence bound ζt(x) in terms of ∥ · ∥1-norm
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for the prior distribution µ(x) at each state x ∈ X (see Lemma 5). Moreover, for every x ∈ X ,
ω ∈ Ω, and a ∈ A, we provide confidence bounds ξS,t(x, ω, a) and ξR,t(x, ω, a) for sender’s and
receivers’ rewards, respectively, associated with the triplet (x, ω, a) (see Lemmas 6 and 7 for the full
feedback case, while Lemmas 8 and 9 for the partial feedback one).

In conclusion, for ease of presentation, for a confidence parameter δ ∈ (0, 1), we refer to the event in
which all the confidence bounds hold—called clean event—as E(δ). By combining all the lemmas in
Appendix B, E(δ) holds with probability at least 1− 4δ (by applying a union bound).

4 The full feedback case

We first address settings with full feedback, as a warm-up towards the analysis of partial feedback.

4.1 The OPPS algorithm with full feedback

We propose an algorithm called Optimisitc Persuasive Policy Search (OPPS). At each episode, the
algorithm solves a variation of the offline optimization problem (Problem (1)), called Opt-Opt,
obtained by substituting mean values with upper/lower confidence bounds. Specifically, Opt-Opt
is optimistic with respect to both sender’s rewards and persuasiveness constraints satisfaction. For
reasons of space, we defer Opt-Opt to Problem (2) in Appendix C. Crucially, by using occupancy
measures, Opt-Opt can be formulated as an LP, and, thus, solved efficiently. Notice that, since
confidence bounds for P and µ are expressed in terms of ||·||1-norm, in order to formulate Opt-Opt as
an LP we need some additional variables and linear constraints, as described in detail in Appendix C.

Algorithm 2 Optimistic Persuasive Policy Search (full)

Require: X , A, T , confidence parameter δ ∈ (0, 1)
1: Initialize all estimators to 0 and all bounds to +∞
2: for t = 1, . . . , T do
3: Update all estimators P t, µt, rS,t, rR,t and

bounds ϵt, ζt, ξS,t, ξR,t given new observations
4: q̂t ← Solve Opt-Opt (Problem (2))
5: ϕt ← ϕq̂t

6: Run Algorithm 1 by committing to ϕt
7: Observe full feedback from Algorithm 1
8: end for

Algorithm 2 provides the pseudocode of
OPPS with full feedback. At each t ∈ [T ],
the algorithm first updates all the estima-
tors and confidence bounds according to
the feedback received in previous episodes
(Line 3). Then, it commits to the signaling
policy ϕt induced by an optimal solution
q̂t to Opt-Opt, computed in Line 4. Notice
that, the occupancy measure qt resulting
from committing to ϕt (and used in the
definitions of RT and VT ) is in general dif-
ferent from q̂t, as the former is defined in
terms of the true (and unknown) transition
and prior functions, namely P and µ.

4.2 Algorithm analysis with full feedback

Next, we prove the guarantees of OPPS with full feedback. The first crucial component is the following
lemma, which shows that Opt-Opt admits a feasible solution at every episode with high probability.
Lemma 2. Given δ ∈ (0, 1), under event E(δ), Opt-Opt admits a feasible solution at every t ∈ [T ].

Intuitively, Lemma 2 is proved by showing (a) that Problem 1 always admits a feasible solution,
which is the occupancy measure q⋄ induced by the signaling policy that fully reveals outcomes to the
receiver, and (b) that q⋄ is a feasible solution to Opt-Opt at every episode, under E(δ). Notice that
point (b) holds thanks to the fact that Opt-Opt optimistically accounts for persuasiveness constraints
satisfaction, by using suitable upper and lower confidence bounds.

The second crucial component of our analysis is a relation between the occupancy measures q̂t
computed by the OPPS algorithm and the occupancy measures qt that actually result from committing
to ϕt under the true transitions and priors. This is formally stated by the following lemma.
Lemma 3. Given any δ ∈ (0, 1), under the clean event E(δ), with probability at least 1− 2δ, it holds

that
∑

t∈[T ] ∥qt − q̂t∥1 ≤ O
(
L2|X|

√
T |A||Ω| ln (T |X||Ω||A|/δ)

)
.

Intuitively, Lemma 3 is proved by an inductive argument that relates the uncertainty associated with
both the transition and the prior functions to the ∥ · ∥1-norm difference between qt and q̂t cumulated
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over the episodes. Lemmas 2 and 3 pave the way to our two main theorems for the full feedback
setting. The first theorem bounds the regret RT achieved by OPPS, while the second one bounds its
cumulative violation VT . Formally:

Theorem 1. Given any δ ∈ (0, 1), with probability at least 1− 7δ, Algorithm 2 attains regret

RT ≤ Õ
(
L2|X|

√
T |A||Ω| ln (1/δ)

)
.

Theorem 2. Given δ ∈ (0, 1), with probability at least 1− 7δ, Algorithm 2 attains violation

VT ≤ Õ
(
L2|X|

√
T |A||Ω| ln (1/δ)

)
.

In conclusion, in the full feedback case, OPPS attains RT and VT growing as Õ(
√
T ). Intuitively,

this is made effective by the fact that all the estimators concentrate at a 1/
√
T rate. As shown in the

following, achieving such regret and violation bounds is not possible anymore under partial feedback.

5 The partial feedback case

In this section, we switch the attention to partial feedback.

The crucial aspect that makes the case of partial feedback more challenging than the one of full
feedback is that, after committing to a signaling policy ϕt, the sender does not observe sufficient
feedback about the persuasiveness of ϕt. This makes achieving sublinear violation in the partial
feedback case much harder than in the full feedback case. In order to overcome such a challenge, some
episodes of learning must be devoted to the estimation of the quantities involved in persuasiveness
constraints. This is necessary to build a suitable approximation of such constraints to be exploited in
the remaining episodes, in which an optimistic approach similar to that employed with full feedback
must be adopted to control the regret. As a result, there is a trade-off between regret and violation
that is determined by the amount of exploration performed. In the rest of this section, we design an
algorithm that is able to optimally control such a trade-off.

5.1 The OPPS algorithm with partial feedback

Algorithm 3 Optimistic Persuasive Policy Search (partial)

Require: X , Ω, A, T , δ ∈ (0, 1), α ∈ [0, 1]
1: N ← ⌈Tα⌉
2: Initialize all estimators to 0 and all bounds to +∞
3: Initialize counter C(x, ω, a) to 0 for all (x, ω, a)
4: for t = 1, . . . , T do
5: Update all estimators P t, µt, rS,t, rR,t and bounds
ϵt, ζt, ξS,t, ξR,t given new observations

6: if t ≤ N |X||Ω||A| then
7: (x, ω, a)← argmin(x,ω,a)∈X×Ω×A C(x, ω, a)

8: q̂t ←
Solve Opt-Opt with its objective
modified as

∑
x′∈X q(x, ω, a, x′)

9: C(x, ω, a)← C(x, ω, a) + 1
10: else
11: q̂t ← Solve Opt-Opt (Problem (2), Appendix C)
12: end if
13: ϕt ← ϕq̂t

14: Run Algorithm 1 by committing to ϕt
15: Observe partial feedback from Algorithm 1
16: end for

We extend the OPPS algorithm intro-
duced in Section 4 to deal with the par-
tial feedback case. The idea behind
the new algorithm is to split episodes
into two phases. The first one is an ex-
ploration phase with the goal of build-
ing a sufficiently-good approximation
of persuasiveness constraints, so as to
achieve sublinear violation. Such a
phase lasts for the first N |X||Ω||A|
episodes, where we let N := ⌈Tα⌉
with α ∈ [0, 1] being a parameter con-
trolling the length of the two phases,
given as input to the algorithm. The
second phase is instead devoted to
achieving sublinear regret, and it fol-
lows the same steps of OPPS with full
feedback (Algorithm 2).

The first phase works by considering
each (x, ω, a) ∈ X × Ω × A for N
episodes. When (x, ω, a) is consid-
ered at episode t ∈ [T ], the algorithm
commits to a signaling scheme induced by an occupancy measure q̂t that maximizes the probability∑

x′∈X q(x, ω, a, x′) of visiting such a triplet, while at the same time satisfying all the constraints
of the Opt-Opt problem. Crucially, such a procedure does not guarantee that every triplet is visited
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N times. Indeed, there might be triplets (x, ω, a) that are visited with very low probability. This
can be the case when either transitions and priors place very low probability on (x, ω) or action a
is associated with very low receivers’ rewards, and, thus, it must be recommended with very low
probability in order to satisfy the optimistic persuasiveness constraints defined in Opt-Opt.

Algorithm 3 provides the pseudocode of OPPS with partial feedback. Notice that the variables
C(x, ω, a) (initialized in Line 3 and updated in Line 9) are counters used to keep track of how
many times each triplet (x, ω, a) is considered during the first phase, namely when t ≤ N |X||Ω||A|.
Moreover, the algorithm ensures that every triplet si considered exactly N times during the first
phase, by selecting them accordingly as in Line 7. Let us also observe that Algorithm 3 updates all
the estimators and bounds (by using partial feedback) and selects the signaling policy ϕt as done by
Algorithm 2. The main difference with respect to Algorithm 2 is that q̂t used to define ϕt is computed
in a different way during the first (exploration) phase of the algorithm (see Line 8).

5.2 Algorithm analysis with partial feedback

In the following, we prove the guarantees attained by OPPS with partial feedback. We start by stating
the following result on the regret attained by the algorithm.
Theorem 3. Given any δ ∈ (0, 1), with probability at least 1− 7δ, Algorithm 3 attains regret

RT ≤ Õ
(
NL|X||Ω||A|+ L2|X|

√
T |A||Ω| ln (1/δ)

)
.

In order to prove Theorem 3, we split the analysis into two cases: one targets exploration episodes
in the first phase of the algorithm, while the other is concerned with the subsequent (exploitation)
phase. In the first N episodes in which the OPPS algorithm explores without being driven by the
Opt-Opt objective, the algorithm incurs in linear regret. Instead, in the second phase, OPPS employs
an optimistic approach, since the algorithm is driven by the objective of the Opt-Opt problem. Thus,
in the second phase, the algorithm attains regret sublinear in T . The two cases combined give the
regret bound provided in Theorem 3.

Next, we state the result on the violations attained by the OPPS algorithm under partial feedback.
Theorem 4. Given any δ ∈ (0, 1), with probability at least 1− 9δ, Algorithm 3 attains violation

VT ≤ Õ
(
(|X||Ω||A|)3/2

√
ln (1/δ)

(
|A| T√

N
+ |A|

√
N + L2

√
T

))
.

Proving Theorem 4 requires a non-trivial analysis. The result follows by showing that uniformly
exploring over feasible solutions to the Opt-Opt problem leads to a violation bound of the order of
O(
√
N) during the exploration phase. Intuitively, this follows by upper bounding the occupancy

measure in each triplet (x, ω, a) with an occupancy of a previous (exploration) episode, relative to
the best response of the follower in state x upon receiving action recommendation a.

Theorems 3 and 4 establish the trade-off between regret and violation achieved by the OPPS algorithm.
Indeed, by recalling the definition of N (see Line 1 in Algorithm 3), it is easy to see that the algorithm
attains regret RT ≤ Õ(Tα) and violation VT ≤ Õ(T 1−α/2), where α ∈ [1/2, 1] is the parameter
controlling the trade-off, given as input to the algorithm.

5.3 Lower bound

We conclude the section and the paper by showing that the regret and violation bounds attained by the
OPPS algorithm (see Theorems 3 and 4) are tight for any choice of α ∈ [1/2, 1]. We do so by devising
a lower bound matching these bounds (Theorem 5). Its main idea is to consider two instances of
episodic MPP involving a receiver with two actions a1, a2 such that only a1 provides positive reward
to the sender. In one instance, receiver’s rewards by playing a1 are higher than those obtained by
taking a2, while in the second instance the opposite holds. As a result, recommending action a1
results in low regret in the first instance and high violation in the second one, while recommending
action a2 results in low violation in the second instance and high regret in the first one. This leads to
the trade-off formally stated by the following theorem.
Theorem 5. Given α ∈ [1/2, 1], there is no learning algorithm achieving both RT = o(Tα) and
VT = o(T 1−α/2) with probability greater or equal to a fixed constant ψ > 0.
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Theorem 5 shows that the bounds in Theorems 3 and 4 are tight for any α ∈ [1/2, 1]. Moreover, it also
proves that it is impossible to achieve sublinear regret while being persuasive at every episode with
high probability, when the sender has no information about the receivers. Notice that, in our MPP
setting with partial feedback, we deal with a trade-off between regret and violation that is similar
to the one faced by Bernasconi et al. [2022] in related settings. Differently from them, we are able
to achieve an optimal trade-off for any α ∈ [1/2, 1]. Indeed, Bernasconi et al. [2022] only obtain
optimality for α ∈ [1/2, 2/3], leaving as an open problem matching the lower bound for the other
values of the parameter α. Crucially, we are able to achieve trade-off optimality by using a clever
exploration method. Indeed, when considering a triplet (x, ω, a) in the first phase, the OPPS algorithm
does not simply commit to a signaling policy that maximizes the probability of visiting such a triplet,
but it rather does so while also optimistically accounting for persuasiveness constraints. This allows
to reduce the violation cumulated during the first phase, thus achieving trade-off optimality.
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Appendix

The appendix is organized as follows:

• In Appendix A we report the related works concerning the online learning in Markov
decision processes and online Bayesian persuasion literatures.

• In Appendix B we describe the estimators and the confidence bounds related to the stochastic
quantities of the Markov persuasive processes.

• In Appendix C we report the per-round optimization problem performed by the algorithms
we present.

• In Appendix D we report the omitted proofs related to the full-feedback setting.
• In Appendix E we report the omitted proofs related to the partial-feedback setting.

A Related works

Sequential Bayesian persuasion The work that is most related to ours is [Wu et al., 2022], which
introduces MPPs. Specifically, Wu et al. [2022] study settings where the sender knows everything
about receivers’ rewards, with the only elements unknown to them being their rewards, transition
probabilities, and prior distributions over outcomes. Moreover, they also assume that the receivers
know everything they need about the environment, so as to select a best-response action, and that
all rewards are deterministic. In contrast, we consider MPP settings in which sender and receivers
have no knowledge of the environment, including their rewards, which we assume to be stochastic.
Moreover, Wu et al. [2022] obtain a regret bound of the order of Õ(

√
T/D), where D is a parameter

related to receivers’ rewards. Notice that such a dependence is particularly unpleasant, as D may be
exponentially large in instances in which there are some receivers’ actions that are best responses only
for a “small” space of information-disclosure policies. Other works related to ours are [Gan et al.,
2022], which studies a Bayesian persuasion problem where a sender sequentially interacts with a
myopic receiver in a multi-state environment, and [Bernasconi et al., 2023b], which addresses MPPs
with a farsighted receiver. These two works considerably depart from ours, as they both assume
that the sender knows everything about the environment, including transitions, priors, and rewards.
Thus, they are not concerned with learning problems, but with the problem of computing optimal
information-disclosure policies. Finally, [Bernasconi et al., 2022] studies settings where a sender
faces a farsighted receiver in a sequential environment with a tree structure, addressing the case in
which the only elements unknown to the sender are the prior distributions over outcomes, while
rewards are deterministic and known. The tree structure considerably eases the learning task, as it
allows to express sender’s expected rewards linearly in variables defining information-disclosure
policies. Intuitively, this allows to factor the uncertainty about transitions in the rewards at the leaves
of the tree.

Online Bayesian persuasion It is also worth citing some works that study learning problems in
which a one-shot Bayesian persuasion setting is played repeatedly [Castiglioni et al., 2020b, 2021b,
Zu et al., 2021, Bernasconi et al., 2023a]. These works considerably depart from ours, since they do
not consider any kind of sequential structure in the sender-receiver interaction at each episode.

Online learning in constrained MDPs Our paper is also related to the problem of designing
no-regret algorithms in online constrained Markov decision processes. The literature on online
learning in Markov decision processes is extensive (see, e.g., Auer et al. [2008], Even-Dar et al.
[2009], Neu et al. [2010] for seminal works on the topic). In such settings, two types of feedback are
usually investigated. The full-information feedback setting [Rosenberg and Mansour, 2019], in which
the entire reward function is observed after the learner’s choice and the partial feedback setting [Jin
et al., 2020], where the learner only observes the reward gained during the episode. Bacchiocchi et al.
[2023] study adversarial MDPs where the partial feedback is given by a parallel agent, while Maran
et al. [2024] study the learning problem faced by an agent that chooses the transition functions. Over
the last decade, there has been significant attention to the field of online Markov decision processes in
presence of constraints. The majority of previous works on this topic have focused on settings where
constraints are stochastically sampled from a fixed distribution (see, e.g., Zheng and Ratliff [2020]).
Wei et al. [2018] deal with adversarial reward and stochastic constraints, assuming known transition
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probabilities and full information feedback. Efroni et al. [2020] propose two approaches to address
the exploration-exploitation dilemma in episodic constrained MDPs. These approaches guarantee
sublinear regret and constraint violation when transition probabilities, rewards, and constraints
are unknown and stochastic, and the feedback is partial. Qiu et al. [2020] provide a primal-dual
approach based on optimism in the face of uncertainty. This work shows the effectiveness of such
an approach when dealing with episodic constrained MDPs with adversarial rewards and stochastic
constraints, achieving both sublinear regret and constraint violation with full-information feedback.
Germano et al. [2023] propose a best-of-both-worlds algorithm in constrained Markov decision
processes with full information feedback. Stradi et al. [2024b] extend the online adversarial CMDPs
framework to dynamic pricing scenarios. Stradi et al. [2024a] study the problem of adversarial
MDPs with stochastic hard constraints, that is, the authors propose algorithms which attains sublinear
positive violations and, when a strictly feasible solution is known to the learner, no violations at all.
Finally, Stradi et al. [2024c] study the problem of positive violations when both the rewards and
the constraints are non stationary. While the previous works are related to ours, the aforementioned
techniques cannot be easily generalized to our setting as they are not designed to properly handle the
presence of outcomes and IC constraints.

B Confidence bounds

In this section, we further describe the estimators and confidence bounds for the stochastic quantities
involved in an episodic MPP, namely, transitions, priors, sender’s rewards, and receivers’ ones.

B.1 Transition probabilities

First, we introduce confidence bounds for transition probabilities P (x′|x, ω, a), by generalizing
those introduced by Rosenberg and Mansour [2019] for MDPs to MPPs. In the following, we let
Nt(x, ω, a), respectively Nt(x, ω, a, x

′), be the counter specifying the number of episodes up to
episode t ∈ [T ] (excluded) in which the triplet (x, ω, a), respectively the tuple (x, ω, a, x′), is visited.
Then, the estimated probability of going from x ∈ X to x′ ∈ X by playing action a ∈ A, when the
outcome realized in state x is ω ∈ Ω, is defined as follows:

P t (x
′|x, ω, a) := Nt(x, ω, a, x

′)

max {1, Nt(x, ω, a)}
.

For any δ ∈ (0, 1), the confidence set at episode t ∈ [T ] for the transition function P is Pt :=⋂
(x,ω,a)∈X×Ω×A P

x,ω,a
t , where Px,ω,a

t is a set of transition functions defined as:

Px,ω,a
t :=

{
P̂ :
∥∥∥P̂ (·|x, ω, a)− P t(·|x, ω, a)

∥∥∥
1
≤ ϵt(x, ω, a)

}
,

where P̂ (·|x, ω, a) and P t(·|x, ω, a) are vectors whose entries are the values P̂ (x′|x, ω, a) and
P t(x

′|x, ω, a), respectively, while ϵt(x, ω, a) is a confidence bound defined as:

ϵt(x, ω, a) :=

√
2|Xk(x)+1| ln (T |X||Ω||A|/δ)

max {1, Nt(x, ω, a)}
.

The following lemma formally proves that Pt is a suitable confidence set for the transition function
of an MPP.
Lemma 4. Given any δ ∈ (0, 1), with probability at least 1− δ, the following condition holds for
every x ∈ X , ω ∈ Ω, a ∈ A, and t ∈ [T ] jointly:∥∥P (·|x, ω, a)− P t(·|x, ω, a)

∥∥
1
≤ ϵt(x, ω, a).

Lemma 4 can be easily proven by applying the same analysis as presented in [Auer et al., 2008] and
employing a union bound over all x, ω, a, and t..

B.2 Prior distributions

Next, we introduce confidence bounds for prior distributions. For every state x ∈ X , we define
µt(·|x) ∈ ∆(Ω) as the estimator of the prior distribution at x built by using observations up to
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episode t ∈ [T ] (this excluded). Formally, the entries of vector µt(·|x) are such that, for every ω ∈ Ω:

µt(ω|x) :=
∑

τ∈[t−1] 1τ{x, ω}
max{1, Nt(x)}

,

where Nt(x) is the number of visits to state x up to episode t (excluded), while 1τ{x, ω} is an
indicator function equal to 1 if and only if the pair (x, ω) is visited at episode τ .

The following lemma provides confidence bounds for priors.
Lemma 5. Given any δ ∈ (0, 1), with probability at least 1− δ, the following holds for all x ∈ X
and t ∈ [T ] jointly:

∥µ(·|x)− µt(·|x)∥1 ≤ ζt(x),

where we let ζt(x) :=
√

2|Ω| ln(T |X|/δ)
max{1,Nt(x)} .

Lemma 5 follows by applying Bernstein’s inequality and a union bound over all states and episodes.

B.3 Sender’s and receivers’ rewards

Finally, we introduce estimators for rewards. In the following, present the results related to sender’s
rewards and receiver’s rewards under full and partial feedback. For every x ∈ X , ω ∈ Ω, and a ∈ A,
the estimated sender’s and receivers’ rewards built with observations up to episode t ∈ [T ] (this
excluded) are defined as follows:

rS,t(x, ω, a) :=

∑
τ∈[t−1] rS,τ (x, ω, a)1τ{x, ω, a}

max{1, Nt(x, ω, a)}
,

rR,t(x, ω, a) :=

∑
τ∈[t−1] rR,τ (x, ω, a)1τ{x, ω, a}

max{1, Nt(x, ω, a)}
,

where 1τ{x, ω, a} is an indicator function equal to 1 if and only if the triplet (x, ω, a) is visited
during episode τ .

The following lemma provides confidence bounds for sender’s rewards, when full feedback is
available.
Lemma 6. Given any δ ∈ (0, 1), with probability at least 1− δ, the following condition holds for
every x ∈ X , ω ∈ Ω, a ∈ A, and t ∈ [T ] jointly:∣∣rS(x, ω, a)− rS,t(x, ω, a)∣∣ ≤ ξS,t(x, ω, a),
where ξS,t(x, ω, a) := min

{
1,
√

ln(3T |X||Ω|/δ)
max{1,Nt(x,ω)}

}
.

Lemma 6 follows by applying Hoeffding’s inequality and a union bound over all x, ω and t.

The following lemma provides confidence bounds for receiver’s rewards, when full feedback is
available.
Lemma 7. Given any δ ∈ (0, 1), with probability at least 1− δ, the following condition holds for
every x ∈ X , ω ∈ Ω, a ∈ A, and t ∈ [T ] jointly:∣∣rR(x, ω, a)− rR,t(x, ω, a)

∣∣ ≤ ξR,t(x, ω, a),

where ξR,t(x, ω, a) := min
{
1,
√

ln(3T |X||Ω|/δ)
max{1,Nt(x,ω)}

}
.

Lemma 7 follows by applying Hoeffding’s inequality and a union bound over all x, ω and t.

The following lemma provides confidence bounds for sender’s rewards, when only partial feedback
is available.
Lemma 8. Given any δ ∈ (0, 1), with probability at least 1− δ, the following condition holds for
every x ∈ X , ω ∈ Ω, a ∈ A, and t ∈ [T ] jointly:∣∣rS(x, ω, a)− rS,t(x, ω, a)∣∣ ≤ ξS,t(x, ω, a),
where ξS,t(x, ω, a) := min

{
1,
√

ln(3T |X||Ω||A|/δ)
max{1,Nt(x,ω,a)}

}
.
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Lemma 8 follows by applying Hoeffding’s inequality and a union bound over all x, ω, a, and t.

Finally, the following lemma provides confidence bounds for receiver’s rewards, when only partial
feedback is available.
Lemma 9. Given any δ ∈ (0, 1), with probability at least 1− δ, the following condition holds for
every x ∈ X , ω ∈ Ω, a ∈ A, and t ∈ [T ] jointly:∣∣rR(x, ω, a)− rR,t(x, ω, a)

∣∣ ≤ ξR,t(x, ω, a),

where ξR,t(x, ω, a) := min
{
1,
√

ln(3T |X||Ω||A|/δ)
max{1,Nt(x,ω,a)}

}
.

Lemma 9 follows by applying Hoeffding’s inequality and a union bound over all x, ω, a, and t.

C Optimistic optimization problem

In the following section we describe the linear program solved by Algorithm 2 and Algorithm 3,
namely Opt-Opt. Intuitively, Opt-Opt is the optimistic version of Program (1), since the objective
is guided by the optimism and the confidence bounds of the estimated parameters are chosen to make
constraints easier to be satisfied. Notice that the confidence bounds on the transitions and the prior
are applied to the ∥ · ∥1 differences between the empirical and the real mean of the distributions. Thus,
in order to insert the aforementioned confidence bounds in a LP-formulation, the related constraints
must be linearized by means of additional optimization variables.

The linear program solved by Algorithm 2 and Algorithm 3 is the following.

max
q,ζ,ϵ

∑
x∈Xk

∑
ω∈Ω

∑
a∈A

∑
x′∈Xk+1

q(x, ω, a, x′)
(
rS,t(x, ω, a) + ξS,t(x, ω, a)

)
s.t. (2a)

∑
x∈Xk

∑
ω∈Ω

∑
a∈A

∑
x′∈Xk+1

q(x, ω, a, x′) = 1 ∀k ∈ [0 . . . L− 1] (2b)

∑
x′∈Xk−1

∑
ω∈Ω

∑
a∈A

q(x′, ω, a, x) =
∑
ω∈Ω

∑
a∈A

∑
x′∈Xk+1

q(x, ω, a, x′)

∀k ∈ [0 . . . L− 1],∀x ∈ Xk (2c)

q(x, ω, a, x′)− P t(x
′|x, ω, a)

∑
x′′∈Xk+1

q(x, ω, a, x′′) ≤ ϵ(x, ω, a, x′)

∀k ∈ [0 . . . L− 1],∀(x, ω, a, x′) ∈ Xk × Ω×A×Xk+1 (2d)

P t(x
′|x, a, ω)

∑
x′′∈Xk+1

q(x, ω, a, x′′)− q(x, ω, a, x′) ≤ ϵ(x, ω, a, x′)

∀k ∈ [0 . . . L− 1],∀(x, ω, a, x′) ∈ Xk × Ω×A×Xk+1 (2e)∑
x′∈Xk+1

ϵ(x, ω, a, x′) ≤ ϵt(x, ω, a)
∑

x′∈Xk+1

q(x, ω, a, x′)

∀k ∈ [0 . . . L− 1],∀(x, ω, a) ∈ Xk × Ω×A (2f)

q(x, ω)− µt(ω|x)
∑
ω′∈Ω

q(x, ω′) ≤ ζ(x, ω) ∀k ∈ [0 . . . L− 1],∀(x, ω) ∈ Xk × Ω (2g)

µt(ω|x)
∑
ω′∈Ω

q(x, ω′)− q(x, ω) ≤ ζ(x, ω) ∀k ∈ [0 . . . L− 1],∀(x, ω) ∈ Xk × Ω (2h)∑
ω∈Ω

ζ(x, ω) ≤ ζt(x)
∑
ω∈Ω

q(x, ω), ∀k ∈ [0 . . . L− 1],∀x ∈ Xk (2i)

∑
ω∈Ω

∑
x′∈Xk+1

q(x, ω, a, x′)
(
rR,t(x, ω, a) + ξR,t(x, ω, a)

− rR,t(x, ω, a
′) + ξR,t(x, ω, a

′)
)
≥ 0
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∀k ∈ [0 . . . L− 1],∀(x, a) ∈ Xk ×A,∀a′ ∈ A (2j)

q(x, ω, a, x′) ≥ 0 ∀k ∈ [0 . . . L− 1],∀(x, a, x′) ∈ Xk × Ω×A×Xk+1, (2k)

where Objective (2a) maximizes the upper confidence bound of the sender reward, Constraint (2b)
ensures that the occupancy measure sums to 1 for every layer, Constraint (2c) is the flow constraint,
Constraint (2d) is related to the confidence interval on the transition functions, Constraint (2e) is
still related to the confidence bounds on the transition function, Constraint (2f) allows to write
linearly the constraints related to the transition functions even if the interval holds for the ∥ · ∥1,
Constraint (2g) is related to the confidence interval on the outcomes, Constraint (2h) is still related to
the confidence bounds on the outcomes, Constraint (2i) allows to write linearly the constraints related
to the outcomes even if the interval holds for the ∥ · ∥1, Constraint (2j) is the optimistic constraint for
the Incentive Compatibility (IC) property and, finally, Constraint (2k) ensures that the occupancy are
greater than zero.
Lemma 2. Given δ ∈ (0, 1), under event E(δ), Opt-Opt admits a feasible solution at every t ∈ [T ].

Proof. First we notice that under the clean event E(δ) the true transition function P and the prior
µ are included in the their confidence interval; thus, they are available in the constrained space
defined by Opt-Opt. Then, we focus on the incentive compatibility constraints. Referring as q⋄ to an
incentive compatible occupancy measure, under E(δ), we have that:∑

ω∈Ω,x′∈Xk+1

q⋄(x, ω, a, x′) (rR,t(x, ω, a) + ξR,t(x, ω, a)− rR,t(x, ω, ā) + ξR,t(x, ω, a)) ≥∑
ω∈Ω,x′∈Xk+1

q⋄(x, ω, a, x′) (rR(x, ω, a)− rR(x, ω, ā)) ≥ 0,

for any k ∈ [L− 1], (x, a) ∈ Xk ×A,∀ā ∈ A. As a result, if q⋄ is incentive compatible, it belongs
to the optimistic decision space, which concludes the proof.

D Full feedback

In this section we report the omitted proof related to Algorithm 2. Notice that the bound on the
transition function estimations still hold when the feedback is partial.

D.1 Transition functions

We start by showing that the estimated occupancy measures which encompass the information related
to the outcomes and the transitions concentrate with respect to the true occupancy measures.
Lemma 3. Given any δ ∈ (0, 1), under the clean event E(δ), with probability at least 1− 2δ, it holds

that
∑

t∈[T ] ∥qt − q̂t∥1 ≤ O
(
L2|X|

√
T |A||Ω| ln (T |X||Ω||A|/δ)

)
.

Proof. We start noticing that, for any (x, ω, a) ∈ X × Ω×A, we have:∑
x′∈Xk(x)+1

|qPt,ϕt,µt(x, ω, a, x′)− qP,ϕt,µ(x, ω, a, x′)|

=
∑

x′∈Xk(x)+1

∣∣qPt,ϕt,µt(x, ω, a)Pt(x
′|x, ω, a)− qP,ϕt,µ(x, ω, a)P (x′|x, ω, a)

∣∣
≤

∑
x′∈Xk(x)+1

∣∣qPt,ϕt,µt(x, ω, a)Pt(x
′|x, ω, a)− qP,ϕt,µ(x, ω, a)Pt(x

′|x, ω, a)
∣∣

+
∑

x′∈Xk(x)+1

∣∣qP,ϕt,µ(x, ω, a)Pt(x
′|x, ω, a)− qP,ϕt,µ(x, ω, a)P (x′|x, ω, a)

∣∣
=

∑
x′∈Xk(x)+1

∣∣qPt,ϕt,µt(x, ω, a)− qP,ϕt,µ(x, ω, a)
∣∣Pt(x

′|x, ω, a)

+
∑

x′∈Xk(x)+1

qP,ϕt,µ(x, ω, a) |Pt(x
′|x, ω, a)− P (x′|x, ω, a)|
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=
∣∣qPt,ϕt,µt(x, ω, a)− qP,ϕt,µ(x, ω, a)

∣∣+ qP,ϕt,µ(x, ω, a)∥Pt(·|x, ω, a)− P (·|x, ω, a)∥1.

Thus, summing over t ∈ [T ] and (x, ω, a) ∈ X × Ω×A we obtain:∑
t∈[T ]

∥qt − q̂t∥1 ≤
∑
t∈[T ]

∑
x∈X,ω∈Ω,a∈A

( ∣∣qPt,ϕt,µt(x, ω, a)− qP,ϕt,µ(x, ω, a)
∣∣

+ qP,ϕt,µ(x, ω, a)∥Pt(·|x, ω, a)− P (·|x, ω, a)∥1
)
.

Next, we focus on the first part of the equation, noticing that:

|qPt,ϕt,µt(x, ω, a)− qP,ϕt,µ(x, ω, a)|
≤
∣∣qPt,ϕt,µt(x, ω, a)− qPt,ϕt,µ(x, ω, a)

∣∣+ ∣∣qPt,ϕt,µ(x, ω, a)− qP,ϕt,µ(x, ω, a)
∣∣

Bound on
∣∣qPt,ϕt,µt(x, ω, a)− qPt,ϕt,µ(x, ω, a)

∣∣ We bound this term by induction. At the first
layer we have:∑

x0∈X0

∑
ω0∈Ω

∑
a0∈A

∣∣qPt,ϕt,µt(x0, ω0, a0)− qPt,ϕt,µ(x0, ω0, a0)
∣∣

=
∑
ω0∈Ω

∑
a0∈A

|µt(x0, ω0)ϕt(a0|x0, ω0)− µ(x0, ω0)ϕt(a0|x0, ω0)|

≤
∑
ω0∈Ω

|µt(x0, ω0)− µ(x0, ω0)|

= qPt,ϕt,µ(x0)
∑
ω0∈Ω

|µt(x0, ω0)− µ(x0, ω0)| .

observing that X0 = {x0}. Now we show that, if the result holds for xk−1, it holds for xk, as follows,∑
xk∈Xk

∑
ωk∈Ω

∑
ak∈A

∣∣qPt,ϕt,µt(xk, ωk, ak)− qPt,ϕt,µ(xk, ωk, ak)
∣∣

=
∑

xk−1∈Xk−1

∑
ωk−1∈Ω

∑
ak−1∈A

∑
xk∈Xk

∑
ωk∈Ω

∑
ak∈A

|qPt,ϕt,µt(xk−1, ωk−1, ak−1)·

· Pt(xk|xk−1, ωk−1, ak−1)µt(xk, ωk)+

− qPt,ϕt,µ(xk−1, ωk−1, ak−1)Pt(xk|xk−1, ωk−1, ak−1)µ(xk, ωk)|ϕt(ak|xk, ωk)

=
∑

xk−1∈Xk−1

∑
ωk−1∈Ω

∑
ak−1∈A

∑
xk∈Xk

∑
ωk∈Ω

|qPt,ϕt,µt(xk−1, ωk−1, ak−1)·

· Pt(xk|xk−1, ωk−1, ak−1)µt(xk, ωk)+

− qPt,ϕt,µ(xk−1, ωk−1, ak−1)Pt(xk|xk−1, ωk−1, ak−1)µ(xk, ωk)|

≤
∑

xk−1∈Xk−1

∑
ωk−1∈Ω

∑
ak−1∈A

∑
xk∈Xk

∑
ωk∈Ω

|qPt,ϕt,µt(xk−1, ωk−1, ak−1)·

· Pt(xk|xk−1, ωk−1, ak−1)µt(xk, ωk)+

− qPt,ϕt,µ(xk−1, ωk−1, ak−1)Pt(xk|xk−1, ωk−1, ak−1)µt(xk, ωk)|+

+
∑

xk−1∈Xk−1

∑
ωk−1∈Ω

∑
ak−1∈A

∑
xk∈Xk

∑
ωk∈Ω

|qPt,ϕt,µ(xk−1, ωk−1, ak−1)·

· Pt(xk|xk−1, ωk−1, ak−1)µt(xk, ωk)+

− qPt,ϕt,µ(xk−1, ωk−1, ak−1)Pt(xk|xk−1, ωk−1, ak−1)µ(xk, ωk)|

≤
∑

xk−1∈Xk−1k

∑
ωk−1∈Ω

∑
ak−1∈A

∣∣qPt,ϕt,µt(xk−1, ωk−1, ak−1)− qPt,ϕt,µ(xk−1, ωk−1, ak−1)
∣∣

+
∑

xk∈Xk

qPt,ϕt,µ(xk)
∑
ωk∈Ω

|µt(xk, ωk)− µ(xk, ωk)| .
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Thus, by induction hypothesis, it follows,∑
xk∈Xk

∑
ωk∈Ω

∑
ak∈A

∣∣qPt,ϕt,µt(xk, ωk, ak)− qPt,ϕt,µ(xk, ωk, ak)
∣∣

≤
k∑

s=0

∑
xs∈Xs

qPt,ϕt,µ(xs)∥µt(·|xs)− µ(·|xs)∥1.

Bound on
∣∣qPt,ϕt,µ(x, ω, a)− qP,ϕt,µ(x, ω, a)

∣∣ To bound this term, we proceed again by induction.
Thus, we notice that:∑

x1∈X1

∑
ω1∈Ω

∑
a1∈A

|qPt,ϕt,µ(x1, ω1, a1)− qP,ϕt,µ(x1, ω1, a1)|

=
∑
ω0∈Ω

∑
a0∈A

∑
x1∈X1

∑
ω1∈Ω

∑
a1∈A

|µ(x0, ω0)ϕt(a0|x0, ω0)Pt(x1|x0, ω0, a0)µ(x1, ω1)ϕt(a1|x1, ω1)

− µ(x0, ω0)ϕt(a0|x0, ω0)P (x1|x0, ω0, a0)µ(x1, ω1)ϕt(a1|x1, ω1)|

=
∑
ω0∈Ω

∑
a0∈A

µ(x0, ω0)ϕt(a0|x0, ω0)
∑

x1∈X1

|Pt(x1|x0, ω0, a0)− P (x1|x0, ω0, a0)|·

·
∑
ω1∈Ω

∑
a1∈A

µ(x1, ω1)ϕt(a1|x1, ω1)|

≤
∑
ω0∈Ω

∑
a0∈A

qP,ϕt,µ(x0, ω0, a0)∥Pt(·|x0, ω0, a0)− P (·|x0, ω0, a0)∥1.

Now, we proceed with the induction step,∑
xk∈Xk

∑
ωk∈Ω

∑
ak∈A

|qPt,ϕt,µ(xk, ωk, ak)− qP,ϕt,µ(xk, ωk, ak)|

=
∑

xk−1∈Xk−1

∑
ωk−1∈Ω

∑
ak−1∈A

∑
xk∈Xk

∑
ωk∈Ω

∑
ak∈A

|qPt,ϕt,µ(xk−1, ωk−1, ak−1)·

· Pt(xk|xk−1, ωk−1, ak−1)µ(xk, ωk)ϕt(ak|xk, ωk)+

− qP,ϕt,µ(xk−1, ωk−1, ak−1)P (xk|xk−1, ωk−1, ak−1)µ(xk, ωk)ϕt(ak|xk, ωk)|

=
∑

xk−1∈Xk−1

∑
ωk−1∈Ω

∑
ak−1∈A

∑
xk∈Xk

|qPt,ϕt,µ(xk−1, ωk−1, ak−1)Pt(xk|xk−1, ωk−1, ak−1)

− qP,ϕt,µ(xk−1, ωk−1, ak−1)P (xk|xk−1, ωk−1, ak−1)|

≤
∑

xk−1∈Xk−1

∑
ωk−1∈Ω

∑
ak−1∈A

∑
xk∈Xk

|qPt,ϕt,µ(xk−1, ωk−1, ak−1)Pt(xk|xk−1, ωk−1, ak−1)

− qP,ϕt,µ(xk−1, ωk−1, ak−1)Pt(xk|xk−1, ωk−1, ak−1)|

+
∑

xk−1∈Xk−1

∑
ωk−1∈Ω

∑
ak−1∈A

∑
xk∈Xk

|qP,ϕt,µ(xk−1, ωk−1, ak−1)Pt(xk|xk−1, ωk−1, ak−1)

− qP,ϕt,µ(xk−1, ωk−1, ak−1)P (xk|xk−1, ωk−1, ak−1)|

≤
∑

xk−1∈Xk−1

∑
ωk−1∈Ω

∑
ak−1∈A

|qPt,ϕt,µ(xk−1, ωk−1, ak−1)− qP,ϕt,µ(xk−1, ωk−1, ak−1)|

+
∑

xk−1∈Xk−1

∑
ωk−1∈Ω

∑
ak−1∈A

qP,ϕt,µ(xk−1, ωk−1, ak−1)·

· ∥Pt(·|xk−1, ωk−1, ak−1)− P (·|xk−1, ωk−1, ak−1)∥1.

Thus by induction hypothesis we obtain,∑
xk∈Xk

∑
ωk∈Ω

∑
ak∈A

|qPt,ϕt,µ(xk, ωk, ak)− qP,ϕt,µ(xk, ωk, ak)|
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≤
k−1∑
s=0

∑
xs∈Xs

∑
ωs∈Ω

∑
as∈A

qP,ϕt,µ(xs, ωs, as)∥Pt(·|xs, ωs, as)− P (·|xs, ωs, as)∥1.

Returning to the quantity of interest we have:∑
t∈[T ]

∥qt − q̂t∥1 ≤ 2
∑
t∈[T ]

L−1∑
k=0

k−1∑
s=0

∑
xs∈Xs

∑
ωs∈Ω

∑
as∈A

qP,ϕt,µ(xs, ωs, as)∥Pt(·|xs, ωs, as)+

− P (·|xs, ωs, as)∥1 +
∑
t∈[T ]

L−1∑
k=0

k∑
s=0

∑
xs∈Xs

qPt,ϕt,µ(xs)∥µt(·|xs)− µ(·|xs)∥1. (3)

We proceed bounding the first term in Inequality (3). Fixing a layer k ∈ [0, . . . , L− 1], employing
Azuma-Hoeffding inequality and noticing that ∥Pt(·|xk, ωk, ak)− P (·|xk, ωk, ak)∥1 ≤ 2, we have,
with probability 1− 2δ:∑
t∈[T ]

k−1∑
s=0

∑
xs∈Xs

∑
ωs∈Ω

∑
as∈A

qP,ϕt,µ(xs, ωs, as)∥Pt(·|xs, ωs, as)− P (·|xs, ωs, as)∥1

≤
k−1∑
s=0

∑
t∈[T ]

∑
xs∈Xs

∑
ωs∈Ω

∑
as∈A

√√√√2|Xk(xs)+1| ln
(

T |X||Ω||A|
δ

)
max {1, Nt(xs, ωs, as)}

1t{xs, as, ωs}+
k−1∑
s=0

2|Xs|

√
2T ln

(
L

δ

)

≤
k−1∑
s=0

√
2T |Xs||Xs+1|A||Ω| ln

(
T |X||Ω||A|

δ

)
+

k−1∑
s=0

2|Xs|

√
2T ln

(
L

δ

)

≤ |X|

√
2T |A||Ω| ln

(
T |X||Ω||A|

δ

)
+ 2|X|

√
2T ln

(
L

δ

)
.

Finally summing over L, we have, with probability at least 1− 2δ (which derives from a union bound
between Azuma-Hoeffding inequality and the bound on the transitions):∑

t∈[T ]

L−1∑
k=0

k−1∑
s=0

∑
xs∈Xs

∑
ωs∈Ω

∑
as∈A

qP,ϕt,µ(xs, ωs, as)∥Pt(·|xs, ωs, as)− P (·|xs, ωs, as)∥1

≤ L|X|

√
2T |A||Ω| ln

(
T |X||Ω||A|

δ

)
+ 2L|X|

√
2T ln

(
L

δ

)
.

To bound the remaining term in Inequality (3), we proceed as follows,∑
t∈[T ]

L−1∑
k=0

k∑
s=0

∑
xs∈Xs

qPt,ϕt,µ(xs)∥µt(·|xs)− µ(·|xs)∥1

≤
∑
t∈[T ]

L−1∑
k=0

k∑
s=0

∑
xs∈Xs

qP,ϕt,µ(xs)∥µt(·|xs)− µ(·|xs)∥1+

+
∑
t∈[T ]

L−1∑
k=0

k∑
s=0

∑
xs∈Xs

(
qPt,ϕt,µ(xs)− qP,ϕt,µ(xs)

)
∥µt(·|xs)− µ(·|xs)∥1

≤
∑
t∈[T ]

L−1∑
k=0

k∑
s=0

∑
xs∈Xs

qP,ϕt,µ(xs)∥µt(·|xs)− µ(·|xs)∥1+

+
∑
t∈[T ]

L−1∑
k=0

k∑
s=0

∑
xs∈Xs

2
(
qPt,ϕt,µ(xs)− qP,ϕt,µ(xs)

)
≤
∑
t∈[T ]

L−1∑
k=0

k∑
s=0

∑
xs∈Xs

qP,ϕt,µ(xs)∥µt(·|xs)− µ(·|xs)∥1+
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+
∑
t∈[T ]

L−1∑
k=0

k∑
s=0

∑
xs∈Xs

∑
ωs∈Ω

∑
as∈A

2
∣∣qPt,ϕt,µ(xs, ωs, as)− qP,ϕt,µ(xs, ωs, as)

∣∣ .
The second term is bounded by the previous analysis paying an additional L factor, while, to bound
the first terms we apply the Azuma-Hoeffding inequality and proceed as follows:∑

t∈[T ]

L−1∑
k=0

k∑
s=0

∑
xs∈Xs

qP,ϕt,µ(xs)
∑
ωs∈Ω

|µt(xs, ωs)− µ(xs, ωs)|

≤
∑
t∈[T ]

L−1∑
k=0

k∑
s=0

∑
xs∈Xs

1t{xs}∥µt(·|xs)− µ(·|xs)∥1 + 2L|X|

√
2T ln

(
L

δ

)

≤
∑
t∈[T ]

L−1∑
k=0

k∑
s=0

∑
xs∈Xs

1t{xs}

√
2|Ω| ln(T |X|/δ)
max{1, Nt(xs)}

+ 2L|X|

√
2T ln

(
L

δ

)

≤ 2L

√
2L|X||Ω|T ln

(
T |X|
δ

)
+ 2L|X|

√
2T ln

(
L

δ

)
,

with probability at least 1−2δ, given the union bound over the Azuma-Hoeffding and the bound on the
outcomes. Finally, with a union bound between the bound on the transitions and the outcomes (which
are both encompassed by the clean event) and the Azuma-Hoeffding inequalities, with probability at
least 1− 4δ, we have:∑

t∈[T ]

∥qt − q̂t∥1 ≤ O

(
L

√
L|X||Ω|T ln

(
T |X|
δ

)
+ L|X|

√
T ln

(
L

δ

)
+

+ L2|X|

√
T |A||Ω| ln

(
T |X||Ω||A|

δ

)
+ L2|X|

√
T ln

(
L

δ

))

≤ O

(
L2|X|

√
T |A||Ω| ln

(
T |X||Ω||A|

δ

))
,

which concludes the proof.

D.2 Regret

In the following section we show that Algorithm 2 attains Õ(
√
T ) regret. This is done showing

that the confidence intervals over transitions, outcomes and sender reward concentrate at a rate of
Õ(1/

√
T ).

Theorem 1. Given any δ ∈ (0, 1), with probability at least 1− 7δ, Algorithm 2 attains regret

RT ≤ Õ
(
L2|X|

√
T |A||Ω| ln (1/δ)

)
.

Proof. We notice that the regret can be decomposed as follows:

RT =
∑
t∈[T ]

r⊤S (q
∗ − qt) =

∑
t∈[T ]

r⊤S (q
∗ − q̂t) +

∑
t∈[T ]

r⊤S (q̂t − qt).

The second term is bounded by Hölder inequality and applying Lemma 3. To bound the first term we
notice that, under the clean event, and by definition of the linear program solved by Algorithm 2, it
holds:

(rS + 2ξS,t)
⊤q̂t ≥ (rS,t + ξS,t)

⊤q̂t ≥ (rS,t + ξS,t)
⊤q∗ ≥ r⊤S q∗.

Thus, we have,∑
t∈[T ]

r⊤S (q
∗ − q̂t) ≤ 2

∑
t∈[T ]

ξ⊤S,tq̂t = 2
∑
t∈[T ]

ξ⊤S,tqt + 2
∑
t∈[T ]

ξ⊤S,t(q̂t − qt).

The second term is bounded by Hölder inequality and applying Lemma 3, which holds under the
clean event, with probability at least 1− 2δ. To bound the first term we employ Lemma 10 which
holds under the clean event, with probability at least 1− δ, and a union bound, which concludes the
proof.
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D.3 Violations

In the following section we show that Algorithm 2 attains Õ(
√
T ) violations. This is possible

since, in the full-feedback setting, the incentive compatibility constraints collapse to standard linear
constraints.

Theorem 2. Given δ ∈ (0, 1), with probability at least 1− 7δ, Algorithm 2 attains violation

VT ≤ Õ
(
L2|X|

√
T |A||Ω| ln (1/δ)

)
.

Proof. In the proof, we compactly denote the receivers’ best response in a given state-action pair
(x, a) ∈ X ×A at time t ∈ [T ] as bt(a, x) := bϕ

q̂t
(a, x). Furthermore, by employing the definition

of the linear program and summing over (x, ω, a), for any episode t, under the clean event, it holds:∑
x∈X,ω∈Ω,a∈Â

qt(x, ω, a)
(
rR,t(x, ω, a)+ξR,t(x, ω, a)−rR,t(x, ω, b

t(a, x)) + ξR,t(x, ω, b
t(a, x))

)
≥ 0,

which, in turn, implies that:∑
x∈X,ω∈Ω,a∈A

q̂t(x, ω, a)
(
rR(x, ω, a)+2ξR,t(x, ω, a)−rR(x, ω, bt(a, x)) + 2ξR,t(x, ω, b

t(a, x))
)
≥ 0.

Thus, noticing that, in the full-feedback setting, we have ξR,t(x, ω, a) = ξR,t(x, ω, b
t(a, x)), we

obtain:∑
x∈X,ω∈Ω,a∈A

q̂t(x, ω, a)
(
rR(x, ω, b

t(a, x))− rR(x, ω, a)
)
≤ 4

∑
x∈X,ω∈Ω,a∈A

q̂t(x, ω, a)ξR,t(x, ω, a)

≤ 4
∑

x∈X,ω∈Ω

q̂t(x, ω)ξR,t(x, ω),

where ξR,t(x, ω) =
√

ln(3T |X||Ω|/δ)
max{1,Nt(x,ω)} .

Now we combine the previous equations to bound the first term of the last inequality as follows:∑
t∈[T ]

∑
x∈X,ω∈Ω,a∈A

q̂t(x, ω, a)
(
rR(x, ω, b

t(a, x))− rR(x, ω, a)
)

(4)

≤ 4
∑
t∈[T ]

∑
x∈X,ω∈Ω

q̂t(x, ω)ξR,t(x, ω)

= 4
∑
t∈[T ]

∑
x∈X,ω∈Ω

qt(x, ω)ξR,t(x, ω) + 4
∑
t∈[T ]

∑
x∈X,ω∈Ω

(q̂t(x, ω)− qt(x, ω))ξR,t(x, ω)

≤ 4
∑
t∈[T ]

∑
x∈X,ω∈Ω

qt(x, ω)ξR,t(x, ω) +O

(
L2|X|

√
T |A||Ω| ln

(
T |X||Ω||A|

δ

))
(5)

= 4
∑
t∈[T ]

∑
x∈X,ω∈Ω

1t{x, ω}ξR,t(x, ω) + 4
∑
t∈[T ]

∑
x∈X,ω∈Ω

(qt(x, ω)− 1t{x, ω})

+O

(
L2|X|

√
T |A||Ω| ln

(
T |X||Ω||A|

δ

))
= 4

∑
t∈[T ]

∑
x∈X,ω∈Ω

1t(x, ω)ξR,t(x, ω) + 4
∑
t∈[T ]

∑
x∈X

(qt(x)− 1t(x))

+O

(
L2|X|

√
T |A||Ω| ln

(
T |X||Ω||A|

δ

))

≤ 4
∑
t∈[T ]

∑
x∈X,ω∈Ω

1t(x, ω)ξR,t(x, ω) + 4|X|
√
2T ln

X

δ
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+O

(
L2|X|

√
T |A||Ω| ln

(
T |X||Ω||A|

δ

))
(6)

≤
√
9L|X||Ω|T ln

3T |X||Ω|
δ

+O

(
L2|X|

√
T |A||Ω| ln

(
T |X||Ω||A|

δ

))
(7)

≤ O

(
L2|X|

√
T |A||Ω| ln

(
T |X||Ω||A|

δ

))
,

where Inequality (5) holds by Hölder inequality and Lemma 3, which holds under the clean event,
with probability at least 1− 2δ, Inequality (6) follows by Azuma-Hoeffding and Inequality (7) by
Cauchy-Schwarz inequality and observing that 1 +

∑
t∈[T ]

1√
t
≤ 3
√
T .

Finally, returning to the quantity of interest, we bound the cumulative violations as follows:

VT :=
∑
t∈[T ]

∑
x∈X,ω∈Ω,a∈A

qt(x, ω, a)
(
rR(x, ω, b

t(a, x))− rR(x, ω, a)
)

=
∑
t∈[T ]

∑
x∈X,ω∈Ω,a∈A

q̂t(x, ω, a)
(
rR(x, ω, b

t(a, x))− rR(x, ω, a)
)

+
∑
t∈[T ]

∑
x∈X,ω∈Ω,a∈A

(qt(x, ω, a)− q̂t(x, ω, a))
(
rR(x, ω, b

t(a, x))− rR(x, ω, a)
)

≤
∑
t∈[T ]

∑
x∈X,ω∈Ω,a∈A

q̂t(x, ω, a)
(
rR(x, ω, b

t(a, x))−rR(x, ω, a)
)
+
∑
t∈[T ]

∑
x∈X,ω∈Ω,a∈A

|qt(x, ω, a)− q̂t(x, ω, a)|

≤
∑
t∈[T ]

∑
x∈X,ω∈Ω,a∈A

q̂t(x, ω, a)
(
rR(x, ω, b

t(a, x))− rR(x, ω, a)
)

+O

(
L2|X|

√
T |A||Ω| ln

(
T |X||Ω||A|

δ

))

≤ O

(
L2|X|

√
T |A||Ω| ln

(
T |X||Ω||A|

δ

))
,

where the last steps hold by Hölder inequality, Lemma 3 and the previous bound on the estimated
occupancy measure. The final result holds with probability at least 1− 7δ employing a union bound
over the clean event, which holds with probability at least 1− 4δ, the Azuma-Hoeffding inequality
used above, which holds with probability at least 1− δ and Lemma 3, which, under the clean event,
holds with probability at least 1− 2δ.

E Partial feedback

E.1 Regret

Lemma 10. Under the event E(δ), with probability at least 1− δ, it holds:

∑
t∈[T ]

ξ⊤S,tqt ≤ O

(√
L|X||Ω||A|T ln

(
T |X||Ω||A|

δ

))
∑
t∈[T ]

ξ⊤R,tqt ≤ O

(√
L|X||Ω||A|T ln

(
T |X||Ω||A|

δ

))

Proof. We bound the quantity of interest as follows:∑
t∈[T ]

ξ⊤S,tqt ≤
∑
t∈[T ]

∑
x∈X,ω∈Ω,a∈A

ξS,t(x, ω, a)1t{x, ω, a}+ L

√
2T ln

1

δ
(8)
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=
∑
t∈[T ]

∑
x∈X,ω∈Ω,a∈A

√
ln(3T |X||Ω||A|/δ)
max {1, Nt(x, ω, a)}

1t{x, ω, a}+ L

√
2T ln

1

δ

≤

√
9 ln

(
3T |X||Ω||A|

δ

) ∑
x∈X,ω∈Ω,a∈A

√
NT (x, ω, a) + L

√
2T ln

1

δ
(9)

≤

√
9 ln

(
3T |X||Ω||A|

δ

)√
|X||Ω||A|

∑
x∈X,ω∈Ω,a∈A

NT (x, ω, a) + L

√
2T ln

1

δ
(10)

≤

√
9L|X||Ω||A|T ln

(
3T |X||Ω||A|

δ

)
+ L

√
2T ln

1

δ
, (11)

where Inequality (8) holds by the Azuma-Hoeffding inequality with probability 1− δ, Inequality (9)
follows by observing that 1 +

∑
t∈[T ]

1√
t
≤ 3
√
T , Inequality (10) follows from the Cauchy-Schwarz

inequality, and Inequality (11) holds, noticing that
∑

x∈X,ω∈Ω,a∈ANT (x, ω, a) ≤ LT . With the
same analysis, we can prove that the same upper bound holds for

∑
t∈[T ] ξ

⊤
R,tqt , concluding the

proof.

Theorem 3. Given any δ ∈ (0, 1), with probability at least 1− 7δ, Algorithm 3 attains regret

RT ≤ Õ
(
NL|X||Ω||A|+ L2|X|

√
T |A||Ω| ln (1/δ)

)
.

Proof. As a first step, we decompose the sender’s regret as follows:

RT =
∑
t∈[T ]

r⊤S (q
∗ − qt)

=
∑
t∈[T ]

r⊤S (q
∗ − q̂t) +

∑
t∈[T ]

r⊤S (q̂t − qt)

≤
∑
t∈[T ]

r⊤S (q
∗ − q̂t) +O

(
L2|X|

√
T |A||Ω| ln

(
T |X||Ω||A|

δ

))
. (12)

We observe that the last inequality holds under the event E(δ), with a probability of at least 1− 2δ,
and it is derived by applying the Hölder inequality and employing Lemma 3. To bound the first term
in Equation (12), we notice that under E(δ), we have:

(rS + 2ξS,t)
⊤q̂t ≥ (rS,t + ξS,t)

⊤q̂t ≥ (rS,t + ξS,t)
⊤q∗ ≥ r⊤S q∗,

for each t > N |X||Ω||A| because of the optimality of q̂t. Thus, rearranging the latter chain of
inequalities we have:∑

t∈[T ]

r⊤S (q
∗ − q̂t) =

∑
t≤N |X||Ω||A|

r⊤S (q
∗ − q̂t) +

∑
t>N |X||Ω||A|

r⊤S (q
∗ − q̂t)

≤ NL|X||Ω||A|+ 2

∑
t∈[T ]

ξ⊤S,t(q̂t − qt) +
∑
t∈[T ]

ξ⊤S,tqt


≤ NL|X||Ω||A|+O

(
L2|X|

√
T |A||Ω| ln

(
T |X||Ω||A|

δ

))
.

In the first inequality above, we employ the fact that the support of each reward function belongs to
[0, 1], while in the second inequality, we make use of Lemma 3, the Hölder inequality, and Lemma 10,
which hold with a probability of at least 1− 3δ. Substituting the latter inequality into Equation (12),
we obtain:

RT ≤ O

(
NL|X||Ω||A|+ L2|X|

√
T |A||Ω| ln

(
T |X||Ω||A|

δ

))
.
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Finally, we observe that the previous upper bound holds with probability at least 1− 7δ. This follows
by employing a union bound and observing that E(δ) holds with a probability at least 1− 4δ, which
concludes the proof.

E.2 Violations

In the following we denote the receivers’ best response in a given action a ∈ A and state x ∈ X as
bt(a, x) := bϕ

q̂t
(a, x).

Lemma 11. Under the event E(δ) the following holds:

VT ≤ O

(
L2|X|

√
T |A||Ω| ln

(
T |X||Ω||A|

δ

))
+
∑
t∈[T ]

∑
x∈X,ω∈Ω,a∈A

qt(x, ω, a)ξR,t(x, ω, b
t(a, x)),

with probability at least 1− 3δ.

Proof. As a first step, we observe that by employing the definition of ξR,t and noticing that q̂t is a
feasible solution to LP (2) for each t ∈ [T ] under the event E(δ), we have:∑
x∈X,ω∈Ω,a∈A

q̂t(x, ω, a)
(
rR(x, ω, a) + 2ξR,t(x, ω, a)− rR(x, ω, bt(a, x)) + 2ξR,t(x, ω, b

t(a, x))
)
≥

∑
x∈X,ω∈Ω,a∈A

q̂t(x, ω, a)
(
rR,t(x, ω, a) + ξR,t(x, ω, a)− rR,t(x, ω, b

t(a, x)) + ξR,t(x, ω, b
t(a, x))

)
≥ 0.

Then, rearranging the above inequality we get:∑
x∈X,ω∈Ω,a∈A

q̂t(x, ω, a)
(
rR,t(x, ω, b

t(a, x))− rR,t(x, ω, a)
)

≤ 2
∑

x∈X,ω∈Ω,a∈A

q̂t(x, ω, a)
(
ξR,t(x, ω, a) + ξR,t(x, ω, b

t(a, x))
)
. (13)

Furthermore, we can decompose the receivers’ violations as follows:

VT =
∑
t∈[T ]

∑
x∈X,ω∈Ω,a∈A

(qt(x, ω, a)± q̂t(x, ω, a))
(
rR(x, ω, b

t(a, x))− rR(x, ω, a)
)

≤ O

(
L2|X|

√
T |A||Ω| ln

(
T |X||Ω||A|

δ

))
+∑

t∈[T ]

∑
x∈X,ω∈Ω,a∈A

q̂t(x, ω, a)
(
rR(x, ω, b

t(a, x))− rR(x, ω, a)
)

≤ O

(
L2|X|

√
T |A||Ω| ln

(
T |X||Ω||A|

δ

))
+∑

t∈[T ]

∑
x∈X,ω∈Ω,a∈A

(q̂t(x, ω, a)± qt(x, ω, a))
(
ξR,t(x, ω, a) + ξR,t(x, ω, b

t(a, x))
)

≤ O

(
L2|X|

√
T |A||Ω| ln

(
T |X||Ω||A|

δ

))
+
∑
t∈[T ]

∑
x∈X,ω∈Ω,a∈A

qt(x, ω, a)
(
2ξR,t(x, ω, a) + 2ξR,t(x, ω, b

t(a, x))
)

≤ O

(
L2|X|

√
T |A||Ω| ln

(
T |X||Ω||A|

δ

))
+ 2

∑
t∈[T ]

∑
x∈X,ω∈Ω,a∈A

qt(x, ω, a)ξR,t(x, ω, b
t(a, x)),

where the first and third inequalities hold by Lemma 3, the second inequality is a consequence
of Inequality (13), and the third inequality follows by means of Lemma 10, which holds with a
probability of at least 1− δ. Therefore, employing a union bound over the events of Lemma 3 and
Lemma 10, the previous result holds with probability at least 1− 3δ, under the clean event.
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Theorem 4. Given any δ ∈ (0, 1), with probability at least 1− 9δ, Algorithm 3 attains violation

VT ≤ Õ
(
(|X||Ω||A|)3/2

√
ln (1/δ)

(
|A| T√

N
+ |A|

√
N + L2

√
T

))
.

Proof. As a preliminary observation, we notice that Algorithm 3 is divided into N epochs of length
ℓ = |X||Ω||A|, where in each epoch, Algorithm 3 maximizes the probability of visiting each triplet
(x, ω, a). In the following, we define tj(x, ω, a) ∈ [T ] as the round in which Algorithm 3 maximizes
the occupancy of the triplet (x, ω, a) in the epoch j ∈ [N − 1]. Formally:

tj(x, ω, a) := {t ∈ [ jℓ+1, . . . , (j+1)ℓ ] |
∑
x′∈X

q(x, ω, a, x′) is the objective function of Program (2) }

Furthermore, for each occupancy measure qt with t ∈ [T ], the following holds:

qt(x, ω, a) = q(x, ω, bt(a, x)) ≤ qtj(x,ω,bt(a,x))(x, ω, b
t(a, x)) (14)

for each j ∈ [N − 1] where q ∈ Q is an occupancy measure that satisfies the IC constraints of the
offline optimization problem (see Program (1)). The first equality above follows by observing that
there always exists an occupancy that satisfies the IC constraints that recommends action bt(a, x) ∈ A
instead of a ∈ A in the state x ∈ X with the same probability of qt. The inequality, on the other
hand, follows by observing that the space of occupancy measures satisfying the IC constraint of the
offline optimization problem (1) is always a subset of the feasibility set of Program (2).

Furthermore, by Lemma 11 we have that:

VT ≤ O

(
L2|X|

√
T |A||Ω| ln

(
T |X||Ω||A|

δ

))
+
∑
t∈[T ]

∑
x∈X,ω∈Ω,a∈A

qt(x, ω, a)ξR,t(x, ω, b
t(a, x)),

We focus on bounding the second term in the inequality above in the first Nℓ rounds of Algorithm 3.
Thus, with probability at least 1− δ we have:∑

t≤Nℓ

∑
x∈X,ω∈Ω,a∈A

qt(x, ω, a)ξR,t(x, ω, b
t(a, x))

≤
ℓ∑

t=1

∑
x∈X,ω∈Ω,a∈A

qt(x, ω, a)ξR,t(x, ω, b
t(a, x))+

+

Nℓ∑
t=ℓ+1

∑
x∈X,ω∈Ω,a∈A

qt(x, ω, a)
(
ξR,t(x, ω, b

t(a, x))
)

≤ L|X||Ω||A|+
∑

x∈X,ω∈Ω,a∈A

N−1∑
j=1

(j+1)ℓ∑
t=jℓ

qt(x, ω, a)ξR,t(x, ω, b
t(a, x))

 (15)

≤ L|X||Ω||A|+
∑

x∈X,ω∈Ω,a∈A

∑
a′∈A

N−1∑
j=1

(j+1)ℓ∑
t=jℓ

qt(x, ω, a
′)
(
ξR,t(x, ω, a

′)1{bt(a, x) = a′}
)

≤ L|X||Ω||A|+

+
∑

x∈X,ω∈Ω,a∈A

∑
a′∈A

N−1∑
j=1

qtj(x,ω,a′)(x, ω, a
′)

(j+1)ℓ∑
t=jℓ

(
ξR,t(x, ω, a

′)1{bt(a, x) = a′}
) (16)

≤ L|X||Ω||A|+
∑

x∈X,ω∈Ω,a∈A

∑
a′∈A

N−1∑
j=1

qtj(x,ω,a′)(x, ω, a
′)

(j+1)ℓ∑
t=jℓ

ξR,t(x, ω, a
′)

 (17)

≤ L|X||Ω||A|+

√
ln

(
2T |X||Ω||A|

δ

)
·
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·
∑

x∈X,ω∈Ω,a∈A

∑
a′∈A

N−1∑
j=1

qtj(x,ω,a′)(x, ω, a
′)

(j+1)ℓ∑
t=jℓ

1√
max{1, Nt(x, ω, a′)}


≤ L|X||Ω||A|+ ℓ

√
ln

(
2T |X||Ω||A|

δ

)
·

·
∑

x∈X,ω∈Ω,a∈A

∑
a′∈A

N−1∑
j=1

qtj(x,ω,a′)(x, ω, a
′)√

max{1, Nj(x, ω, a′)}

 (18)

≤ L|X||Ω||A|+ ℓ

√
ln

(
2T |X||Ω||A|

δ

)
·

·

( ∑
x∈X,ω∈Ω,a∈A

∑
a′∈A

N−1∑
j=1

1tj(x,ω,a′)(x, ω, a
′)√

max{1, Nj(x, ω, a′)}

+ L|A|
√

2N ln
1

δ

)
(19)

≤ L|X||Ω||A|+ 3ℓ

√
ln

(
2T |X||Ω||A|

δ

)
·

·

 ∑
x∈X,ω∈Ω,a∈A

∑
a′∈A

√√√√ N∑
i=1

1ti(x,ω,a′)

+ L|A|
√
2N ln

1

δ


≤ L|X||Ω||A|+ 3ℓ

√
ln

(
2T |X||Ω||A|

δ

)
·

·

 ∑
x∈X,ω∈Ω,a∈A

[∑
a′∈A

√
NNℓ(x, ω, a′)

]
+ L|A|

√
2N ln

1

δ

 (20)

≤ L|X||Ω||A|+ 3ℓ|A|

√
ln

(
2T |X||Ω||A|

δ

) ∑
x∈X,ω∈Ω,a′∈A

√
NNℓ(x, ω, a′) + L

√
2N ln

1

δ


≤ L|X||Ω||A|+ 3ℓ|A|

√
ln

(
2T |X||Ω||A|

δ

)(√
LNℓ+ L

√
2N ln

1

δ

)
, (21)

where we let Nj(x, ω, a) =
∑

i≤j 1ti(x,ω,a)(x, ω, a) for the the sake of simplicity. Furthermore, we
notice that Inequality (15) follows observing that ξr,t(x, ω, a) ≤ 1 for each (x, ω, a) ∈ X×Ω×A and
t ∈ [T ], and because the occupancy defines a probability distribution over each layer k ∈ [0, . . . , L].
Inequality (16) holds thanks to Inequality (14). Inequality (17) follows because each indicator
function takes value of at most one. Inequality (18) follows by observing that the number of times
that the triplet (x, ω, a′) is visited overall is always greater or equal to the the number of times
such a triplet has been visited during the rounds in which Algorithm 3 maximizes the exploration
of that triplet. Inequality (19) holds with probability at least 1 − δ and follows from the Azuma-
Hoeffding inequality, and Inequality (21) holds, noticing that

∑
x∈X,ω∈Ω,a∈ANT (x, ω, a) ≤ LNℓ

and employing the Cauchy-Schwarz inequality.

We focus on bounding the cumulative violations suffered in the remaining T − Nℓ rounds of
Algorithm 3. With probability at least 1− δ the following holds:∑

t>Nℓ

∑
x∈X,ω∈Ω,a∈A

qt(x, ω, a)ξR,t(x, ω, b
t(a, x))

≤
∑

x∈X,ω∈Ω,a∈A

(∑
a′∈A

∑
t>Nℓ

qt(x, ω, a
′)ξR,t(x, ω, a

′)1t{bt(a, x) = a′}

)

≤
∑

x∈X,ω∈Ω,a∈A

√
ln

(
2T |X||Ω||A|

δ

) ∑
a′∈A

qtN (x,ω,a′)(x, ω, a
′)
∑
t>Nℓ

1√
max{1, Nt(x, ω, a′)}

(22)
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≤ |A|

√
ln

(
2T |X||Ω||A|

δ

) ∑
x∈X,ω∈Ω,a∈A

qtN (x,ω,a)(x, ω, a)
∑
t>Nℓ

1√
max{1, NNℓ(x, ω, a)}

≤ |A|

√
ln

(
2T |X||Ω||A|

δ

) ∑
x∈X,ω∈Ω,a∈A

qtN (x,ω,a)(x, ω, a)
(T −Nℓ)√

max{1, NNℓ(x, ω, a)}

≤ |A|

√
ln

(
2T |X||Ω||A|

δ

) ∑
x∈X,ω∈Ω,a∈A

NNℓ(x, ω, a) + L
√
2N ln 1

δ

N

(T −Nℓ)√
max{1, NNℓ(x, ω, a)}

(23)

≤ |A|

√
ln

(
2T |X||Ω||A|

δ

)
T

N

(
√
LNℓ+ Lℓ

√
2N ln

1

δ

)
(24)

≤ 2|A|

√
ln

(
2T |X||Ω||A|

δ

)
T√
N
Lℓ

√
2 ln

1

δ
. (25)

Inequality (22) holds thanks to Inequality (14) and observing that the indicator function takes value of
at most one. Inequality (24) holds, noticing that

∑
x∈X,ω∈Ω,a∈ANT (x, ω, a) ≤ LNℓ and employing

the Cauchy-Schwarz inequality. Inequality (23) holds with probability at least 1− δ and follows by
employing the Azuma-Hoeffding and observing the following:

NNℓ(x, ω, a) ≥
N∑

k=1

1tk(x, ω, a)

≥
N∑

k=1

qtk(x, ω, a)− L
√
2N ln

1

δ

≥ NqtN (x,ω,a)(x, ω, a)− L
√
2N ln

1

δ
,

which can be written as follows:

NNℓ(x, ω, a) + L
√
2N ln 1

δ

N
≥ qtN (x,ω,a)(x, ω, a).

Finally, thanks to Lemma 11 and employing Inequality (21) and Inequality (24) we get:

VT ≤ Õ
(
ρ

(
|A| T√

N
+ |A|

√
N + L2

√
T

))
.

With ρ := (|X||Ω||A|)3/2
√
ln (1/δ), such a result holds with a probability of at least 1−9δ, employing

a union bound and observing that E(δ) holds with a probability of at least 1−4δ, Lemma 11 holds with
a probability of at least 1− 3δ, and both Inequality (21) and Inequality (24) hold with a probability
of at least 1− δ.

E.3 Lower bound

Theorem 5. Given α ∈ [1/2, 1], there is no learning algorithm achieving both RT = o(Tα) and
VT = o(T 1−α/2) with probability greater or equal to a fixed constant ψ > 0.

Proof. We consider two instances with a single possible outcome and a single state. In the following,
we omit the dependence on the sender and receiver utility from these parameters. We assume that the
sender’s utility in the first instance is a deterministic function given by r1S(a1) = 1 and r1S(a2) = 0,
while the receiver’s utility is given by r2R(a1) ∼ Be(1/2 + ϵ) and r2R(a2) ∼ Be(1/2). Meanwhile,
the sender’s utility in the second instance is r2S(a1) = 1 and r1S(a2) = 0, while the follower’s utility
is equal to r2R(a1) ∼ Be(1/2 + ϵ) and r2R(a2) ∼ Be(1/2 + 2ϵ), for some ϵ ∈ (0, 1/2). Thus, the
sender’s regret in the first instance is given by:

R1
T =

T∑
t=1

ϕt(a2),
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since the optimal signaling scheme is the one that always recommends action a1 ∈ A in the first
instance. In the following, we define P1

(
respectively, P2

)
as the probability measure induced by

recommending, at each round, signaling schemes according to some algorithm in the first (respectively,
second) instance. Then, we bound the probability that the regret in the first instance is larger than a
constant C ∈ N as follows:

P1
(
R1

T ≤ C
)
= P1

(
T∑

t=1

ϕt(a2) ≤ C

)
≥ 1− η, (26)

for some η ∈ (0, 1). Furthermore, by Pinsker’s inequality and Equation (26) the following holds.

P2

(
T∑

t=1

ϕt(a2) ≤ C

)
≥ 1− η −

√
DKL(P1,P2), (27)

where we denote with DKL(·, ·) the Kullback-Leibler divergence between two probability measure.
By means of the well known divergence decomposition, we have:

DKL(P1,P2) ≤ E1

[
T∑

t=1

ϕt(a2)

]
DKL(Be(1/2 + 2ϵ),Be(1/2)) ≤ 16ϵ2E1

[
T∑

t=1

ϕt(a2)

]
, (28)

where in the latter inequality we used the well known property ensuring that DKL(Be(p),Be(q)) ≤
(p−q)2

q(1−q) . Then, by reverse Markov inequality and Equation (26) we get:

E1

[
T∑

t=1

ϕt(a2)

]
≤ P1

(
T∑

t=1

ϕt(a2) ≥ C

)
(T − C) + C ≤ η(T − C) + C,

Furthermore, by means of the latter inequality and Equation (28) we have:

P2

(
T∑

t=1

ϕt(a2) ≤ C

)
≥ 1− η −

√
16ϵ2(η(T − C) + C)

We now consider the receiver’s violations in the second instance which can be computed as follows:

V 2
T =

T∑
t=1

ϕt(a1)
(
r2R(a2)− r2R(a1)

)
= ϵ

T∑
t=1

ϕt(a1).

Then, by means of Equation (27) we get:
P2
(
V 2
T ≥ ϵT

)
≥ P2

(
V 2
T ≥ ϵ(T − C)

)
= P2

(
ϵ

T∑
t=1

ϕt(a1) ≥ ϵ(T − C)

)

= P2

(
T −

T∑
t=1

ϕt(a2) ≥ T − C

)

= P2

(
T∑

t=1

ϕt(a2) ≤ C

)
≥ 1− η −

√
16ϵ2(η(T − C) + C).

Finally, by setting C = Tα

2 and ϵ = T−α/2

16 and η = Tα−1

2 we get:

P1
(
R1

T ≤ C
)
≥ 1− η

P1

(
R1

T ≤
Tα

2

)
≥ 1− Tα−1

2
≥ 1

2
,

since α ∈ [1/2, 1]. Then, the latter result implies that:

P2
(
V 2
T ≥ ϵT

)
≥ 1− η −

√
16ϵ2(η(T − C) + C)

≥ 1− Tα−1

2
−

√
T−α

16

(
Tα

2
+
Tα

2

)
≥ 1

4
,

which concludes the proof.
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