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Abstract

Real-world applications of machine learning mod-
els are often subject to legal or policy-based regu-
lations. Some of these regulations require ensuring
the validity of the model, i.e., the approximation er-
ror being smaller than a threshold. A global metric
is generally too insensitive to determine the validity
of a specific prediction, whereas evaluating local
validity is costly since it requires gathering addi-
tional data. We propose learning the model error to
acquire a local validity estimate while reducing the
amount of required data through active learning.
Using model validation benchmarks, we provide
empirical evidence that the proposed method can
lead to an error model with sufficient discrimina-
tive properties using a relatively small amount of
data. Furthermore, an increased sensitivity to lo-
cal changes of the validity bounds compared to
alternative approaches is demonstrated.

1 INTRODUCTION

Ensuring the validity of deployed machine learning (ML)
models is often a core concern in safety-critical domains
such as medical, vehicle, and industrial applications, with a
high risk of harming humans and the environment. These
use cases are often subject to legal or regulatory require-
ments, such as ISO26262 [2016] and IEC61508 [2010].
Most ML models are built using only past observations or
examples and may lack further domain-specific inductive
biases, such as underlying physics (although some models
are capable of incorporating such, e.g., see [Karniadakis
et al., 2021]). Consequently, the behavior of these models
in unseen scenarios is difficult to predict without further
analysis.

A strict assessment of a model’s capabilities is needed to de-
termine its validity across the input space. Specifically, we

want to identify valid subdomains of the input space where
the absolute model error is smaller than some predefined
tolerance level. In this context, evaluating global accuracy
metrics such as mean squared error is not a useful approach.
Even if a model achieves a small average error globally, it
can exhibit high inaccuracy in specific input domains. Simi-
larly, even models with high average error may be useful in
certain subdomains of the input space.

The validity of a prediction can be assessed by comparing it
to real-world observations or, in some cases, to simulations
with very high accuracy. The obtained results can be used
to approximate the error level [Oberkampf and Roy, 2010],
sometimes referred to as error learning [Riedmaier et al.,
2020]. In contrast to boosting, we are not interested in im-
proving the model predictions by the addition of the learned
error. Instead, we want to have an estimate of the error level
to decide the validity of a prediction. A popular model for
this task is Gaussian process regression (GP) [Rasmussen
and Williams, 2006, Kennedy and O’Hagan, 2001]. Besides
being a powerful model, its capability to represent the epis-
temic uncertainty is useful to derive confidence bounds for
the estimated local error.

If a large dataset is available for training, an additional
split can be afforded to build an error model to be used
for model validation (MV). However, gathering additional
data is costly but necessary in many cases to build a suffi-
ciently accurate validation model. Therefore, the design of
experiments (DoE), i.e., the planning of tests or data queries,
is often crucial as it determines the overall validation cost
and the quality of the validation statement. A good strategy
should achieve a highly accurate validity estimate while be-
ing data-efficient, using as little additional data as possible.

Active learning [Settles, 2010] has shown to be an efficient
strategy for reducing the number of samples, i.e., the choice
of samples used for training a model. Therefore, samples
or batches of samples are selected sequentially, leveraging
knowledge from previous iterations to guide the sampling

mailto:<sven.laemmle@zf.com>?Subject=Your UAI 2024 paper


Y
a) Target f Model fM

0 q80

|δ|

p |
δ|

b)

c)
Error |δ| |f̃D|

xS1 xS2 xS3

X

ψ
m

is d)

Tolerance ξ Train Initial Sample Adaptive Sample Next Sample

Figure 1: Illustration of a locally valid model: the trained model fM is marginally valid for tolerance level ξ with 80%
probability (b)), but only locally valid V ( ) in some regions of the input space X (a)). b) Marginal distribution of the true
absolute error |δ|, where the 80% quantile corresponds to the tolerance level, i.e., ξ = q80. c) Our learned error model |f̃D|
and 90% confidence interval ( ) from the folded Gaussian (Section 4.3), together with the predicted local valid set Ṽ0.1 ( )
(Section 4.6). Samples ( ) are sequentially placed based on ψmis (d)) to reduce the misclassification probability (Section 4.4),
i.e., most samples are close to the limit state xSi

∈ S.

process. This approach has been used across various tasks,
from optimization to querying new samples [Kumar and
Gupta, 2020] for improving model quality.

As an active learning method, Bayesian optimization (BO)
[Snoek et al., 2012] is known to exploit the probabilistic esti-
mates to find the optimum of a black-box objective function
with high data efficiency. However, our goal is to find valid
domains, i.e., the set V of points x where the absolute model
error |δ(x)| ∈ IR+ is smaller than some tolerance ξ ∈ IR>0.
In contrast, global adaptive sampling strategies [Lämmle
et al., 2023] aim to improve the model quality over the en-
tire input space. We are not interested in having accurate
predictions where the error |δ(x)| is much larger or smaller
than ξ. Instead, we are primarily interested in learning the
neighborhood where |δ(x)| ≈ ξ. In classical engineering,
reliability analysis (RA) requires solving a similar problem
[Rebba and Mahadevan, 2008].

Given a function g(·), RA defines failure domains using the
condition g(x) ≤ 0. The aim of RA is to compute the failure
probability PF = EX∼p(x)

[
1g(X)≤0(X)

]
, where X are

the input variables. Therefore, an accurate representation of
the limit state condition g(x) = 0 is necessary. Equivalently,
the problem of MV can be framed as learning two level
sets [Gotovos et al., 2013] at once: V = {x : δ(x) ≤ ξ} ∩
{x : δ(x) ≥ −ξ}. Despite the similarity of the problems
and the popularity of active learning in RA and level set
estimation, to the best of our knowledge, a similar approach
has not been proposed for MV.

In this paper, we first formulate the problem of MV as

learning two limit state conditions (δ(x) = ξ and δ(x) =
−ξ), thus showing the connection to RA problems. Based
on this formulation, we propose an active learning method
for MV inspired by its RA counterpart Bichon et al. [2008].
We test our method on a variety of benchmark problems
within a small sample setting and show that it can be reliably
used for the validation of a multitude of ML models.

Contributions. Our main contributions are summarized
as follows: 1) We introduce a new formulation of model vali-
dation (MV) inspired by reliability analysis (RA), extending
the setting to two symmetrical limit state conditions and
noisy observations. 2) We propose a novel acquisition func-
tion based on the misclassification probability of the limit
state (Section 4.4). 3) We derive frequentist error bounds
for the proposed methodology (Section 4.7). 4) We evaluate
the proposed method on a variety of different benchmarks
(Section 5, Appendix E), and provide a comparison with
conformal prediction (Appendix D).

2 RELATED WORK

Reliability Analysis. The goal of RA is to calculate the
failure probability PF . Since the distribution of X can be
arbitrary, RA often requires a large number of samples.
To increase sample efficiency, previous research has uti-
lized surrogate-aided methods based on ML models such
as neural networks [Papadrakakis et al., 1996], ordinary
[Bucher and Bourgund, 1990] and moving least squares
models [Most and Bucher, 2006], GPs [Kaymaz, 2005], and



support vector machines [Rocco and Moreno, 2002]. Al-
though some active learning approaches have been already
proposed [Macke et al., 2000, Most and Bucher, 2006], Bi-
chon et al. [2008] was the first to introduce active learning
based on GP models to the field of RA.

Following, several acquisition functions (AFs) similar to
Bayesian optimization methods have been proposed to learn
the limit state. The most popular ones being the expected
feasibility function [Bichon et al., 2008] and the U-function
[Echard et al., 2011, 2013]. For an extensive review, see
[Teixeira et al., 2021]. In contrast, active learning in the ML
context aims to achieve high accuracy globally by using as
few samples (labels) as possible. The approach is more fre-
quently used in the context of classification tasks compared
to regression. See [Settles, 2010] for an overview.

Level Sets. Similar to RA, the task of level set estimation
[Bryan et al., 2005, Gotovos et al., 2013] aims to identify
regions where the value of some target function is below
or above a given threshold. Therefore, samples are placed
according to an AF based on a GP model to reduce the
uncertainty about the level set. In this context, MV can
be seen as learning two joint level sets simultaneously. A
more general approach, not restricted to level set estimation,
was proposed by Neiswanger et al. [2021]. The entropy-
based method can be applied to arbitrary algorithmic outputs.
However, the computational cost for evaluating the AF may
be high, as a closed-form is unavailable.

Bayesian Calibration. Another line of work initiated by
Kennedy and O’Hagan [2001] considers learning the model
error to correct the output of a computational model simi-
lar to boosting techniques in ML, while inferring the free
parameters of the computational model. Therefore, the pos-
terior distribution of the parameters and the model error
are inferred jointly. Subsequent research incorporates physi-
cal knowledge by using a physics-informed prior [Spitieris
and Steinsland, 2023] and extends the work to multiple out-
puts [Higdon et al., 2008, White and Mahadevan, 2023].
Nevertheless, one mayor criticism of this work is the iden-
tifiability issue, i.e., the effects of calibration parameters
and model discrepancy can be confounded due to the over-
parameterization of the model [Arendt et al., 2012, Marmin
and Filippone, 2022].

Conformal Prediction. For distribution-free predictive
inference, conformal prediction based on the work of Vovk
et al. [2005] is used to derive prediction intervals with fre-
quentist coverage guarantees. However, most work focuses
on marginal coverage [Vovk et al., 2005, Papadopoulos et al.,
2002, Lei et al., 2018], i.e., the model prediction is only
marginally valid over the training data and the test points
with a specified probability. In this context, our work can be
seen as related to the setting of split-conformal prediction,
where the data is partitioned into training and calibration

sets. The latter is used to derive the prediction intervals for
the trained model. Here, we aim to learn the model error,
especially around the limit state, to assess the local validity
of the model.

A more rigorous conditional coverage is known to be im-
possible to achieve without further assumptions about the
underlying distribution [Barber et al., 2021]. Approximate
conditional coverage has been considered in the work of Lin
et al. [2021]. Although they provide a method for approxi-
mate conditional coverage, it often requires more calibration
samples to form meaningful prediction intervals (see Ap-
pendix D).

3 BACKGROUND

Let x ∈ X ⊂ IRd be a vector of observable and control-
lable inputs, with validation domain X of dimension d. Fur-
thermore, for a model represented by a map fM : X → Y
between the inputs X and the quantity of interest (QOI)
Y ⊂ IR, we want to assess the validity of fM, i.e., estimate
model misfit.

Observations. An observation consists of the tuple (x, yx)
where yx is assumed to be a sample from the random vari-
able Yx = fE(x) + ϵ. In this context, fE : X → Y is the
true data generating function and ϵ is the additive label
noise. Here, we do not assume to have any knowledge about
fE, therefore we treat it as a black-box function. Moreover,
ϵ is assumed to be homoscedastic Gaussian white noise
ϵ ∼ N (0, σ2

e ), where we use ∼ to denote “distributed as”
in this work. We assume that the input can be measured
precisely, such that any uncertainty about the true value of
x can be neglected.

In general, a set of observations is used to train and pos-
sibly calibrate the model fM. Another set of observations
is used to estimate the generalization error and to validate
fM. Generating new observations is often costly, and only
a finite number of observations are available in real-world
applications. Therefore, data efficiency of both training and
validation is crucial.

Validation Metric. MV can be performed by evaluating
the model error within X, given as fD(x) := fM(x)− Yx,
with fD(x) ∼ N (fM(x)−fE(x), σ2

e ). For a given tolerance
level ξ ∈ IR>0, we quantify the probability of the model
error being within the desired tolerance as

P (−ξ < fD(x) < ξ) . (1)

Equation (1) is termed the reliability validation metric
and was proposed for MV by Rebba and Mahadevan
[2008], Sankararaman and Mahadevan [2013]. Equivalently,
we will represent Equation (1) as P (g(x) > 0) = 1 −
P (g(x) ≤ 0), where we have g(x) := ξ − |fD(x)|, which



is in reliability theory often referred to as limit state function.
In the following, we will define the noiseless residual as
δ(x) = E [fD(x)] = fM(x)− fE(x), which is unknown in
practice, i.e., only ξ and fD(x) are available for validation
iff. x is already observed input.

Differences to RA. The formulation of MV leads to key
differences to RA that we have to consider: 1) The formu-
lation of Equation 1 is analogous to having two limit state
conditions in the setting of RA. 2) The distribution of the
samples in the limit state is a folded Gaussian [Leone et al.,
1961], since g(·) is formulated in terms of the absolute value
of fD(·), which is Gaussian by assumption. 3) The MV limit
state is corrupted by noise, while it is commonly considered
noise-free in RA1, since g(·) is generally a simulation model
with negligibly small numerical errors [Bucher and Bour-
gund, 1990]. 4) x is subject to uncertainty in RA problems,
whereas we assumed no uncertainty in the context of MV.
Nevertheless, the MV setting could be interpreted as a RA
problem in this respect, where p(x) is a uniform distribution
defined over the entire X. This represents our interest in
assessing the validity of the model everywhere in X with
equal importance.

4 METHOD

In this section, we derive our formulation for learning and
representing the limit state S. We start by defining local
validity and the limit state for MV. Next, we introduce the
notation and active learning approach. In Section 4.3, we
show how to represent the limit state function g(·) as a
transformed GP model, which is then used in Section 4.4 to
derive the AF. A stopping criterion is proposed in Section
4.5 based on the probability of misclassifying the validity
of a set of points. Additionally, in Section 4.6 it is shown
how to obtain the prediction of the local valid set. Finally,
theoretical considerations are presented in Section 4.7.

4.1 DEFINITION OF LOCAL VALIDITY AND
LIMIT STATE

Before describing the proposed method, proper definitions
of local validity and the limit state for the noiseless case
(i.e., representing the ground truth) are provided.

Definition 1 (Local Validity). A model fM is locally valid
at x ∈ X, given a tolerance level ξ, if ξ − |δ(x)| ≥ 0. Then,
the valid region of fM is

V = {x ∈ X : ξ − |δ(x)| ≥ 0}.

Based on the definition of local validity, global validity can
be asserted if Definition 1 holds for all x ∈ X. Note the

1With a suitable GP model, we could extend RA to the noisy
setting if required (e.g., [Chun, 2024]).

difference between global validity and valid on average, e.g.,
according to a prediction accuracy metric.

Definition 2 (Limit State). Given a model fM and a toler-
ance level ξ, the limit state of fM is

S = {x ∈ X : ξ − |δ(x)| = 0}.

We can interpret Definition 2 as the set of points on the
boundary between the valid and invalid domains (see Fig-
ure 1). Moreover, S is unavailable in practice, and our ob-
jective is to construct a strategy aimed at placing samples in
the vicinity of S , thereby efficiently learning to differentiate
between valid and invalid domains for fM.

4.2 OVERVIEW

Notation. We consider learning the limit state S over the
normalized input space X̃ ⊆ [0, 1]d from validation data
D = {(xi, yi)}ni=1, with input xi ∈ X̃ and label yi =
fD(xi). Equivalently, we represent training examples as
n × d matrix X, where the i-th row is the i-th training
example xi, with corresponding labels y. Furthermore, we
employ a surrogate model ĝ(·) that provides, for some input
x, a (conditional) probability distribution over the output
ĝ(x) = Ĝx ∼ p(g|x,D). We can further use, e.g., the
predictive mean µg|D(x) = E[Ĝx] or variance σ2

g|D(x) =

V[Ĝx] of the model.

Active Learning. Active learning strategies aim to reduce
the evaluations of an expensive black-box function fE, while
still achieving a satisfactory result; in this context, learning
the limit state with high accuracy for MV. Therefore, an ac-
quisition function (AF) ψ : X̃→ IR is used to rate promising
new sample points, often referred to as candidates. Learn-
ing is encouraged by maximizing ψ over the candidate set
C = {ci}nc

i=1, where ci is drawn uniformly from [0, 1]d in
our case. A new query x∗ is obtained as

x∗ = argmax
x∈C

ψ(x; ĝ,D),

where ĝ is the learned surrogate based on D. The ini-
tial dataset can be generated from a space-filling design
(e.g., Sobol [Joe and Kuo, 2008] or Latin hypercube sam-
pling (LHS) [McKay et al., 1979]). Algorithm 1 shows the
active learning procedure. From here on, we drop writing
the explicit dependence of ψ on D and ĝ.

4.3 GAUSSIAN PROCESS

Gaussian process regression (GP) is a popular probabilistic
ML method, which can be used to represent the belief over
the objective function. Therefore, it is a central component
to different learning schemes, e.g., in BO [Snoek et al.,



Algorithm 1 Active Learning Model Validation
Require: Initial data D, candidate set C, tolerance ξ, and

acquisition function ψ
repeat

Train surrogate ĝ with D
x∗ ← argmaxx∈C ψ(x; ĝ,D)
y∗ ← fD(x

∗)
D ← D ∪ {(x∗, y∗)}
Generate new C ▷ optional

until Termination condition ▷ e.g., maximum iterations
Train surrogate ĝ with D
return D, ĝ

2012] or global improvement of surrogate models [Lämmle
et al., 2023].

In the following, we use a transformed GP model to repre-
sent our belief of the limit state

ĝ = λ ◦ f̃D
f̃D ∼ GP (µ, k) ,

where ◦ is the function composition, µ : X̃→ IR and k : X̃×
X̃ → IR+ denote the mean and the covariance (kernel)
functions, respectively. λ(·) represents the non-invertible
mapping λ(y) := ξ − |y|.

Exact Prediction. Since the GP is defined as a joint
Gaussian distribution, the prediction at a point x⋆ can be
analytically obtained as conditional Gaussian distribution
p(y|x⋆,D) ∼ N (µy|D(x

⋆), σ2
y|D(x

⋆)), with mean and vari-
ance as

µy|D(x
⋆) = µ(x⋆) + kT (K−1 + σ̂2

eI)y, (2)

σ2
y|D(x

⋆) = k(x⋆,x⋆)− kT (K−1 + σ̂2
eI)k, (3)

where K contains all pairs of kernel entries (i.e., Kij =
k(xi,xj)), and k denotes the vector of correlations between
x⋆ and training points, ki = k(xi,x

⋆). σ̂2
e is the estimated

noise variance.

Learning Hyperparameters. Predictions made with a
GP depend on the hyperparameters σ̂2

e and θ, e.g., noise
variance, kernel lengthscale, or possibly the parameters of
the mean function µ(x⋆). These hyperparameters could be
obtained by maximizing the log marginal likelihood

log p(y|X,θ, σ̂2
e ) ∝ −

1

2
log |K| − 1

2
yT (K−1 + σ̂2

eI)y.

If prior knowledge is available, it can be beneficial to use
instead the maximum a posteriori (MAP) estimate as

θ̂MAP = argmax
θ,σ̂2

e

log p(y|X,θ, σ̂2
e ) + log p(θ, σ̂2

e ),

where p(θ, σ̂2
e ) are the specified priors over the hyperparam-

eters.

Limit State Prediction. The prediction of the limit state is
obtained by the mapping λ(·). We can give closed form solu-
tions for µg|D(·) and σ2

g|D(·), since Ĝx is a folded Gaussian
distribution flipped and shifted by ξ (see Figure 4). There-
fore, we have

µg|D(x
⋆) = ξ −

(
σ⋆

√
2

π
ζ + erf

(
µ⋆√
2σ2

⋆

)
µ⋆

)
,

σ2
g|D(x

⋆) = µ2
⋆ + σ2

⋆ − µ2
g|D(x

⋆),

where we denoted µ⋆ = µy|D(x
⋆), σ2

⋆ = σ2
y|D(x

⋆), and

ζ = exp
(

−µ2
⋆

2σ2
⋆

)
. erf(·) is the Gaussian error function.

4.4 ACQUISITION FUNCTION

The AF is used to guide the sampling strategy in regions of
interest. Especially for RA and validation, we are interested
to sample in the vicinity of the limit state S . For this purpose,
several AFs were proposed in RA, e.g., see Bichon et al.
[2008], Echard et al. [2011]. Among them, the so called
"U-function" [Echard et al., 2011] is widely used in RA
[Dubourg et al., 2013, Teixeira et al., 2021].

U-Function. The AF focuses on the design subspace
near the limit state boundary considering an exploration-
exploitation trade-off. It is given by

ψU(x) = −
|µg|D(x)|
σg|D(x)

, (4)

where µg|D(x) and σg|D(x) are predictive mean and stan-
dard deviation of the probabilistic model, respectively. ψU

selects samples which have large variance and are close to
the limit state according to the GP. µg|D(x) is small only if
x is close to the limit state. Note that Equation 4 is different
from the original formulation [Echard et al., 2011] in our
setting, since the GP predictive mean and standard deviation
are transformed by λ(·).

MC-Prob. Maximizing ψU was originally derived to be
equivalent to maximizing the probability of misclassifying
the limit state condition under the Gaussian assumption
[Echard et al., 2013]. However, the equivalence does not
hold for a folded Gaussian posterior. Instead, we propose
using the misclassification probability directly as

ψmis(x;ω) =

P
(
Ĝx ≤ −ω

)
, for |µy|D(x)| ≤ ξ

1− P
(
Ĝx ≤ ω

)
, for |µy|D(x)| > ξ,

where ω ∈ IR+ determines the exploration-exploitation
trade-off, i.e., it gives the misclassification probability
around the limit state with a small slack variable ω < ξ.
Larger values of ω encourage more exploration. The closed-
form expression for the cumulative distribution function



(cdf) of Ĝx is given by

P
(
Ĝx ≤ ω

)
= 2− Φ

(
ξ − ω + µy|D(x)

σy|D(x)

)
− Φ

(
ξ − ω − µy|D(x)

σy|D(x)

)
,

(5)

where Φ(·) is the standard normal distribution. See Ap-
pendix A for a derivation of Equation 5 as well as Ap-
pendix C.2 for some additional insights on the misclassifi-
cation probability.

4.5 STOPPING CRITERION

The criterion for stopping the sequential strategy is a cru-
cial part of the method. One straightforward approach is
to use the probability of misclassifying a candidate point x
under the transformed GP posterior, as given by ψmis. Then,
we stop by reaching a predefined tolerance α ≥ P̃mis =
EX∼p(x) [ψmis(X;ω = 0)]. In practice, we estimate this
expectation based on the candidate set C. The criterion can
be made more robust by ensuring the above condition in
k consecutive iterations. Additionally, we introduce a sam-
pling budget, i.e., we limit the maximum number of samples
obtained. Therefore, we stop if the budget is exhausted or a
suitable P̃mis is achieved in time.

4.6 PREDICTION

The learned GP model represents our final belief of the limit
state, which we can use to decide if fM is locally valid at
an arbitrary x ∈ X̃. Hence, we predict the local valid set,
analogous to Definition 1, as

Ṽ =
{
x ∈ X̃ : ξ − |µy|D(x)| ≥ 0

}
. (6)

In safety-critical applications, preventing false positives can
become more important than incorrectly classifying a sam-
ple to be invalid, as also noted by Reeb et al. [2023]. There-
fore, depending on the application, we may be more risk
averse than using Ṽ directly. Instead, we can derive the pre-
dicted local valid set with 1− α confidence, for α ∈ (0, 1),
as

Ṽα =
{
x ∈ X̃ : qα(x) ≥ 0

}
, (7)

with quantile qα(x) := inf{g̃ ∈ IR : P (Ĝx ≤ g̃) ≥ α}.
It can be seen from Equation (6) that ξ can be changed post-
hoc. However, if |ξold − ξnew| is large, the model may not
be sufficiently accurate, as the samples are usually placed
near ξold, and the new limit state resulting from ξnew could
be far away from the old one.

Figure 2: Prediction Ṽ (Equation 6) for the modified Rast-
rigin function after 20 initial and 70 adaptive observations,
with ψmis and ω = 0.2ξ. The true limit state is represented
by the black line.

4.7 THEORETICAL CONSIDERATIONS

By [Lederer et al., 2021, Thm 9] ([Lederer et al., 2019,
Thm 3.1], resp.), the regression error of the GP model is
under certain conditions bounded in terms of the posterior
variance:

Theorem 1. Assume that δ is a Lipschitz continuous sample
from the zero mean Gaussian process with covariance kernel
k with Lipschitz constant Lk on the compact set X̃. Denote
the Lipschitz constant of δ by Lδ . Then, µy|D(·) and σ2

y|D(·)
are continuous with Lipschitz constants Lµ and Lσ2 on X̃
such that

Lµ ≤ Lk

√
n∥
(
K+ σ2

eI
)−1

y∥ (8)

Lσ2 ≤ 2Lk

(
1 + n∥

(
K+ σ2

eI
)−1 ∥ k∗

)
, (9)

where k∗ := maxx,x′∈X k(x,x
′). Moreover, pick α ∈

(0, 1), τ ∈ IR+ and set

β(τ) = 2 log

(
M(τ, X̃)

α

)

γ(τ) = (Lµ + Lδ)τ +
√
β(τ)Lσ2τ ,

where M(τ, X̃) is the τ -covering number of X̃. Then, it
holds that

P
(
|δ(x)− µy|D(x)| ≤ η(x),∀x ∈ X̃

)
≥ 1− α (10)

where η(x) =
√
β(τ)σy|D(x) + γ(τ).

For X̃ ⊆ [0, 1]d, it holds

M(τ, X̃) ≤M(τ, [0, 1]d) =

(√
d

2τ

)d

.



In contrast to the mere consideration of σy|D, Theorem 1
implies convergence of µy|D to δ if η converges to zero suf-
ficiently fast as n→∞. According to the posterior variance
bounds in [Lederer et al., 2021, Section 3], this is particu-
larly the case if a sufficient number of samples are close to
x. Since we are mainly interested in a small error near the
limit state, it is important to choose the adaptive sampling
method accordingly. The proposed AF is designed exactly
for this purpose; it intuitively prefers samples which are
presumably close to the limit state and have high posterior
variance. η(x) can be computed explicitly and yields an
uniform error bound on X̃. Since

|δ(x)| ≤ |δ(x)− µy|D(x)|+ |µy|D(x)|,

these bounds can be considered as an alternative to the use
of confidence intervals of the GP. However, Theorem 1 re-
quires additional knowledge on the Lipschitz continuity of
the covariance kernel as well as δ and is therefore not gen-
erally applicable. Furthermore, an exemplary computation
shows that the obtained results are very conservative, in
particular, if the bounds in (8) and (9) are used (see Ap-
pendix C.1). Moreover, we found that the GP confidence
intervals provide reliable bounds in most cases.

5 EXPERIMENTS

Experiments are conducted to demonstrate the sample ef-
ficiency of the presented method on a variety of problems,
ranging from analytical benchmark functions to trained ML
models on analytical problems, and some real-world tabular
datasets from OpenML [Vanschoren et al., 2013].2 Results
for the latter are shown in Appendix E.1, while the influence
of label noise is studied in Appendix E.2, and results for the
stopping criterion are presented in Appendix E.4.

Target. The learning target for our benchmarks is to cor-
rectly predict valid regions V of the model fM as shown in
Figure 2. Thus, we can frame the task as a binary classifi-
cation problem (positive class for valid, and negative for
invalid) and report precision and recall, where the F1-score
is used as a summary within plots. For the ground truth (GT)
labels, we evaluate ξ−|δ(x)|, where δ(x) = fM(x)−fE(x)
is the noiseless residual. Further, we split into valid (posi-
tive) GT label if the value is not negative and invalid label
otherwise (Definition 1).

Setup. The initial, candidate, and test datasets are drawn
quasi-uniform via LHS, with 10d initial observations as pro-
posed by Loeppky et al. [2009], where d is the dimension of
the validation domain. We restrict the number of adaptive
samples to 50d across all experiments. For the next sam-
ple point, we draw min(5000d, 50000) candidates in each
iteration and choose the one that achieves the largest AF

2https://github.com/SvenL13/LocalValidity

value. The GP is trained in each iteration until 100 samples
are observed. Thereafter, training is conducted every 4-th
iteration to reduce computational effort. Even if the model is
not retrained, we update the GP with the observed data and
keep the GP hyperparameters fixed. For the benchmarks, we
conduct 30 restarts with different initializations, test sets,
and seeds, if not stated otherwise. In every 5-th iteration, we
compare the prediction Ṽ (Equation 6) with the GT target
based on min(25000d, 250000) test samples. Additionally,
the results for Ṽ0.1 are shown in Appendix E.5, and fur-
ther implementation details of our method can be found in
Appendix F.

5.1 ANALYTICAL BENCHMARK FUNCTIONS

Methodology. For the first benchmark, we consider vari-
ous analytical functions f(x) to assess method performance
under well-controlled conditions, where f(x) represents
the error surface (δ(x) := f(x)). The tested methods have
only access to noisy evaluations fD(x) = f(x)− ϵ, where
ϵ ∼ N (0, σ2

e ). We use the Styblinsky-Tang [Styblinski and
Tang, 1990] and Michalewicz function [Michalewicz, 1992]
with varying dimensions, as well as two 2-d benchmark
functions popular in RA, namely a modified Rastrigin [Törn
and Zhilinskas, 1989] and a series system function [Waarts,
2000] as benchmark functions. Definitions of these analyti-
cal functions are given in Appendix G.2.

We compare ψmis with ω = 0.2ξ and ω = 0.0 against sev-
eral baselines. The first one is given by ψU [Echard et al.,
2011] adapted to our setting (Equation (4)). Secondly, a
random sampling baseline is used, where we select a sample
from the candidates with equal probability instead of maxi-
mizing an AF. Further, we consider running RA individually
for lower and upper tolerance bound with the original U-
function [Echard et al., 2011], denoted ψU2. Therefore, we
use the sum of two AFs with two GPs, each for ξ − fD(x)
and ξ + fD(x). Both models observe all samples, even if
only one of the GPs is used to query a new sample, i.e.,
we train and evaluate them on the same inputs. Finally, we
consider the smallest margin method [Scheffer et al., 2001]
with a XGBoost (XGB) classifier [Chen and Guestrin, 2016],
as this seems to be a reasonable baseline [Cawley, 2011,
Yang and Loog, 2018] to represent that direction of research.
Further settings for the benchmark are given in Table 1.

Table 1: Experimental settings for the analytical benchmark
functions.

Benchmark function ξ σe ninit nadapt

Styblinski-Tang 30 5 10d 50d
Michalewicz 0.07 0.01 10d 50d
Mod. Rastrigin 20 0.1 10d 50d
Series System 3 0.5 10d 50d
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Figure 3: Median and 95% confidence intervals of F1-score on the analytical problem functions across 30 runs. Top:
Styblinsky-Tang for 2 to 8 dimensions. Bottom: Modified Rastrigin (2-d), series system function (2-d), and Michalewicz
function (4-d, 6-d).

Results. The results are given in Figure 3, where we report
median and 95% confidence bounds. The smallest margin
baseline is partially not shown to improve visibility, as it un-
derperforms other methods, with mean F1-score of 39.35%
across samples and final score of 73.99% at the last sample.
This may be due to the smaller number of available sam-
ples compared to applications in previous research. It can
be seen that the additional exploration (ω = 0.2ξ) in ψmis

increases performance slightly upon its counterpart ψmis

with ω = 0. Further, we found that ψU2 can be prone to
model misspecification, as can be observed for the Rastrigin
function, since we have to learn two GPs.

Overall, ψmis with ω = 0.2ξ shows significant improvement
over the baselines, achieving an average F1-score of 76.5%
and a final score of 92%. In contrast, ψU2 shows the weakest
performance among GP-based strategies, with an average
F1-score of 75.21%, slightly improving over the random
baseline with 74.55%.

5.2 BENCHMARK MODEL VALIDATION

Methodology. We evaluate ψmis (ω = 0.2ξ), ψU, and the
random baseline for a more realistic problem setting, where
the model under validation fM is given by a trained ML
model. Since ψmis(ω = 0.2ξ) outperformed ψmis(ω = 0)
on the analytical benchmark functions, we do not expect
ω = 0 to perform significantly different here.

Training data for fM was obtained from an analytical bench-

Table 2: Experimental settings used in ML benchmark.

Bench. Dim. ξ σe ninit nadapt

Micha.
2 0.3 0.03 20 100
4 0.6 0.03 40 200
8 0.9 0.03 80 400

Rosen.
2 250 5 20 100
4 500 5 40 200
8 1000 5 80 400

mark function fE via LHS and acquiring noisy labels. In
particular, only noisy evaluations of fE were available both
for training and validation, whereas noise-free samples were
used for testing the validation models. In all test cases, fM
was ensured to be invalid in some but not all regions (w.r.t
input domain). This scenario is common in practice, where a
model can perform a task fairly well on average, but remains
invalid in certain regions.

Four classes of ML models are considered for fM: RR, SVR,
RF, and XGB regression, which exhibit different error sur-
faces with varying difficulty. fE is given by the Michalewicz
or the Rosenbrock function [Rosenbrock, 1960] with dimen-
sions ranging from 2 to 8. The tolerance ξ is chosen such that
we obtain partially valid models, with valid ratio ranging
from 0.75 to 0.99. For Rosenbrock we kept hyperparame-
ters of the ML models fixed, while we found the need to
tune them via BO for Michalewicz to obtain models that
are at least partially valid. Furthermore, we fix the trained



Table 3: Mean and standard error of precision and recall across Ridge regression (RR), support vector regression (SVR),
random forest regression (RF), and XGB models. Scores for mean and final result across samples and 30 runs are reported.
Bold numbers represent the best result.

Benchmark Dimension Mean Precision [%] Final Precision [%]
ψmis,0.2 ψU Random ψmis,0.2 ψU Random

Michalewicz
2 97.3±0.1 96.9±0.1 96.5±0.1 98.5±0.1 97.6±0.1 97.4±0.1

4 95.1±0.1 94.9±0.1 94.5±0.1 96.8±0.2 96.7±0.1 96.2±0.2

8 88.5±0.0 88.4±0.0 88.1±0.1 89.7±0.1 89.6±0.1 89.2±0.1

Rosenbrock
2 97.0±0.1 95.9±0.2 95.5±0.1 98.2±0.1 97.0±0.3 96.9±0.2

4 94.7±0.1 93.0±0.1 92.1±0.1 96.1±0.1 94.9±0.2 94.5±0.2

8 92.6±0.1 90.6±0.1 89.9±0.1 94.5±0.1 92.7±0.2 92.2±0.1

Mean Recall [%] Final Recall [%]

Michalewicz
2 99.4±0.0 99.6±0.0 99.1±0.1 99.4±0.1 99.6±0.0 99.3±0.1

4 98.7±0.0 98.8±0.0 99.0±0.1 98.7±0.2 98.7±0.2 98.9±0.1

8 98.2±0.1 98.3±0.1 98.9±0.1 97.1±0.1 97.3±0.2 98.0±0.1

Rosenbrock
2 98.8±0.1 99.2±0.1 98.5±0.1 99.2±0.1 99.4±0.1 98.6±0.1

4 93.0±0.1 96.4±0.1 96.2±0.2 95.8±0.1 97.2±0.2 96.8±0.2

8 91.5±0.2 97.0±0.1 97.2±0.1 92.1±0.2 96.6±0.1 96.8±0.1

models across the 30 repetitions. The experimental settings
are given in Table 2, and further details regarding the ML
models hyperparameters and analytical functions can be
found in Appendix G.1.

Results. The results of our experiments are shown in Ta-
ble 3, where we report the mean and the last value across
samples for precision and recall. We want to emphasize the
importance of preventing false positives, i.e., falsely judging
a model to be valid, as captured by the precision score from
the perspective of safety-critical applications. In contrast,
the consequences of false negatives, as reflected by the re-
call score, are not as severe. Furthermore, we expect the
mean across samples to be informative about the overall
performance and sample efficiency, while the final value is
relevant to the end performance of the method.

It can be seen that ψmis outperforms both the baseline and
ψU in terms of average and final precision across almost all
tested cases with regard to precision. While all strategies
achieved high recall scores (> 90%), ψU and the random
sampling baseline slightly outperform ψmis in this regard.

6 CONCLUSION

Assessing the validity of a model across the range of inputs
can be challenging due to the expense of gathering addi-
tional validation data. To address this issue, we developed a
novel formulation of the local validity problem for ML mod-
els inspired by active learning commonly used in RA. Based
on this foundation, we proposed a new acquisition function
(MC-Prob) that uses the misclassification probability, which
can be evaluated in closed-form.

MC-Prob intuitively places samples near the limit state and
can learn the boundary between valid and invalid regions of
the model. Empirically, MC-Prob improves upon its counter-
part, U-Fun, across several benchmarks and two real-world
examples, reducing the probability of incorrectly classifying
the model as valid, as desired in most safety applications.
In contrast to existing conformal prediction methods, our
approach can significantly reduce the required amount of
data while maintaining accurate predictions. The scalability
to higher dimensions remains open, possibly by replacing
the GP model [Hensman et al., 2013] or by exploiting the
lower intrinsic dimensionality expected in most real-world
data [Wang et al., 2016].
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A DERIVATION OF EQUATION 5

Let Y = |X|, where X ∼ N (µ, σ2) with mean µ and variance σ2. Then, Y follows a folded Gaussian [Leone et al., 1961],
with parameters µ and σ2. The cdf is given by [Tsagris et al., 2014]

F (x) = 0.5

(
erf

(
x− µ
σ
√
2

)
+ erf

(
x+ µ

σ
√
2

))
,

where erf(x) = 2/
√
π
∫ x

0
exp(−t2)dt is the error function. Further, let Z = a−Y = a− |µ+σX|. Then, for x ∈ (0,∞),

F (x) = P (Z ≤ x) = P (a− |µ+ σX| ≤ x) = 1− P (|µ+ σX| ≤ −x+ a︸ ︷︷ ︸
:=z

) = 1− P (−z ≤ µ+ σX ≤ z)
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)
− Φ

(
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(
z + µ

σ

)
− Φ

(
z − µ
σ

)
,

where Φ(·) is the standard normal cdf, and z := −x+ a. The last step follows since Φ(−x) = 1 − Φ(x). We obtain the
formulation in Equation 5 by using x = ω and a = ξ, with folded Gaussian parameters µ and σ2 given by the GP predictive
mean and variance. See Figure 4 for a illustration.

B LIMITATIONS AND DISCUSSION

We have shown that our approach can learn the limit state S and predict the valid set V with a reduced number of validation
samples. However, it is important to discuss further challenges and limitations we encountered during development.

Firstly, we observed that high label noise in relation to the tolerance level ξ can degrade the performance of the strategy. In
such cases, the underlying limit state may not be accurately identifiable, as shown by our ablation study in Appendix E.2.
Therefore, if small ξ has to be achieved, it is important to keep the noise correspondingly low.

Secondly, misspecification of the GP model is important to consider and could occur, e.g., if many hyperparameters have
to be optimized. To mitigate possible misspecification, we train the GP model multiple times with different parameter
initializations (see implementation details in Appendix F). Additionally, one can provide suitable prior distributions for the
model hyperparameters if available. Issues could arise with discontinuous or unsmooth error surfaces, as observed during
validation of tree-based models, due to the learned decision structure. In such situations, the GP model can only provide a
smooth approximation.
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Figure 4: GP prediction of the limit state function g is a folded Gaussian distribution, which is flipped and shifted by the
predefined tolerance ξ. The filled area shows the misclassification probability ψmis.

Finally, our method was developed in the setting of additive homoscedastic Gaussian noise with variance σ2
e . However,

real-world applications can be influenced by heteroscedastic noise, where σ2
e may change with x. Thus, the estimated

noise would be under- or overestimated in certain input regions if assumed homoscedastic. Nevertheless, homoscedasticity
can be a reasonable assumption even for real-world data. This is demonstrated in Appendix E.1 by applying our method
with homoscedasticity assumption to real-world examples. To further improve the performance with heteroscedastic noise,
a suitable transformation on the labels could be applied, such as the Box-Cox [Box and Cox, 1964] or Yeo-Jonhson
transformation [Yeo and Johnson, 2000], which have been used in the context of BO and GP models [Cowen-Rivers et al.,
2022]. Alternatively, the noise can be learned directly by a second GP model [Kersting et al., 2007, Binois et al., 2018].
Testing such an approach is left for future work.

C ADDITIONAL THEORETICAL CONSIDERATIONS

C.1 ERROR BOUNDS

In the following, we discuss the error bound using the 90% confidence interval of the GP model and the error bounds based
on Theorem 1. Therefore, a 1-d test function

δ(x) =
1

2
exp(x) sin(8x− 2)

and additive noise (σ2
e = 0.052) is used with Algorithm 1. Tolerance is set to ξ = 1, and we use 10 initial samples and

500 iterations. The two limit states are at x1 ≈ 0.786 and x2 ≈ 0.92. For this case, it is possible to compute η given in
Theorem 1 with exact Lipschitz constants.

The results are illustrated in Figure 5. It can be seen, that the bound using the 90% confidence interval of the GP model may
underestimate the true error, but yields in most cases a good bound. In contrast, the error bound given by η is in any case a
very conservative approximation of the true error. Further, it can be seen that our adaptive sampling strategy results in a
rapid decrease of the error bound η near the limit state even for small sample sizes, whereas the model improves globally
with more samples available.

Figure 6 shows the comparison of η with exact Lipschitz constants and η calculated using the bounds from Equation 8 and
Equation 9. The setting is the same as in the top left of Figure 5. Apparently, the upper bounds for the Lipschitz constant
yield too pessimistic results for small sample sizes.

Theorem 1 states that the true error is less than the error bound η for all points in the input space with a probability of 90%.
Therefore, η gives a uniform error bound that is not directly dependent on the accuracy of the predicted uncertainty of the
GP, and is therefore much stronger. However, the theorem requires additional knowledge on the Lipschitz continuity of the
covariance kernel as well as δ and is therefore not generally applicable. Furthermore, Figures 5, 6 show that the bound may
be too conservative, especially when using estimated Lipschitz constants.
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C.2 PROBABILITY OF MISCLASSIFICATION

The probability of misclassification at x is given by Equation 5 and derived in Appendix A. For the case µ < −ξ (with
µ = −4 and ξ = 2), this probability is illustrated as a yellow area in Figure 7. This setting corresponds to the case of an
invalid posterior mean. The misclassification probability is the probability that the state is actually valid. Since the valid
domain is bounded, this probability can only be maximized up to some limited extent and it is bounded by 0.5 in any case.
In contrast, the misclassification probability of a state that is predicted to be valid can be arbitrarily close to one and is
strictly increasing with the variance for fixed µ (see right-hand side of Figure 7). For fixed µ it is even possible to compute
the σ which maximizes the probability of misclassification. This can be achieved by taking the derivative of Equation 5 with
respect to σ and by computing its root. The optimal standard deviation σopt is given by

σ2
opt = −2 ξ µ ln

(
µ− ξ
µ+ ξ

)−1

for fixed µ > |ξ|.

Figure 8 shows the dependence of the misclassification probability on both µ and σ. The optimal standard deviation increases
with the distance of µ to ξ and very small variance results in small values for Pmis. However, as described before, Pmis

decreases again if σ becomes too large.
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D COMPARISON WITH CONFORMAL PREDICTION

While our primary objective of this work is designing an adaptive sampling strategy for learning the limit state S (Section 4),
an important question arises how our approach compares with existing conformal prediction methods. Hence, we provide a
comparison with the most popular conformal prediction strategies, which we can utilize to predict the valid set Ṽα for the
model under validation fM.

Prediction Interval and Valid Set. Conformal prediction methods are used to derive prediction intervals Ĉα(x) that
contain an unseen observation Y ⋆ at test point X⋆ with confidence 1− α (often referred as coverage), where no further
assumption is made about the data generating distribution p(x, y). The framework provides guarantees, with the most
common one being marginal coverage, which aims to satisfy

P (Y ⋆ ∈ Ĉα(X
⋆)) ≥ 1− α.

Note, in order to form a prediction interval, most strategies (e.g., split conformal prediction) use additional calibration data
besides the training data for fM [Lei et al., 2018, Bellotti, 2020]. In our setting, we use the validation data for this purpose.

We can obtain a valid set similar to Vα (Equation 7), by using lower ρlo and upper bound ρlo of the prediction interval,
where Ĉα(x) = [ρlo(x), ρup(x)]. Further, we can obtain the valid set from Ĉα(x) as

Ṽα = {x ∈ X : (fM(x)− ρlo(x) ≤ ξ) ∧ (ρup(x)− fM(x) ≤ ξ)},

where ξ ∈ IR+ is the tolerance level. In other words, we classify fM to be valid at x if we predict with 1−α confidence that
the difference between mean prediction (fM) and upper/lower bound is below the prescribed tolerance ξ. Thus, we are able
to compare conformal prediction methods to our method based on Ṽα.



Table 4: Qualitative comparison between strategies to perform validation. Split conformal and MAD have only marginally
coverage, while LVD provides approximately conditional coverage. Similarly, our method can be seen to have marginal
coverage if the error bound from Theorem 1 is used. In our experiments, conformal methods have shown the need for
larger datasets in order to provide meaningful prediction intervals for validation, in comparison to the proposed approach
(Section 4).

Split Conformal MAD LVD Ours

Coverage marginal marginal apprx. conditional marginal1

Discriminative ✗ ✓ ✓ ✓
Applicable fM regression, class. regression regression regression
Samples needed medium high high small
1based on Theorem 1
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Figure 9: Comparison of different validation strategies, where we used 100 validation samples for the conformal strategies
(Split conformal, LVD and MAD), and 14 samples for our method. The target is to obtain an accurate estimate of the valid
regions, i.e., fM is inside the tolerance ξ. The prediction of the local valid set Ṽ0.1 ( ) is shown for each method.

D.1 COMPARISON

We compare our approach (Section 4) with the following methods from conformal prediction:

• Split-conformal prediction [Papadopoulos et al., 2002], with the commonly-used residual score s(x, y) = |y − fM(x)|.
• Mean absolute deviation - normalized split conformal (MAD) [Lei et al., 2018, Bellotti, 2020], with the residual score
s(x, y) = |y − fM(x)|/u(x), where u(x) is the residual predictor for |y − fM(x)|.

• Locally valid discriminative prediction intervals (LVD) [Lin et al., 2021], with squared exponential kernel.

A qualitative comparison between methods is given in Table 4.

Simple Example. To illustrate differences in the obtained valid sets, we train a GP model fM to be validated on 10
samples from f(x) = x sin(x) + ϵ, with ϵ ∼ N (0, 0.52) (similar to Figure 1). x is drawn uniformly between 0 and 10, and
tolerance ξ is set to 3. To obtain the valid set for the conformal methods, a total of 100 samples are drawn uniformly. For our
method, we use 10 initial samples and 4 samples drawn with ψ(ω = 0.1ξ). A confidence level of 1− α = 0.9 is used for all
methods, while predictions are given by Ṽ0.1. Results are shown in Figure 9. We see that the prediction interval with split
conformal has a fixed width for all x, since the method is not discriminative. Therefore, we see the method is not capable of
identifying valid regions in this setting. LVD is discriminative and therefore able to correctly identify some parts of the valid
region. However, with few data, the prediction intervals of LVD can become infinitely wide, as noted by the authors [Lin
et al., 2021, Section 3.2]. For MAD, only a small region is correctly classified as valid. In contrast, our method is able to
identify valid regions with high accuracy. Further, we found that all tested conformal strategies need considerably more
samples than our method in order to provide meaningful prediction intervals.

8-dimensional Comparison. We compare methods based on the 8-dimensional benchmark from Section 5.2, where we
used RR, SVR, RF, and XGB as fM to be validated. For comparison, we use the final result obtained from our method, with



Table 5: Comparison of different validation strategies for the 8-dimensional ML benchmark (Section 5) with RR, SVR, RF,
and XGB models. Mean and standard error are shown across 10 runs for the conformal prediction strategies (Split Conf.,
MAD and LVD) and 30 runs for our strategy (Section 4). Predictions are made with Ṽ0.1. Scores for the final sample are
reported for our method. Bold numbers represent the best result.

Benchmark Metric Method
Split Conf. MAD LVD Ours

Michalewicz (8-d)
F1-score [%] 24.9±6.9 44.4±4.1 0.0±0.0 74.5±1.8

Precision [%] 24.9±6.9 90.2±0.9 0.0±0.0 94.0±0.4

Recall [%] 25.0±6.9 33.4±4.3 0.0±0.0 64.8±2.1

Rosenbrock (8-d)
F1-score [%] 24.8±6.9 52.4±4.8 0.0±0.0 64.9±2.4

Precision [%] 24.6±6.8 93.0±0.6 0.0±0.0 98.0±0.2

Recall [%] 25.0±6.9 43.2±5.5 0.0±0.0 53.3±2.5

ψmis and ω = 0.2ξ. Further, we draw uniformly the same number of samples as used by our adaptive approach (480 samples
for 8-d) to calibrate the prediction intervals. We show the average across 10 runs for the conformal prediction strategies and
30 runs with our method (results taken from Table 6) for F1-score, precision, and recall. In Table 5, it can be seen that our
method outperforms the conformal strategies by a large margin across all metrics. Across the conformal methods, MAD
provided the best performance. We found that LVD had issues with the small dataset, leading to infinitely wide prediction
intervals in most cases, as described previously.

D.2 CONCLUSION

Methods for conformal prediction were derived to provide prediction intervals without further assumption of the underlying
distribution. In our setting, we found that the resulting prediction intervals were overly conservative when used for validation,
especially with limited data. Furthermore, LVD provided infinitely wide prediction intervals if not enough samples are
available, which makes the method difficult to use if data is scarce. In contrast, we have seen that our proposed method
can provide accurate valid sets without the need for excessive amounts of samples. The usefulness of conformal prediction
strategies is their wide applicability, where they can be used in the more general setting with heteroscedastic noise, i.e.,
σ2
e may change with x. Future research may extend our proposed approach, since GP models are well capable of handling

heteroscedastic noise, as shown with other active learning strategies [Binois et al., 2018, 2019].

E ADDITIONAL RESULTS

Here, we present additional experimental results complementing the benchmarks shown in Section 5.

E.1 TABULAR DATASET

We show the practical application of our method by extending experiments from Section 5.2 with two real-world tabular
datasets (6-d: ID-4835, 9-d: ID-361083) from OpenML [Vanschoren et al., 2013], containing numerical features. In contrast
to previous experiments, the available data is restricted, i.e., we cannot place adaptive samples at arbitrary x ∈ X̃ (previously
we could query fE which should be observable in practice). Hence, the available data is randomly separated into train Dtrain

(6-d: 621 samples, 9-d: 349100 samples), validation Dval (6-d: 1234 samples, 9-d: 93093 samples), and test sets Dtest (6-d:
1234 samples, 9-d: 139641 samples). Furthermore, if the active learning strategy proposes to query at a position x⋆ we
pick the closest (L2 distance) available sample x′ ∈ Dval in the validation set and return the corresponding observation
y′ ∈ Dval. We compare ψmis,0.2, ψU, and the random sampling baseline.

Results 6-dimensional dataset. Two models have to be validated: a GP model (Matérn5/2 kernel) and a SVR model with
default hyperparameters. The models were trained with Dtrain, which results in a valid ratio of 0.64 for the GP and 0.65 for
the SVR model, with ξ = 0.1. Figure 10 shows median and 95% confidence interval for the F1-score across 20 runs. The
dashed lines represent a reference GP model trained with the complete validation data Dval.
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Figure 10: Median and 95% confidence intervals of F1-score on the 6-dimensional tabular dataset for GP and SVR model
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Figure 11: Median and 95% confidence intervals of F1-score on the 9-dimensional tabular dataset for XGB model and
across 30 runs. Dashed line represents reference model with all available samples from the tabular dataset.

Results 9-dimensional dataset. The model to be validated is a XGB model trained onDtrain with default hyperparameters,
with test R2 ≈ 0.4 and tolerance ξ = 0.4, which gives a valid ratio of 0.78. Due to the computational burden, a sparse
variational Gaussian process regression (SVGP) model [Hensman et al., 2013, Titsias, 2009] is used instead of the GP
(Section 4.3). See Appendix F for the SVGP implementation details.

Figure 11 shows median and 95% confidence interval for the F1-score across 30 runs. Further, we show a reference SVGP
model (dashed lines) with the complete validation data Dval (11636 samples). It can be seen that although random sampling
improves the score faster in the beginning, only ψmis achieves a score close to the reference solution.

E.2 INFLUENCE OF NOISE ON MODEL QUALITY

Noise σ2
e can have a non-neglectable impact on the achievable model accuracy and can lead, if high enough, to identifiability

issues of the underlying limit state. Figure 12 shows the influence of varying noise on the F1-score and the predicted
misclassification probability P̃mis for the 2-dimensional Styblinsky-Tang function. In this experiment, we varied the signal-
to-noise ratio N/S between 0.1% and 50%. The ratio is calculated as N/S = σ2

e/EX∼p(x) [f(X)]
2, where f(·) is the

Styblinsky-Tang function, and p(x) is taken to be uniform. The expectation is numerically evaluated. Furthermore, we
provide the signal to tolerance ratio (N/T = σe/ξ). It can be observed, that in the most extreme case (N/S = 50%), the final
F1-score has decreased on average from 0.95 to 0.58. Note, that this performance decrease is captured by P̃mis.

E.3 INFLUENCE OF TOLERANCE LEVEL

The chosen tolerance level ξ can influence the efficacy of the adaptive strategy and the learned error model f̂D. A stricter
tolerance will most likely result in more invalid regions, making the problem more challenging to model, except in cases
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Figure 13: Varying tolerance levels ξ for the 4-d Styblinsky-Tang function, selected to obtain four valid ratios. Median and
95% confidence intervals are shown.

where everything is invalid, which makes the problem much easier. Note that this is a property inherent to the problem.
Figure 13 shows the results for the 4-d Styblinsky-Tang function with different tolerance levels, selected to obtain four valid
ratios (20%, 40%, 60%, and 80%) for fM. Other settings were kept the same as in Section 5.

E.4 STOPPING CRITERION

We show the results for the misclassification probability P̃mis, proposed in Section 4.5 as a stopping criterion, which we
tracked during experiments in Section 5.2. From this, we evaluate the difference between the misclassification rate calculated
from the test data and our stopping criterion P̃mis based on the trained GP models. Results are shown averaged across 2, 4,
and 8 dimensions in Figure 14. It can be seen that for both AFs, P̃mis tends to be slightly conservative. Similar observations
were made for the original U-function, see [Wang and Shafieezadeh, 2019]. Nevertheless, the stopping criterion provides to
be useful in combination with a maximum sample budget, as it can lead to early stopping if a sufficient number of samples
are obtained.

E.5 LOWER RISK AVERSITY

Complementary results for the benchmark in Section 5.2 using Ṽ0.1 (Equation 7) are given in Table 6. We observe that ψmis

shows overall the highest precision score on average and final score, outperforming ψU and the random baseline. Due to the
more conservative predictions, there is a drop in the recall score for all methods. Differences between the random sampling
baseline and the AFs can be explained by the limited exploration of the AFs in comparison.
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Table 6: Mean and standard error for precision and recall across 30 runs for RR, SVR, RF, and XGB. Predictions are made
with Ṽ0.1. Scores for mean and maximum across samples are reported. Bold numbers represent the best result.

Benchmark Dimension Mean Precision Final Precision
ψmis,0.2 ψU Random ψmis,0.2 ψU Random

Michalewicz
2 98.5±0.1 98.0±0.2 98.2±0.1 99.0±0.2 98.4±0.2 98.8±0.1

4 98.0±0.1 97.8±0.1 97.6±0.1 99.1±0.1 99.0±0.1 98.9±0.1

8 91.9±0.1 91.7±0.2 91.6±0.2 94.0±0.2 93.9±0.3 93.9±0.3

Rosenbrock
2 98.5±0.1 97.8±0.2 98.0±0.2 98.9±0.1 98.3±0.3 98.8±0.1

4 98.1±0.1 97.8±0.1 97.7±0.1 98.1±0.2 98.2±0.1 98.3±0.1

8 97.2±0.1 96.5±0.1 95.7±0.1 98.0±0.1 97.6±0.1 97.2±0.1

Mean Recall Final Recall

Michalewicz
2 69.3±1.8 72.1±2.1 88.8±0.9 75.4±1.0 75.5±2.7 93.1±1.1

4 73.2±0.7 72.2±0.7 77.7±0.6 82.6±1.7 81.1±2.1 85.4±1.1

8 51.3±1.3 42.0±1.1 50.3±0.9 64.8±2.1 52.4±2.4 63.3±1.5

Rosenbrock
2 66.1±1.4 67.2±2.1 88.0±1.2 68.1±1.6 66.1±2.9 93.2±0.5

4 44.4±1.0 49.7±1.0 65.1±1.3 55.4±2.7 57.1±3.4 75.4±2.2

8 38.1±0.7 48.8±0.9 63.5±0.8 53.3±2.3 61.5±2.8 73.7±1.6

F IMPLEMENTATION DETAILS

We now provide further implementation details for our method.

Sampling Strategy. For generating initial and candidate samples, we used a quasi-Monte Carlo sampling strategy based
on LHS. The method is implemented in [Bogoclu et al., 2021], where samples are drawn from X without correlation and
by maximizing pairwise distance. As an alternative, one could use SciPy’s [Virtanen et al., 2020] quasi-Monte Carlo
implementations (e.g., LHS or Sobol sampling). We draw a new set of candidates in each iteration of the adaptive method.

Gaussian Process Model. The GP model used throughout this work is implemented with GPyTorch [Gardner et al.,
2018] and on top of BoTorch [Balandat et al., 2020]. Furthermore, we transformed the inputs of the model to the unit
cube. Output of the model was normalized to be zero mean and unit variance during training, and reversed for prediction.
The GP uses a sum of five kernels: squared exponential, Matèrn 1/2, Matèrn 3/2, Matèrn 5/2, and rational quadratic, where
we placed half-Cauchy priors (σ = 2) on the lengthscales. The reason for using this combination is: 1) the five kernels
provide significant flexibility. 2) The heavy tales of the half-Cauchy prior can disable unused dimensions according to the
principle of automatic relevance determination [MacKay and Neal, 1994]. 3) Our preliminary tests showed that using this
combination provides improved performance, e.g., in contrast to using the Matèrn 3/2, although being more difficult to train.



Table 7: BO search space for hyperparameter optimization.

RR SVR RF XGB
Parameter Distribution Parameter Distribution Parameter Distribution Parameter Distribution

Poly degree Unif. Int. [2, 10] C Unif. [10−4, 100] Num. Estimators Unif. Int [10, 300] Max. depth Log Unif. Int [2, 10]
Alpha Log Unif. [10−6, 100] Epsilon Log Unif. [10−5, 100] Max. depth Log Unif. Int [2, 20] Gamma Log Unif. [10−5, 100]

Gamma Log Unif. [10−5, 1000] Eta Log Unif. [10−5, 0.99]
Lambda Log Unif. [10−5, 1]

Table 8: Number of training samples together with resulting R2 scores of the trained ML models for the benchmark in
Section 5.2.

Test R2

Benchmark Dim. ntrain RR SVR RF XGB

Michalewicz
2 200 0.69 0.89 0.8 0.98
4 600 0.21 0.3 0.63 0.96
8 1000 0.11 0.1 0.31 0.82

Rosenbrock
2 100 0.96 0.87 0.91 0.92
4 200 0.96 0.83 0.74 0.84
8 500 0.95 0.83 0.68 0.84

Otherwise, we used defaults specified in the BoTorch implementation of the SingleTaskGP class. We fit the GP model
using SciPy’s implementation of the L-BFGS-B algorithm [Byrd et al., 1995] with 5 random restarts to maximize the
log-marginal likelihood. If the model is not trained, new observations are incorporated by building a new GP model with
updated data and the same hyperparameters as in the previous iteration (strategies for such are implemented in GPyTorch).

Variational Gaussian Process Model. For the SVGP model we use the implementation from BoTorchwith 500 inducing
points. We apply the same input and output transformations as with the GP implementation. As kernel, we found using
the same five kernels as with GP provides to much overhead with SVGP. Therefore, we restricted the usage to the Matèrn
1/2 kernel. The model is fitted with 3 random restarts by maximizing the evidence lower bound via Adam [Kingma and
Ba, 2015] (learning rate 0.1) combined with early stopping (patience 30) and the cosine annealing learning rate scheduler
[Loshchilov and Hutter, 2017].

G EXPERIMENTAL DETAILS

Here, we present further details on the implementation of the conducted experiments.

G.1 DETAILS BENCHMARK SECTION 5.2

For the benchmark, we trained various ML models (fM) to be validated afterwards. We used RF, SVR, and RR as
implemented in Scikit-learn [Pedregosa et al., 2011]. XGB is implemented based on [Chen and Guestrin, 2016].
Inputs and outputs were normalized to have zero sample mean and unit standard deviation for all models. Number of training
samples and resulting test R2 are given in Table 8.

Hyperparameters. For the Rosebrock benchmark, we used the specified default parameters to a large extend. Only
exceptions are: 1) RR with polynomial features of max. 3th degree with L2 regularization of 0.3 (alpha). 2) RF with 200
trees (num. estimators) with maximum depth of 25. 3) XGB with max. depth of 3. For the Michalewicz function, we found
the need to tune the hyperparameters. Therefore, we used BO implemented in Scikit-optimize [Tim et al., 2021]
based on the cross-validated mean absolute error objective. The hyperparameter searchspace is given in Table 7.



G.2 BENCHMARK FUNCTIONS

This section gives an overview of the analytical functions used throughout this work.

Series System with four branches. [Waarts, 2000]

f(x1, x2) = min


3 + 0.1(x1 − x2)2 − x1+x2√

2

3 + 0.1(x1 − x2)2 + x1+x2√
2

(x1 − x2) + 7√
2

(x2 − x1) + 7√
2

where we used xi ∈ [−8, 8].

Modified Rastrigin Function. [Törn and Zhilinskas, 1989]

f(x1, x2) = 10 +

2∑
i=1

(
x2i − 5 cos 2πxi

)
where we used xi ∈ [−5, 5].

Styblinski-Tang Function. [Styblinski and Tang, 1990]

f(x) = 0.5

d∑
i=1

(
x4i − 16x2i + 5xi

)
where we used xi ∈ [−5, 5].

Michalewicz Function. [Michalewicz, 1992]

f(x) = −
d∑

i=1

sin (xi) sin
20

(
ix2i
π

)
where we used xi ∈ [0, π].

Rosenbrock Function. [Rosenbrock, 1960]

f(x) =

d−1∑
i=1

100 (xi+1 − xi)2 + (xi − 1)
2

where we used xi ∈ [−2, 2].
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