
CodeUpdateArena: Benchmarking Knowledge Editing on API Updates

Anonymous ACL submission

Abstract

Large language models (LLMs) are increas-001
ingly being used to synthesize and reason about002
source code. The libraries and API functions003
they invoke are continuously evolving, with004
functionality being added or changing. Yet, no005
prior work has studied how an LLM’s knowl-006
edge about code API functions can be updated.007
We present CodeUpdateArena, a benchmark008
for knowledge editing in the code domain. An009
instance in our benchmark consists of a syn-010
thetic API function update paired with a pro-011
gram synthesis example that uses the updated012
functionality; our goal is to update an LLM to013
be able to solve this program synthesis example014
without providing documentation of the update015
at inference time. Compared to knowledge edit-016
ing for facts, success here is more challenging:017
a code LLM must reason about the semantics018
of the modified function rather than just repro-019
duce its syntax. Our dataset is constructed by020
first prompting GPT-4 to generate atomic and021
executable function updates. Then, for each022
update, we generate program synthesis exam-023
ples whose code solutions are prone to use the024
update. Our benchmark covers updates of var-025
ious types to 54 functions from seven diverse026
Python packages, with a total of 670 program027
synthesis examples. We establish a suite of028
baselines (prepending, fine-tuning with exam-029
ples, fine-tuning with update documentations),030
paving the way for better knowledge editing031
techniques for code.032

1 Introduction033

Large language models (LLMs) have demonstrated034

strong abilities to synthesize code to solve prob-035

lems (Chen et al., 2021; Li et al., 2023; DeepSeek-036

AI et al., 2024; Guo et al., 2024a). This capability037

enables them to use external libraries: they can038

invoke standard libraries for data science-related039

tasks (Lai et al., 2023), program SMT solvers (Ye040

et al., 2023), or use external modules for tasks041

like computer vision (Gupta and Kembhavi, 2023). 042

However, such APIs are not static and adherence 043

to older APIs can cause failures. For example, in a 044

live demo,1 GPT-4 failed to correctly implement a 045

Discord bot due to outdated API knowledge. To be 046

maximally useful, LLMs for code generation need 047

to stay in sync with API updates, even those that 048

occur after pre-training. 049

A separate line of research studies knowledge 050

editing for LLMs on simple facts. Typical use- 051

cases here are teaching LLMs about new entities 052

(Onoe et al., 2023), updating roles of existing en- 053

tities like who the British prime minister is now 054

(De Cao et al., 2021; Mitchell et al., 2022), and 055

other such temporally-sensitive knowledge (Zhang 056

and Choi, 2021). A number of techniques have 057

been presented for these settings to update the pa- 058

rameters of LLMs, such as with a single gradient 059

update (Mitchell et al., 2022; Meng et al., 2023) 060

or with a small number of updates (De Cao et al., 061

2021; Meng et al., 2022; Padmanabhan et al., 2023; 062

Akyürek et al., 2024; Chen et al., 2023). 063

These studies suggest a natural parallel in the 064

code setting: can we update a pre-trained 065

model’s knowledge of an API? In this work, we 066

construct a benchmark to evaluate this capability. 067

Our benchmark instances, shown in Figure 1, con- 068

sist of a problem setting defined by a synthetic 069

API update, such as an additional boolean flag in 070

a function like numpy.argsort. We choose syn- 071

thetic updates, as information about any real API 072

function update will likely be used as a pre-training 073

corpus by the next generation of pre-trained mod- 074

els. Then, for each function update, we have a 075

number of program synthesis problems requiring 076

the use of that update. Although there are solutions 077

that do not use the update, the most parsimonious 078

solutions do use the API functionality in question, 079

and models are prompted to do so. 080

1https://youtu.be/outcGtbnMuQ?t=789

1

https://youtu.be/outcGtbnMuQ?t=789

[Scenario] You are building a software for an online auction site…

[Problem] Create a function that returns the indices of the bidders in the
order of their bids, with the highest bidder first…

[Solution]
def auction_bid_ordering(bids: List[int]) -> List[int]:
[...]
np.argsort(bids, reverse=True)
[...]

[Unit tests]: test case 1, test case 2, …

[Update] numpy.argsort(a, axis=-1, kind=None, order=None, reverse=False)	

[Description]
Adding a new argument 'reverse' which reverses the sorted indices if set to True.",

[Docstring]
A new parameter 'reverse' (default False) for optionally reversing the order. If set to True…

CodeUpdate: Synthetic API updates

Arena: Program synthesis problems using updated API

[Original API] numpy.argsort(a, axis=-1, kind=None, order=None)

1. Update LLM parameters to edit their  
 knowledge about the API usage.

...

Pass rate Specificity
Scores

editing

MBase LLM Edited LLM M(f←u)

add-argument

2. Evaluate whether edited LLMs can apply the 
 updated API on program synthesis problems.

Figure 1: CodeUpdateArena overview. We generate synthetic API updates, and then evaluate whether an edited
model can successfully apply the updated API on a targeted program synthesis instance.

Our evaluation assesses whether LLMs can, af-081

ter being updated on the synthetic API function082

update (docstring, example usage, etc.), solve these083

program synthesis examples using the given API084

function without being provided the update at in-085

ference time.086

Our final benchmark, CodeUpdateArena, con-087

tains 670 program synthesis tasks, covering 54088

functions from 7 Python packages. Our benchmark089

is synthetically constructed by a carefully designed090

data generation pipeline driven by GPT-4, enabling091

it to be scaled or updated with new instances in092

the future. We manually filter our generated API093

updates and conduct a number of additional intrin-094

sic evaluations of dataset quality to establish the095

correctness of dataset instances.096

We focus on how existing small-scale LLMs097

(e.g., CodeLlama (Rozière et al., 2023)) perform098

at this update setting when combined with exist-099

ing knowledge updating techniques. GPT-4 and100

Claude-3.5 are able to solve program synthesis ex-101

amples when prompted with the API update in con-102

text, with Claude-3.5 outperforming GPT-4 on its103

own generated data. We then present two intuitive104

baselines for how practitioners would utilize API105

update information. The first method, fine-tuning106

models on a docstring explaining the update does107

not improve performance. However, fine-tuning on108

examples of the update being used does lead to im-109

provement, and even outperforms having the API110

update in context. Through our ablation study, we111

found that the mix of training examples and learn-112

ing rate are important for successful fine-tuning, 113

but there is a tradeoff between efficacy and speci- 114

ficity of the update (impact on unrelated settings). 115

We believe our dataset can provide a testbed for 116

developing better methods for code knowledge edit- 117

ing in the future. Our anonymous code can be 118

found at ©. 119

2 Background and Related Work 120

Knowledge editing Knowledge editing involves 121

updating a pre-trained model’s parameters to con- 122

tain additional knowledge that was not present in 123

its pre-training corpus. Suppose we have a model 124

M and let (c, u) denote the additional knowledge u 125

that should be returned in context c. Past work has 126

focused on finding a modelM′ such thatM′ ≈M 127

andM′(c) returns u with high probability. For in- 128

stance, suppose c = “the prime minister of the UK 129

is” and u = “Rishi Sunak”; we want to update the 130

model’s knowledge about the UK’s prime minister 131

with as little change to other facts (e.g. Eiffel tower 132

is in Rome) as possible. 133

Prior work quantifies model editing success 134

by measuring whether M′ can return u when 135

prompted with c. A second goal is to preserve 136

the originalM as closely as possible, measured by 137

ensuring that the model’s predictions on irrelevant 138

contexts are not changed. The knowledge editing 139

techniques include gradient updates (De Cao et al., 140

2021), including meta-learned updates (Mitchell 141

et al., 2022), localized updates leveraging inter- 142

pretability methods (Meng et al., 2022), and up- 143

2

https://anonymous.4open.science/r/CodeUpdateArena-EE3C

dates on a collection of related examples (Padman-144

abhan et al., 2023; Akyürek et al., 2024).145

A third goal involves knowledge propagation146

(Onoe et al., 2023; Padmanabhan et al., 2023; Co-147

hen et al., 2024; Powell et al., 2024; Zhong et al.,148

2023), where an LLM must be able to reason about149

the injected knowledge in contexts that may seem150

unrelated on the surface. However, current litera-151

ture has many negative results for this setting (Co-152

hen et al., 2024; Hua et al., 2024). Our benchmark153

will allow us to evaluate the state of affairs in the154

code setting, and whether functional competence155

around code updates is more easily obtained than156

functional competence around textual knowledge.157

Updates in Source Code Despite a large body158

of work on knowledge editing (Wang et al., 2023),159

past work in this space has not explored the ram-160

ifications for code language models. Rather than161

just reproduce an update like in knowledge edit-162

ing settings (e.g. be able to generate Python 3.12163

has lifted restrictions on the usage of f-strings), a164

user would likely expect a code LLM to be able to165

generate, debug, or otherwise reason about code166

containing these updates.167

To the best of our knowledge, existing bench-168

marks mainly focus on general coding capabilities169

of LLMs rather than their capability in dealing170

with API updates or historical versions existent171

in pretraining corpus. Although some recent re-172

search has also explored providing documentations173

of functions (or tools) (Zhou et al., 2022; Su et al.,174

2024; Zhang et al., 2023b; Hsieh et al., 2023) and175

code snippets (Su et al., 2024; Zhang et al., 2023a;176

Phan et al., 2024; Shrivastava et al., 2022) to LLMs177

in a retrieval-augmented framework (Chen et al.,178

2017; Guu et al., 2020; Lewis et al., 2020), our179

main focus is on enabling LLMs to internalize this180

knowledge in an update (in-weight) and propagate181

it during program synthesis as opposed to using it182

in-context. Therefore, our work also relates to more183

general program synthesis using LLMs (Austin184

et al., 2021), especially those on developing bench-185

marks (Chen et al., 2021; Liu et al., 2023, 2024;186

Gu et al., 2024; Jimenez et al., 2024; Ding et al.,187

2023; Du et al., 2023; Guo et al., 2024b; Xie et al.,188

2024; Lai et al., 2023).189

Defining an update taxonomy The goal of this190

work is to assess models’ abilities to be updated191

with realistic changes to functions in APIs. Most192

of the time when new functionality is introduced,193

the update extends existing methods in an atomic194

way. For example, a new sorting algorithm is sup- 195

ported for argument kind in numpy.argsort. To 196

systematically capture different types of updates, 197

we create a taxonomy for function updates, cap- 198

turing what operation (add/modify/delete) is used 199

to update what component (function/argument/out- 200

put) in what way. 201

3 Task: CodeUpdateArena 202

We define f ← u to be the update made to an exist- 203

ing function f when providing it with new seman- 204

tics u. Our task involves understanding whether 205

a pretrained code language modelM can be up- 206

dated with f ← u. We assume that some kind of 207

parametric update is made to yield a new model 208

M(f←u); this can be done via various fine-tuning 209

methods that have been proposed for knowledge 210

editing. We will describe exactly how u is con- 211

veyed to the language model in Section 5.1; here, 212

we focus on what capabilities we want the updated 213

modelM(f←u) to exhibit. 214

To evaluate M(f←u), we provide a set of
program synthesis examples P(f←u). Each
program synthesis example consists of a prob-
lem scenario si, a problem specification pi,
and a set of T unit test cases T (f←u)

i =
{(ti,1, ai,1), (ti,2, ai,2), · · · (ti,T , ai,T)}.

P(f←u) :=
{(

si, pi, T (f←u)
i

)}T

i=1

Each example scenario and specification is re- 215

lated to the updated semantics u. Let c̃i ← 216

M(f←u)(si, pi) denote the result of predicting a 217

code solution to problem i for update u. We want 218

to evaluate M(f←u) for three broad capabilities: 219

(1) edit success: ∀j, c̃i(ti,j) = aj (the update 220

passes all test cases); (2) use of f : c̃i contains a 221

call to the updated function f ; (3) specificity: the 222

update minimally changes the language model. See 223

examples in Figure A.1. 224

Measuring whether samples from a code LLM 225

pass test cases is typically done with pass@k (Chen 226

et al., 2021). Drawing k samples from an LLM, 227

what is the probability that one of those samples 228

passes the test cases? This can be computed ana- 229

lytically without bias by drawing n > k samples, 230

observing what number c of those samples pass the 231

test cases, and using the formula from (Chen et al., 232

2021) (reproduced in Appendix D). In this work, 233

we set n = 5 and k ∈ {1, 2, 5}. 234

3

UPass@k Our main evaluation metric captures235

both edit success and use of f . We define UPass@k236

as the standard pass@k except that it only counts237

solutions that meaningfully use the updated func-238

tion as “correct”.239

We run a solution against test cases with different240

function implementations at runtime:241

a) when executing with the updated function in242

the environment, the solution must pass all243

tests.244

b) when executing with the old function in the245

environment, the solution must fail some tests.246

Details of how to do this execution are described247

in Appendix D. The first check is the standard one248

used in pass@k. This second check ensures that the249

new functionality of f is leveraged in a nontrivial250

way. Detecting a call to f is insufficient; if, for251

example, the update provides a new argument, we252

want the model to use that new argument rather253

than use f in its pre-update form.254

Our program synthesis examples are designed to255

be naturally suited to the updated function f ← u.256

It is, of course, possible for a code LLM to produce257

a solution that passes the tests but sidesteps the258

usage of f altogether; however, in Section 5, we259

will see that prompted GPT-4 frequently does use260

the update in successful solutions.261

SPass@k captures how well the update is specific262

in that model’s other capabilities are not affected263

(specificity) before (M) and after (M(f←u)) inject-264

ing each update. We discuss details in Section 5.1.265

4 Update and Arena Generation266

We generate our data by prompting GPT-4 (Achiam267

et al., 2023) to instantiate our proposed task268

CodeUpdateArena, following recent work on gen-269

erating synthetic datasets for complex tasks with270

LLMs (Sprague et al., 2024; Lee et al., 2024; Tang271

et al., 2024; Yehudai et al., 2024; Oh et al., 2024;272

Zhao et al., 2024). Each data instance requires273

an update semantics u and program synthesis ex-274

amples P(f←u) to evaluate the integration of the275

updates. We first generate the update semantics276

(described in Section 4.1) and generate program277

synthesis examples (Section 4.2). The output from278

each generation step is validated through manual279

inspection and heuristics. Figure 2 outlines our280

generation process.281

4.1 Update (new API function) Generation 282

Step 1: Generate update specification u Given 283

an update type (e.g., add new argument) and a func- 284

tion f (e.g., numpy.argsort), we generate an up- 285

date u consisting of four pieces: 286

• a description of the update: e.g., adding a new 287

boolean argument ‘reverse’, which controls 288

whether the sorting is descending or ascend- 289

ing. 290

• the new function signature: e.g., 291

numpy.argsort(..., reverse=False) 292

• a docstring describing expected new behavior 293

• the rationale behind this update 294

See Appendix B.5 for the details of the prompt. 295

Notably, we generate the update providing the 296

model only the function path and the function’s 297

docstring, obtained from the importlib library. 298

See more details in Appendix B.1. 299

Step 2: Generate a suite of unit tests Once the 300

description of the update is available, we create 301

a set of unit tests to verify the correctness of the 302

updated function f ← u. 303

To make the tests comprehensive, we ask GPT-4 304

to generate 10 unit test functions, testing edge cases 305

(e.g., empty input) and interaction with existing 306

arguments (e.g. reverse=True and axis=1). 307

See Appendix B.5 for the details of the prompt. 308

We first generate unit test “skeletons”, unit test 309

function with initialization of the input. Fig. 2 310

shows an example. Each skeleton takes the format 311

of a unit test function with two placeholders — 312

@ANSWER@ for answer and @ASSERT@ for assertion. 313

Given a unit test skeleton, GPT-4 generates the 314

answer and assertion statement(s). The details of 315

answer and assertion generation can be found in 316

Appendix B.2. 317

Step 3: Generate an updated function f ← u 318

We now prompt GPT4 to generate the source code 319

for the updated function f ← u given the function 320

f and update specification u. We prompt using 321

the original function implementation (e.g. origi- 322

nal argsort) to implement the new version. This 323

typically involves an implementation that wraps 324

the original version of the function; for instance, 325

if a new boolean flag is added, call the function 326

normally in one case and otherwise call it with a 327

transformed input or output. 328

We validate the generated function with unit tests 329

from the previous step. Specifically, we accept the 330

4

Implementation

Implementation

 For each test:

Update Generation

Arena Generation

Step 1: Specific Update Generation

DocString: …a new argument `reverse` is added… If
True, sort in descending order…along `axis`… If False,…

numpy.argsort(a, axis=-1, kind=None, order=None, reverse=False)

Description: Adding a new argument 'reverse' which
reverses the sorted indices if set to True.",

Based on [API function], generate an update
for [Update type] …

Step 3: Update Implementation Generation

def argsort(a, ..., reverse=False):
 if reverse:
 return old_argsort(-a,...)
 else:
 return old_argsort(a,...)

Given: [DocString, Description, Unit Tests]
Now generate an implementation for [Signature]

API function: numpy.argsort: Sort an array […]  
Update type: add-argument: Add a new argument to the function

Unit Test 1
def test_reverse_true():
 array = np.random.rand(5)
 result = np.argsort(array,
 reverse=True)
 # @ANSWER@
 # @ASSERT@
Unit Test 2
def test_reverse_true():
...

- # @ANSWER@
+ expected_result = old_argsort(-array)

- # @ASSERT@
+ assert np.equal(result, expected_result)

Unit Test 1
def test_reverse_true():
 array = np.random.rand(5)
 result = np.argsort(array,
 reverse=True)
 expected_result = old_argsort(-array)
 assert np.equal(result, expected_result)

Step 1: Problem Specification Generation
Based on this function and [Rationale], generate a
problem setting and specification requiring it…

Scenario: You are building a software for an online
auction site…

Problem: Create a function that returns the indices of
the bidders in the order of their bids, with the highest
bidder first…

Step 3: Reference Solution Generation

def auction_bid_ordering(bids: List[int]) -> List[int]:
[...]
bids_big_to_small = np.argsort(bids, reverse=True)
[...]

Rationale: …avoid additional operation…less error-
prone…better readability…

Given: [Scenario, Unit Tests]
Now generate an solution for [Problem]

Now generate code to produce the
expected answer

Given: [DocString, Signature, Description]
Generate unit tests… use argsort by old_argsort …

Now generate an assert statement…

Final test:

Step 2: Unit test generation (shared)

Generates:

Func Signature

Generates:

Generates:

Execute against tests,
keep if passes 70%+

Execute against tests,
keep if passes 60%+

Unit Test 1

...

Unit Test 10

Unit Test 1

...

Unit Test 10

Specific Update

Specific Update:
[Func Signature] 
[Description] 
[DocString] 
[New implementation]

[Rationale]

Arena (Program
Synthesis):
[Scenario] 
[Problem] 
[Implementation] 
[Unit Tests]…

Figure 2: Overview of CodeUpdateArena generation pipeline. We first generate a spec for an update, unit tests
for an update, and then the update’s implementation. To generate program synthesis examples, we take an update,
generate a problem specification, tests, and then a reference solution.

updated function if (1) it passes 70% of unit tests331

and (2) it passes more unit tests than the origi-332

nal implementation.2 To improve the coverage, we333

sample up to three implementations if earlier imple-334

mentation does not satisfy two criteria above. After335

this process, on average, around 41% of update336

specifications are paired with an updated function337

implementation. The rest are discarded.338

Step 4: Filtering and deduplication Lastly, to339

verify the quality of generated data, the authors of340

this paper manually examine the update specifica-341

tions and filter duplicates and trivial update spec-342

ifications (e.g., change the return type from list343

to tuple). This process removes roughly 53% of344

examples on average, and the filtering percentage345

differs per package. We also filter update specifi-346

cations for which we could not generate at least 3347

valid program synthesis examples (37% of update348

specifications), as described in the next section.349

4.2 Arena (Program Synthesis Examples)350

Generation351

Having generated update semantics u and the up-352

dated function implementation f ← u, we now353

generate program synthesis (PS) examples; see354

bottom half of Figure 2 and more details in Ap-355

pendix B.6.356

2When a small number of unit tests are failed, they are
often incorrect unit tests.

Step 1: Problem specification Given the update 357

rationale generated as a part of update specification 358

u, GPT4 generates: (1) a scenario si that a problem 359

is situated in; (2) the problem specification pi that a 360

solution function is mean to fulfill; and (3) the solu- 361

tion’s function signature, according to the problem 362

specification. See an example at Appendix A.2. 363

Step 2: Unit tests We then generate a set of unit 364

tests meant to test that the solution to the program 365

synthesis example is correct. Note that these do not 366

necessarily depend on the update, but only on the 367

specification of the problem from Step 1; they do 368

not test whether the function is used. 369

We allow GPT-4 to include updated function 370

in its generation, in contrast with update genera- 371

tion, where GPT-4 could only call the old function 372

through old_[function name]. Other than the 373

difference above, the generation process is identi- 374

cal to Step 2 in update generation. 375

Step 3: Reference Solution The prompt in- 376

structs GPT-4 to solve the problem by using the 377

new function as part of its solution. This helps 378

to ensure that there exists a solution that uses the 379

updated function. We define a threshold δ = 0.6 380

of a fraction of tests that the implementation must 381

pass in order to be included in the benchmark. We 382

found this quality bar to be high enough given the 383

presence of bad tests, which we discard next. 384

5

Package pass@5 Count

itertools 75.6 45
math 89.0 182
numpy 85.8 141
pandas 87.1 93
re 75.8 91
sympy 91.7 12
torch 86.8 106

Average 85.1 −

Table 1: Solvability check: When given the update in-
context, GPT-4’s pass@5 scores on our benchmark are
high, indicating that the examples are solvable. These
results are not comparable to our main results since no
parametric update is happening.

Error Category Count

Incomplete Solution 29
Wrong Solution 33
Wrong Test Case 13
Specification Error 2

Table 2: Manual categorization of 66 failures cases of
GPT-4 on program synthesis examples. Categories are
not exclusive.

Step 4: Filtering and Deduplication Finally, we385

implement several filters of low-quality examples.386

First, we discard unit tests that generated solution387

doesn’t pass, as well as unit tests checking for ex-388

ceptions (try/catch behavior). Our inspection of389

these cases showed that failed unit tests are almost390

invariably incorrect while the generated reference391

solutions are correct. Second, for each update, we392

remove program synthesis cases for which refer-393

ence solutions are too similar, to avoid GPT-4 gen-394

erating essentially similar solutions. Example of395

duplicate reference function in Figure 9. See more396

detailed description at Appendix B.3397

Step 5: Literalize answers in unit tests During398

generation, many unit tests initially rely on calling399

updated APIs themselves to produce the correct400

answer to the test programmatically. However, this401

causes unintended failures in the unit tests when402

running the old API updates in the environment,403

leading to false positives for UPass@k even when404

the synthesis code does not use the new function.405

We “literalize” the unit tests to remove these us-406

ages of the API; we provide more details in Ap-407

pendix B.4.408

Dataset quality check We verify that the gener-409

ated program synthesis examples are solvable; we410

achieve this by prompting GPT-4 with a lightweight411

prompt including the update to predict solutions.412

In Table 1, around 85% of these pass the tests, in-413

dicating that a correct solution does exist. We do 414

not check for correct use of the update, but assume 415

that this implies a correct implementation that uses 416

the update exists as well. For the remaining 15%, 417

we manually investigated failure cases and report 418

them in Table 2. See details in Appendix C.1 for 419

dataset characterization and further quality check 420

such as test coverage. 421

5 Experiments 422

5.1 Experimental Setting 423

Base LLMs We tested two proprietary mod- 424

els for our prepending experiment: GPT-4 425

(gpt-4-0613) (Achiam et al., 2023) and Claude- 426

3.5 (claude-3-5-sonnet-20240620) (Anthropic, 427

2024). For fine-tuning experiments, we consider 428

three open-source code LLMs that are instruction- 429

tuned: CodeLlama (7B-sized; Rozière et al. 430

(2023)), DS-Coder-v1 (6.7B), and DS-Coder-v1.5 431

(7B; Guo et al. (2024a)). 432

Evaluation Scenario We evaluate approaches in 433

the single-edit scenario, where we inject one update 434

at a time about a single API. For measuring efficacy 435

(UPass), we consider whether the predicted solu- 436

tion passes all the unit tests with the updated API 437

but fails to do so with the old API (see Section 3 438

and Appendix D). To measure specificity (SPass), 439

we measure the change in model performance on 440

a random sample of 82 HumanEval (Chen et al., 441

2021) instances across 25 random single edits. 442

Knowledge Editing Approaches 443

• Prepend In this setting, we simply prepend 444

the function update’s docstring in-context at in- 445

ference time (see Prompt E.3). This represents 446

a retrieval-augmented (RAG) setting (Su et al., 447

2024; Zhou et al., 2022), which leads to higher 448

inference cost and does not represent model up- 449

dates. This is not considered a knowledge editing 450

approach but establishes the performance of an 451

effective alternative method (Onoe et al., 2023; 452

Padmanabhan et al., 2023). 453

• Fine-tune on update information: FT (U) In 454

this setting, we conduct continued pretraining 455

on the docstring describing the new behavior 456

(Gururangan et al., 2020). This setting captures 457

the scenario where the package designer provides 458

a release note about the updated API function 459

while no examples of the function being used are 460

available. 461

6

UPass (Efficacy) ↑ SPass (Specificity) ↑ Pass with updated API ↑
Base Model Approach @1 (∆) @5 (∆) @1 (∆) @5 (∆) @1 (∆) @5 (∆)

GPT-4 Base Model 2.7 5.7 – – 54.1 74.5
Prepend 34.1∗

+31.4 57.0∗
+51.3 – – 63.9∗

+9.7 83.0∗
+8.5

Claude-3.5 Base Model 2.9 3.6 – – 51.8 61.0
Prepend 58.7∗

+55.9 71.9∗
+68.4 – – 68.4∗

+16.6 77.2∗
+16.1

CODELLAMA

Base Model 4.4 7.6 39.8 50.0 28.4 39.4
Prepend 6.7∗

+2.4 10.6∗
+3.0 – – 32.0∗

+3.6 44.6∗
+5.2

FT (U) 4.3 −0.1 7.3 −0.3 28.8∗
−10.9 45.9∗

−4.1 28.0 −0.4 40.9 +1.5
FT (PS) 22.9∗

+18.6 37.6∗
+30.0 17.0∗

−22.8 37.1∗
−12.9 28.6 +0.1 45.7∗

+6.3

DS-CODER-V1

Base Model 2.9 5.2 49.3 79.3 30.3 46.6
Prepend 10.3∗

+7.5 19.6∗
+14.3 – – 35.1∗

+4.8 53.4∗
+6.9

FT (U) 3.1 +0.3 6.1 +0.9 40.0∗
−9.2 74.0∗

−5.2 33.5∗
+3.2 51.6∗

+5.1
FT (PS) 27.7∗

+24.8 44.0∗
+38.8 52.5∗

+3.3 78.4 −0.8 38.3∗
+7.9 58.7∗

+12.1

DS-CODER-V1.5

Base Model 3.2 6.4 67.1 79.3 46.8 64.3
Prepend 11.8∗

+8.6 22.1∗
+15.7 – – 50.9∗

+4.1 70.7∗
+6.4

FT (U) 3.6 +0.4 7.0 +0.6 56.4∗
−10.7 77.3∗

−2.0 47.0 +0.2 65.4 +1.0
FT (PS) 29.4∗

+26.2 47.2∗
+40.7 37.3∗

−29.8 61.2∗
−18.0 38.7∗

−8.1 61.3 −3.0

Table 3: Knowledge editing results on CodeUpdateArena. ∗: comparing against the base model, the gap is
significant according to a paired bootstrap test with p < 0.05.

10

20

30

Pa
ss

@
1

Efficacy

10 6 10 5 10 4 10 3

Learning Rate

40

50

60

Pa
ss

@
1

Specificity

Model
DS-Coder-v1
DS-Coder-v1.5

Baseline
FT (PS)

Prepend
Base

Figure 3: Sensitivity test on learning rate. Sensitivity
for specificity is model-specific and may have trade-offs
with efficacy. A large enough learning rate (e.g. 1e-3)
is required to outperform the prepend setting.

• Fine-tune on program synthesis examples: FT462

(PS) In this setting, we conduct supervised463

finetuning on the program synthesis examples,464

informing LLM how the new functions should be465

used. Such program synthesis examples can be466

collected from the API documentation, cutting-467

edge repositories, or generated to update code468

LLMs. To implement this, we select Nu exam-469

ples demonstrating the target update and repeat470

them c times, combined with Nr examples from 471

r random updates in the rest of our dataset. We 472

found adding such random examples improves 473

the performance, potentially because it helps the 474

model learn the update style and retain informa- 475

tion about existing functions. In this work, Nu 476

is fixed to be 2 because many updates only have 477

3 examples; we adopt a cross-validation scheme 478

for evaluation. See more description on eval- 479

uation in Appendix E.4. We provide detailed 480

ablation for our design choices in Section 5.3. 481

Training Details We use LoRA for all finetun- 482

ing experiments (Hu et al., 2022). We choose our 483

learning rate of 1e-3 from 1e-8 to 1e-2 on a subset 484

of our data to balance UPass and SPass. See more 485

details for experiments configuration and prompt 486

for training and testing in Appendix E. 487

5.2 Results and discussions 488

We present the experimental results in Table 3. All 489

of the open-source models perform worse than pro- 490

prietary models in the Prepend setting. GPT-4 and 491

Claude-3.5 both achieve high performance. Inter- 492

estingly, Claude-3.5 outperforms GPT-4 despite 493

GPT-4 having been used to generate the dataset; 494

this suggests that GPT-4 is not strongly favored on 495

this benchmark beyond other frontier models. 496

Similar to the results in entity knowledge editing 497

(Onoe et al., 2023), continuing training on update 498

information (FT (U)) does not improve efficacy and 499

hurts specificity. On the other hand, training the 500

model on program synthesis examples (FT (PS)) 501

works well, outperforming the prepend setting (See 502

7

Table 3). We observe that, except on DS-Coder-503

v1, the open models suffer a large drop in perfor-504

mance on specificity. This means that although our505

method can use the updated API to solve down-506

stream tasks better than other baselines, retaining507

performance and avoiding catastrophic forgetting508

remains a key challenge.509

Our results echo with prior work in that training510

models to regurgitate the injected knowledge does511

not help models to pragmatically use the knowl-512

edge for downstream tasks (Zhong et al., 2023) or513

update the status of related knowledge (Cohen et al.,514

2024; Jiang et al., 2024; Allen-Zhu and Li, 2024).515

In contrast, providing models with a more direct516

training signal like in our FT (PS) baseline or re-517

lated context (Padmanabhan et al., 2023; Akyürek518

et al., 2024) helps with knowledge propagation and519

utilizing the knowledge pragmatically.520

In the following section, we will conduct an ab-521

lation study on our methods to understand the im-522

portance of different design choices of our methods523

across different injected models.524

5.3 Ablation Study525

Our method FT (PS) serves as a starting point for526

future editing methods on our dataset to build on.527

In this section, we study its design choices and528

demonstrate the difficulties and the trade-offs to529

achieve efficacy and specificity at the same time.530

For efficiency, we follow the same evaluation pro-531

cedure as Table 3 and but only use 1 random pro-532

gram synthesis example per update (in total, 161)533

to calculate efficacy.534

Different models have different sensitivity to535

learning rates Efficacy and specificity often536

show tradeoffs. We vary the learning rate and537

plot these in Figure 3 to better understand this538

relationship. We observe that DS-Coder-v1 and539

DS-Coder-v1.5 have different sensitivities to the540

learning rate. First, knowledge injection, even with541

a learning rate as small as 1e-6, greatly harms DS-542

Coder-v1.5’s performance on HumanEval whereas543

DS-Coder-v1’s performance on HumanEval is kept544

unharmed. Secondly, both models start to out-545

perform the prepend setting with a learning rate546

greater than 1e-4. Furthermore, as the learning rate547

increases, the specificity and efficacy of DS-Coder-548

v1.5 exhibit a clear tradeoff — when the learning549

rate increases beyond 1e-4, DS-Coder-v1.5 under-550

goes a large increase in efficacy and decrease in551

specificity. In contrast, DS-Coder-v1’s efficacy in-552

creases even with an improvement in specificity. 553

We verify the gap from the Base model by a paired 554

bootstrap test with p < 0.05. However, we do 555

not observe this increase in both metrics in general 556

(e.g., Figure 12). We believe future work needs to 557

investigate the cause of such differences and take 558

them into account when designing new algorithms. 559

Impact of training data for FT (PS) In our main 560

experiment, the training set consists of c = 2 copies 561

of Nu examples from target update and Nr = 2 562

examples from r = 1 random updates.3 In this sec- 563

tion, we investigated how the construct of training 564

data affects knowledge injection, by changing the 565

values of c and r while fixing c+ r. 566

Having the target update is important: when we 567

train the model on only program synthesis exam- 568

ples from random updates, Tables 10 and 9 show 569

little or negative gain from learning only the task 570

format. However, the random synthesis examples 571

also matter: when we exclude them, the perfor- 572

mance decreases as well, although to a less extent 573

(see Table 9). 574

In a more complete hyperparameter sweep, we 575

found that repeating the examples from target up- 576

date twice (c = 2) is generally the optimal hyper- 577

parameter, beyond which we observe diminishing 578

gains in efficacy and drops in specificity. Second, 579

although different models have different optimal 580

values, we found that larger number of random 581

updates r will continue to decrease models’ perfor- 582

mances for efficacy and specificity. This is a differ- 583

ent observation from prior work (Gangadhar and 584

Stratos, 2024). See more details in Appendix E.5. 585

6 Conclusion 586

In this paper, we presented CodeUpdateArena, a 587

benchmark of API updates and corresponding pro- 588

gram synthesis examples. We demonstrated that 589

our approach to synthesizing these leads to high- 590

quality examples. Across three LLMs, we conduct 591

experiments for two simple baselines. One of the 592

baselines greatly outperforms prepending update 593

information in context, which is different from ob- 594

servation from knowledge editing in entity-driven 595

scenarios. We further conducted a comprehensive 596

ablation study to inform future exploration. We 597

hope our initial exploration could spur future work 598

to develop new knowledge updating methods for 599

code LLMs to benchmark on this setting. 600

3We take a pair of unique program synthesis examples
from each r random updates

8

Limitations601

One limitation of CodeUpdateArena is that certain602

APIs are difficult to test with our dataset synthesis603

framework. For instance, it is difficult to gener-604

ate unit tests for machine learning APIs, and can605

be very involved to generate tests if a significant606

setup is needed (e.g., a mock web server backend).607

Furthermore, our focus on synthetic API updates608

is necessary to avoid data contamination, but at609

the same time decreases the realism of our dataset.610

It would be ideal to have real software engineers611

annotate these kinds of updates at scale, but in pre-612

liminary experiments, we found it very difficult to613

come up with creative and realistic updates. Finally,614

our examples are restricted to Python and English-615

language descriptions; we believe a multilingual616

version of the benchmark (both human languages617

and code languages) would be useful.618

References619

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama620
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,621
Diogo Almeida, Janko Altenschmidt, Sam Altman,622
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.623
arXiv preprint arXiv:2303.08774.624

Afra Feyza Akyürek, Ekin Akyürek, Leshem Choshen,625
Derry Wijaya, and Jacob Andreas. 2024. Deduc-626
tive closure training of language models for coher-627
ence, accuracy, and updatability. arXiv preprint628
arXiv:2401.08574.629

Zeyuan Allen-Zhu and Yuanzhi Li. 2024. Physics of630
language models: Part 3.1, knowledge storage and631
extraction. In Forty-first International Conference on632
Machine Learning, ICML 2024, Vienna, Austria, July633
21-27, 2024. OpenReview.net.634

Anthropic. 2024. Claude 3.5 sonnet.635

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten636
Bosma, Henryk Michalewski, David Dohan, Ellen637
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.638
Program synthesis with large language models. arXiv639
preprint arXiv:2108.07732.640

Danqi Chen, Adam Fisch, Jason Weston, and Antoine641
Bordes. 2017. Reading Wikipedia to answer open-642
domain questions. In Association for Computational643
Linguistics (ACL).644

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming645
Yuan, Henrique Ponde, Jared Kaplan, Harrison Ed-646
wards, Yura Burda, Nicholas Joseph, Greg Brockman,647
Alex Ray, Raul Puri, Gretchen Krueger, Michael648
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,649
Brooke Chan, Scott Gray, Nick Ryder, Mikhail650

Pavlov, Alethea Power, Lukasz Kaiser, Moham- 651
mad Bavarian, Clemens Winter, Philippe Tillet, Fe- 652
lipe Petroski Such, David W. Cummings, Matthias 653
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel 654
Herbert-Voss, William H. Guss, Alex Nichol, Igor 655
Babuschkin, Suchir Balaji, Shantanu Jain, Andrew 656
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan 657
Morikawa, Alec Radford, Matthew M. Knight, Miles 658
Brundage, Mira Murati, Katie Mayer, Peter Welinder, 659
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 660
Sutskever, and Wojciech Zaremba. 2021. Evaluat- 661
ing large language models trained on code. ArXiv, 662
abs/2107.03374. 663

Zeming Chen, Gail Weiss, Eric Mitchell, Asli Celiky- 664
ilmaz, and Antoine Bosselut. 2023. RECKONING: 665
Reasoning through dynamic knowledge encoding. 666
In Thirty-seventh Conference on Neural Information 667
Processing Systems. 668

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson, 669
and Mor Geva. 2024. Evaluating the ripple effects 670
of knowledge editing in language models. Transac- 671
tions of the Association for Computational Linguis- 672
tics, 12:283–298. 673

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit- 674
ing factual knowledge in language models. In Pro- 675
ceedings of the 2021 Conference on Empirical Meth- 676
ods in Natural Language Processing, pages 6491– 677
6506, Online and Punta Cana, Dominican Republic. 678
Association for Computational Linguistics. 679

DeepSeek-AI, :, Xiao Bi, Deli Chen, Guanting 680
Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, 681
Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu, 682
Huazuo Gao, Kaige Gao, Wenjun Gao, Ruiqi Ge, 683
Kang Guan, Daya Guo, Jianzhong Guo, Guangbo 684
Hao, Zhewen Hao, Ying He, Wenjie Hu, Panpan 685
Huang, Erhang Li, Guowei Li, Jiashi Li, Yao Li, 686
Y. K. Li, Wenfeng Liang, Fangyun Lin, A. X. Liu, 687
Bo Liu, Wen Liu, Xiaodong Liu, Xin Liu, Yiyuan 688
Liu, Haoyu Lu, Shanghao Lu, Fuli Luo, Shirong Ma, 689
Xiaotao Nie, Tian Pei, Yishi Piao, Junjie Qiu, Hui Qu, 690
Tongzheng Ren, Zehui Ren, Chong Ruan, Zhangli 691
Sha, Zhihong Shao, Junxiao Song, Xuecheng Su, 692
Jingxiang Sun, Yaofeng Sun, Minghui Tang, Bingx- 693
uan Wang, Peiyi Wang, Shiyu Wang, Yaohui Wang, 694
Yongji Wang, Tong Wu, Y. Wu, Xin Xie, Zhenda Xie, 695
Ziwei Xie, Yiliang Xiong, Hanwei Xu, R. X. Xu, Yan- 696
hong Xu, Dejian Yang, Yuxiang You, Shuiping Yu, 697
Xingkai Yu, B. Zhang, Haowei Zhang, Lecong Zhang, 698
Liyue Zhang, Mingchuan Zhang, Minghua Zhang, 699
Wentao Zhang, Yichao Zhang, Chenggang Zhao, Yao 700
Zhao, Shangyan Zhou, Shunfeng Zhou, Qihao Zhu, 701
and Yuheng Zou. 2024. DeepSeek LLM: Scaling 702
Open-Source Language Models with Longtermism. 703
Preprint, arXiv:2401.02954. 704

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Han- 705
tian Ding, Ming Tan, Nihal Jain, Murali Krishna Ra- 706
manathan, Ramesh Nallapati, Parminder Bhatia, Dan 707
Roth, and Bing Xiang. 2023. CrossCodeEval: A 708
Diverse and Multilingual Benchmark for Cross-File 709
Code Completion. ArXiv, abs/2310.11248. 710

9

https://openreview.net/forum?id=5x788rqbcj
https://openreview.net/forum?id=5x788rqbcj
https://openreview.net/forum?id=5x788rqbcj
https://openreview.net/forum?id=5x788rqbcj
https://openreview.net/forum?id=5x788rqbcj
https://www.anthropic.com/news/claude-3-5-sonnet
https://api.semanticscholar.org/CorpusID:235755472
https://api.semanticscholar.org/CorpusID:235755472
https://api.semanticscholar.org/CorpusID:235755472
https://openreview.net/forum?id=dUAcAtCuKk
https://openreview.net/forum?id=dUAcAtCuKk
https://openreview.net/forum?id=dUAcAtCuKk
https://doi.org/10.18653/v1/2021.emnlp-main.522
https://doi.org/10.18653/v1/2021.emnlp-main.522
https://doi.org/10.18653/v1/2021.emnlp-main.522
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2401.02954
https://api.semanticscholar.org/CorpusID:264172238
https://api.semanticscholar.org/CorpusID:264172238
https://api.semanticscholar.org/CorpusID:264172238
https://api.semanticscholar.org/CorpusID:264172238
https://api.semanticscholar.org/CorpusID:264172238

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang,711
Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng712
Sha, Xin Peng, and Yiling Lou. 2023. ClassE-713
val: A manually-crafted benchmark for evaluating714
llms on class-level code generation. arXiv preprint715
arXiv:2308.01861.716

Govind Krishnan Gangadhar and Karl Stratos. 2024.717
Model editing by standard fine-tuning. In Findings718
of the Association for Computational Linguistics ACL719
2024, pages 5907–5913, Bangkok, Thailand and vir-720
tual meeting. Association for Computational Linguis-721
tics.722

Alex Gu, Baptiste Rozière, Hugh Leather, Armando723
Solar-Lezama, Gabriel Synnaeve, and Sida I. Wang.724
2024. CRUXEval: A Benchmark for Code Rea-725
soning, Understanding and Execution. Preprint,726
arXiv:2401.03065.727

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,728
Kai Dong, Wentao Zhang, Guanting Chen, Xiao729
Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong,730
and Wenfeng Liang. 2024a. DeepSeek-Coder:731
When the Large Language Model Meets Program-732
ming – The Rise of Code Intelligence. Preprint,733
arXiv:2401.14196.734

Jiawei Guo, Ziming Li, Xueling Liu, Kaijing Ma,735
Tianyu Zheng, Zhouliang Yu, Ding Pan, Yizhi Li,736
Ruibo Liu, Yue Wang, et al. 2024b. CodeEditor-737
Bench: Evaluating Code Editing Capability of Large738
Language Models. arXiv preprint arXiv:2404.03543.739

Tanmay Gupta and Aniruddha Kembhavi. 2023. Vi-740
sual programming: Compositional visual reasoning741
without training. In Proceedings of the IEEE/CVF742
Conference on Computer Vision and Pattern Recog-743
nition (CVPR), pages 14953–14962.744

Suchin Gururangan, Ana Marasović, Swabha745
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,746
and Noah A. Smith. 2020. Don’t stop pretraining:747
Adapt language models to domains and tasks. In748
Proceedings of the 58th Annual Meeting of the749
Association for Computational Linguistics, pages750
8342–8360, Online. Association for Computational751
Linguistics.752

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-753
pat, and Mingwei Chang. 2020. Retrieval augmented754
language model pre-training. In International confer-755
ence on machine learning, pages 3929–3938. PMLR.756

Thomas Hartvigsen, Swami Sankaranarayanan, Hamid757
Palangi, Yoon Kim, and Marzyeh Ghassemi. 2023.758
Aging with grace: Lifelong model editing with dis-759
crete key-value adaptors. In Advances in Neural760
Information Processing Systems.761

Evan Hernandez, Belinda Z. Li, and Jacob Andreas.762
2023. Inspecting and editing knowledge representa-763
tions in language models. In Arxiv.764

Cheng-Yu Hsieh, Sibei Chen, Chun-Liang Li, Yasuhisa 765
Fujii, Alexander J. Ratner, Chen-Yu Lee, Ranjay Kr- 766
ishna, and Tomas Pfister. 2023. Tool documenta- 767
tion enables zero-shot tool-usage with large language 768
models. ArXiv, abs/2308.00675. 769

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen- 770
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu 771
Chen. 2022. LoRA: Low-rank adaptation of large 772
language models. In International Conference on 773
Learning Representations. 774

Wenyue Hua, Jiang Guo, Mingwen Dong, He Zhu, 775
Patrick Ng, and Zhiguo Wang. 2024. Propagation 776
and Pitfalls: Reasoning-based Assessment of Knowl- 777
edge Editing through Counterfactual Tasks. ArXiv, 778
abs/2401.17585. 779

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou, 780
Wenge Rong, and Zhang Xiong. 2023. Transformer- 781
patcher: One mistake worth one neuron. In The 782
Eleventh International Conference on Learning Rep- 783
resentations. 784

Zhengbao Jiang, Zhiqing Sun, Weijia Shi, Pedro Ro- 785
driguez, Chunting Zhou, Graham Neubig, Xi Lin, 786
Wen-tau Yih, and Srini Iyer. 2024. Instruction-tuned 787
language models are better knowledge learners. In 788
Proceedings of the 62nd Annual Meeting of the As- 789
sociation for Computational Linguistics (Volume 1: 790
Long Papers), pages 5421–5434, Bangkok, Thailand. 791
Association for Computational Linguistics. 792

Carlos E Jimenez, John Yang, Alexander Wettig, 793
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R 794
Narasimhan. 2024. SWE-bench: Can language mod- 795
els resolve real-world github issues? In The Twelfth 796
International Conference on Learning Representa- 797
tions. 798

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, 799
Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih, Daniel 800
Fried, Sida Wang, and Tao Yu. 2023. DS-1000: 801
a natural and reliable benchmark for data science 802
code generation. In Proceedings of the 40th Interna- 803
tional Conference on Machine Learning, ICML’23. 804
JMLR.org. 805

Yoonsang Lee, Xi Ye, and Eunsol Choi. 2024. Am- 806
bigdocs: Reasoning across documents on differ- 807
ent entities under the same name. arXiv preprint 808
arXiv:2404.12447. 809

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio 810
Petroni, Vladimir Karpukhin, Naman Goyal, Hein- 811
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock- 812
täschel, et al. 2020. Retrieval-augmented generation 813
for knowledge-intensive NLP tasks. Advances in 814
Neural Information Processing Systems, 33:9459– 815
9474. 816

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas 817
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc 818
Marone, Christopher Akiki, Jia Li, Jenny Chim, 819
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, 820
Thomas Wang, Olivier Dehaene, Mishig Davaadorj, 821

10

https://doi.org/10.18653/v1/2024.findings-acl.352
https://arxiv.org/abs/2401.03065
https://arxiv.org/abs/2401.03065
https://arxiv.org/abs/2401.03065
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://arxiv.org/abs/2304.00740
https://arxiv.org/abs/2304.00740
https://arxiv.org/abs/2304.00740
https://api.semanticscholar.org/CorpusID:260351459
https://api.semanticscholar.org/CorpusID:260351459
https://api.semanticscholar.org/CorpusID:260351459
https://api.semanticscholar.org/CorpusID:260351459
https://api.semanticscholar.org/CorpusID:260351459
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://api.semanticscholar.org/CorpusID:267334947
https://api.semanticscholar.org/CorpusID:267334947
https://api.semanticscholar.org/CorpusID:267334947
https://api.semanticscholar.org/CorpusID:267334947
https://api.semanticscholar.org/CorpusID:267334947
https://openreview.net/forum?id=4oYUGeGBPm
https://openreview.net/forum?id=4oYUGeGBPm
https://openreview.net/forum?id=4oYUGeGBPm
https://doi.org/10.18653/v1/2024.acl-long.296
https://doi.org/10.18653/v1/2024.acl-long.296
https://doi.org/10.18653/v1/2024.acl-long.296
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66

Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko,822
Nicolas Gontier, Nicholas Meade, Armel Zebaze,823
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu,824
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo825
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp826
Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,827
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya,828
Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo829
Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel830
Romero, Tony Lee, Nadav Timor, Jennifer Ding,831
Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri832
Dao, Mayank Mishra, Alex Gu, Jennifer Robinson,833
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan-834
ish Contractor, Siva Reddy, Daniel Fried, Dzmitry835
Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis,836
Sean Hughes, Thomas Wolf, Arjun Guha, Leandro837
von Werra, and Harm de Vries. 2023. Starcoder: may838
the source be with you! Preprint, arXiv:2305.06161.839

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-840
ming Zhang. 2023. Is Your Code Generated by Chat-841
GPT Really Correct? Rigorous Evaluation of Large842
Language Models for Code Generation. In Thirty-843
seventh Conference on Neural Information Process-844
ing Systems.845

Tianyang Liu, Canwen Xu, and Julian McAuley. 2024.846
Repobench: Benchmarking repository-level code847
auto-completion systems.848

Kevin Meng, David Bau, Alex Andonian, and Yonatan849
Belinkov. 2022. Locating and Editing Factual Asso-850
ciations in GPT. In Advances in Neural Information851
Processing Systems, volume 35, pages 17359–17372.852
Curran Associates, Inc.853

Kevin Meng, Arnab Sen Sharma, Alex J Andonian,854
Yonatan Belinkov, and David Bau. 2023. Mass-855
editing memory in a transformer. In The Eleventh856
International Conference on Learning Representa-857
tions.858

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea859
Finn, and Christopher D Manning. 2022. Fast model860
editing at scale. In International Conference on861
Learning Representations.862

Hanseok Oh, Hyunji Lee, Seonghyeon Ye, Haebin Shin,863
Hansol Jang, Changwook Jun, and Minjoon Seo.864
2024. Instructir: A benchmark for instruction follow-865
ing of information retrieval models. arXiv preprint866
arXiv:2402.14334.867

Yasumasa Onoe, Michael Zhang, Shankar Padmanab-868
han, Greg Durrett, and Eunsol Choi. 2023. Can LMs869
Learn New Entities from Descriptions? Challenges870
in Propagating Injected Knowledge. In Proceedings871
of the 61st Annual Meeting of the Association for872
Computational Linguistics (Volume 1: Long Papers),873
pages 5469–5485, Toronto, Canada. Association for874
Computational Linguistics.875

Shankar Padmanabhan, Yasumasa Onoe, Michael JQ876
Zhang, Greg Durrett, and Eunsol Choi. 2023. Propa-877
gating knowledge updates to LMs through distillation.878

In Thirty-seventh Conference on Neural Information 879
Processing Systems. 880

Huy N. Phan, Hoang N. Phan, Tien N. Nguyen, and 881
Nghi D. Q. Bui. 2024. RepoHyper: Better Context 882
Retrieval Is All You Need for Repository-Level Code 883
Completion. ArXiv, abs/2403.06095. 884

Derek Powell, Walter Gerych, and Thomas Hartvigsen. 885
2024. TAXI: evaluating categorical knowledge edit- 886
ing for language models. CoRR, abs/2404.15004. 887

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten 888
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 889
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom 890
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man- 891
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori, 892
Wenhan Xiong, Alexandre Défossez, Jade Copet, 893
Faisal Azhar, Hugo Touvron, Louis Martin, Nico- 894
las Usunier, Thomas Scialom, and Gabriel Synnaeve. 895
2023. Code llama: Open foundation models for code. 896
CoRR, abs/2308.12950. 897

Disha Shrivastava, H. Larochelle, and Daniel Tarlow. 898
2022. Repository-level prompt generation for large 899
language models of code. In International Confer- 900
ence on Machine Learning. 901

Zayne Sprague, Xi Ye, Kaj Bostrom, Swarat Chaudhuri, 902
and Greg Durrett. 2024. Musr: Testing the limits of 903
chain-of-thought with multistep soft reasoning. In 904
Proceedings of ICLR (spotlight). 905

Hongjin Su, Shuyang Jiang, Yuhang Lai, Haoyuan Wu, 906
Boao Shi, Che Liu, Qian Liu, and Tao Yu. 2024. 907
ARKS: active retrieval in knowledge soup for code 908
generation. CoRR, abs/2402.12317. 909

Liyan Tang, Philippe Laban, and Greg Durrett. 2024. 910
Minicheck: Efficient fact-checking of llms on ground- 911
ing documents. In arXiv. 912

Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng, 913
Chen Chen, and Jundong Li. 2023. Knowledge Edit- 914
ing for Large Language Models: A Survey. ArXiv, 915
abs/2310.16218. 916

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 917
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le, 918
and Denny Zhou. 2022. Chain-of-thought prompt- 919
ing elicits reasoning in large language models. In 920
Advances in Neural Information Processing Systems, 921
volume 35, pages 24824–24837. Curran Associates, 922
Inc. 923

Yiqing Xie, Alex Xie, Divyanshu Sheth, Pengfei Liu, 924
Daniel Fried, and Carolyn Rose. 2024. Codebench- 925
gen: Creating scalable execution-based code genera- 926
tion benchmarks. arXiv preprint arXiv:2404.00566. 927

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. 2023. 928
SatLM: Satisfiability-aided language models using 929
declarative prompting. In Thirty-seventh Conference 930
on Neural Information Processing Systems. 931

11

https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://arxiv.org/abs/2306.03091
https://arxiv.org/abs/2306.03091
https://arxiv.org/abs/2306.03091
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://openreview.net/forum?id=MkbcAHIYgyS
https://openreview.net/forum?id=MkbcAHIYgyS
https://openreview.net/forum?id=MkbcAHIYgyS
https://openreview.net/forum?id=0DcZxeWfOPt
https://openreview.net/forum?id=0DcZxeWfOPt
https://openreview.net/forum?id=0DcZxeWfOPt
https://doi.org/10.18653/v1/2023.acl-long.300
https://doi.org/10.18653/v1/2023.acl-long.300
https://doi.org/10.18653/v1/2023.acl-long.300
https://doi.org/10.18653/v1/2023.acl-long.300
https://doi.org/10.18653/v1/2023.acl-long.300
https://openreview.net/forum?id=DFaGf3O7jf
https://openreview.net/forum?id=DFaGf3O7jf
https://openreview.net/forum?id=DFaGf3O7jf
https://api.semanticscholar.org/CorpusID:268359001
https://api.semanticscholar.org/CorpusID:268359001
https://api.semanticscholar.org/CorpusID:268359001
https://api.semanticscholar.org/CorpusID:268359001
https://api.semanticscholar.org/CorpusID:268359001
https://doi.org/10.48550/ARXIV.2404.15004
https://doi.org/10.48550/ARXIV.2404.15004
https://doi.org/10.48550/ARXIV.2404.15004
https://doi.org/10.48550/ARXIV.2308.12950
https://api.semanticscholar.org/CorpusID:250072448
https://api.semanticscholar.org/CorpusID:250072448
https://api.semanticscholar.org/CorpusID:250072448
https://doi.org/10.48550/ARXIV.2402.12317
https://doi.org/10.48550/ARXIV.2402.12317
https://doi.org/10.48550/ARXIV.2402.12317
https://api.semanticscholar.org/CorpusID:264487359
https://api.semanticscholar.org/CorpusID:264487359
https://api.semanticscholar.org/CorpusID:264487359
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://openreview.net/forum?id=TqW5PL1Poi
https://openreview.net/forum?id=TqW5PL1Poi
https://openreview.net/forum?id=TqW5PL1Poi

Asaf Yehudai, Boaz Carmeli, Yosi Mass, Ofir Arviv,932
Nathaniel Mills, Assaf Toledo, Eyal Shnarch, and933
Leshem Choshen. 2024. Genie: Achieving hu-934
man parity in content-grounded datasets generation.935
ArXiv, abs/2401.14367.936

Fengji Zhang, B. Chen, Yue Zhang, Jin Liu, Daoguang937
Zan, Yi Mao, Jian-Guang Lou, and Weizhu Chen.938
2023a. RepoCoder: Repository-Level Code Comple-939
tion Through Iterative Retrieval and Generation. In940
Conference on Empirical Methods in Natural Lan-941
guage Processing.942

Kechi Zhang, Ge Li, Jia Li, Zhuo Li, and Zhi Jin. 2023b.943
ToolCoder: Teach Code Generation Models to use944
API search tools. ArXiv, abs/2305.04032.945

Michael Zhang and Eunsol Choi. 2021. SituatedQA: In-946
corporating extra-linguistic contexts into QA. In Pro-947
ceedings of the 2021 Conference on Empirical Meth-948
ods in Natural Language Processing, pages 7371–949
7387, Online and Punta Cana, Dominican Republic.950
Association for Computational Linguistics.951

Bowen Zhao, Zander Brumbaugh, Yizhong Wang, Han-952
naneh Hajishirzi, and Noah A Smith. 2024. Set the953
clock: Temporal alignment of pretrained language954
models. arXiv preprint arXiv:2402.16797.955

Zexuan Zhong, Zhengxuan Wu, Christopher D. Man-956
ning, Christopher Potts, and Danqi Chen. 2023.957
MQuAKE: Assessing Knowledge Editing in Lan-958
guage Models via Multi-Hop Questions. In Proceed-959
ings of the 2023 Conference on Empirical Methods960
in Natural Language Processing, EMNLP 2023, Sin-961
gapore, December 6-10, 2023, pages 15686–15702.962
Association for Computational Linguistics.963

Shuyan Zhou, Uri Alon, Frank F Xu, Zhiruo964
Wang, Zhengbao Jiang, and Graham Neubig. 2022.965
Docprompting: Generating code by retrieving the966
docs. arXiv preprint arXiv:2207.05987.967

A Dataset 968

A.1 Update Taxonomy 969

To systematically capture different types of updates, 970

we first create a taxonomy for update types, rooted 971

in updates to functions. 972

Recall that we define f ← u to be the 973

update made to an existing function f 974

when providing it with new semantics u. 975

We assume f always takes the form of 976

Function([argument1, argument2, · · ·]) → 977

Output. We view u as consisting of three 978

independent components: (1) the Action that 979

the update is applying to the API function (e.g., 980

deprecate); (2) the Locus that the action happens 981

at (e.g. argument or output); (3) and the Aspect 982

that the action is applying at some place for (e.g., 983

name and data type). See Table 4 in the appendix 984

for possible values of each component. We note 985

that we do not focus on Action=deprecate in this 986

work, as techniques for knowledge unlearning are 987

different than those for knowledge editing. 988

An update type is a tuple with values for 989

each component listed in Table 4. For exam- 990

ple, the add-argument-NULL update type means 991

the update is adding a completely new argu- 992

ment to the existing arguments of a function, and 993

modify-argument-name update type means the 994

update is modifying the name of an existing ar- 995

gument (i.e. renaming). We note that not all combi- 996

nation makes sense, e.g. modify-output-name; 997

or some update types might overlap with an- 998

other e.g., add-function-semantics overlaps 999

with modify-function-semantics. We remove 1000

those and obtain 17 update types.

Table 4: Update Taxonomy components

Component Values

Action {add, modify, deprecate}
Locus {function, argument, output}

Aspect

{NULL, name, data_type,
default_value,

supported_value}
1001

A.2 Example 1002

We present a complete example from our dataset 1003

below. The unit tests for the update itself are omit- 1004

ted as these are not used by any of our methods and 1005

12

https://api.semanticscholar.org/CorpusID:257663528
https://api.semanticscholar.org/CorpusID:257663528
https://api.semanticscholar.org/CorpusID:257663528
https://api.semanticscholar.org/CorpusID:258557336
https://api.semanticscholar.org/CorpusID:258557336
https://api.semanticscholar.org/CorpusID:258557336
https://doi.org/10.18653/v1/2021.emnlp-main.586
https://doi.org/10.18653/v1/2021.emnlp-main.586
https://doi.org/10.18653/v1/2021.emnlp-main.586
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.971
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.971
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.971

are only used for quality control.1006

A.1 Example Data

Update Description:
A new boolean parameter ’inverse’ is added to math.pow()
to calculate the inverse power.

Update DocString:
An additional parameter ’inverse’ has been introduced
to the function signature, which when set to True, will
return the inverse power of the numbers, i.e., 1/(x^y). This
results in a non-trivially different implementation from
the previous one, and the rest of the function behavior
stays the same. The new parameter ’inverse’ is a boolean
parameter with a default value of False. When ’inverse’ is
set to True, the output of the function is changed to 1/(x^y),
and when ’inverse’ is set to False or left unspecified, the
output remains the same as in the old version, which is x^y.

Rationale:
Sometimes users might need to calculate the inverse power
(1 to the power of y divided by x) and this feature saves
them from having to manually calculate the inverse power
of a number.

Program:
"problem": Alan needs to compute present values of
these future cash flows for ’n’ periods and ’r’ different
rates. However, computing it manually or using traditional
Python methods is cumbersome and prone to errors.
Help Alan by creating a program that can compute this
efficiently for any ’n’ and ’r’.

Scenario:
Alan is a property investor who has recently invested in
commercial projects, where the rental income fluctuates.
He came across an investment formula (1/(1 + r)^n)
that can approximate the present value of future cash
flows. Here, ’r’ represents the discount rate or inter-
est rate, and ’n’ represents the number of cash flow periods.

Solution Signature:
def compute_present_value(r: float, n: int) -> float:

Updated API:

Import the necessary library.
import math
def compute_present_value(r: float, n: int)

-> float:↪→
Check for invalid inputs.
if r < 0:

raise ValueError(⌋
"Rate cannot be negative.")↪→

if n < 0:
raise ValueError("Number of periods"

+ " cannot be negative.")↪→

Use the updated math.pow() API to
calculate the present value.↪→

return math.pow(1.0 + r, n, inverse=True)

Unit Tests:
1007

Unit test 0
def test_compute_present_value_small_inputs ⌋

():↪→
r = 0.1
n = 3
small inputs for rate and number of

periods↪→
result = compute_present_value(r, n)
import math
expected_result = math.pow(1 + r, n,

inverse=True)↪→

Check equivalence between 'result' and
'expected_result'↪→

assert result == expected_result
Unit test 1
def test_compute_present_value_large_inputs ⌋

():↪→
r = 0.9
n = 100
large inputs for rate and number of

periods↪→
result = compute_present_value(r, n)
import math

Since the inverse is required, we set
'inverse' to True in math.pow()↪→

expected_result = math.pow(1 + r, n,
inverse=True)↪→

assert result == expected_result,
f"Expected {expected_result} ⌋
but got {result}"

↪→
↪→

Unit test 2
def test_compute_present_value_zero_rate():

r = 0.0
n = 10
testing with 0 rate should compute to

the cash flow amount↪→
result = compute_present_value(r, n)
expected_result = 1.0

assert result == expected_result,
f"Expected {expected_result} ⌋
, but got {result}"

↪→
↪→

Unit test 3
def test_compute_present_value_zero_periods ⌋

():↪→
r = 0.5
n = 0
testing with 0 periods should compute to

the cash flow amount↪→
result = compute_present_value(r, n)
expected_result = math.pow((1 + r), -n,

inverse=True)↪→

assert result == expected_result,
f"Error: Expected result {expected_r ⌋
esult}, but got {result}."

↪→
↪→

Unit test 4
def test_compute_present_value_negative_rat ⌋

e():↪→
try:

r = -0.1
n = 5

1008

13

negative rate should raise an
exception↪→

compute_present_value(r, n)
except Exception:

assert True
else:

assert False
Unit test 5
def test_compute_present_value_negative_per ⌋

iods():↪→
try:

r = 0.1
n = -5
negative number of periods

should raise an exception↪→
compute_present_value(r, n)

except Exception:
assert True

else:
assert False

Unit test d
def test_compute_present_value_large_rate():

r = 1.5
n = 10
large rate should lead to small present

value↪→
result = compute_present_value(r, n)
from math import pow

expected_result = pow(1 + r, n,
inverse=True)↪→

assert abs(result - expected_result) <=
1e-9, f"Expected {expected_result} ⌋
, but got {result}"

↪→
↪→

Unit test 7
def test_compute_present_value_one_period():

r = 0.2
n = 1
one cash flow period should return a

simple discounted value↪→
result = compute_present_value(r, n)
expected_result = math.pow(1 + r, n,

inverse=True)↪→

assert result == expected_result,
f"Expected {expected_result} ⌋
, but got {result}"

↪→
↪→

Unit test 8
def test_compute_present_value_many_periods ⌋

():↪→
r = 0.1
n = 30
more periods should accumulate more

discount↪→
result = compute_present_value(r, n)
import math
compute the expected_result using the

provided formula 1/(1 +
r)\textasciicircum n

↪→
↪→
expected_result = math.pow(1 + r, n,

inverse=True)↪→

At this point, we are checking the
equivalence between `result` and
`expected_result`

↪→
↪→
assert result == expected_result,

f'Expected {expected_result} ⌋
, but got {result}'

↪→
↪→

1009

Unit test 9
def test_compute_present_value_edge_rate():

r = 1.0
n = 10
edge rate of 1.0 should also be handled
result = compute_present_value(r, n)
import math
expected_result = math.pow(1 + r, n,

inverse=True)↪→

assert result == expected_result,
f"Expected {expected_result} ⌋
, but got {result}"

↪→
↪→

1010

B Data generation details 1011

B.1 Preprocessing API path 1012

As discussed in Section 4.1, most of the time, we 1013

are able to retrieve full information about a function 1014

using the importlib and inspect packages. For 1015

our implementation, we decided to also separately 1016

extract a function’s argument. However, these 1017

sometimes might not be possible using importlib 1018

and inspect package. Therefore, we devise two 1019

fallback options: (1) use regular expression to ex- 1020

tract them from documentation; and if that fails, (2) 1021

we feed the docstring to GPT-4 and have it write 1022

arguments for us. We include the prompt for doing 1023

so in Appendix B.5. 1024

B.2 Unit test generation 1025

For answer generation (@ANSWER@), we let GPT-4 1026

choose between the following strategies: 1027

1. directly write out the literal values of the an- 1028

swer (e.g. numpy.array([1, 0, 2]); 1029

2. or write a step-by-step code snippet (Wei et al., 1030

2022) to accomplish the calculation in which 1031

it could call the old API function through 1032

old_argsort(array[::-1],...) (e.g. ran- 1033

dom input in Fig. 4). 1034

For assertion generation (@ANSWER@), we 1035

note that objects in different packages re- 1036

quire different ways to check equality, for ex- 1037

ample, instead of “==”, one needs to use 1038

numpy.equal for numpy.array; and df.equals 1039

for pandas.DataFrame. To make sure the asser- 1040

tions are appropriately generated, we use package- 1041

specific prompts to guide GPT-4 generation. See 1042

our package instructions at Prompt B.9. 1043

14

def test_reverse_true():
array = np.random.rand(5), ax = -1
result = np.argsort(array, axis=ax,

reverse=True)↪→
@ANSWER@
@ASSERT@

Figure 4: Example of unit test skeleton

B.3 Deduplication1044

To deduplicate program synthesis examples, we1045

first canonicalize each reference solution for func-1046

tion and variable names. Then, we compare the edit1047

distances among Program Synthesis examples’ ref-1048

erence solutions per update. We discard one of the1049

examples in each pair with an edit distance of less1050

than 25. If after discarding, # PS is equal to 1, we1051

will keep both program synthesis examples. The1052

mean edit distance for those “allowed duplicates”1053

is 17.0 ± 7.1. In total, we remove 134 examples.1054

B.4 Literalize answer in unit test1055

We define literalizing a unit test as taking the1056

unit test, which may call an updated API, and1057

turning it into a semantically equivalent ver-1058

sion that does not call the updated API. To do1059

this, we obtain answers from unit tests (e.g.,1060

pickle.dump(...)), turn the Python object to lit-1061

eral string, e.g. numpy.array2string(), and re-1062

place the original answer section with a simple1063

assignment expected_result = This can be1064

challenging in a few cases:1065

1. when the input of the unit tests is randomly1066

initialized (e.g., torch.randn);1067

2. when the input is initialized with a large di-1068

mension (e.g., image = numpy.full((1000,1069

1000))) and result in very large literal values;1070

3. when an object like pandas.Dataframe1071

might contain metadata that is hard to gen-1072

erally capture during literalization, or re-1073

quires changes in the assertions section like1074

re.Match object.1075

We use pickle serialization and deserialization to1076

literalize tests, and when this process fails as in1077

the cases above, we invoke Claude-3.5-sonnet to1078

edit the unit test to make the appropriate changes1079

while preserving the semantics. After processing,1080

we turn the answers of 4114 unit tests into literal1081

values (out of 4221 unit tests).41082

4We verify the correctness by executing reference solution
on the units and receiving perfect performance.

B.5 Generation Prompt: Update 1083

See Prompt B.1 for docstring summarization. 1084

See Prompt B.2 for inferring the function argu- 1085

ments from the function path, e.g. numpy.argsort 1086

See Prompt B.3 for generating update specifica- 1087

tions 1088

See Prompt B.4 for generating unit test skeletons 1089

See Prompt B.5 for generating unit test answers; 1090

part of the prompt takes corresponding instruction 1091

from Prompt B.9 to guide the model to generate for 1092

different packages. 1093

See Prompt B.6 for generating unit test asser- 1094

tions; part of the the prompt takes corresponding 1095

instruction from Prompt B.9 to guide the model to 1096

generate for different packages. 1097

See Prompt B.7 for generating function update 1098

implementation 1099

See Prompt B.8 for generating missing imports 1100

given any code. 1101

See Prompt B.9 for different packages when gen- 1102

erating assertions and answers. 1103

B.1 Update: Docstring summarization

System prompt:
You are a helpful assistant.
You will be given documentation for an API in a popular
Python library.

You need to do the following:
1: You MUST extract descriptions about the functionality,
input parameters, and output from the original documenta-
tion.
2: You could include some illustrative code in the
summary if the summary is ambiguous.
3: You MUST keep the most important information, e.g.
description, data type, etc.
4: The reader of your summary MUST be able to
implement the function with summarized documentation.
5: You MUST maintain the original structure, format, and
the style of the documentation.
6: Output the summarized documentation in text.

User Prompt:
{{docstring, e.g. numpy.argsort.__doc__}}

1104

15

B.2 Update: Prompt to Infer Argument

{: System prompt}
Infer argument of a Python function signature from
documentation (output of `[full_api_path].__doc__`).

Function signature takes the form of
```
[full_api_path]([arguments])
```
Output the right [arguments].

Note:
* Output raw text.
* DO NOT Wrap output in a Python code block.
* DO NOT include documentation in the output.

{: User Prompt}
Full API path:
{{{{full_api_path}}}}

Documentation:
{{{{documentation}}}}

1105

B.3 Update: Update Specification

System prompt:
You are a helpful assistant. You think deeply and
creatively.
Your task is to assist users to think of and instantiate
interesting cases of API update.

A desirable update should satisfy the following criteria:
* The update should make the call site of the old function
to be un-executable and one need to follow the new
function signature.
* The update should be as atomic as possible. It only
includes one of the three possible editing actions and only
happens to one place of the functions. So that the new
function signature and old signature only differs at one
place.
* The update should lead to a new function signature
whose implementation is non-trivially different from
the old ones. An undesirable result is that the new
implementation trivially calls the old function.
* The update should be a sensible change that fits the
overall topic of the function and the Python library.
* The update should NOT contradict existing functionality
of the old function.
* The update needs to be supported by a good reason for
library designer to introduce it

Return the entire response in JSON format as a dictionary.
Make sure nested brackets are closed correctly. Be careful
with unterminated string literal. The dictionary should
contain the following:

1: "update_description": (as string) a short one-sentence
description of the update.
2: "rationale": (as string) why any hypothetical designer
of the API might want to introduce these changes.
3: "new_function_signature": (as string) the new function
signature.

1106

3.1: "new_function_signature" MUST start with the full
reference to the function. For example, "numpy.mean"
instead of "def mean".
4: "update_docstring": (as string) the added documen-
tation that explains the new functionality of the atomic
update. It MUST be self-contained, unambiguous, detailed
but concise.
4.1: You MUST succinctly explain the updated behavior
of the new API, and how it differs from the old behavior.
4.2: The "update_docstring" MUST fully specify the
behavior about the update. For example, how the changes
in input would change the output of new API w.r.t. the old
version.
4.3: A third-person MUST be able to develop a new
implementation by just reading the "update_docstring"
along with the old docstring.
4.4: "update_docstring" could take the form of natural
language, numpy-style docstring, pseudo-code examples,
etc. Make the most sensible choice. If it’s a string with
multiple lines, output "
n" as line break.
4.5: DO NOT include example(s) of using the updated
API in "update_docstring".

You will be given a function signature, optionally along
with its docstring, and the Python library it belongs to.
You will think what realistic update could happen to the
function signature.

Give me 1 example of possible update(s) that a new
function argument is added.

User Prompt:
Package: {{parent_path}}

[DOC]
def {{function_signature}}
{{summarized_doc_string}}
[/DOC]

Note:
* "new_function_signature" MUST ONLY contain the
function name, instead of the full reference to the function.
For example, "mean" instead of "numpy.mean".
* Only output the JSON in raw text.

1107

B.4 Update: Unit Test skeleton

System prompt:
You are a very experienced programer. You are good at
algorithmic reasoning and writing super high quality code.

The API of interest is:
[OLD_SIGN]
{{{{old_function_signature}}}}
[/OLD_SIGN]

This API recently undergoes an update:
[DESC]
{{{{update_description}}}}
[/DESC]

The API now has the following new function signature:
[NEW_SIGN]
{{{{new_function_signature}}}}

1108

16

[/NEW_SIGN]

Your task is to write 10 *high-quality* and *comprehen-
sive* unit tests skeletons for testing the validity of the
update. A unit test skeleton is a unit test function that only
specifies the test inputs. Each unit test skeleton MUST be
in raw string, not in Python code block.

Return the set of unit tests skeletons in JSON code block
as a list of string. For unit test skeletons generation,
following the instructions below:
1: You MUST READ the documentation (between
"[DOC]" and "[/DOC]") WORD-BY-WORD and
understand it PERFECTLY WELL.
1.1: Also, IDENTIFY important arguments: the more
important arguments are ranked to the front in the new
function signature.
2: For unit tests, think of a diverse set of API update and
the important arguments to test ALL specified behaviors in
the documentation — edge-case input, edge-case output,
exception raised, etc.
2.1: You need to have different edge-case values for
the update and each important arguments (e.g., multi-
dimensional input array with different `axis`values).
3: When you generate a new unit test, look CAREFULLY
at already generated unit tests, and make sure the inputs
are different from previously generated unit tests as much
as possible.
3.1: You MUST have proper setup code for API inputs:
initialize variables for testing the updated — literally, or
randomly generated, etc. INCLUDE in-line comments.
3.2: PREFERABLY, the input to the updated API
SHOULD foreseeably lead to a *unique* execution result.
4: The output of the API call MUST be assigned to a
variable `result`.
4.1: You MUST call the updated API, instead of old API.
If required, you are allowed to call the *old* API by
directly calling `old_quad`. ALL other ways to call the
old function are FORBIDDEN.
5: If a unit test function is testing throwing exception, you
should proceed with `try-except`and finish the unit test
function.
5.1: If the test input is meant to testing error catching,
check if the API call will raise error. DON’T check error
message.
6: If a unit test function is NOT testing throwing
exception:
6.1: You MUST output a placeholder `# @AN-
SWER@`for the right answer to be filled in. Writing the
right answer is forbidden.
6.2: Do not write any assertion. This is forbidden. Instead,
put a placeholder `# @ASSERT@`at the end of the test
function.
6.3: Within the unit function, the placeholders need to
start at the left-most indent (i.e. 4 empty spaces — " ").
7: Each test MUST be a function without any input
arguments. DON’T attempt to test I/O in each unit tests.
8: The function name MUST be informative. Avoid it to
include generic terms like "case1" or "test1".
9: Use "n" as line break. Use 4 empty spaces (" ") as
Python code block indent.
10: When you have Python string literal, you MUST use
escape for quote — `" `or `’ `; for triple quote — `"""
`or `”’ `

User Prompt:
This is the documentation that details the behavior about

1109

the update:
[DOC]
{{{{update_docstring}}}}
[/DOC]

Only output the set of unit tests skeletons (*a list of
strings*) in JSON code block (```json...```).
Include `global {{{{package_name}}}}`as the first line
of each unit test function.
If you want to call the old function, you MUST directly
call `old_{{{{function_name}}}}`. All other ways to call
the old function are FORBIDDEN.

1110

B.5 Update: Answer generation

System prompt:
You are a very experienced programmer. You are good at
algorithmic reasoning and writing super high quality code.

The API of interest is
[OLD_SIGN]
{{{{old_function_signature}}}}
[/OLD_SIGN]

This API recently undergoes an update:
[DESC]
{{{{update_description}}}}
[/DESC]

The API now has the following new function signature:
[NEW_SIGN]
{{{{new_function_signature}}}}
[/NEW_SIGN]

You will be given the detailed documentation about
the update, and a unit test skeleton with a `# @AN-
SWER@`. Your task is to generate a Python code block
(```python...```) to replace `# @ANSWER@`. The
purpose of the code block is to calculate a value for a
variable called `expected_result`or `expected_results`.

For generating the code block, following the instructions
below:
1: You MUST READ the documentation (between
"[DOC]" and "[/DOC]") WORD-BY-WORD, take a pause
and, understand it PERFECTLY WELL.
1.1: Now look at the values of input to the API call, and
contemplate on the expected behavior of the *new* API
given those inputs.
2: IDENTIFY whether you need to assign value
to `expected_result`or `expected_results`— `ex-
pected_result`if there’s only 1 correct answer;
`expected_results`if there’s only multiple correct answers.
There is only one right choice.
3: Focus on the behavior of the *new* API. When deriving
the expected value of `result`, work on this problem
STEP-BY-STEP. Then, wisely choose one of the strategies
from below:
a. an assignment of a Python literal value to the variable;
b. if the literal is too long or it’s best to use arithmetics to
get the value, DON’T write literal value. INSTEAD, use
step-by-step program code to express how to arrive at the
answer.
4: In the code block, DO NOT call the *new* API

1111

17

function. For calculating the answer, you CAN call the
old API function. However, you MUST directly call
`old_quad`. ALL other ways to call the old function are
FORBIDDEN.
5: Within the code block, you MUST generate WITH NO
leading indent. Use 4 empty spaces (" ") as indent when
writing if-else, for-loop, etc.

User Prompt:
This is the documentation that details the behavior about
the update:
[DOC]
{{{{update_docstring}}}}
[/DOC]

[TEST]
{{{{unit_test_skeleton}}}}
[/TEST]

If you want to call the old function, you MUST directly
call `old_{{{{function_name}}}}`. All other ways to call
the old function are FORBIDDEN.
{{% if package_instruct %}}
Some special notes for `{{{{pack-
age_name}}}}`package:
{{{{package_instruct}}}}
{{% endif %}}

1112

B.6 Update: Assertion generation

System prompt:
You are a very experienced programer. You are good at
algorithmic reasoning and writing super high quality code.

You will be given a unit test function that misses assertion
statements to either:
1. check equivalence between `result`and `ex-
pected_result`
2. or check equivalence between `result`and any values in
`expected_results`(i.e. multiple correct answer).

Your task is to generate a Python code block
(```python...```) to replace `# @ASSERT@`.

User Prompt:
[TEST]
{{{{unit_test_skeleton}}}}
[/TEST]

{{% if package_instruct %}}
Remember some special features of `{{{{pack-
age_name}}}}`package:
{{{{package_instruct}}}}
{{% endif %}}

1113

B.7 Update: Updated Function Implementation

System prompt:
You are a very experienced programer. You are good at
algorithmic reasoning and writing super high quality code.

The API of interest is
1114

[OLD_SIGN]
{{{{old_function_signature}}}}
[/OLD_SIGN]

This API recently undergoes an update:
[DESC]
{{{{update_description}}}}
[/DESC]

The API now has the following new function signature:
[NEW_SIGN]
{{{{new_function_signature}}}}
[/NEW_SIGN]

And the old API is renamed to:
[OLD_SIGN]
{{{{renamed_old_function_signature}}}}
[/OLD_SIGN]

You will be given the detailed documentation about the
update. Your task is to write high quality implementation
for the *new* API function in Python code block
(```python...```).

To generate the code block, following the instructions
below: 1: First of all, you MUST CAREFULLY READ
the documentation about the update (between "[DOC]"
and "[/DOC]") WORD-BY-WORD and understand it
PERFECTLY WELL.
2: Before arriving at the new implementation, take a deep
breath and work on this problem STEP-BY-STEP.
2.1: INCLUDE in-line comments and improve readability.
2.2: If you are provided with unit tests, use them to
understand expected behavior of the update.
3: Notice any error handling specified in the documen-
tation. INCLUDE error handling when writing new
implementation.
4: The new function’s name should be the same as the
name in new function signature, with API path removed.
4.1: You MUST NOT write documentation for the new
implementation.
4.2: You MUST NOT output the old implementation.
5: To implement the new function, you MUST use the
old API function AS MUCH AS POSSIBLE.
5.1: Since the bulk part of the functionality is accom-
plished by the *old* API function, the new implementation
MUST be as SUCCINCT as possible.
5.2: You MUST call the *old* API function by directly
calling `old_quad`. ALL other ways to call the old
function are FORBIDDEN.
6: DO NOT write imports.
7: Use 4 empty spaces (" ") as Python code block indent.

User Prompt:
This is the documentation that details the behavior about
the update:
[DOC]
{{{{update_docstring}}}}
[/DOC]
{{% if unit_tests %}}
Unit tests for new update:
[PYTHON]
{{%- for test in unit_tests %}}
Unit Test {{{{loop.index}}}}
{{{{test}}}}

1115

18

{{% endfor -%}}
[/PYTHON]
{{% endif %}}

If you want to call the old function, you MUST directly
call `old_{{{{function_name}}}}`. All other ways to call
the old function are FORBIDDEN.
You MUST NOT output the old implementation.
You MUST NOT implement
`old_{{{{function_name}}}}`.
Only output the new implementation in Python code block
(```python...```).

1116

B.8 Generate missing import

System prompt:
You are a very experienced programer. You are good at
algorithmic reasoning and writing super high quality code.

Your task is to write import statements to include any
package dependency before running the code. Return
import statements in Python code block (```python...```).

To generate the code block, following the instructions
below:
1: First of all, read the code WORD-BY-WORD and
understand it PERFECTLY WELL.
2: DO NOT miss type hints in function signature, function
body, etc.
3: If no import statements is required, output an empty
Python code block.

User Prompt:
[PYTHON]
{{code}}
[/PYTHON]

Only output the Python code block (```python...```).
1117

B.9 Package Instruction

re: Assertion generation:
1: To compare `re.Match`object, `==`doesn’t work. One
should use `group()`method to obtain the string and then
compare, e.g. `m1.group() == m2.group()`.
2: When no match is found, the output will be None.
Make sure this situation is dealt with.

torch: Assertion generation:
1: Using `==`to check equality of Tensor objects (e.g.
numpy.array) is ambiguous. For example, you should use
`torch.equal`or `torch.allclose`to check if two Tensor
objects equal.
1.1: allclose(): argument ’input’ (position 1) must be
Tensor, not list.

itertools: Assertion generation:
1: The output of `itertools`functions (e.g. `iter-
tools._grouper`object) is not directly checkable by `==`.
To compare the output of itertools, the most direct way is
to unwrap the output into something directly checkable
(e.g. list, tuple, dict).

1118

itertools: Answer generation. For itertools.groupby
only:
If you make call to `old_groupby`, don’t attempt to
unwrap the function output (e.g. by list()).

numpy: Assertion generation:
1: Using `==`to check equality of numpy objects (e.g.
numpy.array) is ambiguous. For example, you should use
`numpy.equal`or `numpy.allclose`to check if two numpy
array equal.

1119

B.6 Generation Prompt: Program Synthesis 1120

See Prompt B.10 for generating program synthesis 1121

specifications 1122

See Prompt B.11 for generating unit test skele- 1123

tons 1124

See Prompt B.12 for generating unit test an- 1125

swers; part of the prompt takes corresponding in- 1126

struction from Prompt B.9 to guide the model to 1127

generate for different packages. 1128

See Prompt B.13 for generating unit test asser- 1129

tions; part of the prompt takes corresponding in- 1130

struction from Prompt B.9 to guide the model to 1131

generate for different packages. 1132

See Prompt B.14 for generating reference solu- 1133

tions that use the updated function. 1134

B.10 ProgSyn: Problem specification

System prompt:
You are a helpful assistant. You think deeply and creatively.
Your task is to think of and write interesting tutorial(s) for
an API update. mainly <problem, solution>.

You will be given the full information about an update to
an existing Python package. You should think of usage (i.e.
program synthesis example) of the updated API signature
that satisfy the following criteria:
* the problem scenario posed by the program synthesis
example MUST follow the general functionality of the
(old and new) API.
* the problem scenario MUST be affected and preferably
benefited by the API update. By benefit, it means the code
complexity of the solution will be reduced.
* the problem MUST be at least medium hard, so that
the solution MUST make *non-trivial* use of the API’s
functionality.
* Be given the number of parameters that the solution
accepts.

Return the entire response in JSON format as a dictionary.
Make sure nested brackets are closed correctly. Be careful
with unterminated string literal. The dictionary should
contain the following:
1: "scenario": (as string) a real-world scenario that the
problem is situated in. Keep it medium short.
1.1: Avoid including information – e.g. exact term – about
API changes, or package needs to be used in "problem".
2: "problem": (as string) problem specification that needs
solving by a Python function. Keep it short.

1135

19

2.1: Avoid giving imperative instruction on how to
solve the problem. MUST Remain at high-level. Avoid
including information – e.g. exact term – about API
changes, or package needs to be used in "problem".
2.2: Make sure the description of the input is well
connected and blend into the description of the scenario.
2.3: Design the problem such that each input to the
solution is meaningfully used in the code.
3: "solution_signature": (as string) the function signature
of the solution function.
3.1: the function name should be derived from "scenario".

Give me 1 diverse program synthesis example(s).

User Prompt:
In Python package `{{package_name}}`, there’s an
API function `{{api_path}}`as follows: [OLD_SIGN]
{{old_func}} [/OLD_SIGN]

Maintainer of the package thinks it’s best to introduce the
following update
[DESC]
{{update_description}}
[/DESC]

This is because
[RATIONALE]
{{update_rationale}}
[/RATIONALE]

The function docstring now differs with previous version
in the following way:
[DOC]
{{docstring_diff}}
[/DOC]

And the function has the following new signature:
[NEW_SIGN]
{{new_function_signature}}
[/NEW_SIGN]

The problem *MUST* non-trivially benefit from the
update (i.e. new API); so that solving the problem with
the old API is not possible, or requires more efforts (e.g.
need to write longer code). The solution of the problem
must accept {{num_param}} parameter(s).

Note:
Only output the JSON in raw text.

1136

B.11 ProgSyn: Unit Test Skeleton

System prompt:
You are a very experienced programer. You are good at
algorithmic reasoning and writing super high quality code.

Your task is to write 10 *high-quality* and *compre-
hensive* unit tests skeletons for testing validity of any
solution function to a problem specification. A unit test
skeleton is a unit test function except the right answer
being clearly specified. Each unit test skeleton MUST be
in raw string, not in Python code block.

1137

Return the set of unit tests skeletons in JSON code block
as a list of string. For unit test skeletons generation,
following the instructions below:
1: You MUST READ the problem specification (between
"[PROBLEM]" and "[/PROBLEM]") WORD-BY-WORD
and understand it PERFECTLY WELL.
1.1: Also, IDENTIFY important arguments: the more
important arguments are ranked to the front in the new
function signature.
2: For unit tests, READ the scenario description (between
[SCENARIO]...[/SCENARIO]) WORD-BY-WORD and
understand it PERFECTLY WELL.
2.1: Contemplate, and think of a diverse set of representa-
tive inputs to solution function; this set of input should
capture possible and interesting cases which solution
function might encounter after deployment.
2.2: BE SURE to test ALL specified behaviors in the
problem specification — edge-case input, edge-case
output, exception raised, etc.
2.3: You need to have different edge-case values for
the update and each important arguments (e.g., multi-
dimensional input array with different `axis`values).
3: When you generate a new unit test, look CAREFULLY
at already generated unit tests, and make sure the inputs
are different from previously generated unit tests as much
as possible.
3.1: You MUST have proper setup code for solution
function inputs: initialize variables for testing the updated
— literally, or randomly generated, etc. INCLUDE in-line
comments.
3.2: PREFERABLY, the input to the solution function call
SHOULD foreseeably lead to a *unique* execution result.
4: The output of the solution function MUST be assigned
to a variable `result`.
4.1: You MUST call the solution function.
5: If a unit test function is testing throwing exception, you
should proceed with `try-except`and finish the unit test
function.
5.1: If the test input is meant to testing error catching,
check if the API call will raise error. DON’T check error
message.
6: If a unit test function is NOT testing throwing
exception:
6.1: You MUST output a placeholder `# @AN-
SWER@`for the right answer to be filled in. Writing the
right answer is forbidden.
6.2: Do not write any assertion. This is forbidden. Instead,
put a placeholder `# @ASSERT@`at the end of the test
function.
6.3: Within the unit function, the placeholders need to
start at the left-most indent (i.e. 4 empty spaces — " ").
7: Each test MUST be a function without any input
arguments. DON’T attempt to test I/O in each unit tests.
8: The function name MUST be informative. Avoid it to
include generic terms like "case1" or "test1".
9: Use "
n" as line break. Use 4 empty spaces (" ") as Python code
block indent.

User Prompt:
In a real-world scenario, there exists some trouble to be
solved:
[SCENARIO]
{{{{scenario}}}}
[/SCENARIO]

Luckily, someone could solve this trouble by writing
a function, as long as the solution function satisfy the

1138

20

following problem specification:
[PROBLEM]
{{{{problem}}}}
[/PROBLEM]

Additionally, the solution function should have the
following function signature:
[SOLUTION_SIGN]
{{{{solution_signature}}}}
[/SOLUTION_SIGN]

{{% if package_instruct %}}
Some special notes for `{{{{pack-
age_name}}}}`package:
{{{{package_instruct}}}}
{{% endif %}}

Only output the set of unit tests skeletons (*a list of
strings*) in JSON code block (```json...```).

1139

B.12 ProgSyn: Answer generation

System prompt:
You are a very experienced programer. You are good at
algorithmic reasoning and writing super high quality code.

In a real-world scenario, there exists some trouble
to be solved:
[SCENARIO]
{{{{scenario}}}}
[/SCENARIO]

Luckily, someone could solve this trouble by writ-
ing a function, as long as the solution function satisfy the
following problem specification:
[PROBLEM]
{{{{problem}}}}
[/PROBLEM]

An ideal solution function takes the following
function signature:
[SOLUTION_SIGN]
{{{{solution_signature}}}}
[/SOLUTION_SIGN]

You will be a unit test skeleton with a `# @AN-
SWER@`. Your task is to generate a Python code block
(```python...```) to replace "`# @ANSWER@". The
purpose of the code block is to calculate a value for a
variable called `expected_result`or `expected_results`.

For generating the code block, following the in-
structions below:
1: You MUST READ the problem specification (between
"[PROBLEM]" and "[/PROBLEM]") WORD-BY-WORD,
take a pause and, understand it PERFECTLY WELL.
1.1: Now look at the values of input to the solution
function, and contemplate on the expected behavior of the
solution function given those inputs.
2: IDENTIFY whether you need to assign value to
`expected_result`or `expected_results`. There is only
one right choice.
3: Before arriving at an answer, ALWAYS take a deep
breath and work on this problem STEP-BY-STEP. Then,
wisely choose one of the strategies from below:
a. an assignment of a Python literal value to the variable;

1140

b. if the literal is too long or it’s best to use arithmetics to
get the value, DON’T write literal value. INSTEAD, use
step-by-step program code to express how to arrive at the
answer.
4: Within the code block, you MUST generate WITH NO
leading indent. Use 4 empty spaces (" ") as indent when
writing if-else, for-loop, etc.

User Prompt:
To write code to calculate `expected_result`or `ex-
pected_results`(strategy b), maybe the following two
functions are useful:

The first function comes from package `numpy`.
[FUNCTION1]
{{{{old_function_signature}}}}
[/FUNCTION1]

The second function is an updated version of the
FUNCTION1
[FUNCTION2]
{{{{new_function_signature}}}}
[/FUNCTION2]

FUNCTION2 differs from FUNCTION1 in the
following way:
[DOC]
{{{{update_docstring}}}}
[/DOC]

[TEST]
{{{{unit_test_skeleton}}}}
[/TEST]
{{% if package_instruct %}}
Some special notes for `{{{{pack-
age_name}}}}`package:
{{{{package_instruct}}}}
{{% endif %}}

1141

B.13 ProgSyn: Assertion generation

System prompt:
You are a very experienced programer. You are good at
algorithmic reasoning and writing super high quality code.

You will be given a unit test function that misses
assertion statements to either:
1. check equivalence between `result`and `ex-
pected_result`
2. or check equivalence between `result`and any values in
`expected_results`(i.e. multiple correct answer).

Your task is to generate a Python code block
(```python...```) to replace `# @ASSERT@`.

User Prompt:
[TEST]
{{{{unit_test_skeleton}}}}
[/TEST]

{{% if package_instruct %}}
Remember some special features of `{{{{pack-
age_name}}}}`package:
{{{{package_instruct}}}}
{{% endif %}}

1142

21

B.14 ProgSyn: Solution

System prompt:
You are a very experienced programer. You are good at
algorithmic reasoning and writing super high quality code.

The API of interest is
[OLD_SIGN]
{{{{old_function_signature}}}}
[/OLD_SIGN]

This API recently undergoes an update and it now
has the following new function signature:
[NEW_SIGN]
{{{{new_function_signature}}}}
[/NEW_SIGN]

This is the documentation that details the behavior
about the update:
[DOC]
{{{{update_docstring}}}}
[/DOC]

You will be given the detailed problem specifica-
tion. Your task is to USE the new API (between
"[NEW_SIGN]" and "[/NEW_SIGN]") to write high qual-
ity solution function that solve the problem specification
in Python code block (```python...```).

To generate the code block, following the instruc-
tions below:
1: First of all, you MUST CAREFULLY READ the
problem specification (between "[PROBLEM]" and
"[/PROBLEM]") WORD-BY-WORD and understand it
PERFECTLY WELL.
2: Before arriving at the solution function, take a deep
breath and work on this problem STEP-BY-STEP.
2.1: INCLUDE in-line comments and improve readability.
2.2: If you are provided with unit tests, use them to
understand expected behavior of the solution function.
3: Notice any error handling specified in the problem
specification. INCLUDE error handling when writing
solution.
4: The solution signature MUST follows the
one specified between "[SOLUTION_SIGN]" and
"[/SOLUTION_SIGN]".
4.1: You MUST NOT write documentation for the
solution.
5: To implement the solution, you MUST use the *new*
API function AS MUCH AS POSSIBLE.
6: Use 4 empty spaces (" ") as Python code block indent.

User Prompt:
[PROBLEM]
{{{{problem}}}}
[/PROBLEM]

Solution should take the following singautre
[SOLUTION_SIGN]
{{{{solution_signature}}}}
[/SOLUTION_SIGN]
{{% if unit_tests %}}
Unit tests for new update:
[PYTHON]
{{%- for test in unit_tests %}}
Unit Test {{{{loop.index}}}}
{{{{test}}}}
{{% endfor -%}}

1143

[/PYTHON]
{{% endif %}}
USE the new API (between "[NEW_SIGN]" and
"[/NEW_SIGN]") to write high quality solution function
that solve the problem specification in Python code block
(```python...```). Only output the new implementation
in Python code block (```python...```).

1144

C Dataset Statistics 1145

C.1 Characterizing the Dataset 1146

Table 5 gives the statistics of our updates (161) 1147

and Table 6 gives the statistics of the final arena 1148

program synthesis examples (670). Each update 1149

features at least three program synthesis examples. 1150

Figure 5 shows the fraction of examples in our 1151

dataset per package. Figure 6 shows the number of 1152

examples per update type in our dataset. Figure 7 1153

shows the number of program synthesis examples 1154

per API update. All updates have at least 3 ex- 1155

amples, with some having substantially more if 1156

diverse enough samples could be drawn. Table 7 1157

shows that our benchmark covers a range of differ- 1158

ent types of API functionalities. Finally, Figure 8 1159

shows the average edit distances between solutions 1160

to our program synthesis examples. Despite using 1161

the same prompt, we see that the sampled solu- 1162

tions to different examples differ substantially. A 1163

full example from our dataset can be found in Ap- 1164

pendix A.2. 1165

Solvability We demonstrate that our program 1166

synthesis examples are solvable: do the problem 1167

scenario and specification provide enough detail to 1168

actually synthesize the correct code? To test this, 1169

we run an experiment prepending the update doc- 1170

string to GPT-4’s context and evaluating pass@k 1171

without checking for whether the update was cor- 1172

rectly used. As shown in Table 1, GPT-4 achieves 1173

pass@5 of 85.1; this means, in most scenarios, 1174

GPT-4 is able to provide a correct solution to the 1175

program synthesis examples within 5 trials. The 1176

performance is reasonably high across all packages 1177

in the benchmark. 1178

Human Inspection Taking the predicted solu- 1179

tion in Table 1, we manually inspect 330 predicted 1180

solutions from 66 PS examples where GPT-4 failed 1181

to generate a correct solution.5 We categorize er- 1182

rors into 4 categories. (1) Incomplete Solution: in- 1183

cludes issues like failure to include the edge cases 1184

5The inspection was conducted on a preliminary version
of the benchmark not including pandas.

22

Total # of unique functions Total # updates Total # PS examples Total # unit tests in PS

54 161 670 6.3

Table 5: Dataset size of CodeUpdateArena over seven python packages.

Update: lengths in tokens Program synthesis: lengths in tokens
description docstring function impl scenario problem specification solution impl

20.9 129.0 164.8 65.1 73.6 174.1

Table 6: The average number of tokens in generated update specs and program synthesis examples.

of the problem statement, missing or incorrect li-1185

brary imports, and incorrectly thrown exceptions1186

as per the problem statement. (2) Wrong Solu-1187

tion: real mistakes due to misinterpretation of the1188

problem statement, using incorrect semantics for1189

mathematical computation, etc. (3) Wrong Test1190

Case: test cases are incorrect or cover cases not1191

expected from the problem statement. (4) Speci-1192

fication Error: the specification was not complete1193

enough for the model to choose the right output. Ta-1194

ble 2 shows the breakdown across these categories.1195

We note that an example may have error in multi-1196

ple places (e.g. unit tests, predicted solution, etc.),1197

and therefore the error categories are not mutually1198

exclusive.1199

We found errors mostly come from “Wrong So-1200

lution” and “Incomplete Solution”, meaning failure1201

to handle the edge cases of the problem statement,1202

real mistakes due to misinterpretation of the prob-1203

lem statement, etc. These errors can be avoided by1204

using stronger language models, as we will demon-1205

strate in Section 5.2. We observed relatively few1206

cases of incorrect test cases or bad specifications,1207

indicating that our dataset is of sufficient quality1208

to test knowledge editing methods. We also ver-1209

ify the quality of our generated data by measuring1210

the unit test coverage on our reference solution in1211

Appendix C.2.1212

C.2 Test Coverage1213

We conducted a line coverage analysis with pack-1214

age coverage by running all the unit tests on the1215

reference solution. We heuristically exclude lines1216

and find that our test coverage is high: if we ex-1217

clude function definition (i.e. “def”) and imports1218

(i.e. “import”), our line coverage is 83.6%. Since1219

we do not test for specific errors being thrown, ex-1220

cluding lines containing “except” and “raise”1221

results in a coverage rate of 97.0%.1222

D Implementation details of computing 1223

UPass@k 1224

As described in Section 3, to evaluate each pre- 1225

dicted solution c̃i, our evaluation procedure exe- 1226

cutes the set of test cases twice, once with the up- 1227

dated API and once with the old API. 1228

To evaluate code conforming to a new, non- 1229

standard API, we use a setup as shown in Fig- 1230

ure 10. We put the implementation of the new 1231

API (e.g. argsort) at the top of the program 1232

(after imports). Then, we follow by a sim- 1233

ple statement of setattr(numpy, "argsort", 1234

argsort) to dynamically rebind the reference of 1235

numpy.argsort (old API) to the new API. 1236

Given the total number of trials n, the target 1237

value k, and the number of successes ci on exam- 1238

ple i (pass tests and use the update), we compute 1239

UPass@k over D program synthesis examples us- 1240

ing the same form as in (Chen et al., 2021): 1241

UPass@k = 1
D

∑D
i=1

[
1− (n−c

k)
(nk)

]
. 1242

Finally, note that when performing our editing 1243

updates, each example is updated independently; a 1244

update u′ starts again from the base modelM. 1245

E Experimentation setup 1246

E.1 Hyperparameters 1247

In Table 8, for FT(U), we conducted a hyper- 1248

parameter search over the number of gradient up- 1249

date when training on the documentation about the 1250

API update. More training does not necessarily 1251

lead to degradation in specificity. 1252

training hyper
if hypers are unspecified, the values are set

to be the default in `transformers`↪→
optimizer: adamw_torch # as defined in

TrainingArgument in `transformers`↪→
lr: 1e-3
lr_scheduler_type: constant # in preliminary

study, we found using `linear` leads to
worse performances

↪→
↪→
batch_size: min(train_set_size, 8)
num_epoch: # 10 for FT(U) , and 5 for FT(PS)

23

math

26%

numpy

23%

re
14%

sympy

2%

itertools

8%

torch

14%
pandas

12%

Figure 5: Package breakdown of updated functions in CodeUpdateArena

modify-output-semantics

14%

add-output-data_type

6%

modify-function-name

10%

add-argument-semantics

9%add-output-semantics

8%
add-argument-supported_value(s) 4%

add-argument-data_type
12%

add-argument

10%

add-argument-default_value(s)

7%

modify-output-data_type

4%

add-function

1%

modify-argument-data_type

2%

modify-argument-name

5% modify-argument-semantics
4% modify-argument-supported_value(s)
2% modify-argument-default_value(s)2%

Figure 6: Distribution of Program Synthesis examples covered by different update types.

decay: 1e-8
warmup_ratio: 0.05
gradient_accumulation_steps: 1

Generation:
do_sample: True
top_p: 0.7
temperature: 0.8
Control the length of generation
max_new_tokens: 512

E.2 LoRA configuration1253

lora
r: 8 # the low rank dim (hidden->r->hidden)
alpha: 1
dropout: 0.1

where the lora are inserted:
target_modules = ["q_proj", "v_proj"]

E.3 Non-applicability of existing knowledge 1254

editing methods 1255

Although a number of methods for knowledge edit- 1256

ing have been proposed, not all of them are ap- 1257

plicable to our setting. A line of methods includ- 1258

ing ROME, MEMIT, and REMEDI (Meng et al., 1259

2022, 2023; Hernandez et al., 2023) assume the 1260

injected data follows a strict knowledge triplet 1261

format of (subject, relation, object); this 1262

triplet structure is required for localization. Ap- 1263

24

Package Type Standard / External lib.

re String operations Standard

math Arithmetic operations Standard

itertools Python data structure operations Standard

torch==2.0.1,
numpy==1.25.2

Vector operations External

sympy==1.12 Symbolic operations External

pandas==2.1.0 Table operations External

Table 7: Diversity of packages in CodeUpdateArena. Our benchmark covers a range of different types of API
functionalities. Our python version is 3.11.5.

DS-Coder-v1.5 UPass (Efficacy) ↑ SPass (Specificity) ↑
Method #gradient update @1 (∆) @5 (∆) @1 (∆) @5 (∆)

FT (U)
2 3.4 7.0 49.5 71.3
5 3.4 7.0 49.4 68.7

10 3.6 7.0 56.4 77.3

Table 8: Hyperparameter search over number of gradient updates when FT(U) continues pretraining on the update
docstring. We found that our choice of 10 in Table 3 is optimal. In this experiment, other hyperparameters are kept
the same, including the constant learning rate schedule and learning rate of 1e-3.

3 4 5 6 7 8 9 10 11
#PS

0

10

20

30

40

50

60

70

Co
un

t

69

50

15 14

0

6 4
1 1 1

#PS / update

Figure 7: Number of program synthesis instances per
API update in CodeUpdateArena.

plying those methods to CodeUpdateArena is not1264

straightforward, as code entities do not exhibit1265

these knowledge graph-like relations. Other meth-1266

ods designed for similar settings do not assume1267

this structure. However, even these more flexible1268

approaches like MEND (Mitchell et al., 2022) and1269

others (Hartvigsen et al., 2023; Huang et al., 2023)1270

are optimized for models regurgitating the right1271

short phrase response, typically less than 10 tokens.1272

Our reference solutions contain 175.3 tokens on av-1273

erage. Furthermore, these methods have not proven1274

50 100 150 200 250 300 350
Edit Distance

0

20

40

60

80

100

120

140

Co
un

t

Edit Distance of Canonicalized Solutions

Figure 8: Edit distances between canonicalized refer-
ence solutions of PS instances; pairing happens among
PS of a single update.

effective in more related natural language settings 1275

such as Onoe et al. (2023). 1276

E.4 Evaluation procedure for finetuning 1277

experiments 1278

Recall that our benchmark CodeUpdateArena is 1279

structured by pairing each executable API update 1280

with n program synthesis examples. We treat the n 1281

program synthesis examples as an ordered list. The 1282

training sets of FT (U) and FT (PS) slightly differ 1283

25

Dist 15

Prog A:
CANONICALIZED
import math
from typing import Tuple

def var0(var1, var2):
return math.nextafter(var1, var2)

Prog B:
CANONICALIZED
import math
from typing import Tuple

def var0(var1, var2):
var3, var4 = math.nextafter(var1, var2)
return (var3, var4)

Dist 23
Prog A:
CANONICALIZED
from typing import List, Union
import math

def var0(var1, var2):
var3 = []
for var4 in var1:

var5 = math.sqrt(var4, fallback=var2)
var3.append(var5)

return var3
Prog B:
CANONICALIZED
from typing import List
import math

def var0(var1, var2):
var3 = [math.sqrt(var4, fallback=var2) for

var4 in var1]↪→
return var3

Figure 9: Example of reference solution with low edit
distance

[imports]
import numpy
...
[implementation of updated API]
def argsort(..., reverse=False):

...
[Optional: update API at runtime]
setattr(numpy, "argsort", argsort)
[Predicted solution]
...
[Unit test function]
def test_reverse_false():

...
test_reverse_false()

Figure 10: Example of test execution

and we will describe them separately. 1284

FT (U) The training set only consists of a single 1285

copy of the API update information following the 1286

template in Prompt E.4. 1287

FT (PS) As mentioned in Section 5.1, the single- 1288

edit training set contains c copies of Nu = 2 unique 1289

program synthesis examples and Nr examples from 1290

r updates from the rest of the benchmark. Since the 1291

number of program synthesis examples per update 1292

could be as few as 3, we adopt a cross-validation 1293

scheme to evaluate a model for each update. To 1294

give a concrete example: when testing the model 1295

on program synthesis example i ∈ [0, n), we take 1296

the “previous” Nu examples — example (i − 1) 1297

mod n and example (i − 2) mod n; we then re- 1298

peat them c times to obtain the final set of examples 1299

for target update. Then, we take two unique pro- 1300

gram synthesis examples from each of the r random 1301

updates; and combine them with examples from the 1302

previous step to obtain the final training set. Each 1303

training instance is formatted with Prompt E.5. 1304

E.5 Additional ablation study 1305

See Figure 11 for a specific study for c. 1306

See Figure 12 for a specific study for r. 1307

1308

E.6 Compute Resources 1309

For GPT-4, we call through the openai Python 1310

interface. It takes about 2 hours to generate (5) 1311

solutions to program synthesis examples. For 1312

open-source models, all our experiments are ac- 1313

complished on NVIDIA A40 with 48GB memory. 1314

In our work, each experiment (prepend and fine- 1315

tuning) takes a max of 9.5 hours to finish generating 1316

(5) solutions to program synthesis examples. After 1317

generating predicted solutions to program synthe- 1318

sis examples, we need to execute the generated 1319

program against corresponding test cases. This 1320

process is CPU-only and finishes within 2 hours. 1321

E.7 Prompt 1322

Our prompt mostly migrates the style of the ones 1323

used in CodeLlama (Rozière et al., 2023). 1324

See Prompt E.1 for HumanEval 1325

See Prompt E.2 for template for base model ex- 1326

periment 1327

See Prompt E.3 for template for prepending ex- 1328

periment 1329

See Prompt E.4 for template to generate instance 1330

for FT(U) 1331

26

Specificity Efficacy
Measure

0

10

20

30

40

50

Pa
ss

@
1

DS-Coder-v1

Specificity Efficacy
Measure

DS-Coder-v1.5

c
1
2
3

Figure 11: Ablation study of c — the number of times to repeat Nu unique program synthesis examples from target
update. r is fixed to be 1. We observed that c = 2 is the optimal hyper, beyond which we observe diminishing gains
in efficacy and drops in specificity.

0 2 4 6 8 10 12 14
r

30

35

40

45

50

55

60

65

Pa
ss

@
1

Specificity

0 2 4 6 8 10 12 14
r

5

10

15

20

25

30

35

Pa
ss

@
1

Efficacy

Model
DS-Coder-v1
DS-Coder-v1.5
Baseline
FT (PS)
Base
Prepend

Figure 12: Ablation study of r — the number of random updates where a pair of unique program synthesis examples
are drawn from each update. c is fixed to be 2. Although different models have different optimal values, we found
that larger r will continue to decrease models’ performances for efficacy and specificity.

27

UPass (Efficacy) ↑ SPass (Specificity) ↑
Method c r @1 (∆) @5 (∆) @1 (∆) @5 (∆)

DS-Coder-v1 — — 2.6 4.3 49.3 79.3

+ Prepend — — 10.7∗
+8.1 18.6∗

+14.3 — —

+ FT (PS)

2 1 30.8∗
+28.2 49.7∗

+45.3 52.5∗
+3.3 78.4 −0.8

1 2 25.7∗
+23.1 45.3∗

+41.0 53.3∗
+4.0 79.8 +0.5

3 0 30.4∗
+27.8 41.6∗

+37.3 51.6∗
+2.3 77.0∗

−2.2

0 3 8.3∗
+5.7 18.0∗

+13.7 51.5∗
+2.2 79.1 −0.1

Table 9: Experiments on DS-Coder-v1 with different training set construct controlled by (c, r). Despite to a lesser
degree, the observations in Table 10 hold for DS-Coder-v1 as well — training on unrelated examples is worse, but
including random updates along with the true updates help. ∗: comparing against base model, the gap is significant
according to a paired bootstrap test with p < 0.05.

UPass (Efficacy) ↑ SPass (Specificity) ↑
Method c r @1 (∆) @5 (∆) @1 (∆) @5 (∆)

DS-Coder-v1.5 — — 2.6 4.3 67.1 79.3

+ Prepend — — 12.4∗
+8.8 21.7∗

+14.3 — —

+ FT (PS)

2 1 34.8∗
+31.2 50.3∗

+42.9 37.3∗
−29.8 61.2∗

−18.0

1 2 28.1∗
+25.5 45.3∗

+41.0 32.3∗
−34.8 63.8∗

−15.5

3 0 31.9∗
+28.3 44.7∗

+37.3 40.2∗
−26.9 61.9∗

−17.4

0 3 9.6∗
+6.0 21.1∗

+13.7 35.7∗
−31.4 66.3∗

−13.0

Table 10: Experiments with different training set construct controlled by (c, r). Our standard setting is (2, 1). We
see that the update itself is required to do well; training on unrelated examples is much worse (compare (0, 3)).
However, including random update(s) in training data is beneficial when paired with the update (compare (3, 0)).
∗: comparing against base model, the gap is significant according to a paired bootstrap test with p < 0.05. See
additional results in Table 9.

See Prompt E.5 for FT(PS)1332

E.1 HumanEval in jinja2

[INST]
Please continue to complete the function. You are not al-
lowed to modify the given code and do the completion
only. Please return all completed function in [PYTHON]
and [/PYTHON] tags. Here is the given code to do com-
pletion:
[PYTHON]
{{completion_context}}
[/PYTHON]
[/INST]

1333

E.2 Base Model

[INST]
Your task is to write a Python solution to a problem in a
real-world scenario.
The Python code must be between [PYTHON] and
[/PYTHON] tags.

Scenario: {{example_scenario}}
Problem: {{example_problem}}
Solution signature: {{example_solution_signature}}
[TEST]
{{example_unit_tests}}
[/TEST]
[/INST]

[PYTHON]
1334

{{example_solution}}
[/PYTHON]

[INST]
Scenario: {{scenario}}
Problem: {{problem}}
Solution signature: {{solution_signature}}
[TEST]
{{unit_tests}}
[/TEST]
[/INST]

1335

E.3 Prepend in jinja2

[INST]
Update note:
There’s an recent update to a function
`{{old_function_signature}}`— {{update_description}}.
The function now has a new function signature —
`{{new_function_signature}}`.
Here’s a detailed documentation about the update:
[DOC]
{{update_docstring}}
[/DOC]

Your task is to write a Python solution to a prob-
lem in a real-world scenario.
The Python code must be between [PYTHON] and
[/PYTHON] tags.

Scenario: {{example_scenario}}
Problem: {{example_problem}}

1336

28

Solution signature: {{example_solution_signature}}
[TEST]
{{example_unit_tests}}
[/TEST]
[/INST]

[PYTHON]
{{example_solution}}
[/PYTHON]

[INST]
Scenario: {{scenario}}
Problem: {{problem}}
Solution signature: {{solution_signature}}
[TEST]
{{unit_tests}}
[/TEST]
[/INST]

1337

E.4 FT(U) in jinja2

Train:
[INST]
Update note:
There’s an recent update to a function
`{{old_function_signature}}`— {{update_description}}.
The function now has a new function signature —
`{{new_function_signature}}`.

Here’s a detailed documentation about the update:
[DOC]
{{update_docstring}}
[/DOC]
[/INST]

Evaluation:
[INST]

{% if include_update -%}
Update note:
There’s an recent update to a function
`{{old_function_signature}}`— {{update_description}}.
The function now has a new function signature —
`{{new_function_signature}}`.
Here’s a detailed documentation about the update:
[DOC]
{{update_docstring}}
[/DOC]
{% endif %}

Your task is to write a Python solution to a prob-
lem in a real-world scenario.
The Python code must be between [PYTHON] and
[/PYTHON] tags.

Scenario: {{example_scenario}}
Problem: {{example_problem}}
Solution signature: {{example_solution_signature}}
[TEST]
{{example_unit_tests}}
[/TEST]
[/INST]
[PYTHON]
{{example_solution}}
[/PYTHON]

[INST]
1338

Scenario: {{scenario}}
Problem: {{problem}}
Solution signature: {{solution_signature}}
[TEST]
{{unit_tests}}
[/TEST]
[/INST]

1339

E.5 FT(PS) in jinja2

{: Train and Evaluation} [INST]
{% if include_update -%}
Update note:
There’s an recent update to a function
`{{old_function_signature}}`— {{update_description}}.
The function now has a new function signature —
`{{new_function_signature}}`.
Here’s a detailed documentation about the update:
[DOC]
{{update_docstring}}
[/DOC]
{% endif %}

Your task is to write a Python solution to a prob-
lem in a real-world scenario.
The Python code must be between [PYTHON] and
[/PYTHON] tags.

Scenario: {{example_scenario}}
Problem: {{example_problem}}
Solution signature: {{example_solution_signature}}
[TEST]
{{example_unit_tests}}
[/TEST]
[/INST]

[PYTHON]
{{example_solution}}
[/PYTHON]

[INST] Scenario: {{scenario}}
Problem: {{problem}}
Solution signature: {{solution_signature}}
[TEST]
{{unit_tests}}
[/TEST]
[/INST]

1340

F Licensing 1341

We use the following open-source LLMs with open 1342

licenses. 1343

CODELLAMA (Rozière et al., 2023) uses the 1344

LLAMA 2 COMMUNITY LICENSE (see https: 1345

//github.com/meta-llama/codellama/)). 1346

DEEPSEEKCODER (DeepSeek-AI et al., 2024) 1347

uses DEEPSEEK LICENSE (see https:// 1348

github.com/deepseek-ai/DeepSeek-Coder/)). 1349

DEEPSEEKCODER-V1.5 (Guo et al., 1350

2024a) uses the DEEPSEEK LICENSE 1351

29

https://github.com/meta-llama/codellama/
https://github.com/meta-llama/codellama/
https://github.com/meta-llama/codellama/
https://github.com/deepseek-ai/DeepSeek-Coder/
https://github.com/deepseek-ai/DeepSeek-Coder/
https://github.com/deepseek-ai/DeepSeek-Coder/

(see https://github.com/deepseek-ai/1352

DeepSeek-Coder/)).1353

30

https://github.com/deepseek-ai/DeepSeek-Coder/
https://github.com/deepseek-ai/DeepSeek-Coder/
https://github.com/deepseek-ai/DeepSeek-Coder/

	Introduction
	Background and Related Work
	Task: CodeUpdateArena
	Update and Arena Generation
	Update (new API function) Generation
	Arena (Program Synthesis Examples) Generation

	Experiments
	Experimental Setting
	Results and discussions
	Ablation Study

	Conclusion
	Dataset
	Update Taxonomy
	Example

	Data generation details
	Preprocessing API path
	Unit test generation
	Deduplication
	Literalize answer in unit test
	Generation Prompt: Update
	Generation Prompt: Program Synthesis

	Dataset Statistics
	Characterizing the Dataset
	Test Coverage

	Implementation details of computing UPass@k
	Experimentation setup
	Hyperparameters
	LoRA configuration
	Non-applicability of existing knowledge editing methods
	Evaluation procedure for finetuning experiments
	Additional ablation study
	Compute Resources
	Prompt

	Licensing

