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Abstract

State-of-the-art approaches for training Differentially Private (DP) Deep Neural1

Networks (DNN) faces difficulties to estimate tight bounds on the sensitivity of2

the network’s layers, and instead rely on a process of per-sample gradient clipping.3

This clipping process not only biases the direction of gradients but also proves4

costly both in memory consumption and in computation. To provide sensitivity5

bounds and bypass the drawbacks of the clipping process, our theoretical analysis6

of Lipschitz constrained networks reveals an unexplored link between the Lipschitz7

constant with respect to their input and the one with respect to their parameters.8

By bounding the Lipschitz constant of each layer with respect to its parameters9

we guarantee DP training of these networks. This analysis not only allows the10

computation of the aforementioned sensitivities at scale but also provides leads11

on to how maximize the gradient-to-noise ratio for fixed privacy guarantees. To12

facilitate the application of Lipschitz networks and foster robust and certifiable13

learning under privacy guarantees, we provide a Python package that implements14

building blocks allowing the construction and private training of such networks.15

1 Introduction16

Machine learning relies more than ever on foundational models, and such practices raise questions17

about privacy. Differential privacy allows to develop methods for training models that preserve18

the privacy of individual data points in the training set. The field seeks to enable deep learning on19

sensitive data, while ensuring that models do not inadvertently memorize or reveal specific details20

about individual samples in their weights. This involves incorporating privacy-preserving mechanisms21

into the design of deep learning architectures and training algorithms, whose most popular example22

is Differentially Private Stochastic Gradient Descent (DP-SGD) [1]. One main drawback of classical23

DP-SGD methods is that they require costly per-sample backward processing and gradient clipping.24

In this paper, we offer a new method that unlocks fast differentially private training through the use25

of Lipschitz constrained neural networks. Additionally, this method offers new opportunities for26

practitioners that wish to easily "DP-fy" [2] the training procedure of a deep neural network.27

Differential privacy fundamentals. Informally, differential privacy is a definition that quantifies how28

much the change of a single sample in a dataset affects the range of a stochastic function (here the DP29

training), called mechanism in this context. This quantity can be bounded in an inequality involving30

two parameters ϵ and δ. A mechanism fulfilling such inequality is said (ϵ, δ)-DP (see Definition 1).31

This definition is universally accepted as a strong guarantee against privacy leakages under various32

scenarii, including data aggregation or post-processing [3]. A popular rule of thumb suggests using33

ϵ ≤ 10 and δ < 1
N with N the number of records [2] for mild guarantees. In practice, most classic34

algorithmic procedures (called queries in this context) do not readily fulfill the definition for useful35

values of (ϵ, δ), in particular the deterministic ones: randomization is mandatory. This randomization36
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model = DP_Sequential( # step 1: use DP_Sequential to build a model
[

# step 2: add Lipschitz layers of known sensitivity
DP_BoundedInput(input_shape =(28, 28, 1), upper_bound =20.) ,
DP_SpectralConv2D(filters =16, kernel_size =3, use_bias=False),
DP_GroupSort (2),
DP_Flatten (),
DP_SpectralDense (10),

],
noise_multiplier = 1.2, # step 3: choose DP parameters
sampling_probability = batch_size / dataset_size ,

) # step 4: compile the model , and choose any first order optimizer
model.compile(loss=DP_Crossentropy (), optimizer=Adam(1e-3))
model.fit( # step 5: train the model and measure the DP guarantees

train_dataset , validation_data=val_dataset ,
epochs=num_epochs , callbacks =[ DP_Accountant ()]

)

Figure 1: An example of usage of our framework, illustrating how to create a small Lipschitz VGG
and how to train it under (ϵ, δ)-DP guarantees while reporting (ϵ, δ) values.

comes at the expense of “utility”, i.e the usefulness of the output for downstream tasks [4]. The goal37

is then to strike a balance between privacy and utility, ensuring that the released information remains38

useful and informative for the intended purpose while minimizing the risk of privacy breaches. The39

privacy/utility trade-off yields a Pareto front, materialized by plotting ϵ against a measurement of40

utility, such as validation accuracy for a classification task.41

Private gradient descent. The SGD algorithm consists of a sequence of queries that (i) take the42

dataset in input, sample a minibatch from it, and return the gradient of the loss evaluated on the43

minibatch, before (ii) performing a descent step following the gradient direction. The sensitivity (see44

Definition 2) of SGD queries is proportional to the norm of the per-sample gradients. DP-SGD turns45

each query into a Gaussian mechanism by perturbing the gradients with a noise ζ. The upper bound46

on gradient norms is generally unknown in advance, which leads practitioners to clip it to C > 0, in47

order to bound the sensitivity manually. This is problematic for several reasons: 1. Hyper-parameter48

search on the broad-range clipping value C is required to train models with good privacy/utility trade-49

offs [5], 2. The computation of per-sample gradients is expensive: DP-SGD is usually slower and50

consumes more memory than vanilla SGD, in particular for the large batch sizes often used in private51

training [6], 3. Clipping the per-sample gradients biases their average [7]. This is problematic as the52

average direction is mainly driven by misclassified examples, that carry the most useful information53

for future progress.54

An unexplored approach: Lipschitz constrained networks. We propose to train neural networks55

for which the parameter-wise gradients are provably and analytically bounded during the whole56

training procedure, in order to get rid of the clipping process. This allows for rapid training of models57

without a need for tedious hyper-parameter optimization.58

The main reason why this approach has not been experimented much in the past is that upper bounding59

the gradient of neural networks is often intractable. However, by leveraging the literature of Lipschitz60

constrained networks [8], we show that these networks allows to estimate their gradient bound.61

This yields tight bounds on the sensitivity of SGD steps, making their transformation into Gaussian62

mechanisms inexpensive - hence the name Clipless DP-SGD.63

Informally, the Lipschitz constant quantifies the rate at which the function’s output varies with respect64

to changes in its input. A Lipschitz constrained network is one in which its weights and activations65

are constrained such that it can only represent l-Lipschitz functions. In this work, we will focus our66

attention on feed-forward networks (refer to Definition 3). Note that the most common architectures,67

such as Convolutional Neural Networks (CNNs), Fully Connected Networks (FCNs), Residual68

Networks (ResNets), or patch-based classifiers (like MLP-Mixers), all fall under the category of69

feed-forward networks. We will also tackle the particular case of Gradient Norm Preserving (GNP)70

networks, a subset of Lipschitz networks that enjoy tighter bounds (see appendix).71
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Contributions72

While the properties of Lipschitz constrained networks regarding their inputs are well explored, the73

properties with respect to its parameters remain non-trivial. This work provides a first step to fill this74

gap: our analysis shows that under appropriate architectural constraints, a l-Lipschitz network has a75

tractable, finite Lipschitz constant with respect to its parameters. We prove that this Lipschitz constant76

allows for easy estimation of the sensitivity of the gradient computation queries. The prerequisite and77

details of the method to compute the sensitivities are explained in Section 2.78

Our contributions are the following:79

1. We extend the field of applications of Lipschitz constrained neural networks. So far the80

literature focused on Lipschitzness with respect to the inputs: we extend the framework to81

compute the Lipschitzness with respect to the parameters. This is exposed in Section 2.82

2. We propose a general framework to handle layer gradient steps as Gaussian mechanisms83

that depends on the loss and the model structure. Our framework covers widely used84

architectures, including VGG and ResNets.85

3. We show that SGD training of deep neural networks can be achieved without gradient86

clipping using Lipschitz layers. This allows the use of larger networks and larger batch87

sizes, as illustrated by our experiments in Section 4.88

4. We establish connections between Gradient Norm Preserving (GNP) networks and im-89

proved privacy/utility trade-offs (Section 3.1).90

5. Finally, a Python package1 companions the project, with pre-computed Lipschitz constant91

and noise for each layer type, ready to be forked on any problem of interest (Section 3.2).92

1.1 Differential Privacy and Lipschitz Networks93

The definition of DP relies on the notion of neighboring datasets, i.e datasets that vary by at most one94

example. We highlight below the central tools related to the field, inspired from [9].95

Definition 1 ((ϵ, δ)-Differential Privacy). A labeled dataset D is a finite collection of input/label96

pairs D = {(x1, y1), (x2, y2), . . . ...(xN , yN )}. Two datasets D and D′ are said to be neighboring97

for the “replace-one” relation if they differ by at most one sample: D′ = D ∪ {(x′
i, y

′
i)} \ {(xi, yi)}.98

Let ϵ and δ be two non-negative scalars. A mechanism A is (ϵ, δ)-DP if for any two neighboring99

datasets D and D′, and for any S ⊆ range(A):100

P[A(D) ∈ S] ≤ eϵ × P[A(D′) ∈ S] + δ. (1)

A cookbook to create a (ϵ, δ)-DP mechanism from a query is to compute its sensitivity ∆ (see101

Definition 2), and to perturb its output by adding a Gaussian noise of predefined variance ζ2 = ∆2σ2,102

where the (ϵ, δ)-DP guarantees depends on σ. This yields what is called a Gaussian mechanism [3].103

Definition 2 (l2-sensitivity). LetM be a query mapping from the space of the datasets to Rp. Let N104

be the set of all possible pairs of neighboring datasets D,D′. The l2 sensitivity ofM is defined by:105

∆(M) = max
D,D′∈N

∥M(D)−M(D′)∥2. (2)

Differentially Private SGD. The classical algorithm keeps track of (ϵ, δ)-DP values with a moments106

accountant [1] which allows to keep track of privacy guarantees at each epoch, by composing107

different sub-mechanisms. For a dataset with N records and a batch size b, it relies on two parameters:108

the sampling ratio p = b
N and the “noise multiplier” σ defined as the ratio between effective noise109

strength ζ and sensitivity ∆. Bounds on gradient norm can be turned into bounds on sensitivity110

of SGD queries. In “replace-one” policy for (ϵ, δ)-DP accounting, if the gradients are bounded by111

K > 0, the sensitivity of the gradients averaged on a minibatch of size b is ∆ = 2K/b..112

Crucially, the algorithm requires a bound on ∥∇θL(ŷ, y)∥2 ≤ K. The whole difficulty lies in113

bounding tightly this value in advance for neural networks. Currently, gradient clipping serves as a114

patch to circumvent the issue [1]. Unfortunately, clipping individual gradients in the batch is costly115

and will bias the direction of their average, which may induce underfitting [7].116

1Code and documentation are given as supplementary material during review process.
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Lipschitz constrained networks. Our proposed solution comes from the observation that the norm117

of the gradient and the Lipschitz constant are two sides of the same coin. The function f : Rm → Rn118

is said l-Lipschitz for l2 norm if for every x, y ∈ Rm we have ∥f(x) − f(y)∥2 ≤ l∥x − y∥2. Per119

Rademacher’s theorem [10], its gradient is bounded: ∥∇xf∥ ≤ l. Reciprocally, continuous functions120

gradient bounded by l are l-Lipschitz.121

In Lipschitz networks, the literature has predominantly concentrated on investigating the control122

of Lipschitzness with respect to the inputs (i.e bounding ∇xf ), primarily motivated by concerns123

of robustness [11]. However, in this work, we will demonstrate that it is also possible to control124

Lipschitzness with respect to parameters (i.e bounding ∇θf ), which is essential for ensuring privacy.125

Our first contribution will point out the tight link that exists between those two quantities.126

Definition 3 (Lipschitz feed-forward neural network). A feedforward neural network of depth D,127

with input space X ⊂ Rn, output space Y ⊂ RK (e.g logits), and parameter space Θ ⊂ Rp, is a128

parameterized function f : Θ×X → Y defined by the sequential composition of layers fd:129

f(θ, x) := (fD(θd) ◦ . . . ◦ f2(θ2) ◦ f1(θ1)) (x). (3)
The parameters of the layers are denoted by θ = (θd)1≤d≤D ∈ Θ. For affine layers, it corresponds130

to bias and weight matrix θd = (Wd, bd). For activation functions, there is no parameters: θd = ∅.131

Lipschitz networks are feed-forward networks, with the additionnal constraint that each132

layer xd 7→ fd(θd, xd) := yd is ld-Lipschitz for all θd. Consequently, the function x 7→ f(θ, x)133

is l-Lipschitz with l = l1 × . . .× ld for all θ ∈ Θ.134

In practice, this is enforced by using activations with Lipschitz constant ld, and by applying a con-135

straint Π : Rp → Θ on the weights of affine layers. This corresponds to spectrally normalized matri-136

ces [12, 13], since for affine layers we have ld = ∥Wd∥2 := max
∥x∥≤1

∥Wdx∥2 hence Θ = {∥Wd∥ ≤ lq}.137

The seminal work of [8] proved that universal approximation in the set of l-Lipschitz functions was138

achievable by this family of architectures. Concurrent approaches are based on regularization (like139

in [14, 15, 16]) but they fail to produce formal guarantees. While they have primarily been studied in140

the context of adversarial robustness [11, 17], recent works have revealed additional properties of141

these networks, such as improved generalization [13, 18]. However, the properties of their parameter142

gradient∇θf(θ, x) remain largely unexplored.143

2 Clipless DP-SGD with l-Lipschitz networks144

Our framework consists of 1. a method that computes the maximum gradient norm of a network with145

respect to its parameters to obtain a per-layer sensitivity ∆d, 2. a moments accountant that relies on146

the per-layer sensitivities to compute (ϵ, δ)-DP guarantees. The method 1. is based on the recursive147

formulation of the chain rule involved in backpropagation, while 2. keeps track of (ϵ, δ)-DP values148

with RDP accounting. It requires some natural assumptions that we highlight below.149

Requirement 1 (Lipschitz loss.). The loss function ŷ 7→ L(ŷ, y) must be L-Lipschitz with respect to150

the logits ŷ for all ground truths y ∈ Y . This is notably the case of Categorical Softmax-Crossentropy.151

The Lipschitz constants of common classification losses can be found in the appendix.152

Requirement 2 (Bounded input). There exists X0 > 0 such that for all x ∈ X we have ∥x∥ ≤ X0.153

While there exist numerous approaches for the parametrization of Lipschitz networks (e.g differen-154

tiable re-parametrization [19, 8], optimization over matrix manifolds [20] or projections [21]), our155

framework only provides sensitivity bounds for projection-based algorithms (see appendix).156

Requirement 3 (Lipschitz projection). The Lipschitz constraints must be enforced with a projection157

operator Π : Rp → Θ. This corresponds to Tensorflow [22] constraints and Pytorch [23] hooks.158

Projection is a post-processing of private gradients: it induces no privacy leakage [3].159

To compute the per-layer sensitivities, our framework mimics the backpropagation algorithm, where160

Vector-Jacobian products (VJP) are replaced by Scalar-Scalar products of element-wise bounds. For161

an arbitrary layer xd 7→ fd(θd, xd) := yd the operation is sketched below:162

∇xd
L := (∇yd

L) ∂fd
∂xd︸ ︷︷ ︸

Vector-Jacobian product: backpropagate gradients

=⇒ ∥∇xd
L∥2 ≤ ∥∇yd

L∥2 ×
∥∥∥∥ ∂fd∂xd

∥∥∥∥
2

.︸ ︷︷ ︸
Scalar-Scalar product: backpropagate bounds

(4)
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Figure 2: Backpropagation for bounds, Algorithm 1. Compute the per-layer sensitivity ∆d.

The notation ∥ · ∥2 must be understood as the spectral norm for Jacobian matrices, and the Euclidean163

norm for gradient vectors. The scalar-scalar product is inexpensive. For Lipschitz layers the spectral164

norm of the Jacobian ∥∂f∂x∥ is kept constant during training with projection operator Π. The bound of165

the gradient with respect to the parameters then takes a simple form:166

∥∇θdL∥2 = ∥∇yd
L∥2 ×

∥∥∥∥∂fd∂θd

∥∥∥∥
2

. (5)

Once again the operation is inexpensive. The upper bound
∥∥∥∂f

∂θ

∥∥∥
2

typically depends on the supremum167

of ∥xd∥2, that can also be analytically bounded, as exposed in the following section.168

2.1 Backpropagation for bounds169

The pseudo-code of Clipless DP-SGD is sketched in Algorithm 2. The algorithm avoids clipping by170

computing a per-layer bound on the element-wise gradient norm. The computation of this per-layer171

bound is described by Algorithm 1 (graphically explained in Figure 2). Crucially, it requires to172

compute the spectral norm of the Jacobian of each layer with respect to input and parameters.173

Input bound propagation (line 2). We compute Xd = max∥x∥≤Xd−1
∥fd(x)∥2. For activation174

functions it depends on their range. For linear layers, it depends on the spectral norm of the operator175

itself. This quantity can be computed with SVD or Power Iteration [24, 19], and constrained during176

training using projection operator Π. In particular, it covers the case of convolutions, for which tight177

bounds are known [25]. For affine layers, it additionally depends on the amplitude of the bias ∥bd∥.178

Remark 1 (Tighter bounds in literature.). Although libraries such as Decomon [26] or179

auto-LiRPA [27] provide tighter bounds Xd via linear relaxations [28, 29], our approach is ca-180

pable of delivering practically tighter bounds than worst-case scenarios thanks to the projection181

operator Π, while also being significantly less computationally expensive. Moreover, hybridizing our182

method with scalable certification methods can be a path for future extensions.183

Computing maximum gradient norm (line 6). We bound the Jacobian ∂fd(θd,x)
∂θd

. In neural networks,184

the parameterized layers f(θ, x) (fully connected, convolutions) are bilinear operators. Hence we185

typically obtain bounds of the form:186 ∥∥∥∥∂fd(θd, x)∂θd

∥∥∥∥
2

≤ K(fd, θd)∥x∥2 ≤ K(fd, θd)Xd−1, (6)

where K(fd,Θd) is a constant that depends on the nature of the operator. Xd−1 is obtained in line 2187

with input bound propagation. Values of K(fd, θd) for popular layers are pre-computed in the library.188

Backpropagate cotangeant vector bounds (line 7). We bound the Jacobian ∂fd(θd,x)
∂x . For activa-189

tion functions this value can be hard-coded, while for affine layers it is the spectral norm of the linear190

operator. Like before, this value is constrained with projection operator Π.191

2.2 Privacy accounting for Clipless DP-SGD192

Two strategies are available to keep track of (ϵ, δ) values as the training progresses, based on193

accounting either a per-layer “local” sensitivity, either by aggregating them into a “global” sensitivity.194
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Algorithm 1 Backpropagation for Bounds(f,X)

Input: Feed-forward architecture f(θ, ·) = fD(θD, ·) ◦ . . . ◦ f1(θ1, ·)
Input: Weights θ = (θ1, θ2, . . . θD), input bound X0

1: for all layers 1 ≤ d ≤ D do
2: Xd ← max

∥x∥≤Xd−1

∥fd(θd, x)∥2. ▷ Input bounds propagation

3: end for
4: G← L/b. ▷ Lipschitz constant of the loss for batchsize b
5: for all layers D ≥ d ≥ 1 do
6: ∆d ← G max

∥x∥≤Xd−1

∥∂fd(θd,x)∂θd
∥2. ▷ Compute sensitivity from gradient norm

7: G← G max
∥x∥≤Xd−1

∥∂fd(θd,x)∂x ∥2 = Gld. ▷ Backpropagate cotangeant vector bounds

8: end for
9: return sensitivities ∆1,∆2 . . . ,∆D

Algorithm 2 Clipless DP-SGD with local sensitivity accounting
Input: Feed-forward architecture f(θ, ·) = fD(θD, ·) ◦ . . . ◦ f1(θ1, ·)
Input: Initial weights θ = (θ1, θ1, . . . θD), learning rate η, noise multiplier σ.

1: repeat
2: ∆1,∆2 . . .∆D ← Backpropagation for Bounds(f,X).
3: Update Moment Accountant state with local sensitivities ∆1,∆2, . . .∆d.
4: Sample a batch B = {(x1, y1), (x2, y2), . . . , (xb, yb)}.
5: Compute per-layer averaged gradient: gd := 1

b

∑b
i=1∇θdL(f(θ, xi), yi)).

6: Sample local noise: ζd ∼ N (0, σ∆d).
7: Perform noisified gradient step: θd ← θd − η(gd + ζd).
8: Enforce Lipschitz constraint with projection: θd ← Π(θd).
9: until privacy budget (ϵ, δ)-DP budget has been reached.

The “global” strategy. Illustrated in the appendix,this strategy simply aggregates the individual195

sensitivities ∆d of each layer to obtain the global sensitivity of the whole gradient vector ∆ =196 √∑
d ∆

2
d. The origin of the clipping-based version of this strategy can be traced back to [30]. With197

noise variance σ2∆2 we recover the accountant that comes with DP-SGD. It tends to overestimate198

the true sensitivity (in particular for deep networks), but its implementation is straightforward with199

existing tools.200

The “local” strategy. Recall that we are able to characterize the sensitivity ∆d of every layer of201

the network. Hence, we can apply a different noise to each of the gradients. We dissect the whole202

training procedure in Figure 3. At same noise multiplier σ, it tends to produce a higher value of ϵ per203

epoch than “global” strategy, but has the advantage over the latter to add smaller effective noise ζ to204

each weight.205

We rely on the autodp2 library [32, 33, 34] as it uses the Renyi Differential Privacy (RDP) adaptive206

composition theorem [35, 36], that ensures tighter bounds than naive DP composition.207

3 From theory to practice208

Beyond the application of Algorithms 1 and 2, our framework provides numerous opportunities to209

enhance our understanding of prevalent techniques identified in the literature. An in-depth exploration210

of these is beyond the scope of this work, so we focus on giving insights on promising tracks based211

on our theoretical analysis. In particular, we discuss how the tightness of the bound provided by212

Algorithm 1 can be influenced by working on the architecture, the input pre-processing and the loss213

post-processing.214

2https://github.com/yuxiangw/autodp distributed under Apache License 2.0 licence.
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Figure 3: Accountant for locally enforced differential privacy. (i) The gradient query for each
layer is turned into a Gaussian mechanism [9], (ii) their composition at the scale of the whole network
is a non isotropic Gaussian mechanism, (iii) that benefits from amplification via sub-sampling [31],
(iv) the train steps are composed over the course of training.

3.1 Gradient Norm Preserving networks215

We can manually derive the bounds obtained from Algorithm 2 across diverse configurations. Below,216

we conduct a sensitivity analysis on l-Lipschitz networks.217

Theorem (informal) 1. Gradient Norm of Lipschitz Networks. Assume that every layer fd is218

K-Lipschitz, i.e l1 = · · · = lD = K. Assume that every bias is bounded by B. We further assume that219

each activation is centered in zero (e.g ReLU, tanh, GroupSort). We recall that θ = [θ1, θ2, . . . θD].220

Then the global upper bound of Algorithm 2 can be expanded analytically.221

1. If K < 1 we have: ∥∇θL(f(θ, x), y)∥2 = O
(
L
(
KD(X0 +B) + 1

))
.222

Due to the KD ≪ 1 term this corresponds to a vanishing gradient phenomenon [37]. The output of223

the network is essentially independent of its input, and the training is nearly impossible.224

2. If K > 1 we have: ∥∇θL(f(θ, x), y)∥2 = O
(
LKD (X0 +B)

)
.225

Due to the KD ≫ 1 term this corresponds to an exploding gradient phenomenon [38]. The upper226

bound becomes vacuous for deep networks: the added noise ζ is at risk of being too high.227

3. If K = 1 we have: ∥∇θL(f(θ, x), y)∥2 = O
(
L
(
X0 +

√
D +

√
BX0D +BD3/2

))
,228

which for linear layers without biases further simplify to O(L(X0 +
√
D)).229

The formal statement can be found in appendix. From Theorem 1 we see that most favorable bounds230

are achieved by 1-Lipschitz neural networks with 1-Lipschitz layers. In classification tasks, they are231

not less expressive than conventional networks [18]. Hence, this choice of architecture is not at the232

expense of utility. Moreover an accuracy/robustness trade-off exists, determined by the choice of233

loss function [18]. However, setting K = 1 merely ensures that ∥∇xf∥ ≤ 1, and in the worst-case234

scenario we have ∥∇xf∥ < 1 almost everywhere. This could result in a situation where the bound of235

case 3 in Theorem 1 is not tight, leading to an underfitting regime as in case K < 1. With Gradient236

Norm Preserving (GNP) networks [17], we expect to mitigate this issue.237

Controlling K with Gradient Norm Preserving (GNP) networks. GNP networks are 1-Lipschitz238

neural networks with the additional constraint that the Jacobian of layers consists of orthogonal239

matrices. They fulfill the Eikonal equation
∥∥∥∂fd(θd,xd)

∂xd

∥∥∥
2
= 1 for any intermediate activation240

fd(θd, xd). Without biases these networks are also norm preserving: ∥f(θ, x)∥ = ∥x∥.241

As a consequence, the gradient of the loss with respect to the parameters is easily bounded by242

∥∇θdL∥ = ∥∇yD
L∥ ×

∥∥∥∥∂fd(θd, xd)

∂θd

∥∥∥∥ , (7)

which for weight matrices Wd further simplifies to ∥∇Wd
L∥ ≤ ∥∇yD

L∥×∥fd−1(θd−1, xd−1)∥. We243

see that this upper bound crucially depends on two terms than can be analyzed separately. On one244

hand, ∥fd−1(θd−1, xd−1)∥ depends on the scale of the input. On the other, ∥∇yD
L∥ depends on the245

loss, the predictions and the training stage. We show below how to intervene on these two quantities.246
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Remark 2 (Implementation of GNP Networks). In practice, GNP are parametrized with GroupSort247

activation [8, 39], Householder activation [40], and orthogonal weight matrices [17, 41]. Strict248

orthogonality is challenging to enforce, especially for convolutions for which it is still an active249

research area (see [42, 43, 44, 45, 46] and references therein). Our line of work traces an additional250

motivation for the development of GNP and the bounds will strengthen as the field progresses.251

Controlling X0 with input pre-processing. The weight gradient norm ∥∇θdL∥ indirectly depends252

on the norm of the inputs. This observation implies that the pre-processing of input data significantly253

influences the bounding of sensitivity. Multiple strategies are available to keep the input’s norm under254

control: projection onto the ball (“norm clipping”), or projection onto the sphere (“normalization”).255

In the domain of natural images for instance, this result sheds light on the importance of color space256

such as RGB, HSV, YIQ, YUV or Grayscale. These strategies are natively handled by our library.257

Controlling L with the hybrid approach, loss gradient clipping. As training progresses, the258

magnitude of ∥∇fL∥ tends to diminish when approaching a local minima, quickly falling below the259

upper bound and diminishing the gradient norm to noise ratio. To circumvent the issue, the gradient260

clipping strategy is still available in our framework. Crucially, instead of clipping the parameter261

gradient ∇θL, any intermediate gradient ∇fdL can be clipped during backpropagation. This can262

be achieved with a special “clipping layer” that behaves like the identity function at the forward263

pass, and clips the gradient during the backward pass. The resulting cotangeant vector is not a true264

gradient anymore, but rather a descent direction [47]. In vanilla DP-SGD the clipping is applied on265

the batched gradient∇Wd
L of size b×h2 for matrix weight Wd ∈ Rh×h and clipping this vector can266

cause memory issues or slowdowns [6]. In our case,∇yD
L is of size b× h which reduces overhead.267

3.2 Lip-dp library268

To foster and spread accessibility, we provide an opensource tensorflow library for Clipless DP-SGD269

training, named lip-dp. It provides an exposed Keras API for seamless usability. It is implemented270

as a wrapper over the Lipschitz layers of deel-lip3 library [48]. Its usage is illustrated in Figure 1.271

4 Experimental results272

We validate our implementation with a speed benchmark against competing approaches, and we273

present the privacy/utility Pareto front that can be obtained with GNP networks.274

Figure 4: Our approach outperforms concur-
rent frameworks in terms of runtime and mem-
ory: we trained CNNs (ranging from 130K to 2M
parameters) on CIFAR-10, and report the median
batch processing time (including noise, and con-
straints application Π or gradient clipping).

Speed and memory consumption. We bench-275

marked the median runtime per epoch of vanilla276

DP-SGD against the one of Clipless DP-SGD,277

on a CNN architecture and its Lipschitz equiv-278

alent respectively. The experiment was run on279

a GPU with 48GB video memory. We compare280

against the implementation of tf_privacy,281

opacus and optax. In order to allow a fair com-282

parison, when evaluating Opacus, we reported283

the runtime with respect to the logical batch size,284

while capping the physical batch size to avoid285

Out Of Memory error (OOM). Although our li-286

brary does not implement logical batching yet,287

it is fully compatible with this feature.288

An advantage of projection Π over per-sample289

gradient clipping is that the projection cost is290

independent of the batch size. Fig 4 validates that our method scales much better than vanilla291

DP-SGD, and is compatible with large batch sizes. It offers several advantages: firstly, a larger batch292

size contributes to a decrease of the sensitivity ∆ ∝ 1/b, which diminishes the ratio between noise293

and gradient norm. Secondly, as the batch size b increases, the variance decreases at the parametric294

rate O(
√
b) (as demonstrated in appendix), aligning with expectations. This observation does not295

apply to DP-SGD: gradient clipping biases the direction of the average gradient, as noticed by [7].296

3https://github.com/deel-ai/deel-lip distributed under MIT License (MIT).
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(a) MNIST. (b) F-MNIST. (c) CIFAR-10.

Figure 5: Our framework paints a clearer picture of the privacy/utility trade-off. We trained
models in an "out of the box setting" (no pre-training, no data augmentation and no handcrafted
features) on multiple tasks. While our results align with the baselines presented in other frameworks,
we recognize the importance of domain-specific engineering. In this regard, we find the innovations
introduced in [49, 50, 51] and references therein highly relevant. These advancements demonstrate
compatibility with our framework and hold potential for future integration.

Pareto front of privacy/utility trade-off. We performed a search over a broad range of hyper-297

parameters values to cover the Pareto front between utility and privacy. Results are reported in298

Figure 5. We emphasize that our experiments did not use the elements behind the success of most299

recent papers (pre-training, data preparation, or handcrafted feature are examples). Hence our300

results are more representative of the typical performance that can be obtained in an “out of the301

box” setting. Future endeavors or domain-specific engineering can enhance the performance even302

further, but such improvements currently lie beyond the scope of our work. We also benchmarked303

architectures inspired from VGG [52], Resnet [53] and MLP_Mixers [54] see appendix for more304

details. Following standard practices of the community [2], we used sampling without replacement at305

each epoch (by shuffling examples), but we reported ϵ assuming Poisson sampling to benefit from306

privacy amplification [31]. We also ignore the privacy loss that may be induced by hyper-parameter307

search, which is a limitation per recent studies [5], but is common practice.308

5 Limitations and future work309

Although this framework offers a novel approach to address differentially private training, it introduces310

new challenges. We primary rely on GNP networks, where high performing architectures are311

quite different from the usual CNN architectures. As emphasized in Remark 2, we anticipate that312

progress in these areas would greatly enhance the effectiveness of our approach. Additionally, to313

meet requirement 3, we rely on projections, necessitating additional efforts to incorporate recent314

advancements associated with differentiable reparametrizations [42, 43]. It is worth noting that315

our methodology is applicable to most layers. Another limitation of our approach is the accurate316

computation of sensitivity ∆, which is challenging due to the non-associativity of floating-point317

arithmetic and its impact on numerical stability [55]. This challenge is exacerbated on GPUs, where318

operations are inherently non-deterministic [56]. Finally, as mentioned in Remark 1, our propagation319

bound method can be refined.320

6 Concluding remarks and broader impact321

Besides its main focus on differential privacy, our work provides (1) a motivation to further develop322

Gradient Norm Preserving architectures. Furthermore, the development of networks with known323

Lipschitz constant with respect to parameters is a question of independent interest, (2) a useful tool for324

the study of the optimization dynamics in neural networks. Finally, Lipschitz networks are known325

to enjoy certificates against adversarial attacks [17, 57], and from generalization guarantees [13],326

without cost in accuracy [18]. We advocate for the spreading of their use in the context of robust and327

certifiable learning.328
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