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ABSTRACT

Different phases of learning dynamics exist when training deep neural networks.
These can be characterised by statistics called order parameters. In this work
we identify a shared, underlying mechanism connecting three seemingly distinct
phase transitions in the training of a class of deep regression models, specificially
Implicit Neural Representations (INRs) of image data. These transitions include:
the emergence of wave patterns in residuals (a novel observation), the transition
from fast to slow learning, and Neural Tangent Kernel (NTK) alignment. We relate
the order parameters for each phenomenon to a common set of variables derived
from a local approximation of the structure of the NTK. Furthermore, we present
experimental evidence demonstrating these transitions coincide. Our results enable
new insights on the inductive biases of sinusoidal INRs.

1 INTRODUCTION

An increasing body of research emphasizes the pivotal role played by the optimization algorithm
in learning representations. Indeed, it is known that the full expressivity of Deep Neural Networks
(DNNs) is constrained in practice by the limitations of Gradient Descent (GD) in exploring the
loss landscape (Hanin & Rolnick, 2019; Nye & Saxe, 2018). Furthermore, it has been established
that neural networks learn patterns of different complexity at different rates, resulting in distinct
learning phases (Arpit et al., 2017; Zhang & Wu, 2020). These phases may be identified through the
collective evolution of model weights, which are quantified by summary statistics known as order
parameters (Feng & Tu, 2021a; Stephenson & Lee, 2021; Liu et al., 2022; Ziyin & Ueda, 2022). In
statistical mechanics, these parameters quantify symmetries of a system, and change suddenly at a
phase transition (Sethna, 2021). Although various statistics have been independently identified in the
DNN literature (Shwartz-Ziv & Tishby, 2017; Fort et al., 2020b; Sankararaman et al., 2020; Feng
& Tu, 2021b), no underlying symmetry connects them, and their interrelationships remain unclear.
Moreover, while order parameters can indicate the timing of phase transitions, they offer limited
insight into what DNNs learn during these phases.

Part of the difficulty is that GD dynamics are nonlinear, and take place in a high-dimensional
parameter space, where the model’s relationship with the training data is obscured. The Neural
Tangent Kernel (Jacot et al., 2018) (NTK) provides a complementary perspective that manifestly
describes how local errors influence one another during training. Critically, in a phenomenon known
as Neural Tangent Kernel Alignment (NTKA), the NTK undergoes significant changes early in
training as it engages in feature learning, aligning with the target function. NTKA has been widely
documented and is suggested as a reason why real-world DNNs often outperform their infinite-width
limit counterparts (Hanin & Nica, 2019; Huang & Yau, 2019; Aitchison, 2020; Chizat et al., 2020;
Lee et al., 2020; Seleznova & Kutyniok, 2022). Despite repeated empirical demonstrations of NTKA,
theoretical exploration of the phenomenon has been largely restricted to simplified models and
classification problems, leaving a gap in understanding the transition in complex regression tasks.

In this work, we extend the analysis of NTKA to Implicit Neural Representations (INRs), and in
particular, SIREN models (Sitzmann et al., 2020). INRs are DNNs that model signals with low-
dimensional domains, such as images, and are increasingly used as an alternative to discretized
signal representations. Several works have studied static INR NTKs (Tancik et al., 2020; Yüce et al.,
2022; Liu et al., 2023; Saratchandran et al., 2024), but this is known to offer a poor approximation
(Vonderfecht & Liu, 2024). Our study is structured around four primary contributions:
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1. We derive novel approximations for the local structure of the SIREN NTK, and use these structural
parameters to derive formula for: the principal eigenvector (3.3); order parameters such as the
minimum value of the Cosine NTK (3.4); and the correlation lengthscale (3.2). In so doing,
we theoretically establish connections between the onset of NTK alignment and the location of
inflection points in the training curve.

2. We identify a novel learning phase, characterized by the appearance of diffusion-like wavecrests in
the residuals, and relate this behaviour to the NTK’s evolution at this stage in the learning process.

3. We propose a new order parameter, MAG-MA (3.5), to capture a unifying mechanism underlying
the different phase transitions. Motivated by the dependence of the order parameter approximations
on spatial variations in the gradient, MAG-MA explicitly quantifies translational symmetry
breaking in the local structure of the NTK.

4. We experimentally verify that the critical points for these different phase transitions cluster in time.
We also empirically investigate the impact of image complexity and SIREN hyperparameters on
the occurrence and timing of phase transitions and provide evidence that suggests NTK alignment
in SIREN (image regression tasks) occurs in response to difficulties in modelling edges.

2 PRELIMINARIES

In this work, we consider the class of INRs that model 2D grayscale images, where pixel coordinates
and their intensity form a dataset D of N samples indexed with i, (xi, I(xi)), where xi ∈ R2

and I : R2 7→ R. On this dataset, we fit SIREN models f with parameters θ, using sinusoidal
activation functions. In the continuum limit, we assume the data is distributed uniformly according to
Pdata(x) = Vol(D)−1. We identify two fields: the local residual field r(x; θ(t)) = I(x)−f(x; θ(t)),
and gradient field ∇θf(x; θ(t)). Their time evolution is induced by gradient flow θ̇ = −∇θL on
the mean square error: L(θ) = 1

2Vol(D)

∫
dx r(x; θ)2. Accordingly, via the chain rule, the residuals

evolve as follows:

ṙ(x; θ(t)) = ∇θr(x; θ(t)) · θ̇ (1)

= − 1

Vol(D)

∫
dx′ r(x′)∇θr(x; θ(t)) · ∇θr(x

′; θ(t)) (2)

= −
∫

dx′ r(x′)

(
1

Vol(D)
∇θf(x; θ(t)) · ∇θf(x

′; θ(t))

)
︸ ︷︷ ︸

KNTK(x,x′;θ(t))

(3)

In the last line, we defined the NTK. For notational brevity, we will drop the explicit dependence on
θ, and write x′ = x+ u. We also define a kernel closely related to the NTK, the Cos NTK:

CNTK(x, x+ u) =
1

Vol(D)

∇θf(x) · ∇θf(x+ u)

||∇θf(x)|| ||∇θf(x+ u)||
(4)

3 DERIVING ORDER PARAMETERS FROM THE NTK

We illustrate the different phases of learning with a motivating example. In Figure 1, we train a
five-layer deep, 256-unit wide SIREN model on a 128× 128 grayscale image of a camera-man, using
full-batch GD with a learning rate of 10−3 for 2000 epochs. Our validation task is super-resolution
reconstruction of the original image. During training, we examine the model’s behaviour through
three different lenses, with a sudden, qualitative shift revealed in each.

While these shifts are visually striking, in this section, we take a more quantitative approach based
on the identification of order parameters. We then demonstrate why these phase transitions occur
simultaneously, by relating the order parameters to a common set of features, which control the local
structure of the NTK. The three lenses are as follows:

• Spatial Distribution of Residuals: Early in training, the loss decreases uniformly over the dataset
(Drift Phase). However, at a critical point, we observe the formation of ”wave-crests” corresponding
to regions of low-loss, which propagate across the dataset (Diffusion Phase). To the best of our
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Figure 1: A Single Phase Transition Through Three Lenses: (a) The spatio-temporal evolution
of the loss, as revealed through the magnitude of the residuals. Near the critical point we see the
formation of wavecrests. (b) Evolution of the loss rate during training. The rate of change of the
validation loss reaches a peak at the critical point. (c) Evolution of the principle eigenvector of the
NTK reveals a sudden shift from disorder to learned features. (d) Quantification of NTKA in terms
of alignment between edges and the principal eigenvector.

knowledge, we are the first to report this behaviour in SIREN models. In Section 3.1, we attribute
this behaviour to changes in the equal-time correlation functions of the gradient field ∇θf(x),
whose parameters we derive in Section 3.2.

• Principal Eigenvectors of the NTK: Early in the training, the principal eigenvector v0 is static
and appears as a highly-disordered, structureless image (Disordered Phase). However, at a critical
point, v0 rapidly aligns with the edges of the image (Aligned Phase), after which it becomes static
again. Though NTK alignment has been previously studied in the context of classification problems
(Kopitkov & Indelman, 2020; Baratin et al., 2021; Shan & Bordelon, 2022; Canatar & Pehlevan),
there are additional subtleties to consider for a regression task like INR training. To this end, we
introduce a metric, AUC(v0,∇I) in Section 3.3 to identify when alignment occurs. We also derive
an approximation of v0 based on the local structure of the NTK, as outlined in Sections 3.1 and 3.2.

• Training Curve Analysis: There is a rapid shift in the slope of the training curve, which we call
the loss rate L̇. Initially, L̇ is large, indicating the Fast Phase. After a critical point, the loss rate
collapses, and learning slows (Slow Phase). Several works have studied this transition using order
parameters, but in this work, we focus on the concept of gradient confusion, as described in (Fort
et al., 2020b), (Sankararaman et al., 2020), (Feng & Tu, 2021b). In Section 3.4, we derive an
approximation of this parameter based on the local structure of the NTK outlined in Section 3.2.

Having united the different order parameters, we are in a better position to speculate on the common
origin of the underlying phase transition. Motivated by the dependence of each parameter on spatial
variations in the magnitude field ||∇θf(x)||, we introduce a new parameter, termed MAG-Ma, in
Section 3.5. MAG-Ma explicitly tracks violations in the translational symmetry of the NTK.

3.1 CORRELATION FUNCTIONS AND THE ONSET OF DIFFUSION

The form of equation 3 is reminiscent of the linear response functions in statistical field theory (Sethna,
2021; Goodman, 1985): to find the rate of change of the residual field at a point x, the kernel K
aggregates information about the residual at points x+ u. To quantify the range of these interactions,
we examine the local, equal-time correlation functions for the gradients ∇θf(x) separated by a
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Figure 2: Visualization showing the empirical correlation function for the normalized parameter
gradients. On the left-hand side is the global correlation-function for the CNTK . On the right is the
local-correlation function for the KNTK around a test point x. Dashed lines show fitted Gaussian
approximation, and error bars show variance across dataset. Over the course of training, both the
global correlation lengthscale ξcorr, and the terminal value c∞, evolve.

distance ϵ:
k(x, ϵ) = Eϕ

[
∇θf(x) · ∇θf(x+ ϵêϕ)

]
(5)

= Eϕ

[
KNTK(x, x+ ϵêϕ)

]
(6)

Here, êϕ denotes a unit vector in direction ϕ. Similarly, the global, equal-time correlation is given by:

k(ϵ) = Ex

[
k(x, ϵ)] (7)

Here, the expectation is taken uniformly over the unit vectors û. We may define similar quantities
for the CNTk, which we denote by c(x, ϵ) and c(ϵ). We expect the range of these interactions to be
short, as INRs are often carefully designed to ensure a diagonally dominant NTK(Tancik et al., 2020;
de Avila Belbute-Peres & Kolter, 2022; Liu et al., 2023). To verify this, we group pairs of datapoints
based on their distance, and then compute the mean CNTk value. For SIREN models, we observe
that the equal-time correlation functions are well-approximated by Gaussians of the form1:

c(ϵ) ≈ (1− c∞)e−ϵ2/2ξ2corr + c∞ (8)

k(x, ϵ) ≈ ||∇θf(x)||2(1− c∞(x))e−ϵ2/2ξ(x)2 + ||∇θf(x)||2c∞(x) (9)

This approximation introduces two important order parameters: the first, the correlation length-scale
ξcorr, controls the rate at which correlations decay with distance, defining the range of interactions.
The second, the asymptotic value c∞, describes the interactions between points at separations ϵ much
greater than ξ, where the gradient field vectors become uncorrelated. We have:

lim
ϵ→∞

c(ϵ) = c∞ =

∣∣∣∣∣∣∣∣Ex

[
∇θf(x)

||∇θf(x)||

]∣∣∣∣∣∣∣∣2 (10)

Dynamically, we see from Figure 2 that both ξ and c∞ evolve during training, and we shall demon-
strate that changes in these values account for the onset of diffusion. When c∞ decays to zero, we
have, as a very simple approximation of the NTK:

K(x, x+ u) ≈ ||∇θf(x)||2 exp(−||u||2/ξ2(x)) (11)
When ξ(x) is small, the NTK will suppress all contributions to the residual ṙ(x) except from the
immediate vicinity of x. As such, performing a Taylor expansion to second order in u, we obtain:

r(x+ u; θ) ≈ r(x; θ) + u⊤∇xr(x; θ) +
1

2
u⊤∇2

xr(x; θ)u (12)

Inserting this, along with the NTK approximation, into equation 3, the full integral may be solved
using Gaussian integration (full details in Appendix A.2). We obtain:

d

dt
r(x; θ) = −2πξ2(x)||∇θf(x)||2r(x)− πξ4(x)||∇θf(x)||2∆2r, (13)

which resembles a standard diffusion equation.
1We examine this assumption qualitatively in Figure 13, and numerically in Appendix F.1.
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Figure 3: Evolution of the Cosine NTK: We visualize CNTK(x, x + u) around three points
x ∈ {A,B,C} for small separations u. At initialization, CNTK locally resembles an isotropic,
translation-invariant RBF. However, as training progresses, these symmetries are broken. MAG-Ma
(described in Section 3.5) is an order-parameter that monitors the original symmetry, and changes at
the critical point.

3.2 BEYOND THE ISOTROPIC GAUSSIAN APPROXIMATION

Though the isotropic Gaussian approximation of the NTK can explain the appearance of the diffusion
wavecrests, empirically, the NTK is anisotropic (see Figure 3). What’s more, the isotropic Gaussian
approximation is positive definite, whereas the real NTK takes on negative values. In this section,
we develop a better local approximation that overcomes these limitations. Our approach has the
additional benefit that we may predict the correlation length-scale, along with other order parameters.

Our starting point is the local structure of the Cos NTK. The full details of our derivation are found
in Appendix A.3, but the main strategy is to leverage the law of cosines to express the CNTK as:

CNTK(x, x+ u) =
||∇θf(x)||2 + ||∇θf(x+ u)||2 − ||∇θf(x+ u)−∇θf(x)||2

2||∇θf(x)|| ||∇θf(x+ u)||
(14)

Performing a Taylor expansion in u and retaining terms up to second order, we find the Cosine NTK
locally takes the form of a Cauchy Distribution:

CNTK(x, x+ u) ≈ 2a2x + u⊤Dx

2a2x + u⊤Dx + u⊤Hxu
, (15)

where we have:

ax = ||∇θf(x)|| (16)

Dx = ∇x||∇θf(x)||2 (17)

Hx = (∇x∇θf(x))(∇x∇θf(x))
⊤ (18)

To obtain a correlation length-scale from this anisotropic model, we note that the level sets of
equation 15 correspond to ellipses. For a given value c, the area of the level set can be shown to be
(see Appendix A.4):

Aellipse(x; c) =
π√

detH

(
2(1− c)

c
a2x +

(1− c)2

4c2
D⊤H−1D

)
(19)

To take into account the asymptotic value of CNTK , we choose c = 1/2 + c∞/2. Then:

ξ(x) ≈
√

Aellipse(x; 1/2 + c∞/2)

π
(20)

3.3 ORDER PARAMETERS FOR THE ONSET OF NTK ALIGNMENT

In the classification problems typically studied in the NTKA literature, the principle eigenvector v0 is
seen to learn class-separating boundaries (Kopitkov & Indelman, 2020; Baratin et al., 2021). Similarly,
for our 2D image reconstruction task, we see the NTK learns information about the distribution of
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edges in the image (Figure 4). To quantify this alignment, we use a Canny Edge Detector (Canny,
1986) to estimate connected image edges. We then quantify the utility of v0 in predicting edges in
terms of average recall, as measured by the area under the Receiver Operating Characteristic Curve
(ROC AUC). We denote this measure AUC(v0,∇I), and it has the advantage of being insensitive to
monotonic transformations of v0.

Another hallmark of NTKA is early anisotropic growth of the spectrum of the NTK (Baratin et al.,
2021), as the NTK becomes stretched along a relatively small number of directions that are correlated
with the task. This is especially the case for the principal eigenvalue λ0, which becomes orders of
magnitude larger than the next leading eigenvalue. In subsequent sections, we will demonstrate,
empirically, that this also holds during INR training.

The divergence of λ0 enables a particularly simple approximation of the princpal eigenvector v0.
Namely, because the principal eigenvalue is so dominant, KNTK becomes effectively low-rank, and
so power iterations converge quickly. Thus, choosing a vector of ones v = 1 as our initial vector, we
expect K1/1⊤1 to have strong cosine alignment with the principal eigenvalue. In the continuum
limit, this is simply given by:

K1/N → Eu[K(x, x+ u)] (21)
= Eϵ[Eu[K(x, x+ u)| ||u|| = ϵ]] (22)

=

∫ ϵmax

0

dϵ k(x, ϵ)P (x, ϵ) (23)

Here, P (x, ϵ) denotes the density of points that are located a distance ϵ from the point x, and ϵmax is
an upper bound on the distance that we assume is much greater than ξcorr. Close to this x2, P (x, ϵ)
grows like 2πϵ. Thus, leveraging equations 9 and 16, we have:

v0(x) ≈ 2πa2x

∫ ϵmax

0

dϵ ϵ

[
c∞(x) + (1− c∞(x))e−ϵ2/2ξ2(x)

]
(24)

= 2πa2x

[
c∞(x)ϵ2max + ξ2(x)(1− c∞(x))(1− e−ϵ2max/2ξ

2(x))

]
(25)

≈ a2x

[
c∞(x)Vol(D) + 2πξ2(x)(1− c∞(x))

]
(26)

As we approach the phase transition, the asymptotic values tend towards 0, and the second term
dominates. Considering the approximation in equation 20 for the correlation length-scale ξ, we
note that v0(x) grows as O(||∇θf(x)||4). This implies particular sensitivity to pixels in regions
with substantial high-frequency information, such as edges and corners. As natural images tend
to be piecewise smooth, pixels on boundaries have the strongest spatial gradients within their
neighbourhood, and are therefore the greatest source of information, being poorly compressible
due to the lack of smoothness/redundancy, and accordingly disagreement in paramater gradients.
Given the inability of models to accurately describe sharp discontinuities these edge pixels can
be considered as influential datapoints, which accounts for their prominence within the principal
eigenvector. We consider parallels between these observations of the NTK principal eigenvector
and traditional approaches from the image processing literature concerning corners and edges in
Appendix E. The fidelity of our approximation is evaluated in Appendix F.

3.4 ORDER PARAMETERS FOR THE LOSS RATE COLLAPSE

In (Fort et al., 2020b), (Sankararaman et al., 2020), (Feng & Tu, 2021b), and related works, the
authors examine the role of gradient alignment statistics in determining the speed of learning under
stochastic gradient descent. They note that the emergence of negative alignments between batches
correlates with a reduction in learning speed. Intuitively, when gradient alignment becomes negative,
the sum of the gradients approaches zero, resulting in a diminished learning signal. The minimum
alignment between the gradients is simply given by the minimum value of the Cos NTK, which we
may obtain explicitly from equation 15 as follows (full derivation in Appendix A.5):

min
u

CNTK(x, x+ u) =
D⊤

x H
−1
x Dx

D⊤
x H

−1
x Dx − 8a2x

(27)

2The true form of P (x, ϵ) is complicated and varies from point to point, due to edge effects. However, these
effects are suppressed as P (x, ϵ) only appears when multiplied the Gaussian kx.
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minCNTK is then simply the minimum of 27 across the whole dataset.

3.5 MAG-MA: ORDER PARAMETERS FROM TRANSLATIONAL SYMMETRY BREAKING

While previous sections have focused on a bottom-up construction and analysis of order parameters,
this section adopts a top-down approach rooted in symmetry principles. In Sections 3.1-3.4, we
expressed several order parameters in terms of the parameters a,D,H , which characterize the local
structure of the CNTK . Tellingly, each of these parameters is now a function of the spatial variation
of the parameter gradients. This suggests it is a translation symmetry which is broken at the phase
transition. Indeed, from Figure 3, we observe that the CNTK is an approximately stationary, isotropic
kernel - a desirable property for INRs (Tancik et al., 2020). Phrased another way, the Kernel exhibits
no bias for location or direction. Over the course of training, we may monitor the emergence of such
a bias with the following metric :

||Ex[∇x log ||∇θf ||2]||2 = ||Ex[Dx/a
2
x]||2 (28)

We refer to this statistic as MAG-Ma: the Magnitude of the Average Gradient of the Log Gradient-
Field Magnitudes. Intuitively, this order parameter captures the statistical preference for a spatial
direction in the dataset. The evolution of this quantity is plotted in Figure 3, and its alignment with
the other order parameters is shown in Figure 4. We see that throughout the Fast Phase of training
(before the peak in the loss rate L̇eval), the local structure of the CNTK is statistically translation
invariant, and MAG-Ma is close to zero. However, just after the critical point, it grows rapidly -
coinciding with the structure learning described in Section 3.3.

4 EXPERIMENTAL RESULTS

4.1 EXAMINING THE DISTRIBUTION OF CRITICAL POINTS

In this section, we show that the critical points defined in Section 3 cluster around a common time.
We train a range of SIREN models on a super-resolution task, using fifteen images of varying
complexity. We vary width, depth, and the bandwidth ω0 which multiplies the pre-activations in
SIRENs (Appendix B). We illustrate the results of this sweep in Figure 4. We also consider three
more order parameters from the literature, which may be defined in terms of the NTK:

• We track the principal eigenvalue λ0 of the NTK.
• In (Shwartz-Ziv & Tishby, 2017) and others, the authors consider the impact of the norm and

standard deviations of model parameters on the loss rate. During the fast learning phase, the means
of model gradients are large and the variances are small, with the converse true in the slower phase.
In terms of the NTK and the residual r, the variance is (Appendix A.6):

σ2
θ =

1

N
Tr(diag(r)2KNTK)− 1

N2
r⊤KNTKr (29)

• Centred Kernel Alignment (CKA): Empirically, as a DNN learns features that support the
prediction of a target, its NTK begins to resemble the task kernel KY . For INR regression, we
opt to use KY (x, x+ u) = exp(−||I(x)− I(x+ u)||2/2κ2). Here, κ is a bandwidth parameter
(full details Appendix C.1). The similarity between kernels is measured using the normalized
Hilbert-Schmidt Information Criterion (HSIC), as in (Baratin et al., 2021; Shan & Bordelon, 2022;
Canatar & Pehlevan). We also measure alignment between the NTK and an RBF KX(x, x+ u) =
exp(−||u||2/2κ2).

The left side of Figure 4 illustrates our procedure for identifying critical points. We use a simple peak
detector to identify the region of interest for the loss rate L̇eval and the gradient variance σθ, using
the FWHM to define a confidence region. For the minCNTK , we look for zero-crossings, with a
confidence region constructed from the cumulative variance. For every other order parameter, we fit
a sigmoid, where the inflection point marks the critical point, and the slope defines the confidence
region (full details in Appendix C.1). The right side of Figure 4 demonstrates how frequently these
confidence regions overlap across the different architectures and images studied3. Remarkably, the

3In computing the coincidence matrix on the right side of Figure 4, we only included experimental runs in
which critical points were detected for both pairs of order parameters. In Appendix C, we comment on how
image properties impact the detection rate.
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phase transitions described by the order parameters - despite being derived to measure different
phenomenon in the literature - consistently occur at the same time during training.
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Figure 4: Alignment of Order Parameters. Left: Order parameter evolution and critical points
during training of a SIREN model on the astro image. The red vertical lines denote the location of
the critical points, and the green vertical lines denote confidence regions. Right: Heatmap showing
the frequency of intersections between the confidence regions. Additional figures in Appendix G.1.
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Figure 5: Effect of Hyperparameters on Critical Behaviour: Average MSEs, in order of ascending
depth: 7.742e−3±1.580e−4, 6.819e−3±2.696e−5, 6.571e−3±2.705e−5. Average MSEs, in order
of ascending ω0: 8.380e−3 ± 9.191e−5, 7.234e−3 ± 5.591e−5, 6.571e−3 ± 2.705e−5, 7.853e−3 ±
5.629e−4. Dashed vertical lines denote the location of the peak of the loss rate L̇eval, marking the
phase transition. Additional figures in Appendix G.2.

4.2 DYNAMICAL CONSEQUENCES OF HYPERPARAMETERS

In this section, we perform an ablation study to understand the impact of different hyperparameters
on the order parameter trajectories. The baseline model is a 5-layer 128-unit wide SIREN with
ω0 = 60, which on average was the best performing model on the cameraman dataset. We visualize
the evolution of minCNTK in Figure 5, in addition to kernel alignment with a static RBF. Error bars
are obtained by averaging the runs over five random seeds.

When depth (and therefore model capacity) is decreased, we observe a corresponding increase in the
validation error. In shallower models, the initial minCNTK is lower, delaying learning, and thus,
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Figure 6: Effect of Hyperparameters on Edge Alignment: Visualizing the principal eigenvector of
the NTK for models trained with different hyperparameters. Best performing model (by validation
loss) highlighted in red. More images in Appendix C.2

ω0 = 15 ω0 = 30 ω0 = 60 ω0 = 90

depth = 3 0.557± 0.039 0.549± 0.057 0.557± 0.051 0.550± 0.041
depth = 4 0.663± 0.077 0.698± 0.085 0.675± 0.075 0.634± 0.069
depth = 5 0.708± 0.078 0.732 ± 0.081 0.709± 0.079 0.669± 0.071

Table 1: Variation in AUC(v0,∇I) with hyperparameters: Maximum values of the edge alignments
reached during training, averaged across all runs with fixed depth and ω0. Highest average edge
alignment indicated in bold. Values computed over the same sweep defined in Section 4.1.

the peak in the loss rate L̇eval. While the location of the phase transition changes, the trajectory
of the order parameters shapes remain consistent, and exhibit less variance with increased depth.
By contrast, there is dramatic change in the shape of the trajectories as we vary ω0. When ω0 is
high, ξcorr starts very low, favouring interactions with immediate neighbours, leading to low overlap
with the RBF. During training, the range broadens rapidly, causing CKA(KX ,KNTK) to grow
sigmoidally at the critical point. Conversely, with low ω0, the range starts large but shrinks during
training.

4.3 INFLUENCE OF HYPERPARAMETERS ON EDGE ALIGNMENT

Generally, we find that the principle eigenvector v0 exhibits the sharpest alignment with edges in
deeper models (Table 1) that are trained on more complex images (Figure 10 in Supp. Materials). To
gain intuition, we perform an ablation study to understand how AUC(v0,∇I varies with depth and
ω0 in Figure 6. We use the same baseline model described in Section 4.3 on the sax dataset. Results
on additional datasets can be found in Appendix C.2. We make two observations:

1. Increasing ω0 initially increases AUC(v0,∇I as more complex structures appear, but this falls
for higher ω0. One interpretation is that, similar to an RBF, the preference for local interactions
induced by the higher ω0 causes the model to overfit. From Section 3.3, we know that v0(x) ∼
O(||∇θf(x)||4), which grows for the points where the model has overfit. This obscures the edges,
leading to lower AUC(v0,∇I). The overfitting perspective also clarifies why NTK alignment
tends to co-occur with the fast-slow learning transition, which has been identified with the onset
of memorization (Shwartz-Ziv & Tishby, 2017).

2. As we increase depth, the principal eigenvector becomes sparser, concentrating on the edges, and
ignoring background pixels, even with higher ω0. This can also be explained by the gradient mag-
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nitudes, which for deeper models decompose as ||∇θf ||2 =
∑depth

l=1 ||∇θ(l)f ||2. Thus, preference
is given to points which are consistently confusing across layers, mitigating the effects of noise.

5 RELATED WORK

Neural Tangent Kernels for Implicit Neural Representations: Previous research has investigated
the inductive biases of INRs using the Neural Tangent Kernel (NTK), focusing on aspects such as
spectral properties (Li et al.) and dependencies on uniformly sampled data (Tancik et al., 2020).
Furthermore, studies by Yüce et al. (2022) and Saragadam et al. (2023) have analyzed the eigenfunc-
tions of the empirical NTK to elucidate the approximation capabilities of INRs. These investigations,
however, primarily examine static properties of the NTK at initialization, which do not account for
feature learning dynamics. In contrast, our work concentrates on the evolution of the NTK, aiming to
deepen our understanding of how INRs learn to model images.

Neural Tangent Kernel Alignment In practical settings, recent studies have shown that during
training, the NTK dynamically aligns with a limited number of task-relevant directions (Fort et al.,
2020a; Geiger et al.; Kopitkov & Indelman, 2020; Paccolat et al.; Baratin et al., 2021; Atanasov
et al., 2021; Shan & Bordelon, 2022; Canatar & Pehlevan). Concurrently, at the eigenfunction level,
the modes increasingly reflect salient features of the dataset, such as class-separating boundaries
(Kopitkov & Indelman, 2020; Baratin et al., 2021). The widespread occurrence and influence of kernel
alignment suggest its critical role in DNN feature learning, contributing to the superior performance
of DNNs over models based on infinite-width NTKs (Shan & Bordelon, 2022). That said, these
theoretical discussions often focus on shallow networks (Paccolat et al.; Atanasov et al., 2021), toy
models Shan & Bordelon (2022); Baratin et al. (2021), and deep linear networks (Atanasov et al.,
2021). In contrast, the INRs we study are deep, nonlinear models.

6 CONCLUSION

We have conducted preliminary investigations into the dynamics of feature learning within SIRENs
for image data. By analytically deriving approximations for the local structure of SIREN NTKs -
using Gaussian and Cauchy distributions - we were able to obtain approximate expressions for the
correlation lengthscale, the minimum value of the CNTK , and the principal eigenvector. We related
these expressions to order parameters for three phase transitions identified in different dynamical
perspectives on learning: the appearance of diffusion wave-crests in residual evolution (first identified
in this paper); the collapse of the loss rate; the onset of NTK alignment. We argued, based on these
derivations and empirical demonstrations that critical points cluster in time, that these distinct phase
transitions share a common, underlying mechanism.

The following picture emerges from our analysis: as long range correlations between gradients decay,
residuals only interact with their immediate neighbours (onset of diffusion), leading to increased
gradient variance (loss rate collapse) and translational symmetry breaking. In parallel, the growth of
the principal eigenvalue or the NTK leads the principal eigenvector to memorize the distribution of
influential points, as measured by accumulating gradients. In images, one influential class of points
are edges, leading to their prominence in the principal eigenvector (NTK alignment).

Overall, many promising lines of research remain open. In this study, we focused on SIREN models
trained on a 2D super-resolution task using full-batch gradient descent. However, SIRENs are used
in a variety of inverse problems, and it remains to be seen whether our observations extend to these
settings. Future work may also explore the impact of different optimizers, such as ADAM (Kingma
& Ba, 2014), which adaptively adjusts learning rates and may influence the stability and divergence
of the principal eigenvalue - a key factor in our study of NTK alignment. Finally, while the NTK is
computationally expensive to evaluate, limiting its practical use for monitoring models, MAG-MA is
efficient to compute and may offer promising applications worth further investigation.

This work has demonstrated how the NTK provides a rich theoretical tool for deriving and relating
order parameters to understand training dynamics. Our approach provides new methodology to
rigorously study the influence of inductive biases, such as model architectures and hyper-parameter
values, on the underlying learning process and may have practical utility in diagnosing the cause of
poor learning outcomes.
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Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
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