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Abstract

In this paper, we develop SE3Set, an SE(3) equivariant hypergraph neural network architec-
ture tailored for advanced molecular representation learning. Hypergraphs are not merely
an extension of traditional graphs; they are pivotal for modeling high-order relationships,
a capability that conventional equivariant graph-based methods lack due to their inherent
limitations in representing intricate many-body interactions. To achieve this, we first con-
struct hypergraphs by proposing a new fragmentation method that considers both chemical
and three-dimensional spatial information of the molecular system. We then design SE3Set,
which incorporates equivariance into the hypergraph neural network. This ensures that the
learned molecular representations are invariant to spatial transformations, thereby providing
robustness essential for the accurate prediction of molecular properties. SE3Set has shown
performance on par with state-of-the-art (SOTA) models for small molecule datasets like
QM9 and MD17. It demonstrates outstanding performance on the MD22 dataset, achieving
a remarkable 20% improvement in accuracy across all molecules. Furthermore, on the
OE62 dataset, SE3Set outperforms all short-range models. We also conducted a detailed
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analysis of OE62, highlighting the prevalence of complex many-body interactions in large
molecules. This exceptional performance of SE3Set across diverse molecular structures
underscores its transformative potential in computational chemistry, offering a route to
more accurate and physically nuanced modeling. The code of this work is available at
https://github.com/Navantock/SE3Set.

1 Introduction

Molecular representation (Mathews & Chaffee, 2012; David et al., 2020; Wigh et al., 2022) is pivotal for
cheminformatics (Fourches et al., 2010), impacting the prediction of molecular properties in drug discovery
and material science. Traditional descriptors like fingerprints capture basic structural and energetic aspects of
molecules by considering mainly one- and two-body interactions. However, they often miss complex electronic
correlations and collective behaviors important for understanding phenomena such as chemical reactivity
and protein folding. To address this, advanced methods that include many-body interactions are crucial
for a more comprehensive molecular characterization. These methods enhance the predictive capabilities
of computational models by more accurately reflecting the intricate dynamics and properties of molecules,
which are essential for a deeper understanding of their functionality and reactivity in cheminformatics.

Graph neural networks (GNNs) (Zhou et al., 2020; Wu et al., 2020) are a foundational tool for representing
structured data in molecular sciences with atoms as nodes and chemical bonds as edges, respectively. GNN
models excel in tasks ranging from property prediction to reaction simulation (Do et al., 2019; Xiong
et al., 2021; Reiser et al., 2022). GNNs can capture higher-order molecular interactions through message
passing (Gilmer et al., 2017) but face overfitting and inefficiency challenges (Godwin et al., 2021; Rusch et al.,
2023). Architectural improvements in GNNs facilitate the modeling of complex interactions, overcoming
some limitations of deep networks (Gasteiger et al., 2019; Schütt et al., 2021; Batzner et al., 2022). Advances
demonstrate the potential of architectural enhancements in GNNs to represent complex interactions (Gasteiger
et al., 2020; 2021; Thölke & De Fabritiis, 2021; Batatia et al., 2022; Musaelian et al., 2023; Wang et al., 2024),
but efficiently integrating many-body interactions into these networks is an ongoing challenge (Wang et al.,
2023).

An effective approach to describe many-body interactions in chemical molecules involves leveraging predefined
substructures, such as functional groups in organic chemistry. This strategy has demonstrated significant
success in various chemical molecule-related tasks, including pre-training (Li & Jiang, 2021; Li et al., 2023)
and representation learning (Hajiabolhassan et al., 2023; Wu et al., 2023). Furthermore, these predefined
chemical substructures can be naturally modeled as hyperedges within a hypergraph structure. Hypergraphs
offer a compelling alternative to complex GNN architectures. Hypergraphs, with hyperedges connecting
multiple vertices, can naturally represent many-body phenomena like electronic delocalization and collective
vibrations. This allows for a more accurate modeling of molecular intricacies beyond the limitations of
traditional graphs. Integrating hypergraphs with machine learning, particularly through Hypergraph Neural
Networks (HGNNs), is an emerging research area. HGNNs manage the flow of information across hyperedges,
capturing complex multi-atom interactions and enriching molecular representations. This technique promises
to balance model expressiveness with computational efficiency. By innately encoding many-body interactions,
HGNNs stand to significantly advance cheminformatics, offering a new approach to molecular property
prediction and simulation that resonates with the actual behavior of chemical systems.

By leveraging the relationship between hypergraphs and many-body interactions, we aim to incorporate the
advantages of equivariant graph neural networks into hypergraph structure learning, thereby developing a
more comprehensive molecular representation learning model grounded in domain knowledge. In this work,
we introduce SE3Set, an innovative approach that enhances traditional GNNs by exploiting hypergraphs for
modeling many-body interactions, while ensuring SE(3) equivariant representations that remain consistent
regardless of molecular orientation. Our key contributions are:

• A new fragmentation method for hypergraph construction that seamlessly integrates 2D chemical
and 3D spatial information, enriching the molecular structure representation.
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• The deployment of hypergraph neural networks to capture many-body interactions, providing a
deeper insight into molecular behavior that surpasses conventional pairwise modeling.

• The incorporation of SE(3) equivariance within our hypergraph framework, guaranteeing orientation-
independent molecular representations.

• SE3Set underwent a comprehensive benchmarking process, exhibiting comparable outcomes to
state-of-the-art (SOTA) models on small molecule datasets QM9 and MD17. It demonstrated
exceptional performance on the larger molecule dataset MD22, where higher-order interactions are
more evident, surpassing SOTA models with a significant reduction in mean absolute errors (MAEs)
by an average of roughly 20%. This confirms SE3Set’s efficacy in capturing the complexity of
molecular representations.

These advances establish SE3Set as a formidable tool for molecular representation learning, with implications
for computational chemistry and beyond.

2 Related works

2.1 Graph neural networks

Message passing neural networks (MPNNs), a class of graph neural networks, are essential for learning node
features by transmitting information along graph edges, a process crucial for interpreting structured data
like molecules (Gilmer et al., 2017). Equivariant GNNs are especially important for molecular modeling.
They adopt either group representation methods, aligning architectures to symmetry groups for improved
interaction modeling (Thomas et al., 2018; Anderson et al., 2019; Fuchs et al., 2020; Batzner et al., 2022; Liao
& Smidt, 2022; Liao et al., 2023; Musaelian et al., 2023), or direction-based methods that incorporate spatial
information for accurate molecular representations (Schütt et al., 2017; Kindermans & Müller, 2018; Coors
et al., 2018; Gasteiger et al., 2019; 2020; Schütt et al., 2021; Thölke & De Fabritiis, 2021; Gasteiger et al.,
2021; Wang et al., 2022; Du et al., 2024; Aykent & Xia, 2024; Wang et al., 2024) and have been engineered to
handle intricate up to five-body interactions (Wang et al., 2023).

2.2 Hypergraph neural networks

Hypergraph Neural Networks (HGNNs) enhance GNNs by incorporating multi-node hyperedges to better
capture complexity in data from various domains. They advance GNNs’ implicit many-body interactions with
methods like clique expansion for compatibility with existing algorithms (Agarwal et al., 2005; Zhou et al.,
2006) and employ tensor techniques for improved hypergraph-based feature learning (Li et al., 2013; Pearson
& Zhang, 2014; Benson et al., 2017; Chien et al., 2021a; Tudisco et al., 2021). While equivariant HGNNs
adeptly handle node permutations, preserving data symmetries (Kim et al., 2021; 2022a), they often miss
3D spatial transformations, crucial for physical system modeling. In computational chemistry, hypergraph
algorithms simulate complex behaviors and optimize molecules through hypergraph grammar (Cui et al., 2023;
Tavakoli et al., 2022; Kajino, 2019), providing multidimensional insights into molecular structures (Nachmani
& Wolf, 2020; Chen et al., 2021; Chen & Schwaller, 2023). Despite their promise, these methods still face
hurdles in integrating spatial information effectively.

2.3 Fragmentation methods

Fragmentation methods break down complex molecules for simpler ab initio QM computations of properties,
later combining these for a holistic view (Gordon et al., 2012; Collins & Bettens, 2015). Leveraging the
localized nature of chemical reactions, these techniques aim for scalable algorithms suitable for large molecule
analysis. While instrumental in computational pretraining (Du et al., 2021; Kim et al., 2022b; Luong &
Singh, 2023), they typically neglect the fusion of 2D structures and 3D spatial data. Hence, we advocate for
a refined fragmentation approach that merges chemical properties with spatial context, potentially advancing
hypergraph-based chemical modeling.

3



Published in Transactions on Machine Learning Research (04/2025)

3 Preliminaries

3.1 Equivariance

Consider a function L that maps inputs from space X to outputs in space Y. L is called G-equivariant if it
preserves the symmetry of a group G across mappings, meaning for each g ∈ G, we have:

L ◦ DX (g) = DY(g) ◦ L, (1)

where DX represents the group G’s action on X . This ensures that the function L reflects changes made to
inputs by G in its outputs.

3.2 Hypergraph

Hypergraphs elegantly capture the essence of higher-order interactions among multiple entities, making them
an invaluable tool for representing complex relational data. Let G = (V, E) be a hypergraph with N vertices
and M hyperedges, where V represents a set of nodes and E is a set of hyperedges. Distinguishing itself from
a traditional graph, a hyperedge can encompass multiple nodes, not limited to two, i.e. each hyperedge e ∈ E
is a non-empty subset of V .

3.3 AllSet

The AllSet framework (Chien et al., 2021b), an advanced HGNN model, addresses heuristic propagation rule
limitations in HGNNs by integrating Deep Sets (Zaheer et al., 2017) and Set Transformers (Lee et al., 2019)
principles. It uses task-optimized dual multiset functions that maintain permutation invariance, crucial for
hypergraph learning. The update rules in AllSet are:

Z(t+1),v
e,: = fV→E(Ve\v,X(t) ; Z(t),v

e,: , X(t)
v,: ), (2)

X(t+1)
v,: = fE→V(Ev,Z(t+1),v ; X(t)

v,: ). (3)

Here, fV→E and fE→V are the key multiset functions mapping node and hyperedge features. For example,
fV→E(S) = MLP

(∑
s∈S MLP(s)

)
is used in AllDeepSets. The notation Ve,X and Ev,Z represent multisets

of node and hyperedge features, respectively. The AllSet approach updates nodes and hyperedges in the
hypergraph by leveraging their features in conjunction with those of adjacent hyperedges or nodes, enabling
a rich representation of the hypergraph structure. The method could differentiate node v from its multiset,
allowing for sophisticated feature aggregation.

4 Methods

We introduce the SE3Set model to leverage hypergraph neural networks for capturing complex molecular
interactions, integrating both 2D chemical and 3D spatial structures (Sec. 4.1). It builds upon the AllSet
framework (Chien et al., 2021b) and the Equiformer (Liao & Smidt, 2022). Upcoming sections will delve into
the specifics of molecular fragmentation and the SE3Set architecture.

4.1 Fragmentation algorithm

To harness the power of hypergraph neural networks for molecular representations, we need to map molecules
onto hypergraph structures through a refined fragmentation algorithm. Our strategy intertwines molecular
topology and spatial geometry to create hyperedges that capture groups of atoms, reflecting their functional
and spatial characteristics. More specifically, the topology incorporates the chemical definitions of covalent
bonds, functional groups, etc., allowing us to initially delineate fragments by chemical prior knowledge
of chemistry to identify the important substructures. And the 3D spatial structure aids in modifying
the fragments to capture the interactions in short range which are not specified by covalent bonds in the
conformation. Thus, in crafting this fragmentation approach for hypergraph-based molecular representation,
we propose a set of principles for a fragmentation approach:
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Figure 1: Folic acid fragmentation illustrated with CID 135398658 from PubChem. (a) Preprocessing to
identify cleavable bonds for fragmentation. (b) Initial fragments formed using BFS, color-coded by functional
groups (blue), rings (orange), and single atoms (green). (c) Fragments merged to satisfy atom count criteria,
detailed in Appendix C (d) Expansion of fragments shown with directional arrows.

1. The design should merge topological chemistry with 3D structural data into a unified hypergraph
representation, ensuring hyperedges accurately embody the molecule’s chemical and spatial properties.

2. Controlling fragment size is vital for the SE3Set model to balance capturing meaningful interactions
and computational efficiency. Optimal fragment sizes are key for model performance and learning
capabilities.

3. To preserve the key chemical information for the molecule’s properties and behavior, the fragmentation
better only selectively break single bonds and maintain important functional groups and ring integrity.

4. Fragment overlap is essential to maintain functional group effects on local charge distribution and to
ensure hyperedge interaction within the SE3Set model for improved molecular learning.

Based on these principles, we propose a fragmentation method for molecules combined with chemical-defined
substructures whose definitions and usages are described in detail in Appendix A. Generally, our fragmentation
algorithm improves molecular representations by combining bond order, functional groups, and substructures,
including SMARTS-identified smaller rings and merged adjacent groups. Overcoming the drawbacks of
non-overlapping fragmentation, it uses 3D spatial data and allows overlaps, preserving local effects for precise
charge distribution and enhancing hypergraph neural network learning of molecular interactions.
Definition 4.1. A molecular fragment, denoted as F, is defined as a specific subset of atoms within a molecule,
characterized by being a cohesive assembly of predefined substructures linked in a sequential concatenation.

Our fragmentation method meticulously dissects a given molecule into meaningful subsets of atoms, and this
process unfolds through four steps (corresponding to the pipeline in Fig. 1):
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1. Pre-processing by analyzing the molecule’s bond order matrix to mask high-order bonds and those
within functional groups or rings, and merging adjacent functional groups for a streamlined structural
representation.

2. Core substructures are delineated from the remaining bonds using a Breadth-First Search algorithm,
establishing the basic units of the molecular framework.

3. These substructures are then aggregated into larger molecular fragments according to predefined
rules that maintain a minimum atom count within each fragment. This step could be optional.

4. To enhance fragment connectivity, we expand each by incorporating adjacent groups, using interaction
strength metrics based on interatomic distances to guide this process. Here we set the cutoff value
denoted as cw of an interaction strength metric to intercept the extended fragment.

Furthermore, step 4 leads to a substantial computational overhead for hypergraph neural networks when
processing larger molecular systems. To enhance the efficiency of our model for such expansive molecular
systems, we introduce a revised strategy for step 4:

4* For each atom i, identify the neighboring atoms Ni that fall within a specified radial cutoff rc. A
fragment F is considered to be adjacent to atom i if there is an overlap of at least one atom between
F and Ni. For ease of reference, the set of fragments adjacent to atom i is represented as N F

i , which
implies that N F

i = {F|F ∩ Ni ̸= ∅}.

We designate the application of step 4 as an explicit overlap and the application of step 4* as an implicit
overlap. These approaches introduce nuanced variations in the mathematical expressions of our model, as
reflected in Eq. 8, Eq. 9, and Eq. 16. For the detailed step-by-step methodology, please refer to Appendix A.

4.2 SE3Set

Building upon our aforementioned fragmentation algorithm, we now turn to outline the architecture of SE3Set.
The SE3Set model, influenced by AllSet (Chien et al., 2021b) and built on the Equiformer (Liao & Smidt,
2022), incorporates 3D spatial equivariance (proof refers to Appendix E) in our hypergraph neural network,
improving the capture of many-body interactions for precise molecular structure representation. SE3Set
consists of an embedding layer, attention blocks, and an output head, as shown in Fig. 2 (a). Moreover, we
give a brief discussion in Appendix K on the advantages of the hypergraph structure we implement when
considering the efficiency of message passing, comparing with the vanilla graph neural networks using a
simple illustrative example.

4.2.1 Embedding

As depicted in Fig. 2 (b), the embedding block generates detailed node and hyperedge features reflecting
molecular structures. Node features blend intrinsic properties with degree embeddings from connected
hyperedges, while hyperedge features aggregate node embeddings and the corresponding relative position
vectors depending on the node on which the hyperedge feature is located. SH (Spherical Harmonic) functions
are used to project normalized relative position vectors r⃗ij between node i and j into the irreducible
representations (irreps) feature space with different orders l, i.e. SH(r⃗ij) = Y l

(
r⃗ij

∥r⃗ij∥

)
. The features are also

mapped onto the same l-order irreps space for SE3 equivariance and updated separately. Hyperedges capture
nodes’ positional relationships, assigning a distinct feature hα

i to each node i in hyperedge Fα, reinforcing
structural fidelity. Nodes xi integrate hyperedge information, harmonizing uniqueness with interconnections.
Attention mechanisms then refine node and hyperedge interactions for accurate molecular and structural
representation.

4.2.2 Equivariant hypergraph attention blocks

As presented in Fig. 2 (c)-(f), the attention mechanism comprises two essential components: the Vertex-to-
Edge (V2E) and Edge-to-Vertex (E2V) attention blocks, based on the AllSet framework (Chien et al., 2021b).
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Figure 2: Overall architecture of SE3Set. (a) SE3Set begins with node and hyperedge embeddings, cycles
through V2E and E2V attention modules for iterative updates, and concludes with normalization and a
feed-forward block for output. (b) Embedding. Atomic numbers and position vectors are transformed into
initial embeddings for nodes and hyperedges. (c) V2E Module. Utilizes node features and their relative
positions to update hyperedge features. (d) E2V Module. Employs hyperedge features to refresh node
features. (e) Attention Block. Merges feature sets with positional or hyperedge data for feature processing.
(f) A variant of the Attention Module in E2VModule. This Attention Module does not introduce hyperedge
information itself. This architecture corresponds to the result of E2V Summation in ablation study 5.4. (g)
Feed-Forward Block. Enhances feature sets through a streamlined network. Symbols ⊗, ⊕, and ⊙ in figures
denote depth-wise tensor product, summation, and Hadamard multiplication, respectively. hα

i represents
hyperedge features, xi is for node features, superscript n indicates the number of updates, and r⃗ij is the
relative position vector between nodes i and j.

The V2E block refines hyperedge features, while the E2V block updates node features, both operating with an
equivariant hypergraph attention mechanism. To improve training and enable deeper network structures, we
incorporate normalization layers and residual connections to prevent gradient issues. The attention module’s
output passes through a feed-forward block (Fig. 2 (d)), enhancing representation complexity. Node and
hyperedge features maintain equivariance to molecular geometry, preserving data symmetries and the integrity
of representations, thus boosting the model’s expressiveness in capturing complex structural interactions.
(The concepts of irreducible representations and tensor products can be referenced in the Appendix F.)

V2E attention The SE3Set model uses geometrically invariant attention weights aij , derived from l = 0
irreps acting as scalars under geometric transformations. These weights are computed from scalar features
fij,l=0 using an MLP with LeakyReLU activation and softmax normalization, reflecting node relationships
within the hypergraph. Node and hyperedge features undergo non-linear transformations represented by
tensor products of irreps with the quantum number l. The features combine through direct tensor products
(DTP), yielding non-linear values vij (Fig. 2 (c)). Hyperedge features are updated by aggregating features
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from connected nodes, utilizing SH and radial basis functions on hyperedge features. The model calculates
initial features fα

ij and V2E attention weights aα
ij via MLPs, with non-linear values vα

ij emerging from similar
transformations.

tα
ij = (Linear(xi) + Linear(xj)) (4)

fα
ij = Linear(tα

ij ⊗DTP
w(∥r⃗ij∥) SH(r⃗ij)) (5)

aα
ij = Softmaxj(a⊤LeakyReLU(fα

ij,l=0)) (6)
vα

ij = Linear(Gate(fα
ij) ⊗DTP

w(∥r⃗ij∥) SH(r⃗ij)) (7)

Ultimately, the SE3Set model updates hyperedge features hk
i by accumulating the weighted features of nodes

within the same hyperedge and applying a linear transformation to the aggregated information. For the
explicit overlap fragmentation method,

∆hα
i = Linear

 ∑
j:ni∈Fα∧nj∈Fα

aα
ijvα

ij

 (8)

where ni denotes the node with index i and Fα denotes the fragment with index α as each fragment could be
considered as a hyperedge in the hypergraph. Due to the frequent occurrence of a high number of explicitly
overlapping atoms, this scenario commonly results in increased computational complexity. Consequently,
when adopting the implicit overlap approach, we may opt for an equation of the form:

∆hα
i = Linear

 ∑
j:j∈Fα∧Fα∈N F

i

aα
ijvα

ij

 (9)

where N F
i is delineated in step 4* of the implicit overlap method. This characteristic renders it a more

computationally efficient scheme for Vertex-to-Edge (V2E) attention mechanisms. The detailed architecture
of the V2E attention block is shown in Fig. 2 (c) and (e).

E2V attention Following the V2E attention module, the E2V attention module (Fig. 2 (f)) updates node
features by transforming them with a tensor product of the updated hyperedge feature, followed by a linear
layer. Attention weights are then calculated using softmax-applied, LeakyReLU-activated features, ensuring
node features are refined after hyperedge updates.

fα
i = Linear((Linear(xi) ⊗DTP hα

i ) (10)
aα

i = Softmaxα(a⊤LeakyReLU(fα
i,l=0)) (11)

These attention weights direct the synthesis of information, culminating in the calculated value:

vα
i = Linear(Gate(fα

i ) ⊗DTP hα
i ). (12)

Furthermore, we propose an alternative method for constructing the E2V attention block as shown in Fig. 2
(g).

fα
i = Linear(Linear(xi) + Linear(hα

i )) (13)
aα

i = Softmaxα(a⊤LeakyReLU(fα
i,l=0)) (14)

vα
i = Linear(Gate(fα

i )) (15)

However, practical experiments reveal that the previous method yields superior results, with detailed findings
presented in Sec. 5.4.
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Then the node aggregates all the hyperedge features corresponding to itself to update the node feature,

Explicit overlap: ∆xi = Linear
( ∑

α:i∈Fα

aα
i vα

i

)
, (16)

Implicit overlap: ∆xi = Linear

 ∑
α:Fα∈N F

i

aα
i vα

i

 (17)

The visualized architecture of the E2V attention block is also shown in Fig. 2 (d), (e), and (f).

4.2.3 Output head

The SE3Set model employs node features to generate predictions, using a feed-forward network to transform
these features into the target label’s irreps dimension. A summation strategy aggregates node features into a
single hypergraph-level representation, which is then processed by a linear layer to output the model’s final
predictions.

5 Results

We tested our equivariant hypergraph neural network on QM9 (Ruddigkeit et al., 2012; Ramakrishnan et al.,
2014), MD17 (Chmiela et al., 2017) (see Appendix G), MD22 (Chmiela et al., 2023), and OE62 (Stuke
et al., 2020) to assess its molecular representation learning. QM9 and MD17 gauge small molecule property
prediction, while MD22 and OE62 evaluate larger systems with complex many-body interactions (Wang et al.,
2023). An ablation study was also conducted to pinpoint the contributions of fragmentation and architecture
to our method’s performance, offering insights into the network’s efficacy and areas for enhancement. In the
Appendix H, we have also provided a detailed analysis of the model’s complexity. Additionally, we have
evaluated the robustness of our model on different tasks by some summary statistic metrics in Appendix M.

5.1 QM9

The QM9 dataset (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014) consists of 134k small organic molecules
calculated at the B3LYP/6-31G(2df, p) level. SE3Set, after training on 110k QM9 molecules and validation
on 10k, achieves low mean absolute errors (MAEs) in 12 tasks, performing on par with leading models, as
detailed in Table 1. For completeness, some pre-trained molecular representation learning models are also
selected as baselines (see Appendix J). In small molecular systems, higher-order many-body interactions
are less pronounced and the molecular properties can be well approximated by the GNN-based models
designed with some of the higher-order interactions. As a result, SE3Set does not significantly outperform
other state-of-the-art (SOTA) models. Nevertheless, we will demonstrate that, while SE3Set maintains good
performance with small molecules, the rate of performance degradation significantly decreases as the size of
the molecules increases (see Section 5.3).

5.2 MD22

Recognizing the prominence of higher-order many-body interactions in larger molecules (Wang et al., 2023),
SE3Set was tested on the comprehensive MD22 dataset (Chmiela et al., 2023). This dataset spans four classes
of biomolecules and supramolecules, from a 42-atom peptide to a 370-atom nanotube, with high-resolution
sampling at 400-500 K using the PBE+MBD (Perdew et al., 1996; Tkatchenko et al., 2012) framework for
energy and force computations. Our fragmentation method, which maintains functional groups and rings,
selectively excludes structures like the Buckyball catcher and Double-walled nanotube from MD22, thus
concentrating on the other five molecular types. We partition the training/test set following QuinNet (Wang
et al., 2023). As Table 2 shows, SE3Set outperforms other SOTA models in these cases, reducing MAEs by
an average of 20%, underscoring its exceptional ability to capture molecular intricacies. Moreover, our results
indicate that incorporating higher-order many-body interactions is crucial for representing the non-local
features of larger molecules within the MD22 dataset.
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Table 1: A comparative analysis was performed to assess the Mean Absolute Errors (MAEs) on the QM9
dataset when training SE3Set on a configuration comprising 110,000 training samples and 1,000 validation
samples. Bolding shows the best model and the underlining shows the second best model and the underlining
tilde shows third best model. All the baseline results are extracted from the origin papers (Schütt et al.,
2017; Gasteiger et al., 2020; Schütt et al., 2021; Coors et al., 2018; Wang et al., 2022; Thölke & De Fabritiis,
2021; Musaelian et al., 2023; Wang et al., 2024; Liao & Smidt, 2022; Wang et al., 2023).

unit SchNet DimeNet++ PaiNN SphereNet ComENet ET Allegro ViSNet QuinNet Equiformer SE3Set

µ D 0.033 0.030 0.012 0.026 0.0245 0.011 - 0.010 0.771 0.011 0.011
α a3

0 0.235 0.044
::::
0.045 0.046 0.0452 0.059 - 0.041 0.047 0.046

:::::
0.045

HOMO meV 41 25 20 23 23 20 -
:::
17.3 20.4 15 15

LUMO meV 34 20 28 18 20 18 -
:::
14.8 17.6 14 13

gap meV 63 33 46 32 32 36 - 31.7 28.2
::
30 29

R2 a2
0 0.073 0.331

::::
0.066 0.292 0.259 0.033 - 0.030 0.194 0.251 0.197

ZPVE meV 1.70
:::
1.21 1.28 1.12 1.20 1.84 - 1.56 1.26 1.26 1.40

U0 meV 14 6 5.85 6 6.59 6.15 4.7 4.23 7.6 6.59
:::
5.74

U meV 19 6 5.83 7 6.82 6.38 4.4 4.25 8.4 6.74
:::
5.69

H meV 14 7 5.98 6 6.86 6.16 4.4 4.52 7.8 6.63
:::
5.70

G meV 14 8 7.35 8 7.98 7.62 5.7 5.86 8.5 7.63
:::
6.63

Cv
kcal

mol·K 0.033 0.023 0.024 0.021 0.024 0.026 - 0.023 0.024 0.023 0.025

Table 2: A comparison of Mean Absolute Errors (MAEs) across various benchmarked models. SE3Set is
trained on the five molecules of the MD22 dataset with a specific number of training/validation. Bolding
shows the best model and underlining shows the second best model. The improvements column shows
the improvement of our model over the previous SOTA model in percentage terms. The MAEs reflect the
precision of energy predictions in units of kcal/mol and forces in units of kcal/(mol·Å). The results of the
baseline models refer to the origin papers (Chmiela et al., 2023; Thölke & De Fabritiis, 2021; Musaelian et al.,
2023; Batatia et al., 2022; Liao & Smidt, 2022; Wang et al., 2024; 2023; Li et al., 2024).

Molecule # Train/Val sGDML TorchMD-NET Allegro MACE Equiformer ViSNet QuinNet Equiformer-LSRM ViSNet-LSRM SE3Set Improvements

Ac-Ala3-NHMe 5500/500 Energy 0.3902 0.1121 0.1019 0.0620 0.0828 0.0796 0.084 0.0780 0.0654 0.0499 19.5%
Force 0.7968 0.1879 0.1068 0.0876 0.0804 0.0972 0.0681 0.0877 0.0902 0.0545 20.0%

DHA 7500/500 Energy 1.3117 0.1205 0.1153 0.1317 0.1788 0.1526 0.12 0.0878 0.0873 0.0826 5.4%
Force 0.7474 0.1209 0.0732 0.0646 0.0506 0.0668 0.0515 0.0534 0.0598 0.0360 28.9%

Stachyose 7500/500 Energy 4.0497 0.1393 0.2485 0.1244 0.1404 0.1283 0.23 0.1252 0.1055 0.0762 27.8%
Force 0.6744 0.1921 0.0971 0.0876 0.0635 0.0869 0.0543 0.0632 0.0767 0.0424 21.9%

AT-AT 2500/500 Energy 0.7235 0.1120 0.1428 0.1093 0.1309 0.1688 0.14 0.1007 0.0772 0.0585 24.2%
Force 0.6911 0.2036 0.0952 0.0992 0.0960 0.1070 0.0687 0.0811 0.0781 0.0556 19.1%

AT-AT-CG-CG 1500/500 Energy 1.3885 0.2072 0.3933 0.1578 0.1510 0.1995 0.38 0.1335 0.1135 0.1002 11.7%
Force 0.7028 0.3259 0.1280 0.1153 0.1252 0.1563 0.1273 0.1065 0.1063 0.0825 22.4%

5.3 OE62

The OE62 dataset (Stuke et al., 2020) contains about 62k large organic molecules with annotated DFT-
computed energies in the unit of eV. We randomly selected 50,000 data points as the training set and 6,000
data points as the validation set following the work of Kosmala et al. (2023). Here we report the MAE of
energy as the performance metric on the test dataset. Since OE62 is considered to have significant long-range
interactions (Kosmala et al., 2023), we selected model results without explicit long-range modeling as a
baseline. The results (Table 3) demonstrate that SE3Set outperforms all baseline models (which focus on
short-range interactions), highlighting the potential of our model for capturing many-body interactions.

To further evaluate the performance of our model, we conducted additional tests on the OE62 dataset to
analyze the correlation between model performance (SE3Set and the baseline models) and molecular size, as
reflected by the number of atoms in a molecule. First, we reproduced the results of the baseline model using
open-source code1, as shown in parentheses in the Table 3. The reproduced results are largely consistent with
those extracted from the original work. The analysis of each model’s performance in representing molecules of
different sizes is illustrated in Fig. 3. We grouped the test set based on the number of atoms in the molecules
and reported the MAE for each group. To facilitate a clearer comparison among different models, we defined
the relative difference (RD) metric across all m models.

RDm =
MAEm − 1

M

∑
m MAEm

1
M

∑
m MAEm

(18)

1https://github.com/arthurkosmala/EwaldMP
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Table 3: A comparison of MAEs across some benchmarked models on OE62 dataset in the unit of meV. The
result of the best model is bolded. The baseline results are extracted from Ref. Kosmala et al. (2023), while
the results in parentheses represent the reproduced experimental outcomes.

Model SchNet PaiNN DimeNet++ GemNet-T SE3Set(3 Layers)

MAE (meV) 131.3 (130.0) 63 (62.6) 53.8 (52.3) 53.1 (54.9) 51.7

(a) (b)

(d) (e)

(c)

(f)

Figure 3: The correlation between the mean absolute error (MAE) of energy predictions by different SE3Set
models and varying molecular sizes or fragment counts. We use the number of atoms to represent molecular
size, dividing them into bins at intervals of 30 atoms. For each interval, we calculate the MAE and the
standard deviation of the MAE for the model’s energy predictions. The relative difference (RD), as defined in
Eq. 18, is intended to indicate model performance compared to the average level. The results for the baseline
model are from our replicated experiments, and SE3Set uses a 3-layer configuration, which corresponds to
the results in Table 3. (a) The MAEs of the total energy of the whole molecule. (b) The RD of different
models on total energy. (c) The MAEs of the total energy of SE3Set with different numbers of fragments. (d)
The MAEs of the energy relative to each atom. (e) The RD of different models on the energy relative to each
atom. (f) The MAEs of the energy of SE3Set relative to each atom with different number of fragments.

We compare the MAE of the total energy per molecule and the MAE of the energy relative to each atom
separately. For all models, both the MAEs of the total energy and the MAEs averaged to each atom become
progressively larger as the size of the molecule increases as shown in Fig. 3 (a) and (d), which shows the
interactions, especially the high order interactions are more complicated and significant in larger molecules.
However, the MAEs of SE3Set grow significantly slower than the other baseline models. Additionally, the RD
curves in Fig. 3 (b) and (e) indicate that SE3Set achieves better performance on large molecules and has the
lowest MAEs when the number of atoms interval lower bound is greater than 60. It is also worth noting that
the advantage of SE3Set becomes progressively more apparent as the size of the molecule increases, reflected
by the decrease in its RD with an increasing number of atoms. These results further support our speculation
that SE3Set is more effective compared to other models when learning on larger molecules.

To further analyze the impact of the number of hyperedges on the model performance in addition to the
number of nodes (which corresponds to the number of atoms), we also show the results of the variation of
MAEs of SE3Set with the number of fragments in Fig. 3 (c) and (f). Since we use the fragmentation method
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to construct the hypergraph structure, the number of fragments is associated with the number of hyperedges.
The MAEs of the total energy grow larger with the increasing fragment numbers, as more fragments are
suggestive of errors accruing from larger molecular systems. When it comes to the MAEs of energy per atom,
the increase in MAE with the number of fragments is very slight. This result indicates that our method can
handle systems with different fragment numbers more fairly. Considering that molecules with similar atomic
numbers may have differences in fragment numbers, this demonstrates that our model is more robust for
different molecular structures.

5.4 Ablation studies

Figure 4: Ablation studies on the QM9 dataset’s HOMO task
(units: meV). The variable cw represents the threshold for expan-
sion in the fourth step of fragmentation, guided by the fragment
bond order defined in Eq. 19. The term BRICS denotes another
fragmentation method implemented in RDKits. Additionally, the
E2V summation refers to the architectural framework specified
from Eq. 13 to Eq. 15.

To better understand SE3Set, we conduct
ablation studies focusing on fragmenta-
tion and model architecture. For the
explicit overlap fragmentation method,
we explore how different fragmenta-
tion techniques affect SE3Set’s training
and compare with the non-overlapping
BRICS (Degen et al., 2008; Landrum
et al., 2020) strategy on QM9’s homo
energy task. As Fig. 4 indicates, tests
on QM9’s homo energy task showed
SE3Set’s robustness to cw variations in
the fragmentation method. The results
show that our method surpasses BRICS,
demonstrating the importance of hyper-
edge interaction. Furthermore, we per-
formed ablation studies on the model ar-
chitecture. Among two design variants
in the E2V attention section, the one using tensor product interactions between nodes and hyperedges proved
superior, emphasizing the value of our tensor product-based mechanism and architecture design in enhancing
molecular property predictions. Additionally, a 6-layer SE3Set model outperformed its 3-layer counterpart.
Table 4: The MAE for energy (unit: kcal/mol) and forces (unit: kcal/mol · Å) on the AT-AT-CG-CG dataset
using 3 layers SE3Set with different cutoff radii (rc) in the implicit overlap method.

Implicit rc(Å) 4.0 5.0 6.0

Energy 0.2123 0.1153 0.1103
Force 0.1559 0.1019 0.0937

Unlike the explicit overlap method, the fragment size of the implicit overlap method depends on the choice of
rc. We test the effect of rc on the model training results on the AT-AT-CG-CG molecule of the MD22 dataset
(Table 4). The SE3Set performs better when using higher rc as it will include more fragments to generate
implicit overlaps. The effect of rc on fragment size is more pronounced for the implicit method than for the
explicit method, but it gives good performance for different parameters compared with the baseline models.

6 Conclusion

In conclusion, this study demonstrates the efficacy of SE3Set, a cutting-edge hypergraph neural network
architecture, in the realm of molecular representation learning. By meticulously crafting a fragmentation
method that coalesces two-dimensional chemical knowledge with three-dimensional spatial information, we
establish a robust foundation for constructing hypergraphs that faithfully capture the complex nature of
molecular structures. The SE3Set architecture, drawing inspiration from the AllSet framework and the
Equiformer, adeptly processes these hypergraphs and preserves the essential invariances and symmetries.
SE3Set demonstrates performance comparable to SOTA models in small molecular systems and significantly
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outperforms SOTA models in large molecular systems where higher-order many-body interactions are
pronounced. The results of our research affirm the potential of SE3Set to model high-order many-body
interactions, providing a powerful tool for molecular representation.

7 Impact Statements

This paper advances machine learning techniques for molecular representation, with potential impacts in
drug discovery, materials science, and chemical engineering. By improving the modeling of large molecules,
our work could enhance drug development, lead to new materials, and improve the understanding of
chemical interactions. Additionally, it may aid personalized medicine through better predictions of molecular
interactions. We recognize the importance of considering ethical implications, such as data privacy and
responsible AI use, and encourage ongoing discussion on these broader impacts.
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A Details of fragmentation steps

Before delving deeper into the specifics of our fragmentation method, it’s important to establish a foundational
understanding through key definitions and concepts. We first give the definition of bond order here,
Definition A.1. The bond order represents the multiplicity or the number of shared electron pairs that
constitute a covalent bond between two atoms.

The bond order matrix B is an N × N representation of bond strength between atoms in a molecule, with
higher bond order values indicating stronger bonds. This symmetric matrix (Bij = Bji) is crucial for studying
the molecular structure and reactivity, capturing bond nuances including delocalized and resonance bonds in
computational chemistry.

Based on the design principles in Sec. 4.1, the detailed step-by-step methodology of explicit overlap fragmen-
tation method is shown as follows,

1. The pre-processing step begins by analyzing the given molecule through its bond order matrix,
denoted as B. Identify and mask bonds that are part of functional groups or rings, as well as those
with a bond order of Bij ⩾ 2. Functional groups are then identified using predefined SMARTS
patterns for accurate matching. To achieve a more generalized representation of functional groups,
topologically adjacent functional groups are merged into a single entity. This aggregation allows to
focus on specific subfunctional groups that are of particular interest, simplifying the complexity of
the molecular structure for subsequent analysis.

2. Following the masking of selected bonds, the Breadth-First Search (BFS) algorithm is employed to
reconstruct the substructures, denoted as {S}, from the remaining unmasked bonds. These groups
represent the core structural units of the molecule as discussed at the outset of this section.

3. Consolidate the previously identified groups {S} into larger molecular fragments, applying a set
of predefined rules to guide the merging process. These rules are meticulously designed to ensure
that each resulting fragment, now denoted as {F}, contains at least a minimum specified number of
atoms. For a comprehensive understanding of the merging criteria, one can refer to the detailed rules
outlined in C.

4. Extend each fragment {F} by incorporating adjacent groups from {S} to enrich the connectivity
between molecular fragments, thus intentionally creating regions of overlap among the fragments.
This expansion is controlled by a cutoff threshold, denoted as cw, which is typically a function based
on interatomic distances. The fragment bond order (Lendvay, 2000; Bridgeman & Empson, 2006),
symbolized by Wfs, is used to quantitatively assess the interaction strength between a fragment
Fi and an adjacent substructure Sj . This method reflects the interaction strength based on the
proximity of atoms in different fragments, expressed by the following equation:

Wfs =
∑

i∈Ff ,j∈Ss

exp
(

−
(dij − de

ij) · de
ij

(0.25 Å)2

)
, (19)

where dij represents the interatomic distance between atoms i and j, and de
ij stands for the equilibrium

distance typically expected for such a bond. This equation is utilized to determine which substructures
should be included in the expansion of a fragment, based on the strength of their interactions as
governed by the distance function. Additionally, in alignment with Pauling’s concept of "chemist’s
bond order" (Lendvay, 2000), an alternative method is introduced to calculate the bond order using
a single exponential function,

Wfs =
∑

i∈Ff ,j∈Ss

exp
(
−(dij − de

ij)
)

, (20)

where Wfs encapsulates the bond order between atoms belonging to a fragment Ff and a substructure
Ss. In this context, dij signifies the actual measured distance between atom i and atom j. The term
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de
ij refers to the theoretical equilibrium covalent bond length, which is estimated by summing the

empirical covalent radii of the two atoms involved, given by:

de
ij = rzi + rzj , (21)

where rzi
is the empirical covalent radius of an atom with atomic number zi. This function provides

a simplified yet effective representation of bond order, allowing us to gauge the bonding interactions
within the molecular structure concerning the proximity of the atoms.

The implicit overlap fragmentation method only changes the step 4, the details of the changed fourth step
have been spelled out in 4.1.

B Functional groups SMARTS

In the initial phase of our fragmentation approach, we identify functional groups using the SMARTS
pattern-matching language. In Table 5, we present the complete list of SMARTS patterns utilized, which
have been expanded upon from the default set found within the Open Force Field toolkit (Mobley et al.,
2018; Wagner et al., 2024) (accessible at: https://github.com/openforcefield/openff-fragmenter/
blob/main/openff/fragmenter/data/default-functional-groups.json).

Table 5: SMARTS patterns for functional groups employed in the preprocessing stage of fragmentation.

Functional Groups Name SMARTS

hydrazine [NX3:1][NX3:2]
hydrazone [NX3:1][NX2:2]
nitric oxide [N:1]-[O:2]
amide [#7:1][#6:2](=[#8:3]), [NX3:1][CX3:2](=[OX1:3])[NX3:4]
amide negative ion [#7:1][#6:2](-[O-:3])
aldehyde [CX3H1:1](=[O:2])[#6:3]
sulfoxide [#16X3:1]=[OX1:2], [#16X3+:1][OX1-:2]
sulfonyl [#16X4:1](=[OX1:2])=[OX1:3]
sulfinic acid [#16X3:1](=[OX1:2])[OX2H,OX1H0-:3]
sulfonic acid [#16X4:1](=[OX1:2])(=[OX1:3])[OX2H,OX1H0-:4]
sulfinamide [#16X4:1](=[OX1:2])(=[OX1:3])([NX3R0:4])
phosphine oxide [PX4:1](=[OX1:2])([#6:3])([#6:4])([#6:5])
phosphonate [P:1](=[OX1:2])([OX2H,OX1-:3])([OX2H,OX1-:4])
phosphate [PX4:1](=[OX1:2])([#8:3])([#8:4])([#8:5])
carboxylic acid [CX3:1](=[O:2])[OX1H0-,OX2H1:3]
nitro [NX3+:1](=[O:2])[O-:3], [NX3:1](=[O:2])=[O:3]
ester [CX3:1](=[O:2])[OX2H0:3]
tri-halide [#6:1]([F,Cl,I,Br:2])([F,Cl,I,Br:3])([F,Cl,I,Br:4])
hydroxyl [#8:1]-[#1:2]

C Merge process of fragmentation

During the third step of our fragmentation method, we introduce a strategy to enlarge substructures, ensuring
that each initial fragment contains at least nmin atoms, with nmin being a predefined integer. To maintain
permutation invariance for a molecule, we incorporate weights, Wfs, to guide the sequence of merging. The
process is outlined in the pseudocode (Algorithm 1). The calculation of W is based on either Eq. 19 or Eq. 20.
By considering the sum of bond orders to other groups, we assess each group’s centrality. The groups are
then ordered first by the number of atoms they contain, followed by the summation of their bond orders,
ensuring that the fragmentation merge process is permutation invariant when following this specified sequence.
The algorithm then assists smaller groups in merging with others to achieve a size of at least nmin atoms.
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Algorithm 1 Pseudo code of fragmentation merge step.
Input: groups {G}, minimum atoms number nmin, maximum atoms number nmax, Topological bond order
matrix B, isolated threshold cis

m = |{G}|
Isolate groups {GI} = {}
Calculate fragmentation bond order matrix WGiGj .
Sort {G} in descending order based on the following attributes: number of atoms,

∑
G′,G′ ̸=G WGG′ .

repeat
Pop last fragment as Gk from {G}
for i = m − 1 to 1 do

a = MAX_INT, merge_idx = −1
if any Bij ⩾ 1, i ∈ Gij ∈ Gk and |Gi| < a and a + |Gi| ⩽ nmax then

a = |Gi|, merge_idx = i
end if

end for
if merge_idx == −1 then

for i = m − 1 to 1 do
if any WGiGk

⩾ cis and |Gi| < a then
a = |Gi|, merge_idx = −1

end if
end for

end if
if merge_idx ̸= −1 then

Merge Gk to Gmerge_idx

Resort {G} by the same priority and update W .
else

Add {Gk} to {GI}
end if

until |{Gk}| ⩾ nmin
{F} = {G} ∪ {GI}

Initially, we consider topologically adjacent groups with the fewest atoms. If a target group lacks topological
neighbors, we proceed to merge based on the bond order from W . We introduce a threshold cis that allows a
group to remain isolated if it is significantly distant from others. It should be noted that isolated groups
may not meet the minimum atom number requirement; however, they could be further expanded in the
subsequent fragmentation step, depending on the chosen thresholds for cis and cw (refer to Sec. 4.1). Overall,
this algorithm ensures a permutation-invariant merging process.

D Distribution of fragmentation dataset

Different parameters used in the fragmentation process can lead to a variety of hyperedges, which in turn
result in distinct hypergraphs utilized for training our model. To illustrate the variances attributed to different
fragmentation parameters or methods (such as BRICS implemented in RDKit (Degen et al., 2008; Landrum
et al., 2020)), we use the QM9 dataset (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014) to demonstrate
how the data distributions attached to hypergraphs may change.

The impact of adjusting fragmentation parameters on the composition of hyperedges can be observed in
Fig. 5. Altering the expansion threshold cw within a certain range has a minimal effect on fragment expansion.
However, when utilizing the Lendvay bond order (Eq. 19), fragments tend to comprise fewer atoms compared
to when using the Exponential bond order (Eq. 20). This difference is likely due to the more gradual decline
in the exponential function, which results in a greater cumulative contribution to the weights Wfs.
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(c) (d)

(f) (g)

(e)

(h) (i) (j)

Figure 5: Distribution of fragments in QM9 dataset. (a) Fragment Count Distribution. The distribution
remains consistent regardless of the value of cw or the bond order calculation method employed. (b) Molecule
Size vs. Fragment Count Distribution. Generally, the more atoms a molecule has, the more fragments will
generate. It is also invariant for cw or bond order calculation scheme. Average Atom Count per Fragment
Distribution (c) cw = 0.1, (d) cw = 0.05, (e) cw = 0.01 for Lendvay bond order and (f) cw = 0.4 and (g)
cw = 0.2 for exponential bond order, respectively. (h) BRICS Fragment Count Distribution. (i) BRICS
Molecule Size vs. Fragment Count Distribution (j) BRICS Average Atom Count per Fragment.

Our ablation study (Sec. 5.4) also includes a comparison with the BRICS fragmentation method. Fragments
generated by the BRICS method are observed to contain significantly fewer atoms since this approach does
not create overlapping regions between different fragments.
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E Proof of SE(3) equivariance

The SE3Set consists of the basic modules including linear, depth-wise tensor product, gate activation, and
layer normalization. Here we will prove the SE3 equivariance for these modules. As the inputs of SE3Set are
all invariant to translation in 3D Euclidean space, we only need to prove the SO(3) equivariance.

Let g ∈ SO(3) and the D denote the group representation of SO(3). Besides, we denote the irreps feature as
f , and f l denotes the kth feature vector in irreducible representations space of SO(3) with l order.

Linear Linear module deploys separated linear operations for each l in the irreps feature. For each l, we
consider the output channel f l

k. Then we have

f l
j = Linear(f l) =

∑
k

wl
kjf l

k (22)

where wl
kj denotes the linear combination weight. When acting D(g) at the input f l, we can find that

(f l
j)′ = Linear(D(g)f l) (23)

=
∑

k

wl
kjD(g)f l

k (24)

= D(g)
∑

k

wl
kjf l

k (25)

= D(g)f l
j (26)

Therefore, the linear module is SO(3) equivariant.

Depth-wise Tensor-product Tensor product is an equivariant operation for D(g)

D(g)(f l
k1

⊗ f l
k2

) = (D(g)f l
k1

) ⊗ (D(g)f l
k2

) (27)

The depth-wise tensor product differs from the tensor product only in that one order l vector in output
irreps feature depends only on one order l′ feature, where l′ is equal to or different from l. Hence the SO(3)
equivariance still holds for depth-wise tensor product.

Gate As the l = 0 vector is invariant for D(g), we have

Gate(D(g)f0
k ) = Activation(D(g)f0

k ) (28)
= Activation(f0

k ) (29)
= D(g)Activation(f0

k ) (30)
= D(g)Gate(f0

k ) (31)

We use the non-linear output from the Activation(D(g)f0
k1

) (i.e. Sigmoid in SE3Set) as the weight which
multiplies l > 0 vector to implement the gate function. Thus for l > 0, we also have

Gate(D(g)f l
k1

) = Activation(D(g)f0
k′)D(g)f l

k1
(32)

= Activation(f0
k1

)D(g)f l
k1

(33)
= D(g)Gate(f l

k1
) (34)

So the gate function is SO(3) equivariant for all l vectors.

Layer Normalization For l = 0, as it is SO(3) invariant, the general layer normalization is adapted

LN(f0
k ) =

(
f0
k − µ

RMSC(∥f0∥)

)
γ + β (35)
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where C denotes the channel number corresponding and ∥ · ∥ denotes the 2-norm for each channel vector. µ
is the mean value of f0. Learnable weight γ and learnable bias β are also deployed. The module is SO(3)
invariant as f0

k is SO(3) invariant. The layer normalization for l > 0 vector has the following form

LN(f l
k) =

(
f l
k

RMSC(∥f l∥)

)
γ (36)

We can prove the module is SO(3) equivariant as

LN(D(g)f l
k) =

(
D(g)f l

k

RMSC(∥D(g)f l∥)

)
γ (37)

=
(

D(g)f l
k

RMSC(∥f l∥)

)
γ (38)

= D(g)LN(f l
k) (39)

F Concepts of irreps features and tensor product

Irreps features The SE3Set model utilizes the special orthogonal group SO(3) to capture three-dimensional
rotational symmetries in molecular structures. This approach is similar to Equiformer (Liao & Smidt, 2022;
Liao et al., 2023). It employs irreducible representations (irreps) of SO(3), parameterized by an integer l,
which correspond to spherical harmonics (SH) functions Y m

l . These functions imbue feature vectors with
rotational information, ensuring the model’s equivariance to rotations and enabling consistent geometric
property analysis. This approach is key to the model’s ability to accurately represent and predict molecular
and other rotationally invariant systems.

Tensor product To boost the model’s expressive power, we consider interactions between irrep features of
different angular momenta l through the tensor product, which merges two irreps l1 and l2 into a new irrep
with angular momentum l3. This is achieved using Clebsch-Gordan coefficients in an expansion weighted by
wm1,m2 .

f l3
m3

= (f l1
m1

⊗ f l2
m2

)m3

=
∑

m1,m2

wm1,m2Cl3,m3
l1,m1, l2,m2

f l1
m1

f l2
m2

. (40)

To reduce complexity, a depth-wise tensor product ⊗DTP is adopted from the Equiformer (Liao & Smidt,
2022; Liao et al., 2023), utilizing internal weights to streamline computations. Input-dependent tensor product
weights are denoted as ⊗DTP

w , ensuring computational efficiency while preserving equivariance for feature
interactions.

G Results of MD17

The MD17 dataset (Chmiela et al., 2017) features a wide variety of molecular configurations simulated
at 500 K, with high-resolution trajectories and labeled with energies and forces from the PBE+vdW-TS
method (Perdew et al., 1996; Tkatchenko et al., 2012). SE3Set’s performance on this dataset is shown in
Table 6. SE3Set outperforms Equiformer in accuracy, highlighting its refined force calculation capabilities. In
small molecular systems, higher-order many-body interactions are less pronounced, and as a result, SE3Set
does not significantly outperform other state-of-the-art (SOTA) models.

H Complexity Analysis

The computational complexity mainly depends on the V2E module and the E2V module.

The V2E module aggregates the information from each atom in one fragment to generate atom-wise hyperedge
features. Considering the system is split into m fragments and each fragment has ni atoms, this module
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Table 6: A comparison of Mean Absolute Errors (MAEs) across various benchmarked models. SE3Set is
trained on the MD17 dataset with a configuration of 950 training samples and 50 validation samples. Bolding
shows the best model and underlining shows the second best model and the underlining tilde shows third
best model. The MAEs reflect the precision of energy predictions in units of kcal/mol and forces in units of
kcal/(mol·Å). The results of each baseline come from the corresponding articles (Schütt et al., 2017; Gasteiger
et al., 2019; Schütt et al., 2021; Thölke & De Fabritiis, 2021; Gasteiger et al., 2021; Batzner et al., 2022;
Wang et al., 2024; Liao & Smidt, 2022; Wang et al., 2023).

SchNet DimeNet PaiNN ET GemNet NequIP (l=3) ViSNet QuinNet Equiformer SE3Set

Aspirin Energy 0.37 0.204 0.167 0.123 - 0.131 0.116 0.119
:::::
0.122 0.130

Force 1.35 0.499 0.338 0.253 0.217 0.184 0.155 0.145 0.152
:::::
0.153

Ethanol Energy 0.08 0.064 0.064 0.052 - 0.051 0.051 0.050 0.051 0.054
Force 0.39 0.230 0.224 0.109 0.085 0.071 0.060 0.060 0.067

:::::
0.062

Malonaldehyde Energy 0.13 0.104 0.091 0.077 - 0.076 0.075 0.078 0.074 0.074
Force 0.66 0.383 0.319 0.169 0.155 0.129 0.100 0.097 0.125

:::::
0.103

Naphthalene Energy 0.16 0.122 0.116 0.085 - 0.113 0.085
::::
0.101 0.085 0.113

Force 0.58 0.215 0.077 0.061 0.051 0.039 0.039 0.039 0.046 0.039

Salicylic acid Energy 0.20 0.134 0.116 0.093 - 0.106 0.092
::::
0.101 0.099 0.108

Force 0.85 0.374 0.195 0.129 0.125
:::::
0.090 0.084 0.080

:::::
0.090

:::::
0.090

Toluene Energy 0.12 0.102 0.095 0.074 - 0.092 0.074 0.080
:::::
0.085 0.093

Force 0.57 0.216 0.094 0.067 0.060
:::::
0.046 0.039 0.039 0.048

:::::
0.046

Uracil Energy 0.14 0.115 0.106 0.095 - 0.104 0.095
::::
0.096 0.099 0.103

Force 0.56 0.301 0.139 0.095 0.097 0.076 0.062 0.062 0.076
:::::
0.067

includes
∑m

i ni(ni − 1) pair-wise messages for the attention architecture. Actually, this number depends on
the fragment hyperparameter nmin and nmax, in particular for the explicit overlap method, also on cw. For
the explicit overlap method, this module would have higher complexity than the implicit overlap method
because the explicit overlap has a higher average number of atoms in each fragment.

For each atom, the E2V module aggregates all the hyperedge features that an atom possesses. Thus the
calculated pair-wise message number depends on the number of fragments per atom shared, corresponding to
the introduced overlap degrees. Then the computational complexity of the explicit overlap method in this
module depends on the cw for the explicit overlap method and rc for the implicit overlap method.

To give a general approximate complexity, we consider a system with N atoms. When using the explicit
overlap method, if the system has m fragments with an average nexp atoms in one fragment, the V2E
module’s complexity will be O(mn2

exp) according to the previous analysis. For the E2V module, the number
of fragments to which each atom belongs on average can be represented as mnexp/N . Thus, the complexity
will be O(mnexp) when considering N atoms.

Similarly, for the implicit overlap method, the complexity of the V2E module will be O(nF nimpN), where nF
represents the average number of neighbor fragments within cutoff per atom and nimp denotes the average
atoms in one fragment. And the complexity of the E2V module is O(nF N).

Compared to the explicit overlap method, the implicit overlap method has lower computational complexity.
As we can approximate that nF nimp ≈ nexp (overlap degree is similar) and determine mnimp = N (implicit
overlap method has same fragment number m but without extra count of atoms in nimp). On the other hand,
we can determine mnexp ⩾ N as the explicit overlap will count atoms more times. Hence the explicit overlap
method has higher complexity than the implicit overlap on the V2E Module according to the deduction below

mn2
exp ⩾ Nnexp ≈ nF nimpN (41)

mnexp ≈ mnF nimp ≈ nF N (42)

To better support the analysis, we have tested the inference speed of SE3Set on part of QM9 and MD22
datasets as shown in Table 7. Larger fragments, with smaller cw, reduce speed, more so in larger molecules.
Speed drops with increased fragment size (smaller cw or larger rc), and the explicit overlap method is slower
than the implicit, leading to our preference for the latter in MD22. This highlights the need to optimize
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Figure 6: Inference speeds of different models on the MD22 dataset in units iteration/s. The average inference
speeds were calculated for each molecule dataset. All tests were performed on a single Tesla A100 80G. The
SE3Set includes 3 layers and a different cutoff is set (4 Åand 6 Å) for NeuqIP. The other models. The other
models use parameter configurations that correspond to the results reported in their respective studies.

fragment size for a trade-off between detailed interaction capture and speed, particularly in big molecular
systems. Additionally, the explicit overlap method is slower than the implicit overlap method, which confirms
our previous analysis.

Table 7: The inference speed (unit: iterations/s) of SE3Set with different cw or rc. The tests on the MD22
dataset only use the AT-AT-CG-CG subset.

dataset Explicit cw Implicit rc

0.1 0.05 0.01 4.0 5.0 6.0

Inference speed QM9 11.60 11.54 11.37 - - -
MD22 (AT-AT-CG-CG) 2.62 2.29 1.68 2.92 2.90 2.87

Moreover, we have evaluated the inference time with different baseline models. The results in Fig. 6 show
SE3Set runs slightly slower than the other models. This is reasonable as we have included more pairwise
node information in our hypergraph. The improvement in our model’s performance indicates that our model
requires further optimization to achieve a better balance between efficiency and performance.

The number of parameters of SE3Set and other baseline models are showed in Fig. 8. SE3Set achieves better
performance using fewer parameters.

Table 8: Number of parameters with different models.

Model ViSNet QuinNet SE3Set(6 Layers) SE3Set(3 Layers)

No. of Parameters (Million) 10 9 6.3 3.5

I Training details

This section outlines the training specifics, encompassing the fragmentation parameters, SE3Set hyperparam-
eters, and certain implementation nuances utilized in our experimental setup.
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Our dataset construction is founded on PyTorch Geometric (Fey & Lenssen, 2019) augmented with our
fragmentation process (Sec. 4.1). Due to inconsistencies in molecular topology identified through RDKit’s
sanitization routine (Landrum et al., 2020), 1,403 data points were excised from the original dataset. We
designated 110,000 data points for the training set and 10,000 for the validation set, selected at random.

We used an explicit overlap scheme on the QM9 and MD17 datasets because of their relatively small molecular
systems. We implemented two distinct schemes for calculating fragment bond orders, following either Eq. 19
or Eq. 20. The parameters for fragmentation are detailed below. Given that the MD17 molecules are relatively
small, the merge step in the fragmentation process was not actually utilized. However, we present the
fragmentation parameters here for the sake of completeness.

Besides, we adopt an implicit overlap scheme on the MD22 dataset and OE62 dataset to reduce computational
resource consumption. The details of cutoff rc introduced in 4* can be found in Table 11.

On the QM9 and MD17 datasets, our model was trained using a single Tesla V100 GPU with 32GB of
memory, except for the 6-layer model employing the exponential bond order on the QM9 dataset, which was
trained on two Tesla V100 GPUs with 32GB each. For MD22 dataset and OE62 dataset, our model was
trained on a single Tesla A100 GPU with 80GB of memory.

We selected l = 2 for our irreducible representations (irreps) feature, which includes both node and hypergraph
features. For the radial basis function (RBF), we utilized Gaussian basis functions or Bessel basis functions
for the QM9 dataset (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014) and exponential basis functions for
the MD17 dataset, MD22 dataset and OE62 dataset (Chmiela et al., 2017). Details can be found in Table 9
and Table 10.

Table 9: Hyper-parameters for training SE3Set model. In the context of hyperparameter settings for
dimensions, the symbols e and o are used to denote even and odd parity, respectively.

QM9 MD17 MD22 OE62
Hyper-parameters Value or descriptions Value or descriptions Value or descriptions Value or discriptions

Optimizer nmin AdamW AdamW AdamW AdamW
Learning rate scheduler Cosine Cosine Cosine Cosine
Warm up epochs nmax 5 10 10 10
Minimum learning rate 1.0 × 10−6 1.0 × 10−6 1.0 × 10−6 1.0 × 10−6

Batch size 32, 128 8 8 32
Number of epochs 400 1500 1500 400
Weight decay 5.0 × 10−3 1.0 × 10−6 1.0 × 10−6 1.0 × 10−6

Dropout rate 0.1 0.0 0.0 0.0
RBF cutoff (Å) 42.0 Max distance of used atom pairs
Basis Type Gaussian or Bessel Exponential Exponential Exponential
Number of Basis 128 or 8 32 32 32
Number of Blocks 3 or 6 3 or 6 6 3
Node embedding dimension [(128, 0e), (64, 1o), (32, 2e)]
Hyperedge embedding dimension [(128, 0e), (64, 1o), (32, 2e)]
Attention head dimension [(32, 0e), (16, 1o), (8, 2e)]
Feed forward dimension [(384, 0e), (192, 1o), (96, 2e)]
Output feature dimension [(512, 0e)]

Table 10: Hyper-parameters for fragmentation. The expanded threshold does not work for models training
on the MD22 dataset because they adapt implicit overlap scheme.

Bond Order Methods Bond Order by Lendvay (19) Fragmentation by Exponential (20)

minimum atoms number nmin 2 2
maximum atoms number nmax 6 6
isolated threshold (cis) 0.1 0.4
expand threshold (cw) 0.1 0.2, 0.4

26



Published in Transactions on Machine Learning Research (04/2025)

Table 11: Hyper-parameters for step 4* of implicit overlap scheme in MD22 and OE62 experiments.

Dataset MD22 OE62
Ac-Ala3-NHMe DHA Stachyose AT-AT AT-AT-CG-CG

distance cutoff rc (Å) 5.0 4.0 4.0 6.0 6.0 5.0

Table 12: Performance comparing with some pre-trained models on 3 tasks (HOMO, LUMO, GAP) of QM9
dataset. We use the average mean absolute error performance here following the article of baselines. All the
baseline results are extracted from the origin articles (Zhou et al., 2023; Ji et al., 2024; Cao et al., 2023).

Model UniMol UniMol-2 InstructMol SE3Set

Avg. MAE (meV) 127 95 136 19

J Comparison with pre-trained baselines

Pre-trained model has become more popular in molecular representation learning recently. For completeness,
we have added the performance comparison with some state-of-the-art pre-trained models in this section.
We choose the reported average MAE on 3 targets (HOMO, LUMO, gap) of QM9 as a metric, our model
performs better than those pre-trained models on this metric as shown in Table 12.

K Comparison with graph neural networks

The hypergraph could incorporate more information than a graph with binary edges theoretically, as the
hyperedge denotes a set of nodes in graphs, which means the graph can be treated as a special case of
hypergraph as shown in Fig. 7 (a). To further elaborate on the features and advantages of the hypergraph
neural network architecture we use, we show the difference between our model and the graph neural network
in this section, using 5 linear arranged nodes as an example in Fig. 7 (b)-(d). The black lines indicate the
edges in the origin graph. This structure can correspond to the heavy atoms of the molecule malononitrile
(NC-CH2-CN). We focus on the message passing from the orange node to the green node in the graph. For a
graph neural network, such message passing requires 4 layers. For the graph neural network with the addition
of 3-hop node virtual edges, 2 layers are required. For SE3Set, on the other hand, only 2 layers are needed
using the explicit overlap method, and only 3 layers are needed for the implicit overlap method, even in the
case where the 3-hop nodes are not included inside the hyperedges either. This demonstrates the efficiency of
SE3Set in message passing.

L Fragmentation method compared to BRICS

In order to demonstrate the difference of our proposed fragmentation method compared to previous methods
like BRICS more clearly and intuitively, we use ethylene glycol diacetate as an example molecule for illustration
in this section (shown in Figure 8). To directly show the difference we choose the explicit overlap method.
Our fragmentation method preserves the predefined functional cluster substructure and generates overlaps
between fragments to achieve message passing between different hyperedges in the hypergraph structure,
whereas BRICS does not generate overlaps, which results in the hypergraph structure directly corresponding
to BRICS not being able to In addition, BRICS generates molecular fragments based on a chemical reaction
library that determines whether to break chemical bonds or not, which may lead to incomplete functional
groups in fragments, such as the carboxyl group in this case.

M Summary Statistics

To further evaluate the performance in our different runs on different targets, we defined the summary
statistics std. MAE following Gasteiger et al. (2019) which reflects the average error compared to the standard
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(a) (b) (c)

(d) (e)

Figure 7: Comparison message passing efficiency of with GNN (graph neural networks), and the GNN adding
virtual bodes between 3-hop neighborhoods. The black line between the two circles denotes the binary
edge in the graph. We consider the message passing process from the orange node to the green node and
the nodes in the shaded area belong to the same hyperedge. The red dashed arrows indicate the nodes
where the source information reaches after each passing layer. (a) The structural differences between graph
(above) and hypergraph (below). The hypergraph contains hyperedges defined by a set of nodes. (b) Simple
GNN architecture. (c) The GNN architecture adding virtual bodes between 3-hop neighborhoods. (d) The
hypergraph in SE3Set built with explicit overlap method. (e) The hypergraph in SE3Set built with implicit
overlap method.
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Figure 8: The difference between the proposed fragmentation method (left) and BRICS (right) shown by
case molecule ethylene glycol diacetate. For convenience, we use an explicit fragmentation method and set
the minimum number of atoms nmin to 0.

deviation of each target by Eq. 43,

std. MAE = 1
M

M∑
m=1

(
1
N

N∑
i=1

|ŷi
(m) − y

(m)
i |

σm

)
(43)
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with target index m in total M targets, dataset size N , the predict value of the model trained by m-th target,
and the corresponding ground truth y

(m)
i .

Furthermore, to evaluate the robustness of the performance, especially the MAE, we further propose std.
MAE std. by Eq. 44, which reflects the degree of data volatility of MAE on different tasks.

std. MAE std. =

√√√√ 1
M

M∑
m=1

(
1
N

N∑
i=1

|ŷi
(m) − y

(m)
i |

σm
− std. MAE

)
(44)

We compute these metrics on QM9 (M = 12), MD17 (M = 7) and MD22 (M = 5) respectively. The OE62 is
ignored as there is only one task in its experiment. For some energy-related labels (U0, U , H, G) in QM9,
the atomic level reference energy is subtracted from the origin value to generate the ground truth. For MD17
and MD22 datasets, as the forces are calculated by the derivation of energy, which means the energy MAE
and force MAE belong to the same trained model, we calculate the metrics of energy and force separately
with different molecules as different targets. All the results are shown in Table 13. To present the results
more clearly, we also show the average value and standard deviation of the origin ground truth as well, which
are presented in Table 14, 15, 16.
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Table 13: The std. MAE and std. MAE std. of different datasets calculated across different targets.

dataset QM9 MD17 MD22
Energy Force Energy Force

std. MAE (%) 0.67 1.88 0.28 0.64 0.20
std. MAE std. (%). 0.82 0.28 0.13 0.12 0.05

Table 14: The average ground truth and standard deviation for different targets in the QM9 dataset.

Target µ α HOMO LUMO gap R2 ZPVE U0 U H G Cv

Unit D a3
0 eV eV eV a2

0 eV eV eV eV eV kcal
mol·K

Avg. 2.7061 75.1917 -6.5300 0.3027 6.8328 1189.5256 4.0415 -75.9233 -76.3839 -76.8206 -70.6561 31.6009
Std. 1.5304 8.1876 0.6022 1.2772 1.2931 279.7507 0.9054 10.3775 10.4693 10.5440 9.5490 4.0624

Table 15: The average ground truth and standard deviation for different molecules in the MD17 dataset.
Energy (E) is in unit of kcal/mol and force (F) is in unit of kcal/(mol · Å).

Molecule Aspirin Ethanol Malonaldehyde Naphthalene Salicylic Acid Toluene Uracil

E Avg. -406737.2765 -97195.9314 -167501.8334 -241898.7881 -311033.7587 -170223.8472 -260107.3102
E Std. 5.9468 4.1920 4.1399 5.5867 5.4163 5.0996 4.9230
F Avg. 0.0000 0.0002 0.0000 -0.0001 0.0000 0.0000 0.0000
F Std. 27.9284 26.2570 28.6374 28.6544 28.5897 27.3297 30.0238

Table 16: The average ground truth and standard deviation for different molecules in the MD22 dataset.
Energy (E) is in unit of kcal/mol and force (F) is in unit of kcal/(mol · Å).

Molecule Ac-Ala3-NHMe DHA Stachyose AT-AT AT-AT-CG-CG

E Avg. -620662.7117 -631480.1418 -1578838.9203 -1154896.6603 -2329950.4156
E Std. 8.2038 9.5559 13.7595 10.9584 15.7047
F Avg. 0.0000 0.0000 0.0000 0.0000 0.0000
F Std. 26.0387 25.9614 25.6038 27.9251 27.7151
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