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Abstract

Recently, the powerful text-to-image capabilities of GPT-40 have led to growing
appreciation for native multimodal large language models. However, its multi-
modal capabilities remain confined to images and text. Yet beyond images, the
ability to understand and generate 3D content is equally crucial. To address this
gap, we propose ShapeLLM-Omni—a native 3D large language model capable of
understanding and generating 3D assets and text in any sequence. First, we train a
3D vector-quantized variational autoencoder (VQVAE), which maps 3D objects
into a discrete latent space to achieve efficient and accurate shape representation
and reconstruction. Building upon the 3D-aware discrete tokens, we innovatively
construct a large-scale continuous training dataset named 3D-Alpaca, encompass-
ing generation, comprehension, and editing, thus providing rich resources for future
research and training. Finally, we perform instruction-based fine-tuning of the
Qwen-2.5-vl-7B-Instruct model on the 3D-Alpaca dataset, equipping it with native
3D understanding and generation capabilities. Our work represents an effective
step toward extending multimodal large language models with fundamental 3D
intelligence, paving the way for future advances in 3D-native Al

1 Introduction

Large language models have made significant achievements, including text-only language models
(LLMs) |Achiam et al.| [2023]], Liu et al.| [2024a]], Bai et al.|[2023]], Touvron et al.|[2023]], Multimodal
Large Language Models (MLLMs) that can understand images Hurst et al.| [2024a]], GLM et al.
[2024], Team!| [2024]], video |Guo et al.| [2025]], |Cheng et al.| [2024], Maaz et al.[[2023]], L1 et al.
[2024b] and 3D [Wang et al.| [2024b]], Siddiqui et al.[[2024a]], Chen et al.| [2023al [2025b] content.
These models employ similar transformer architectures, using dedicated encoders to model each
modality independently, thereby integrating images, video, and 3D modalities into existing LLMs.

Recently, ChatGPT-40 |[Hurst et al.|[2024a]] has demonstrated remarkable performance. By natively
incorporating image generation and understanding into the large language model (LLM) architecture,
it enables more fine-grained and precise control through human instructions. However, its multimodal
capabilities remain confined to images and text, limiting its potential in more complex spatial domains.

In this work, we propose a unified approach to integrate 3D generation and understanding into a
pre-trained multimodal large language model (MLLM). Enhancing LLMs with native 3D capabilities
is crucial for downstream applications such as 3D content creation, robotics, digital twins, and
immersive virtual environments.

Our method adopts a fully next-token prediction paradigm, which ensures natural compatibility with
joint training and large-scale scalability. We leverage a VQVAE to encode 3D meshes into compact
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Figure 1: ShapeLLM-Omni inherits Qwen2.5-vI’s strong multimodal capabilities and additionally
supports text-to-3D, image-to-3D, 3D captioning, and 3D editing using text instruction.

discrete tokens, enabling a unified representation. These tokens are utilized for both understanding
and generating 3D meshes, following a format analogous to language modeling.

To enable LLMs with 3D ability, we construct a comprehensive training dataset using 3D shapes
from a mixture of 3D datasets [Deitke et al.|[2023alb], Collins et al.[[2022], Chang et al.|[2015]]. We
construct interleaved 710k text/image-3D pairs to enable the model for basic 3D understanding ability
and text/image to 3D generation ability.

Furthermore, to enable interactive 3D mesh editing, we introduce a novel dataset of 62k paired 3D
meshes and corresponding text-based editing instructions. This facilitates fine-grained manipulation
of 3D assets through natural language, making real-time editing more intuitive and controllable.

After that, we train an LLM on the corpus. We resume from Qwen-2.5-VL-Instruct-7B [Bai et al.
[2025] to utilize the effective of its large-scale pre-training on text and images. Our model demon-
strates a wide range of capabilities, including: (1) generating 3D content from language instructions;
(2) generating 3D objects from image inputs; (3) interactively editing 3D assets using natural language;
(4) understanding and interpreting 3D meshes for semantic and geometric reasoning.

In all, our contributions are:
* We propose a novel framework for unified 3D object generation and understanding based on
a fully autoregressive next-token prediction paradigm.

* We present the 3D-Alpaca dataset for training large language models (LLMs) with 3D
capabilities. Comprising 3.46 billion tokens, it covers three core tasks: 3D generation, 3D
understanding, and 3D editing.

* Our experimental results provide strong empirical evidence supporting the effectiveness of
the proposed method.

2 Related Work

2.1 3D Mesh Generation

The remarkable achievement of 2D diffusion models |[Ho et al.| [2020], Rombach et al.|[2022]] has
facilitated the exploration of 3D generative models. Early 3D generation methods |Poole et al.[[2022],



Wang et al.|[2023e]], (Chen et al.|[2023b], [Lin et al.|[2023]], Raj et al.|[2023]],|Li et al.|[2023b], |Sun
et al.[[2023]], |Chen et al.|[2024h], Wang et al.| [2022], Tang et al.|[2023]], Y1 et al.[[2024]] often rely on
SDS-based optimization to distill 3D content due to the limited 3D data, but encounter challenges
such as long optimization time and Janus problem. Subsequent works such as [Wang and Shi| [2023]],
Shi et al.| [2023b]],[Wang et al.| [2023c], |Liu et al. [2025al], Ye et al.|[2024b]], |Qiu et al.| [2024]], |Chen
et al.|[2024a] enhance semantic consistency across different views during multi-view image synthesis.
To minimize generation time, more recent approaches [Long et al.|[2024]], Zhao et al.| [2024]], Liu
et al.| [2023dlc]], |Shi et al.| [2023a]],[Weng et al.|[2023]], Liu et al.|[2023b], Wu et al.|[2024a], (Chen
et al.|[202441], Voleti et al.| [2024], |Ye et al.| [2024a], Liu et al.|[2024b] adopt a two-stage pipeline that
integrates multi-view image prediction with 3D reconstruction to produce 3D models. LRM |Hong
et al.[[2023a]] and other works [Tang et al.|[2024al], Wei et al.| [2024], |[Ziwen et al.|[2024], L1 et al.
[2023al], Xu et al.|[2023]],[Wang et al.| [2023a], Siddiqui et al.|[2024b]],[Zhang et al.|[2024alb]], Zou
et al.[[2024]], Xu et al.| [2024a]], Nawrot et al.[[2021]], Wang et al.|[2024c]] build on a feed-forward
reconstruction model and predict 3D structures within seconds. Additionally, native 3D diffusion
models [Zhao et al.|[2023]], Wang et al.|[2023b], Wu et al.|[2024b], Yang et al.| [2024]], Huang et al.
[2025b]], Yang et al.| [2024],|Zhang et al.|[2024c]], | Xiang et al.|[2024], |Chen et al.|[20241], |Li et al.
[2024a], Wu et al.|[2024b], Ye et al|[2025]] encode 3D objects into a VAE latent and adapt a latent
diffusion model on the resulting representations for comprehensive 3D understanding. Nevertheless,
the above methods treat 3D objects as numerical fields Mildenhall et al.|[2021]], Kerbl et al.|[2023]] and
extract meshes using Marching Cubes |Lorensen and Cline|[[1998]], which are not easily represented
as discrete tokens.

2.2 Autoregressive 3D Generation

Inspired by the success of auto-regressive models in language and image synthesis, some pioneering
works Siddiqui et al.|[2024a], /Chen et al.|[2024d], Weng et al.|[2024a] have explored their use in 3D
shape generation. They adopt VQVAE [Van Den Oord et al.|[2017]] to compress 3D shapes into latent
spaces, which are subsequently quantized into discrete tokens for learning via an auto-regressive
transformer. Instead of employing VQVAE, other studies |Chen et al.|[2024¢l |2025a], [Liu et al.
[2025dbic], [Yang et al.| [2025]], Weng et al.|[2024b]], Tang et al.|[2024b]], Hao et al.|[2024]], Zhao
et al.|[2025]] have proposed specialized mesh tokenization techniques that transform mesh vertices
and faces into compact discrete token sequences, while preserving the original complex geometric
details. These approaches enable the auto-regressive model to effectively generate meshes in a
face-by-face manner. Building on 3D auto-regressive models, LLaMA-Mesh [Wang et al.| [2024b]
explores the integration of natural language instructions with mesh generation and understanding,
enabling interactive 3D content creation through a unified framework. However, it treats the 3D OBJ
mesh file as text for language model to process, which overlooks the inherent topological structures
of 3D data.

2.3 Unified Models for Multimodal Understanding and Generation

Extending large language models (LLMs) to process, generate, and comprehend multiple modali-
ties—such as vision and language—within a unified framework has become a major research frontier.
Previous studies Bai et al.| [2023]], (Chen et al.| [2024g]], |Alayrac et al.| [2022] have advanced this
direction by equipping LLMs with visual understanding capabilities for multimodal tasks. Concur-
rently, other works [Team| [2024]], Liu et al.|[2024c|, Wang et al.|[2024a], Xie et al.| [2024], [Zhou
et al.[[2024] have proposed the integration of image and text generation through specialized visual
tokenizers. More recently, ChatGPT-40 has further propelled this progress, achieving state-of-the-art
performance in both visual comprehension and image synthesis. Beyond 2D modalities, a growing
body of research Hong et al.|[2023b]], Xu et al.|[2024b], |Q1 et al.|[2024al], Xue et al.| [2023]],[Huang
et al.| [2025a], (Chen et al.| [2024b]], [Huang et al.| [2024]], |Kang et al.| [2025]], Chen et al.| [2024c],
Wang et al.| [2023d] has extended LLMs to 3D content understanding, primarily through point cloud
representations. However, point clouds often lack fine-grained geometric detail and are challenging
to acquire in real-world settings, limiting their applicability for interactive generation. Despite these
advancements, there remains a notable gap: very few models are capable of jointly processing and
generating text, images, and 3D data in an integrated manner. To bridge this gap, we introduce a 3D
VQVAE module that encodes 3D shapes into discrete representations, enabling autoregressive models
to perform unified multimodal understanding and generation across text, images, and 3D content.
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Figure 2: The pipeline of 3D VQVAE, which can compress voxels into discrete tokens.

3 Method

Table 1: Modality comparison. In contrast to the task-specific model architectures of SAR3D
and Trellis, ShapeLLM-Omni achieves cross-modal alignment by jointly modeling text and 3D
representations in a shared latent space, enabling unified understanding and generation capabilities.

Input Modality Output Modality

Text Image 3D Unified model | Text Image 3D
SAR3D |Chen et al.[[2025b] v v v v v
Trellis Xiang et al.|[2024] v v v
PointLLM [Xu et al.|[2024b] v v v v
LLaMA-Mesh|Wang et al.|[2024b]] v v V4 v v
ChatGPT-40 Hurst et al.|[2024b]] v v v v v
Qwen-2.5v1|Bai et al.|[2025]] v v N4 v
ShapeLLM-Omni (ours) 7 7 7 v v v

3.1 Overview

Figure|l|provides an overview of our native Multimodal LLM framework, which can handle mixed
sequences of text, images, and 3D data and produce corresponding text or 3D outputs. We begin
by converting 3D assets into discrete tokens using a 3D VQVAE (Sec. [3.3), which allows us to
leverage the same transformer architecture for both 3D and text token sequences. Subsequently,
we assemble a comprehensive 3D supervised fine-tuning dataset, 3D-Alpaca (Sec. [3.4)), covering
text-to-3D generation, image-to-3D generation, 3D captioning, and 3D editing.

3.2 Architecture

As shown in Figure[I] we represent both text and 3D data as sequences of discrete tokens, enabling
fully autoregressive multimodal generation. This design allows for flexible input and output across
modalities in any order. While we adopt token-based representations for both text and 3D modalities,
we use continuous features for images. This is because images are only involved in understanding
tasks, whereas 3D data supports both understanding and generation. Such a unified modeling
approach—based on early fusion—facilitates better modality integration within the language model.
Compared to prior work in the 3D domain Table [T} our model is the first unified auto-regressive
framework that supports text-to-3D, image-to-3D, 3D understanding, and 3D editing in a single
system. It also marks the first attempt at a ChatGPT-40-style model tailored for 3D tasks.

33 3D VQVAE

In this section, we introduce our 3D representation—voxels—explain why we chose voxels, and how
we compress voxels into discrete tokens using a 3D VQVAE. Finally, we describe how to reconstruct
high-quality 3D meshes from voxels.

Voxel-Based Representation 3D assets can be represented in various ways—such as voxels,
vecset|Zhang et al.| [[2023]], Face-Vertex representation Wang et al.|[2024b], Point Clouds Xu et al.
[2024b]], or Gaussian splats |[Kerbl et al.| [2023]]. In this work, we adopt low-resolution voxels as
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Figure 3: Our 3D-Alpaca dataset comprises 3D generation, understanding, and editing components,
providing a comprehensive foundation for training and evaluating 3D large language models.

our 3D representation. We now explain the rationale behind this choice. First, we do not adopt the
Face-Vertex representation because it quantizes mesh geometry into discrete spatial tokens, resulting
in excessively long token sequences that hinder the training efficiency of unified models. Second,
we do not use VecSets-based representations. On one hand, VecSets encode highly informative
and continuous geometric features, making it challenging to train a complete 3D VQ-VAE for their
encoding. On the other hand, VecSets are inherently implicit, whereas voxels provide explicit and
structured spatial representations that are more suitable for 3D editing tasks requiring direct geometric
manipulation. In contrast, voxels strike a favorable balance between compactness and expressiveness:
they compress complex 3D information into a much smaller latent space, facilitating efficient training,
while effectively preserving an asset’s essential shape and skeletal structure, thereby providing
sufficient geometric cues for language models. Moreover, open-source reconstruction models can be
readily leveraged to convert coarse-resolution voxels into high-quality, detail-rich meshes.

Model Architecture We adopt a 643 voxel grid resolution, as voxels at this resolution strike the
optimal balance for modeling 3D skeletons, preserving essential structural details while avoiding
excessive redundancy [2024]. Although voxel representations are compact, even modeling
a single 3D object with a 64% voxel grid still requires 64% tokens—far beyond what a large language
model can handle. Therefore, we further compress voxels using a 3D VQVAE Xiang et al.| [[2024]:
first, we encode the 64> grid into a 163 latent grid; then we serialize it into 4096 tokens. However,
4096 tokens remain too long. Inspired by [2024]), which represents images as 1024 tokens, we
concatenate every four neighboring tokens along the channel dimension—transforming the original
4096 tokens with 8 channels into 1024 tokens with 32 channels. Finally, we employ an 8192-entry
codebook to compress the voxels into 1024 discrete tokens. In all, we represent a single 3D object
using 1024 discrete tokens, for both generation and understanding.

Shape Reconstruction Although we employ voxel-based representations for 3D shape generation,
practical deployment often necessitates converting voxels into meshes for downstream applications.
To address this, we adopt the approach proposed by Xiang et al. Xiang et al.|[[2024]], which utilizes
a Rectified Flow model to refine and complete voxel information, enabling high-quality mesh
reconstruction. By first generating 3D shapes in the voxel domain and then converting them into
meshes using this method, our framework achieves a balance between precision and efficiency. This
hybrid representation allows large language models to exert fine-grained control over 3D content
generation while avoiding the computational burden associated with high-resolution geometry.

3.4 3D-Alpaca Dataset Construction

Although a wealth of datasets has been developed for the supervised fine-tuning of multimodal

large-language models, dialogue data within the 3D LLM Hong et al.|[2023b], Chen et al.| [2025b]],
[2024b]] domain remains relatively scarce. To bridge this gap, we introduce 3D-alpaca, a
comprehensive dataset encompassing tasks in 3D content generation, comprehension, and editing.




3D Generation and Understanding Dataset We select a high-quality subset of approximately
712k 3D assets from Trellis Xiang et al.|[2024] and internal collection. For the image collection,
each asset is rendered into a 2D image, and a random offset is applied to the frontal view to create the
input. Moreover, these rendered images also underpin the construction of the editing dataset in the
Sec.[3.4] To generate the text collection and enable early fusion across all three modalities, we render
four orthogonal views—front, back, left, and right—of each asset. These multi-view images are then
input into the base model Qwen-2.5-VL-Instruct|Bai et al.| [2025]] to generate descriptive captions.
The resulting captions are utilized both as prompts for text-to-3D generation and as ground-truth
targets for 3D-to-text captioning tasks.

3D Edited Dataset We aim to build a 3D asset-editing dataset composed of paired 3D assets, where
each pair is linked to a specific editing instruction. Despite recent advances in 3D content creation, the
field still lacks a model capable of performing consistent edits on 3D assets. In light of the promising
performance of current image-editing models, we therefore adopt an image-mediated pipeline: first
rendering each 3D asset into images and applying an image-editing model, then reconstructing the
edited images back into 3D assets via an image-to-3D generation method. Based on the multimodal
alignment demonstrated and with the aim of equipping the model with ChatGPT-4o0-level editing
capabilities, we follow a six-step pipeline.

(1) Category: We reference the data distribution of Objaverse-XL |Deitke et al.|[2023a] and manually
selected the 100 most representative and frequent object categories, such as cars, tables, cabinets,
human figures, etc.

(2) Asset Classification: Using ChatGPT-40, we classify the 3D assets in our dataset into fine-grained
subcategories, with the frontal view renderings of each asset as input. From the 3D asset dataset, we
filtered 311k assets belonging to the predefined 100 major categories.

(3) Editing-Prompt Definition: We provide the category names to ChatGPT-40 and instruct it to
generate 20 feasible editing-prompts for each category. The instruction given to ChatGPT-4o0 is: "For
each given category name, suggest potential image editing operations that could be applied to objects
of that category." Next, we manually review each generated editing prompt and retain only those that
meet both our technical feasibility and visual engagement criteria, resulting in 371 unique editing
prompts (e.g: “Replace the chair’s backrest with a mesh frame”).

(4) Asset Sampling & Annotation: Due to time and resource constraints, we build a compact, high-
quality dataset of editing prompts rather than applying every possible editing prompt to each asset.
Specifically, we allocate 200 assets to each editing prompt.

(5) Editing-Image Pair Collection: For each sampled asset, we provide ChatGPT-40 with its frontal
render plus the chosen editing-prompt, and ChatGPT-40 produces the corresponding edited image,
yielding image-level editing pairs. After filtering out erroneous cases, we end up with 70k valid
editing samples.

(6) 3D reconstruction: Finally, we employ Trellis Xiang et al.[[2024] to convert the curated images
into 3D assets, resulting in 3D pairs before/after editing.

Dialogue Data Construction We define 25 dialogue templates per task (e.g., “Generate a 3D asset
of prompt/images”) and encode all 3D assets into discrete token sequences with our pre-trained 3D
VQVAE (Sec.[3.3). For each 3D-edit instance, we randomly select 6 templates from a pool of 25;
for all other instances, we randomly assign one template each. By merging the tokens with these
templates, we create a training corpus of 2.5 million 3D dialogues.

General Conversation To ensure the model’s general conversational capability, we adopt Ultra-
Chat |Ding et al.|[2023]] as our text-only dataset, with its data distribution shown in the Table 2| For
additional details, please refer to the Appendix.

Putting these together After data processing and construction, we finally arrive at the 3D-Alpaca
dataset. As shown in the Table[2] the dataset includes four types of tasks: image-to-3D, text-to-3D,
3D-to-caption, and 3D-editing. Together, these four subsets form a total of 2.56 million samples,
comprising 3.46 billion tokens. To ensure the large language model retains its original reasoning and
dialogue capabilities, we additionally include the UltraChat Ding et al.|[2023]] dataset, a high-quality,
large-scale multi-turn dialogue corpus.



Table 2: Corpus Data Proportions An overview of token and item counts in the training corpus,
covering two datasets: the 3D-Alpaca dataset, which includes four task types—Text-to-3D, Image-to-
3D, 3D-to-Caption, and 3D-Editing—and the text-only UltraChar dataset Ding et al.| [2023]]

| Text-To-3D  Image-To-3D  3D-to-Caption 3D-Edit 3D-All | Text-Only

Token count |  0.77B 1.01B 0.77B 0.91B 3.46B | 2.16B
Item count | 712k 712k 712k 420k 2.56M | 14"

4 Experiments

3Dtopia-XL

Figure 4: Comparisons with other baselines on the image-to-3D task. Our results demonstrate
more complete geometry and high-fidelity textures compared to baselines, enabling photorealistic
image-to-3D generation.

4.1 Implementation Details

For training our 3D VQVAE, we adopt a 3D U-Net VAE architecture introduced in Trellis | Xiang
[2024]. Our training follows a two-stage strategy: In Stage 1, we freeze the VAE’s pre-trained
parameters and train only the codebook. In Stage 2, we unfreeze the VAE and jointly fine-tune it with
the codebook. Concretely, each stage runs for 1000 steps on 48 NVIDIA H100 GPUs with a batch size
of 25, while the learning rate decays from 5 x 1073 to 5 x 10~°. For the training of ShapeLLM-Omni,
we use Qwen-2.5-VL-Instruct-7B [2025], a multimodal large language model (MLLM)
with image-understanding capability, as our backbone. Specifically, we extend its base architecture
by adding the 8192 3D VQVAE codebook. To preserve its original image-understanding skills, we
freeze the parameters of Qwen2.5-vI’s visual encoder. While training, the learning rate decays from
5 x 1072 to 5 x 1076, with a per-GPU batch size of 2 and gradient accumulation over 2 steps. The
model is trained for 15 epochs on 48 NVIDIA H100 GPUs.

4.2 Quantitative comparisons

Language and Conversational Abilities Table [3] presents quantitative results evaluating lan-
guage abilities. The table provides a comparison with models: LLaMA-Mesh [Wang et al| [2024b]],

Chameleon [2024]], and Qwen2.5-v1 [2025]]. The metrics include SIQA [Sap et al.




[2019], PIQA Bisk et al.|[2020], MMLU Hendrycks et al.| [2020]], and GSM8K |Cobbe et al.|[2021].
Fine-tuned on 3D-Alpaca for both 3D mesh generation and comprehension, our ShapeLLM-Omni
maintains language understanding and reasoning performance on par with baseline models. The
result demonstrates that ShapeLLM-Omni effectively extends the MLLLM’s capabilities to 3D content
generation while preserving its native language capabilities.

Table 3: Language capabilities comparison. We provide a comparison with models: LLaMA-
Mesh Wang et al.| [2024b]], Chameleon [Team| [2024], and Qwen2.5-vl Bai et al.| [2025]. The
metrics include SIQA [Sap et al.| [2019], PIQA [Bisk et al.|[2020], MMLU [Hendrycks et al.| [2020],
and GSMS8K |Cobbe et al.| [2021]]. Fine-tuned on 3D-Alpaca for both 3D mesh generation and
comprehension, our ShapeLLM-Omni maintains language understanding and reasoning performance.
The table highlights the optimal values in bold and the suboptimal values with underlining.

Metric | Qwen2.5-vl-7B  ShapeLLM-Omni-7B  Chameleon-7B  LLaMA-Mesh-8B

MMLU 66.9 63.9 59.4 57.4
PIQA 81.0 78.6 79.6 78.9
GSMSK 42.9 55.1 66.9 33.1
SIQA 40.7 41.0 57 40.4

3D VQVAE Reconstruction Evaluation To assess the reconstruction quality of our 3D VQVAE
model, we randomly select 1000 samples from the test set and feed them into the model. We then
calculate several metrics between original and reconstructed voxel grids, including IoU, Recall,
Precision, F1 and Chamfer Distance. These results, summarized in the table 4] indicate that our 3D
VQVAE model preserves geometric structure with high fidelity, providing a reliable reconstruction
basis for following generation tasks.

Table 4: Quantitative Evaluation of 3D VQVAE reconstruction performance. We report IoU,
Recall, Precision, F1, and Chamfer Distance between original and reconstructed voxel grids. The
results demonstrate that our 3D VQVAE effectively preserves geometric structure with high fidelity.

| 10U  Average Recall Average F1  Average Precision ~Chamfer Distance

3D VQVAE | 0.9168 0.9357 0.9450 0.9549 0.0214

3D Generation We compare our methods on both text-to-3D and image-to-3D generation tasks
against CRM [Wang et al.|[2024c|], SAR3D |Chen et al.|[2025b]], 3DTopia-XL |Chen et al.|[2024f]], and
TRELLIS [Xiang et al.|[2024]. When evaluating the generation performance of ShapeLLM-Omni,
we set the model’s top-k parameter equal to the size of the 3D vocabulary (8192), with top-p=0.7
and temperature=0.7. Regarding the dialogue templates, the image-to-3D template is formulated as:
"Create a 3D asset using the following image: <image>", while the text-to-3D template is expressed
as: "Please generate a 3D mesh based on the prompt I provided: <prompt>". Quantitative evaluations
are conducted using image and text prompts sampled from the Toys4K [Stojanov et al.[[2021] test
dataset, with the results summarized in Table[5] To assess the overall quality of the generated 3D
outputs, following |Xiang et al.|[2024]], we compute Frechet Distance (FD)|Heusel et al.| [2017] and
Kernel Distance (KD) Binkowski et al.| [2018]] using Inception-V3 |Szegedy et al.|[2016] features.
Additionally, we report the CLIP score Radford et al.|[2021] to measure the semantic alignment
between the generated outputs and their input prompts. As shown in the Table [5} our generation
results outperform all baseline methods except for Trellis.

3D Understanding Following the evaluation settings provided by PointLLM [Xu et al.|[2024b]], we
test the same metrics on the benchmark dataset used by PointLLM. We adopt the same curated test
set to assess the 3D-to-caption task. The dialogue prompt is structured as: “<mesh>. Caption this 3D
model in detail.”. As shown in Table [6] our ShapeLLM-Omni demonstrates strong 3D understanding
capabilities, with performance second only to PointLLM, which is specifically tailored for single-task
3D understanding.



Table 5: Comparison of methods on Text-to-3D and Image-to-3D tasks. We scale KD by (x102).

Method Text-to-3D Image-to-3D

CLIPT FDinccp \L KDinccp \J/ CLIPT FDinccp Jr KDinccp \l/
CRM - - - 76.1 14.7 0.12
3DTopia-XL - - - 76.5 49.5 1.63
SAR3D 239 27.2 0.28 84.70 20.6 0.17
Trellis 30.8 18.3 0.19 85.0 8.31 0.07
ShapeLLM-Omni (ours) | 26.7 25.9 0.25 84.5 12.2 0.09

Table 6: 3D object captioning results on Objaverse Deitke et al. [2023a]]. As can

be seen from the table, our model achieves better performance on 3D understanding/caption tasks.
"*" indicate PointLLM was prompted for shorter captions with no more than 20 words.

Model ‘ B-1 R-L METEOR ‘ S-BERT S-CSE
InstructBLIP-13B Wenliang et al.| [2023] | 4.65  8.85 13.23 4590  48.86
LLaVA-13B [Liu et al.[[2023a] 4.02 8.15 12.58 46.37 45.90
GPT4Point|Q1 et al.|[2024b 8.45 10.11 13.13 40.31 42.88
ShapeLLM' 1 et al. 17.88 19.24 17.96 48.52 49.98
3D-LLM |H0ng et al.|[2023b] 16.91 19.48 19.73 44.48 43.68
PointLLM-13B |Xu et al. 2024b|] 3.38 7.23 12.26 47.91 49.12
PointLLM-13B* Xu et al. |]2024b[] 17.09 20.99 16.45 50.15 50.83
ShapeLLM-Omni (ours) | 18.51 21.37 19.89 | 49.34 50.72
Prompt Ours Trellis Sar3D 3Dtopia-XL

A storyed building

A iguana with shirt
yellow

A cartoon robotic
white toy

Green coloured toy van
with rectangular curved
surface yellow front lights
and red seats with grey
coloured wheels

v
Figure 5: Comparisons with other baselines on text-to-3d task. Our method achieves better text
alignment, with 3D shapes accurately reflecting input descriptions.

4.3 Qualitative comparisons

3D Generation To evaluate the effectiveness of our image-conditioned generation, we compare
against baselines including SAR3D, TRELLIS, CRM, and 3Dtopia-XL. As illustrated in Figure 4]
the baselines exhibit limitations in capturing fine-grained visual features, suffering from geometric
distortions and texture misalignments. In contrast, our method generates high-quality 3D meshes that
preserve both geometry and appearance details. Moreover, our generation quality matches that of
TRELLIS, our base model and performance upper bound, due to the integration of a well-trained
3D VQVAE and a carefully constructed image-to-3D dataset for LLM fine-tuning. For text-to-3D
tasks, Figure 3] presents qualitative comparisons among baselines. The input prompts are randomly
generated by ChatGPT-4o to cover a diverse range of objects. Since 3Dtopia-XL does not support
text-to-3D tasks, we use ChatGPT-40 to generate reference images from the prompts. These images
are then used as input for image-to-3D generation. It is evident that our method achieves precise
alignment with the text prompts and excels at generating intricate, coherent details.



3D Editing  As shown in Figure[6] ShapeLLM-Omni can edit 3D assets according to user-provided
instructions while maintaining good identity consistency.

o
N
Q
1}
+'open the cabinet doors” +'add lid on top” +"add wm_qs” +"grow a tail”
=2 ’,»/
5 J
&
<

Figure 6: Some cases of 3D editing result from our method. Our method enables the editing of 3D
assets based on textual instructions while preserving their original identity and visual consistency.

4.4 Compared with Trellis

Table 7: Comparison of Trellis and ShapeLLM-Omni in text-to-3D generation performance after
task-specific fine-tuning.

Model | CLIPT  FDjncep & KDincep 4
Trellis 30.8 18.3 0.19
ShapeLLM-Omni 26.7 25.9 0.25
ShapeLLM-Omni (Overfiting) | 30.1 18.9 0.21

Our results are slightly inferior to Trellis due to two main factors.

1) Trellis employs separate models for text-to-3D and image-to-3D generation, whereas our
ShapeLLM-Omni unifies six tasks—text-to-3D and image-to-3D generation, 3D understanding,
3D editing, image understanding, and text reasoning—within a single model that also supports
interactive conversation. This all-in-one design introduces optimization trade-offs that can affect
generation quality. To verify this, we fine-tuned our model specifically for text-to-3D generation using
the pre-trained weights, removing redundant prompts and freezing non-mesh textual embeddings.
With a learning rate of le-5, context size of 1536, batch size of 4, gradient accumulation of 2, and 5
epochs of training, the fine-tuned model lost its general text capabilities but ,as shown in the Table 7}
achieved text-to-3D results comparable to Trellis—demonstrating the inherent difficulty of balancing
multiple tasks within a unified framework.

2) Trellis is built on a Rectified Flow (diffusion) architecture, while our model adopts a discrete
autoregressive design. Diffusion and flow-based models currently hold an inherent advantage in visual
generation quality, and surpassing them with autoregressive architectures remains an open research
challenge. Nonetheless, our focus lies not in pushing the absolute performance of autoregressive
models, but in enabling unified 3D generation and understanding under this paradigm—an innovative
and promising direction as autoregressive visual generation continues to advance.

5 Conclusion

In this work, we introduce ShapeLLM-Omni, a novel framework that advances both 3D generation
and understanding through a 3D VQVAE. By constructing a comprehensive 3D-Alpaca dataset, we
provide a data foundation to support future research on native 3D-modality large language models.

Limitation Constrained by limited resources, we possess only 70k 3D-editing pairs—far too few to
achieve ChatGPT-4o-level results in 3D editing. Due to limited computing resources, our ShapeLLM-
Omni only has 7B parameters. As a result, our performance hasn’t yet reached the level of a true “3D
version of ChatGPT-40”.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, the abstract and introduction concisely capture the paper’s key contribu-
tions and scope without overstatement.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Yes, the paper includes a dedicated "Limitations" section at the end to explicitly
address the constraints of the study.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Yes, for each theoretical result, the paper provides the complete set of underly-
ing assumptions along with rigorous and correct proofs.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Confirmed. All replication-critical details (data construction ,training parame-
ters) are exhaustively specified.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The data and code access permissions are not yet available. The code will be
released upon the paper’s formal acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper fully presents the training and testing details in the "Experiments"
section.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, we evaluated a sufficiently large number of test cases, including both
quantitative metrics and visual assessments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

20


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Yes, these details are fully specified in the "Experiments" section.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Confirmed. The study strictly adheres to the NeurIPS ethical guidelines.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, we have included a discussion of societal impacts (both positive and
negative) in the appendix.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:
Justification: Our model does not carry such risks, therefore no safeguards are described.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, all assets (code, data, models) used in this paper are properly credited
to their original creators/owners, with explicit declarations of licensing terms and full
compliance with usage requirements.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Confirmed. Complete documentation will be provided with all new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:

Justification: No, this paper does not involve any crowdsourcing experiments or human
subject research, therefore such documentation is not applicable.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:
Justification: no human subjects or sensitive data involved
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:

Justification: We employed LLMs solely for writing assistance, text editing, and formatting
purposes, which did not affect the core methodology or scientific validity of the research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A More Experiments

A.1 More Implementation details
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Voxel

With Texture
Figure 7: About how to generate 3d mesh from voxel. This image illustrates the process of
reconstructing a textured mesh from voxel inputs using a texture transformer Xiang et al.[[2024] and
mesh decoder.

Decoding Voxel into 3D Mesh  As illustrated in the upper part of Figure[7] we first utilize a texture
transformer, named Sparse-Flow Transformer Xiang et al.|[2024], to extract texture latents from the
voxel representation. These latents are then fed into a voxel-to-mesh decoder, which generates a
mesh with associated texture information. Interestingly, we observe that the geometry of the output
mesh is entirely determined by the input voxel representation, regardless of the presence of texture
information.

More Details about Training The model is trained on 48 H100 GPUs for 60k iterations. We
conduct full parameter fine-tuning. We use the AdamW optimizer, with a learning rate of le-5, a
warm-up of 400 steps with cosine scheduling, and a global batch size of 192. The total training time
is around 5 days.

A.2 More details about 3D-Alpaca

3D Editing Prompt List ~ As shown in Table[I3]and Table[I4] we present 70 out of the 100 categories
from the 3D editing dataset, along with their corresponding editing prompts.

3D Editing Data  As shown in Figure[T0] we present several examples from our 3D editing dataset.
The figure illustrates that our 3D editing data pairs support effective modifications while preserving
subject consistency between the original and edited versions.

A.3 More Qualitative comparisons

In Figure [T} Figure and Figure we showcase additional Image-to-3D generation results. To
maintain consistency with the training setup, all input images are resized to 512x512 resolution with a
white background. This preprocessing step is crucial, as our base model, Qwen-VL Bati et al.| [2025]],
encodes images into token sequences whose length depends on the input resolution. Additional
Text-to-3D generation examples are presented in Figure[T4] The visual results clearly demonstrate that
our model is capable of producing high-fidelity 3D assets through a unified architecture. Furthermore,
Figure [9) provides additional 3D-to-caption generation results, and Figure [§] shows two caption
examples from Objaverse Deitke et al.| [2023al]. The generated captions demonstrate that our
ShapeLLM-Omni exhibits robust 3D understanding capabilities.

A.4 More Quantitative comparisons

Image-to-3D To provide a more comprehensive comparison, we quantitatively evaluate the image
to 3D generation performance of OpenLRM, LGM, InstantMesh, and Unique3D on the same test
set used in our paper. We also adopt the same evaluation metrics, including CLIPScore, F'D;ycept,
and K Diycept- As shown in the table 8} our method consistently outperforms all baselines and
demonstrates superior 3D generation quality.

Evaluation of GPT-Annotated Dataset To quantitatively assess the quality of our GPT-annotated
text-to-3D dataset, we randomly sample 1000 text—image pairs and evaluate their semantic alignment
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UID 0ea33b6617174530b97d6b7a92c275fb deBec2a724f14fc4b54624512f80f13e
InstructBLIP An appleavatar 3d model A black insect
3D-LLM A 3D model of a red apple. A small, black spider with a long tail.

Poi This is a 3D model of a unique apple, This 3D model depicts a realistic, jet-black
ointLLM distinctively adorned with a single, vibrant insect with a pair of striking, golden brown
____________________ greenleaf at the fop. L __8YeS_ ..
ShapelLLM-Omni An apple with a stem and leaf. A spider with multiple legs and a segmented body

Figure 8: Qualitative results on Objaverse.

Renderings of
inpput mesh

2 A robot with a A fantasy creature with wings A fufurlsf/c t{eh/c/e with A /ghrﬁouse with a
a  rectangular head and ‘ multiple sections and cylindrical base and a
S : and a pointed head. .

S four limbs. protrusions. fower.

Figure 9: Some cases of 3D-to-caption result from our method.

using CLIPScore and ViLT R-Precision. As shown in the Table[J] our dataset achieves high scores
across both metrics, indicating strong correspondence between the captions and 3D content.

Evaluation of 3D Editing Dataset To evaluate the alignment in 3D edting dataset, we compute
the same metrics between the editing prompts and the rendered front-view of edited objects. The
results, summarized in Table [I0] indicate the editing prompts are well aligned with the resulting
modifications.

Evaluation of QA We conduct additional experiments to evaluate our model on 3D question-
answering tasks. As shown in the table below, the best scores for each metric in the Table |'1;1'| are
highlighted. Our model achieves consistently superior performance across all methods, demonstrating
its strong capabilities in 3D QA tasks.

A.5 Ablation

3D VQVAE To determine the optimal codebook size for our 3D VQVAE model, we train several
variants with different codebook sizes. We randomly sample 1000 meshes from the test dataset,
voxelize them, and encode them into discrete tokens using each model. These tokens are then
decoded into voxel grids and converted back to meshes through a voxel-to-mesh decoder. We evaluate
reconstruction quality using Chamfer Distance (CD) and Hausdorff Distance (HD). As shown in
Table[T2] larger codebooks lead to better reconstruction performance. However, the improvement
levels off beyond a codebook size of 8192, indicating saturation. We therefore choose 8192 as the
final codebook size to strike a balance between quality and efficiency.
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Table 8: More quantitative comparison of image-to-3D generation performance across OpenLRM,
LGM, InstantMesh, and Unique3D on the shared test set, evaluated using CLIPScore, F'D;y,cept, and
KD incept-

Model \ CLIPT FDincep +  KDincep 4
Instantmesh [Xu et al.|[2024a] 74.50 22.0 0.25
OpenLRM He and Wang| [2023]] | 72.75 20.1 0.26
Unique3D |[Wu et al.[[2024a] 77.10 16.8 0.13
LGM Tang et al.|[2024a] 75.20 18.5 0.15
ShapeLLM-Omni(Ours) 84.50 12.2 0.09

Table 9: Quantitative evaluation of the GPT-annotated text-to-3D dataset using CLIPScore, VILT
R-Precision@5 and ViLT R-Precision@10.

‘ CLIPScore VILT R-Precision R@5 R-Precision R@10
Our \ 29.58 353 42.2

Table 10: Quantitative evaluation of the GPT-annotated 3D Editing dataset using CLIPScore, VILT
R-Precision@5 and ViLT R-Precision@10.

\ CLIPScore VILT R-Precision R@5 R-Precision R@10
Our \ 27.41 33.6 43.5

Table 11: Performance comparison on 3D question-answering tasks.

Model | B-1 R-L METEOR | S-BERT S-CSE
ShapeLLM Qi et al.|[2024a] 17.73 1991 21.86 51.32 50.95
GPT4Point Q1 et al.[[2024b] 6.51 8.59 5.80 29.66 32.18
PointLLM-13B Xu et al.| [2024b] | 17.23  19.70 20.48 52.66 53.21
ShapeLLM-Omni (Ours) | 19.66 21.31 22.68 | 5251 53.33

Table 12: Ablation study on the codebook Size of 3D VQVAE

Vocabulary Size | Chamfer Distance| Hausdorff Distance|

4096 0.0102 0.0561
8192 0.0094 0.0525
16384 0.0095 0.0534
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Table 13: Edited Prompt Collection: Part One

ID  Category Edited prompt
Add a cannon to the front, Open the door, Add a roof rack, Add a rear wing,
1 Car Lengthen the car body, Shorten the car body, Convert into a convertible, Change
wheels to square shape, Bend the roof, Add air vents on the sides, Install a
spotlight on the roof, Open the hood, Install a rear-view camera
2 Tricycle Add a wheel, Install a small trumpet
3 Bicycle Raise the seat, Add a wheel, Install a basket
4 Traffic light Add an extra light, Install a surveillance camera
Add wings, Add jet flames, Add solar panels, Install radar antenna, Shorten
5 Spaceshi fuselage, Bend the tail fins downward, Bend the tail fins upward, Widen the
p P wingspan, Narrow the wingspan, Tilt the whole body, Mount small missiles on
wings
6  Tank Rotate cannon to the side, Mount a telescope on the turret top
Raise both hands, Raise left hand, Raise right hand, Hold a sword, Enlarge the
head, Sit cross-legged, Wear a backpack, Wear a shoulder bag, Change to running
pose, Grow a pair of wings, Stand on wind-fire wheels, Step on rocket launchers,
7 Character Wear glasses, Wear a tall hat, Spread arms, High knee movement, Stand on one
leg, Add a cape, Hold a shield, Grow a tail, Twist the waist, Stand on a skateboard,
Change hairstyle to a bun, Enlarge the ears, Bend the elbows, Wear armor, Kneel
on both legs, Cross both arms, Add halo above the head
Turn feet into wheels, Turn hands into bayonets, Wear an Iron Man helmet,
Lengthen the arms, Mount mechanical wings on the back, Add antenna to the
8  Robot head, Add springs to the soles, Mount a rocket booster on the back, Lengthen the
legs, Turn hands into cannons, Turn hands into claws, Turn arms into chainsaws,
Add solar panels to the back, Transform into spider legs
Put a vase on the table, Change table shape to round, Lay a tablecloth, Spiral-
9 Table shaped table legs, Add a drawer under the tabletop, Jagged edges on the tabletop,
Dig a hole in the center, Put a cup on the table, Add wheels under table legs, Put
a fruit plate on the table
Place a cushion, Extend the legs, Shorten the legs, Add wheels to the feet, Install
10 Chair a footrest, Place a seat cushion, Add storage bags on the sides, Put a speaker on
it, Turn into a rocking chair
Add cabinet doors, Open the cabinet doors, Add drawers, Pull out a drawer, Put
11  Cabinet a table lamp on top, Add a lock, Add internal shelves, Place a potted plant on top
Bowl: Change to square, Put an egg inside, Add a pair of chopsticks
Add a pillow, Change to round shape, Add bed curtains, Place a kitten on the bed,
12 Bed .
Convert into a bunk bed
13 Sofa Place a blanket, Place a teddy bear, Add a throw pillow
14  Bowl Change to square, Put an egg inside, Add a pair of chopsticks
15 Backpack Transform into a jetpack, Transform into a rolling backpack
16 Gun Lengthen the barrel, Add barrels on both sides, Mount a scope on top, Add a
magazine slot on the left, Attach a bayonet under the muzzle
17  Shoes Extend the upper part, Thicken the sole, Attach wind-fire wheels
18 Clothes Convert to short-sleeve, Convert to long-sleeve, Add a scarf
19 Hat Raise the crown, Add wings to the sides, Turn the top into animal ears
20 Glasses Change to round frames, Add a head strap, Remove the frames
21 Ring Add a diamond, Remove the diamond
22 Knife Extend the blade, Turn into "Zangetsu" from Bleach
23 Sword Lengthen the blade, Wrap the blade in flames, Make the blade serrated, Add a
ring guard to the hilt, Embed gems in the blade
Change the spout length, Open the lid, Turn the spout into a chainsaw, Add a
24 Teapot h
eater at the bottom
Only upper half remains, Insert a rose, Pour tea into the bottle, Replace cap with
25 Bottle :
cork, Tie a label around the neck
25 Cup Turn into conical flask, Add a handle, Add a lid, Insert a straw, Add a cup heater
Jumping pose, Skating on a skateboard, Add a pair of wings, Wear clothes, Wear
26 Cat
a bow on the head
27 Dog Hold a bone in mouth, Add a dog leash, Wear clothes, Wear a Christmas hat
28 Insect Remove wings, Remove antennae, Add an antenna, Add a pair of wings
29  Fish Wear goggles
30 Block-shaped Object  Be stretched
31 Ball-shaped Object Change to oval
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Table 14: Edited Prompt Collection: Part Two

ID  Category Edited prompt
Add chimney on roof, Add and open a door, Change roof to dome, Change door
3 House to arch, Add canopy on the door, Add garage on the side, Add a balcony, Add a
street lamp next to house, Add a fence, Add a mailbox at entrance, Install solar
panels on roof
Shorten height, Add flag on top, Add door at base, Add spotlight at tip, Add
33 Tower fence around, Add antenna on top, Add spiral staircase outside, Add window in
middle, Add vines on surface, Keep only lower half, Add observation deck at top
Grow two giant hands, Grow giant flowers on top, Grow stars at top, Grow two
34 Tree long legs, Grow large wings on sides, Butterfly perching on tree, Add a door on
trunk, Hang lanterns on branches
35 Flower Add more petals, Insert into vase, Bee perching on it
36 Fruit Put in fruit plate, Peel skin, Insert small umbrella on surface
37  Vegetable Be stretched
38 Phone Turn into tri-fold screen, Add stylus on edge
39  Computer Grow wheels
40 TV Add two antennas, Install base stand
41 Keyboard Change to round keycaps
42  Book Grow two arms and legs, Grow wings
Add arched entrance in front, Install antenna on roof, Add chimney on roof, Add
43 Building external staircase, Add billboard on top, Helicopter parked on roof, Add fence in
front, Make building round, Install solar panels on roof, Add flag on roof, Change
door to revolving door, Add a clock on wall, Hang string lights on wall
44 Building Structure g\’tiuné(t)l\l/reeone column, Change to flat roof, Convert to castle top, Add cable support
Add a pair of wings, Wear sunglasses, Wear headphones, Wear a tall hat, Add
45  Statue halo above, Add fence around, Add multiple arms, Change head to Medusa, Wear
a flower crown, Be wrapped in chains
4G It Change bulb to square, Change lampshade shape, Add more lamp heads, Change
lamp head direction, Add hanging chains
Replace rectangle door with arch, Add doorbell, Add surveillance camera, Add
47  Door door lock, Add steps at entrance, Open the door, Wrap door with vines, Add peep-
hole Bird: Claw grasping branch, Wings spread, Pecking downward, Lengthen
beak, Shorten beak, Wear top hat, Hold a branch in beak, Wear goggles
48  Sculpture Wear crown, Wear armor, Wear mask, Hold scepter
49  Weapon Add hook at front, Make blade wavy, Change to double-headed, Be chained
50 Helmet Add goggles, Add visor, Change to pointed top, Unfold side wings
. Convert to suspension bridge, Add pillars, Make multi-level, Add street lights,
51 Bridge Add to
y cars
52 Vase Insert flowers, Place on table, Add handles on sides
53  Mechanical Arm Replace hand with clamp, Arm rotates

Plant
Shield
Chest

Airplane

Castle

Mythical Creature
Pillar

Tool
Lighthouse
Box
Monument
Animal
Stairs

Tent

Street Light
Trophy
Machine

Add fruits, Broken branches, Grow upwards

Change to octagonal, Embed gem in center, Insert an arrow, Wrap in vines

Be flattened, Open lid, Lock with chains

Mount missiles under wings, Retract landing gear, Extend landing gear, Add
more engines

Add drawbridge at entrance, Attach a dragon on wall, Connect towers with
bridges, Hang flags on walls

Add saddle, Grow spikes on back, Sleep curled on ground

Change to polygonal, Bend to one side, Add grooves to body

Lengthen handle, Replace tool head with bayonet, Bend the handle

Add radar antenna on top, Add spiral staircase outside, Add window

Be flattened, Open the lid, Punch a hole

Change top to pointed, Add flag on top, Add steps at base

Grow antennae

Add more steps, Change to spiral stairs, Remove handrails

Extend awning, Change to dome-shaped

Add signboard on pole, Add camera on pole

Add lid, Add handles

Add wheels
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Before Editing Action After

add storage bags on the sides

add wheels under table legs

N

change hairstyle to a bun

Wear a tall hat
—'P" mount a scope on top
W{ put a vase on the table

turn the spout into a chainsaw

Grow a pair of wings
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Figure 10: Some cases of our 3D-Editing Data
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Figure 13: More cases of Image-to-3D result from our method.
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Input

A truck

A sword with
a hilt and a
pointed tip

A small house
with a snow-
covered roof

A pair of
pants with a
tied
waistband

A large
building with a
covered porch
and multiple
doors

A handgun
with a
suppressor

A handgun
with a grip
and barrel

A guitar with
a pickguard
and bridge

A hammer
with a handle
and head

A building
with a
staircase and
a balcony

A chair with a
curved
backrest and
four legs

A female
figure in a
futuristic
outfit with
high heels
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