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Abstract

In multi-view multi-label classification (MVML),
each object has multiple heterogeneous views and
is annotated with multiple labels. The key to deal
with such problem lies in how to capture cross-
view consistent correlations while excavate multi-
label semantic relationships. Existing MVML
methods usually employ two independent com-
ponents to address them separately, and ignores
their potential interaction relationships. To ad-
dress this issue, we propose a novel Tensorized
MVML method named TMvML, which formu-
lates an MVML tensor classifier to excavate com-
prehensive cross-view feature correlations while
characterize complete multi-label semantic rela-
tionships. Specifically, we first reconstruct the
MVML mapping matrices as an MVML tensor
classifier. Then, we rotate the tensor classifier and
introduce a low-rank tensor constraint to ensure
view-level feature consistency and label-level se-
mantic co-occurrence simultaneously. To better
characterize the low-rank tensor structure, we de-
sign a new Laplace Tensor Rank (LTR), which
serves as a tighter surrogate of tensor rank to cap-
ture high-order fiber correlations within the tensor
space. By conducting the above operations, our
method can easily address the two key challenges
in MVML via a concise LTR tensor classifier and
achieve the extraction of both cross-view consis-
tent correlations and multi-label semantic rela-
tionships simultaneously. Extensive experiments
demonstrate that TMvML significantly outper-
forms state-of-the-art methods.
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Figure 1. An example of MVML webpage classification.

1. Introduction
Multi-View Multi-Label Learning (MVML) aims to learn
from training data, where each sample is represented by sev-
eral heterogeneous features while associated with multiple
semantic labels (Lyu et al., 2024). Different from single-
view multi-label data, MVML data incorporates comple-
mentary information from various views, thereby providing
more comprehensive descriptions for objects. Such charac-
teristic has naturally led to its extensive applications in many
complex data analysis tasks (Liu et al., 2024d; Fu et al.,
2024). For example, in news webpage classification (Figure
1), a news webpage can be characterized by text, image and
video features, and annotated with multiple class labels such
as Wukong, Sales and Steam. MVML provides an effective
framework to learn a desired multi-label classifier for bridg-
ing heterogeneous features with their corresponding labels
and make proper predictions for new webpages.

The key to learn from MVML data lies in how to effi-
ciently integrate heterogeneous features while comprehen-
sively characterize all relevant labels. For example, (Zhao
et al., 2023) propose an MVML method called LVSL, which
seeks cross-view correlations and multi-label relationships
by learning the contribution weights of different views and
applying label correlation matrix with low-rank constraint.
(Zhong et al., 2024) introduce a non-negative matrix factor-
ization based MVML method called GNAM, which learns
individual and common information across different views
and leverages a dynamic label correlation matrix to enhance
recognition performance. Despite these MVML methods
have achieved competitive performance improvements, they
still face two main challenges: (1) On one hand, these meth-
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ods are formulated by matrix theory, which only focus on
capturing one- or second-order relationships between each
pair of views and fail to explore higher-order correlations
across the whole view space. (2) On the other hand, they
separate the extraction of cross-view consistent correlations
from multi-label semantic characterization, and ignore the
potential interactions between feature representation and se-
mantic expression, inevitably leading to suboptimal results.

To address the above issues, we propose a novel Tensorized
Multi-View Multi-Label Classification method via Laplace
Tensor Rank (TMvML), which is the first attempt to uti-
lize tensorized MVML classifier to achieve the high-order
feature correlations extraction and multi-label semantic re-
lationships characterization simultaneously. Specifically,
we first reconstruct the multi-view multi-label mapping ma-
trices into a unified MVML tensor classifier to character-
ize the structure of multi-dimensional data. Then, we ro-
tate the tensor classifier and introduce a low-rank tensor
constraint to capture the high-order information embedded
within the mapping tensor, which is achieved by comparing
each row (label-specific) and each column (view-specific) of
the frontal slices along the third dimension (feature-specific).
To better characterize the low-rank tensor structure, we de-
sign a novel tensor rank approximation named Laplace Ten-
sor Rank (LTR), which preserves larger singular values and
discards smaller ones (removed noise information) to obtain
an accurate low-rank tensor representation. Extensive exper-
imental results demonstrate that our proposed TMvML is
significantly superior to other state-of-the-art methods. The
main contributions of our paper are summarized as:

• We propose a novel tensorized MVML classification
method named TMvML, which is the first attempt to
design a concise low-rank MVML tensor classifier to
excavate cross-view feature correlations and character-
ize multi-label semantic relationships simultaneously.

• To better characterize the low-rank tensor structure,
we design a novel tensor rank approximation named
Laplace Tensor Rank (LTR), which preserves larger
singular values and discards smaller ones to obtain an
accurate low-rank tensor representation.

• Extensive comparable results and detailed experimen-
tal analysis have shown that our proposed TMvML
method can achieve significantly superior performance
against other state-of-the-art methods.

2. Related Work
2.1. Multi-Label Learning (MLL)

MLL focuses on learning from data with multiple labels,
and its challenge lies in how to completely characterize
multi-label semantic relationship (Liu et al., 2024a; Zhang

& Zhang, 2024). Existing studies mainly employ different
strategies to explore label correlations for semantic expres-
sion enhancement. For example, (Xie & Huang, 2022) pro-
pose a partial multi-label learning method named PML-NI,
which captures the linear correlations of the multi-label clas-
sifier by a trace norm with low-rank properties. (Sun et al.,
2022) propose a method called Global-Local Label Corre-
lation (GLC), which introduces a label coefficient matrix
to exploit global label structures across multiple subspaces
and a label manifold regularizer to capture local label corre-
lations. (Si et al., 2023) propose a high-rank and high-order
method called HOMI, which uses self-representation to
keep the rank of the label matrix unchanged and indicate
the high-order correlations among labels explicitly.

2.2. Multi-View Learning (MVL)

MVL handles the data with multiple heterogeneous view
features by exploring consensus and complementary infor-
mation hidden in different views (Jiang et al., 2021; Zhang
et al., 2024; Xu et al., 2024; 2023a;b). Existing MVL meth-
ods can be roughly divided into two types based on whether
high-order correlation among multi-view representations is
explored, including non-tensor methods and tensor-based
methods. Non-tensor methods employ matrix-level con-
straints to explore the point-to-point relationship within one
view or each pair of views. For example, (Cao et al., 2015)
diversify the model structure using the Hilbert-Schmidt In-
dependence Criterion (HSIC) on pairs of affinity matrices.
(Jiang et al., 2024) fuse feature projection and similarity
graph to simultaneously select features and learn a unified
graph. The tensor-based methods are born to exploit the
high-order correlation among views. (Xie et al., 2018) ex-
tend the low-rank constraint from the matrix level to the
tensor level by minimizing the Tensor Nuclear Norm (TNN)
to capture the high-order consistency. To further enhance the
characterization of low-rank tensors, (Ji & Feng, 2025) in-
troduce a novel tensor rank approximation called Enhanced
Tensor Rank, which is more noisy-robust to explore the
high-order consistency among different views.

2.3. Multi-View Multi-Label Learning (MVML)

MVML can be seen as an integration of both MVL and MLL,
which needs to address both MVL and MLL issues simulta-
neously (Lu et al., 2023; Liu et al., 2024c; Wei et al., 2025).
For example, (Tan et al., 2021) introduce an MVML method
called ICM2L, which captures shared patterns through a
common subspace and view-specific features with individ-
ual classifiers and introduces a label correlation matrix to
enhance recognition performance. (Lyu et al., 2024) pro-
pose a label-driven view-specific fusion method, which di-
rectly encodes individual view features to construct a uni-
fied multi-label classifier, and captures label correlations
using a transformer-based semantic-aware label graph. (Liu
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et al., 2024b) propose an attention-induced MVML method,
which weights features by the confidence derived from joint
attention, and utilizes the weak label correlation matrix and
graph attention network to guide classification.

3. The Proposed Method
3.1. Notations

Formally speaking, we use bold-uppercase X for matrices,
bold-lowercase x for vectors and calligraphy letter to denote
the tensor X ∈ Rn1×n2×n3 . For a 3-way tensor X , X k is
used to represent k-th frontal slice; X (:, i, j), X (i, :, j) and
X (i, j, :) denote the mode-1, -2, -3 fibers; Xf = fft(X , [], 3)
means the Fast Fourier Transformation (FFT) along the third
dimension of tensor X . Given an MVML dataset D =
{(Xv,Y)|1 ≤ v ≤ V }, each Xv = [xv

1,x
v
2, . . . ,x

v
n]

⊤ ∈
Rn×dv represents the feature vectors of n instances under
v-th view and Y ∈ {0, 1}n×q is the label matrix.

3.2. Formulation

In this paper, we propose a tensorized MVML method
named TMvML, which formulates a low-rank MVML ten-
sor classifier to simultaneously extract comprehensive cross-
view feature correlations while model complete multi-label
semantic relationships. To better characterize the low-rank
tensor structure, we develop a new Laplace Tensor Rank
(LTR), which serves as a more precise surrogate for tensor
rank, enabling a comprehensive exploration of multi-view
and multi-label information to improve model performance.

3.2.1. MVML TENSOR CLASSIFIER

In the task of traditional multi-view multi-label learning, the
label matrix Y is usually approximated by a linear mapping
Wv from the feature space Xv:

min
Wv

V∑
v=1

∥Y −XvWv∥2F +

V∑
v=1

R(Wv), (1)

where Wv = [wv
1 ,w

v
2 , . . . ,w

v
dv
]⊤ is the v-th view map-

ping matrix. Label co-occurrence is also known to be widely
presented in multi-label space (Read et al., 2011), leading
to the linear dependency of the feature mapping matrix Wv .
Therefore, researchers usually denote R(·) as the low-rank
constraint term to capture such intrinsic property.

Unfortunately, although Eq. (1) may have explored the
multi-label semantic relationships, it still treats each view
independently, ignoring the feature correlations among dif-
ferent views. To address this limitation, not only should we
keep the low-rank constraint for each Wv, but also need
to further ensure the consensus principle by imposing low-
rank across all views. Motivated by the fact that tensor can
characterize the low-rank structure of multi-dimensional

Figure 2. The rotated coefficient tensor in our method.

data, we incorporate it into Eq. (1) and obtain the tensorized
MVML objective function as:

min
Wv,E,Av,Zv

V∑
v=1

∥Y − ZvWv∥2F + T (W) + ∥E∥2,1

s.t. ∀v, Xv = ZvAv +Ev,Av(Av)T = I,

W = Φ(W1, · · · ,WV ),

(2)

where the v-th view low-dimensional representation matrix
Zv ∈ Rn×k and the basis matrix Av ∈ Rk×dv are obtained
by matrix factorization. T (·) is the tensor rank or its ap-
proximation. Ev ∈ Rn×dv denotes reconstruction error.
Φ(·) constructs the tensor classifier W by merging different
classifiers Wv ∈ Rk×q to a 3-mode tensor, and then rotate
its dimensionality to q × V × k, as shown in Figure 2.

Remark 1. [The superiority of Φ(·)] Directly applying the
tensor low-rank constraint is still not sufficiently effective.
To better model low-rank constraints at both the label and
view levels within the tensor space, we perform a rotation
operation on the coefficient tensor W ∈ Rk×q×V , trans-
forming it into W ∈ Rq×V×k, as illustrated in Figure 2.
This rotation repositions the q × V surface as the frontal
slice, enabling the exploration of interactions between differ-
ent views and labels by comparing every row (label-specific)
and every column (view-specific) of the q × V surface. By
constraining all the frontal slices of the tensor, the rotated
tensor offers deeper insights, enhancing the exploration of
the higher-order correlations of views and labels.

3.2.2. LAPLACE TENSOR RANK

To better characterize the low-rank tensor structure, we de-
sign a novel Laplace Tensor Rank (LTR), defined as follows:

Definition 1. Given a tensor W ∈ Rn1×n2×n3 , then the
Laplace Tensor Rank (LTR) is defined as:

∥W∥LTR =
1

n3

n3∑
k=1

∥∥Wk
f

∥∥
LTR

=
1

n3

n3∑
k=1

h∑
i=1

(
1− exp

(
−
eδSk

f (i, i)

δ

))
,

(3)
where 0 < δ ≤ 1, h = min(n1, n2) and Sf is obtained by
t-SVD of Wf = UfSfV⊤

f in Fourier domain.
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Figure 3. The comparisons of different methods to approximate
the true rank function as the singular value increases.

Remark 2. [The superiority of LTR] The approximation
function used by LTR is fLTR(x) = 1− exp

(
− eδx

δ

)
, which

is inspired by the Laplace function (Lu et al., 2015). Ba-
sically, fLTR(0) = 0 is satisfied, which is consistent with
the true rank function. We compare LTR with other exist-
ing methods (i.e., TNN (Xie et al., 2018), LTSpN (Guo
et al., 2022) and ETR (Ji & Feng, 2025)). LTR approxi-
mates the rank best in Figure 3, especially for larger and
near-zero singular values. When x → +∞, we obtain
fLTR(x) → 1, which is a better substitute for true rank than
TNN, LTSpN and ETR. If x → 0, it is easy to prove that

fLTR(x) ≈ eδ
2
x

δ+x ≫ log(1 + xp) ≫ x, which means LTR
achieves a stronger penalization on near-zero singular val-
ues. This signifies that ∥W∥LTR can robustly penalize small
singular values associated with noise, preserving valuable
large singular values and make sure that W has a spatial
low-rank structure to capture high-order fiber correlations.

3.2.3. THE FINAL OBJECTIVE FUNCTION OF TMVML

By integrating Eq. (2) and Eq. (3), our proposed TMvML
can be formulated as follows:

min
W,E,Av,Zv

V∑
v=1

∥S (Y − ZvWv)∥2F + α ∥E∥2,1 + β ∥W∥LTR

s.t. ∀v, Xv = ZvAv +Ev,Av(Av)T = I,

W = Φ(W1, · · · ,WV ),E = [E1, · · · ,EV ],
(4)

where α and β are two trade-off parameters. The vertical
concatenation along the column of error matrix, i.e., E =[
E1;E2; . . . ;EV

]
, can enforce the column of Ev in each

view to have jointly consistent magnitude values (Liu et al.,
2012). To ensure the multi-view representation is predictive
corresponding to the known labels, we design the filtering
matrix S ∈ Rn×n to select the labeled samples with Sii = 1
if the i-th sample is labeled and Sii = 0 otherwise.

3.3. Optimization

By utilizing the principles of the alternating direction
method of multipliers (ADMM) (Lin et al., 2011), we in-
troduce a separable variable G to transform Eq. (4) into an

unconstrained Lagrangian optimization problem:

L({Wv}Vv=1,E
v, {Av}Vv=1,G, {Zv}Vv=1,B

v, C)

=

V∑
v=1

∥S (Y − ZvWv)∥2F + α ∥E∥2,1 + β ∥G∥LTR

+
ρ

2
∥ W − G ∥2F +

V∑
v=1

(
⟨Bv,Xv − ZvAv −Ev⟩

+
µ

2
∥ Xv − ZvAv −Ev ∥2F

)
+ ⟨C,W − G⟩,

(5)

where tenser C and matrix Bv are two Lagrange multipliers,
µ and ρ are penalty parameters. Then, we solve the variables
in Eq. (5) through the following five subproblems.

Zv-subproblem: We solve the problem by separating the
labeled and unlabeled parts, taking advantage of the diago-
nal property of S. For the labeled part, with other variables
fixed and taking the derivative of Eq. (5) with respect to Zv

to zero, we can obtain:

2Yl(W
v)⊤ − 2Zv

l W
v(Wv)⊤ +BlA

⊤

+ µ(Xv
l A

⊤ − Zv
l AA⊤ −Ev

l A
⊤) = 0,

(6)

where the subscript l and u indicate variables corresponding
to labeled and unlabeled data, respectively. We obtain the
updating rule for Zv

l as:

Zv
l =

2Yl(W
v)⊤ +BlA

⊤ + µXv
l A

⊤ − µEv
l A

⊤

2Wv(Wv)⊤ + µI
. (7)

Accordingly, for the unlabeled part, we update Zv
u by:

Zv
u =

BuA
⊤ + µXv

uA
⊤ − µEv

uA
⊤

µI
. (8)

After obtaining Zv
l and Zv

u, the common representation
corresponding to all data Zv is obtained as Zv = [Zv

l , Zv
u].

Ev-subproblem: With other variables fixed, the subprob-
lem for Ev can be formulated as

min
E

α

µ
∥E∥2,1 +

1

2
∥E− Ê∥2F , (9)

where Ê is constructed by horizontally concatenating the
matrices Xv − ZvAv + 1

µB
v together along column. Ac-

cording to (Liu et al., 2019), the solution can be achieved
by applying the ℓ2,1 minimization thresholding operator,

E∗
:,i =

{
||Ê:,i||2−α

µ

||Ê:,i||2
Ê:,i, ||Ê:,i||2 > α

µ

0 otherwise.
(10)

where Ê:,i, represents the i-th column of Ê.

G-subproblem: With other variables fixed, the subproblem
for G can be formulated as

min
G

β ∥G∥LTR +
ρ

2

∥∥∥∥G − (W +
C
ρ
)

∥∥∥∥2
F

. (11)
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Theorem 3.1. Suppose A ∈ Rn1×n2×n3 with t-SVD A =
U ∗ S ∗ VT and γ > 0. The Laplace Tensor Rank Minimiza-
tion problem can be described as follows,

min
G

γ∥G∥LTR +
1

2
∥G − A∥2F . (12)

Then, the optimal solution G∗ is obtained as,

G∗ = U ∗ ifft(Proxf,γ(Sf ), [], 3) ∗ V⊤, (13)

where ifft(Proxf,γ(Sf ), [], 3)∈Rn1×n2×n3 is an f-diagonal
tensor, and Proxf,γ(Sk

f (i, i)) satisfies,

argmin
x≥0

1

2
(x− Sk

f (i, i))
2 + γf(x), (14)

where f(x) = 1− exp
(
− eδx

δ

)
.

Proof. In the Fourier domain, according to the linearity
of FFT and the fact that ∥G∥2F = 1

n3
∥Gf∥2F , the objective

function 1
2∥G − A∥2 + γ∥G∥LTR can be rewritten as:

1

2
∥G − A∥2F + γ∥G∥LTR

=
1

2n3
∥Gf −Af∥2F +

γ

n3

n3∑
k=1

∥Gk
f ∥LTR

=
1

n3

n3∑
k=1

(
1

2
∥Gk

f −Ak
f∥2F + γ∥Gk

f ∥LTR

)
.

(15)

Thus, the original tensor optimization problem can be de-
coupled into n3 independent matrix optimization problems:

argmin
Gk
f

1

2
∥Gk

f −Ak
f∥2F + γ∥Gk

f ∥LTR. (16)

Here, 1 ≤ k ≤ n3, the SVD of Ak is Uk
f Sk

f (Vk
f )

H . Since
unitary transformations do not change the singular values,
LTR functions that applied to singular values are evidently
unitarily invariant functions. According to (Kang et al.,
2015), the optimal solution of Eq. (16) is:

G∗k
f = Uk

f Proxf,γ(Sk
f )(Vk

f )
H , (17)

where Proxf,γ(Sk
f (i, i)) = argminx≥0

1
2 (x− Sk

f (i, i))
2 +

γf(x) and f(x) = 1− exp
(
− eδx

δ

)
.

Given that Eq. (14) in Theorem 3.1 is a combination of con-
cave and convex functions, we can utilize DC Programming
(Tao & An, 1997) to derive a closed-form solution:

τ iter+1 =

(
Sk
f (i, i)−

β · ∂f(τ iter)
ρ

)
+

, (18)

Algorithm 1 The Training Process of TMvML
Input:

{Xv}Vv=1: Training examples;
Y: Label matrix;
α and β: The trade-off parameters;
t : Number of iterations;
ε : Convergence threshold.

Output:
Ŷ: Predicted label matrix.

1: Initialize Wv , Ev , Av , Zv , Bv , G, C, µ and ρ;
3: Compute the loss L0 by Eq. (4);
4: for i = 1, 2, . . . , t do
5: for v = 1, 2, . . . , V do
6: Optimize Zv by Eq. (7) and Eq. (8);
7: Optimize Ev by Eq. (10);
8: Optimize Wv by Eq. (19);
9: Optimize Av by Eq. (20);
10: Optimize Bv by Eq. (21);
11: end for
12: Optimize G by Eq. (18);
13: Optimize C, µ and ρ by Eq. (21);
14: Optimize Li by Eq. (4);
15: if |Li − Li−1| ≤ ε break;
16: end for

where τ = Proxf,γ(Sk
f (i, i)), and iter is the iterations.

Wv-subproblem: With other variables fixed and taking the
derivative of Eq. (5) with respect to Wv to zero, we have:

Wv =(2 (Zv)
⊤
S⊤SZv + ρI)−1(−Cv

+ 2 (Zv)
⊤
S⊤SY + ρGv).

(19)

Av-subproblem: With other variables fixed, the subprob-
lem for Av is formulated as

Av∗ = argmin
Av(Av)⊤=I

Tr((Av)⊤Mv), (20)

where Mv = (Zv)⊤(µXv + Bv − µEv). The optimal
solution of Av is Uv(Vv)⊤, where Uv and Vv are the
left and right singular matrix of Mv . Finally, the Lagrange
multipliers and penalty parameters are updated as follows,

Bv = Bv + µ(Xv − ZvAv −Ev),

C = C + ρ(W − G),
µ = ηµµ, ρ = ηρρ,

(21)

where ηµ, ηρ > 1 are used to accelerate convergence.

During the whole model training process, we first initialize
the required variables, and then repeat the above steps until
the algorithm converges or reaches the maximum iterations.
Finally, we make prediction for unseen instances according
to Ŷ = 1

V

∑V
v=1 Z

v
uW

v. Algorithm 1 summarizes the
whole procedure of our proposed TMvML method.
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3.4. Computation Complexity Analysis

The computation complexity of TMvML is mainly deter-
mined by the solution of its five subproblems in section 3.3,
where the time complexity spent on {Zv,Ev,G,Av,Wv}
are O(nk2+nkd+nqk), O(nd), O(dqV log(V d)+qV 2d),
O(nk2 +nkq), O(k2(d)2), respectively. d is the maximum
dimensionality of the multi-view data. In our experiments,
since n ≫ q, n ≫ k, n ≫ dmax, the overall computation
complexity of TMvML is O(tnk2), where t is the number
of iterations and usually no more than 50 on all datasets.

4. Experiments
4.1. Experimental Setting

To validate the effectiveness of TMvML, we conducted
in-depth experimental analysis on six widely-used MVML
datasets, including Emotions, Yeast, Corel5k, Plant, Human
and Espgame, which can be downloaded from Mulan web-
site: http://mulan.sourceforge.net/datasets-mlc.html. Table
1 summarizes the detailed characteristics of these datasets.

Table 1. The characteristics of our employed datasets: the number
of samples (n), views (v), classes (q) and the maximum / minimum
dimension of all views (dmax, dmin).

Datasets n v q dmax dmin

Emotions 593 2 6 64 8
Plant 978 2 12 400 40
Yeast 2417 2 14 79 24

Human 3106 2 14 400 40
Corel5k 4999 6 260 4096 100
Espgame 20770 6 268 4096 100

For comparative studies, we employ six state-of-the-art
MVML methods, including LrMMC (Liu et al., 2015),
SIMM (Wu et al., 2019), FIMAN (Wu et al., 2020), ICM2L
(Tan et al., 2021), ML-BVAE (Fu et al., 2024) and IMvMLC
(Wen et al., 2024), with parameters configured as recom-
mended in their respective literature.

In addition, five widely-used evaluation metrics in multi-
label learning are employed to measure the performance of
algorithms, including Average Precision (AP), Hamming
Loss (HL), One Error (OE), Ranking Loss (RL) and Cover-
age (COV), where the formal definition of the above metrics
can be found in (Gibaja & Ventura, 2015). For each dataset,
we randomly selected 70% data for training, 10% data for
validation and 20% data for testing.

4.2. Experimental Results

To ensure reliable comparisons, we run each algorithm five
times and record the average metric results and standard de-

viation in Table 2, with the best performances highlighted in
bold. From the 180 comparisons (6 datasets × 6 comparing
methods × 5 metrics), we can observe that:

• Among the six employed datasets, TMvML outper-
forms all comparing methods on Emotions, Yeast, Plant
and Human datasets. And it is also superior to other
methods on Espgame and Corel5k datasets in 86.67%
and 96.67% cases, respectively.

• Among the five evaluation metrics, TMvML achieves
the best performance on Average Precision, One Error
and Coverage metrics in all cases. And on Ranking
Loss and Hamming Loss metrics, it also superior to
other methods in 94.44% and 91.67% cases.

• Compared with non-tensor methods (such as ICM2L),
TMvML performs significant superiority on all em-
ployed datasets, which is attributed to its employed
tensor architecture that can leverage the low-rank ten-
sor property to capture higher-order correlations across
views and labels.

• Compared with methods that employ independent com-
ponents to mine view and label relationships, TMvML
exhibits excellent performance on all datasets. We
attribute such success to our designed tensor classi-
fier, which can simultaneously excavate cross-view
high-order correlations and characterize multi-label
semantic relationships.

To comprehensively evaluate the superiority of TMvML,
the Friedman test (Demšar, 2006) is utilized as the statisti-
cal test to determine whether multiple algorithms have the
same performance. Table 3 shows the Friedman statistical
τF value for each evaluation metric and the critical value.
According to Table 3, all evaluation metrics reject the null
hypothesis that “all algorithms perform equally” at a 0.05
significance level. Thus, we choose the post-hoc Bonferroni-
Dunn test (Demšar, 2006) to further illustrate the differences
among these methods. Figure 4 illustrates the CD diagrams
for each evaluation metric, where the average rank of each
algorithm is marked along the axis. According to Figure 4,
it is clearly observed that our proposed TMvML consistently
ranks 1st across all evaluation metrics.

5. Further Analysis
5.1. Ablation Study

To evaluate the contribution of our proposed Laplace Ten-
sor Rank (LTR), we conducted additional ablation stud-
ies. Specifically, we compared our proposed TMvML with
two variants where LTR in Eq. (4) was replaced by the
state-of-the-art Enhanced Tensor Rank (ETR) (Ji & Feng,
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Table 2. Experimental results (mean±std). ↑ represents the higher the better; ↓ represents the lower the better.
metrics LrMMC SIMM FIMAN ML-BVAE IMvMLC ICM2L TMVML

E
m

ot
io

ns

AP ↑ 0.763±0.020 0.634±0.043 0.806±0.027 0.572±0.022 0.782±0.021 0.567±0.004 0.811±0.020
HL ↓ 0.216±0.011 0.307±0.004 0.231±0.013 0.317±0.012 0.330±0.021 0.342±0.007 0.210±0.016
OE ↓ 0.338±0.032 0.501±0.092 0.258±0.042 0.568±0.029 0.303±0.032 0.578±0.016 0.248±0.041
RL ↓ 0.161±0.016 0.344±0.047 0.161±0.026 0.423±0.035 0.183±0.019 0.432±0.004 0.160±0.016

COV ↓ 2.198±0.094 0.457±0.051 7.796±0.189 3.163±0.242 1.873±0.037 3.091±0.027 0.300±0.070

metrics LrMMC SIMM FIMAN ML-BVAE IMvMLC ICM2L TMVML

Ye
as

t

AP ↑ 0.610±0.013 0.712±0.014 0.740±0.007 0.712±0.007 0.738±0.006 0.695±0.001 0.771±0.008
HL ↓ 0.255±0.020 0.241±0.011 0.216±0.004 0.232±0.004 0.313±0.007 0.231±0.001 0.208±0.005
OE ↓ 0.309±0.028 0.253±0.021 0.257±0.013 0.253±0.012 0.248±0.009 0.264±0.001 0.215±0.007
RL ↓ 0.275±0.011 0.218±0.018 0.187±0.005 0.204±0.007 0.180±0.005 0.213±0.001 0.167±0.007

COV ↓ 10.32±0.195 7.368±0.293 6.673±0.074 6.706±0.094 6.538±0.094 6.687±0.031 0.470±0.002

metrics LrMMC SIMM FIMAN ML-BVAE IMvMLC ICM2L TMVML

C
or

el
5k

AP ↑ 0.215±0.010 0.292±0.004 0.430±0.007 0.286±0.000 0.333±0.008 0.210±0.000 0.440±0.008
HL ↓ 0.013±0.000 0.013±0.018 0.018±0.000 0.013±0.000 0.158±0.008 0.020±0.000 0.013±0.000
OE ↓ 0.776±0.015 0.614±0.012 0.489±0.017 0.626±0.008 0.613±0.019 0.797±0.000 0.476±0.013
RL ↓ 0.173±0.004 0.160±0.005 0.085±0.000 0.188±0.008 0.114±0.003 0.174±0.001 0.108±0.003

COV ↓ 96.72±1.300 95.99±3.146 53.94±0.790 108.7±4.792 70.80±2.256 98.383±0.283 0.266±0.006

metrics LrMMC SIMM FIMAN ML-BVAE IMvMLC ICM2L TMVML

Pl
an

t

AP ↑ 0.464±0.016 0.369±0.029 0.492±0.030 0.505±0.020 0.544±0.017 0.587±0.047 0.608±0.007
HL ↓ 0.115±0.002 0.090±0.001 0.238±0.011 0.090±0.001 0.202±0.038 0.920±0.006 0.087±0.004
OE ↓ 0.668±0.018 0.809±0.037 0.696±0.031 0.705±0.032 0.652±0.027 0.637±0.064 0.570±0.006
RL ↓ 0.371±0.014 0.378±0.025 0.277±0.028 0.238±0.012 0.210±0.015 0.853±0.027 0.168±0.015

COV ↓ 4.256±0.147 4.325±0.270 3.216±0.350 2.749±0.141 2.461±0.171 1.715±0.317 0.169±0.013

metrics LrMMC SIMM FIMAN ML-BVAE IMvMLC ICM2L TMVML

E
sp

ga
m

e AP ↑ 0.170±0.003 0.304±0.002 0.284±0.002 0.257±0.001 0.273±0.001 0.226±0.000 0.306±0.001
HL ↓ 0.028±0.000 0.017±0.000 0.028±0.000 0.017±0.000 0.021±0.002 0.027±0.000 0.026±0.000
OE ↓ 0.992±0.001 0.536±0.004 0.628±0.004 0.615±0.010 0.615±0.013 0.692±0.000 0.506±0.002
RL ↓ 0.410±0.003 0.164±0.003 0.154±0.002 0.211±0.002 0.141±0.000 0.207±0.000 0.141±0.002

COV ↓ 210.9±1.020 110.1±1.260 102.8±1.183 136.5 ±1.681 92.21±0.113 143.124±0.012 0.409±0.008

metrics LrMMC SIMM FIMAN ML-BVAE IMvMLC ICM2L TMVML

H
um

an

AP ↑ 0.480±0.006 0.495±0.042 0.583±0.015 0.536±0.010 0.600±0.010 0.603±0.034 0.631±0.010
HL ↓ 0.096±0.002 0.085±0.001 0.151±0.002 0.085±0.001 0.112±0.006 0.920±0.002 0.083±0.003
OE ↓ 0.673±0.009 0.663±0.034 0.585±0.020 0.659±0.014 0.578±0.015 0.595±0.054 0.542±0.016
RL ↓ 0.358±0.006 0.261±0.046 0.186±0.011 0.181±0.008 0.149±0.007 0.879±0.016 0.136±0.004

COV ↓ 5.281±0.072 3.797±0.640 2.817±0.095 2.666±0.112 2.271±0.099 1.832±0.211 0.150±0.003

Table 3. Friedman statics τF of each evaluation metric.

Evaluation Metric τF critical value (α=0.05)

Average Precision 8.696
Hamming Loss 4.805 2.421

One Error 7.714
Ranking Loss 13.129 Methods: 7, Data sets: 6

Coverage 7.600

2025), and the traditional Tensor Nuclear Norm (TNN) (Xie
et al., 2018), denoted as TMvML-ETR and TMvML-TNN
respectively. As shown in Figure 5, when varying the pa-
rameter δ across the search range of {10−4, · · · , 1}, our
TMvML method consistently outperforms TMvML-ETR

and TMvML-TNN in most cases and achieves the best clas-
sification performance in the optimal setting. This phe-
nomenon is attributed to the distinct ways these methods
treat singular values. While LTR and ETR apply vary-
ing penalties to individual singular values, TNN uniformly
scales them all, thus overlooking differentiated information
between large and small singular values in the tensor data.
Notably, compared to ETR, LTR preserves larger singular
values to 1, effectively characterizing the low-rank tensor
structure. Additionally, since the parameter δ affects the
different constraints in varying ways, TMvML-ETR may
outperform TMvML in a few cases.

In addition, we further analyze the effect of the parameters
δ on the classification results. As shown in Figure 5, we can
observe that δ has a significant effect. The best classification

7
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Figure 4. Experimental comparisons between our proposed TMvML method and all other comparing algorithms on five evaluation metrics
with the Bonferroni-Dunn test (CD = 3.213 at 0.05 significance level).
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Figure 5. The Average Precision of TMvML and TMvML-ETR
with varying δ on Emotions and Corel5k datasets.
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Figure 6. The parameter sensitivity analysis of TMvML under dif-
ferent α and β configurations on Yeast and Corel5k datasets.

results for Emotions are obtained when δ = 10−4, while
Corel5k peaks at δ = 10−1. The main reasons of such phe-
nomenon lie in that, since δ determines the strength of the
penalty for singular values, and the distribution of singular
values varies from one dataset to another, each dataset needs
an appropriate parameter to provide better discriminability
power for the learned low-rank representation tensor.

5.2. Parameter Sensitivity

We study the sensitivity analysis of our proposed TMvML
with respect to its two key hyperparameters α and β. We

0 10 20 30 40

The number of iterations

0

1

2

3

4

C
o

n
v
e

rg
e

n
c
e

(a) Emotions

0 10 20 30 40

The number of iterations

0

200

400

600

800

C
o

n
v
e

rg
e

n
c
e

(b) Corel5k

Figure 7. Convergence analysis of TMvML on Emotions and
Corel5k datasets.

change the value of α within the set of {10−1, 100, . . . , 105}
and β within the set of {10−5, 10−4, . . . , 100}. According
to Figure 6, the performance of TMvML is stable when
hyperparameter α is around 102 to 105 and hyperparameter
β is around 10−5 to 100. Such phenomenon illustrates
that the performance of our proposed TMvML is stable
across a broad range of parameters, which also empirically
demonstrates its efficiency and robustness.

5.3. Convergence Analysis

We further analyze the convergence of the our proposed
TMvML. Figure 7 shows the convergence curves of TMvML
method on the Emotions and Corel5k datasets. According
to Figure 7, the value of the objective function drops sharply
at the beginning of the iterations and gradually stabilizes
as the number of iterations increases. Similar convergence
results are also observed in other datasets, which empirically
verifies the convergence of TMvML.

6. Conclusion
In this paper, we proposed a Tensorized Multi-View Multi-
Label Classification method via Laplace Tensor Rank
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(TMvML), which is the first attempt to utilize tensorized
low-rank MVML classifier to achieve the high-order feature
correlations extraction and multi-label semantic correlations
characterization simultaneously. To better characterize the
tensor low-rank structure, we designed a new Laplace Ten-
sor Rank (LTR), which serves as a tighter surrogate of tensor
rank to effectively capturing high-order fiber correlations.
Extensive results demonstrate that our proposed TMvML is
significantly superior to other state-of-the-art methods.
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A. Proofs of Theorem 3.2
Theorem A.1. Let {Pk = (Zv

k,E
v
k,A

v
k,W

v
k,B

v
k, Ck,Gk)}∞k=0 be the sequence generated by Algorithm 1, then the sequence

{Pk} meets the following two principles:

1). {Pk} is bounded;

2). Any accumulation point of {Pk} is a KKT point of Algorithm 1.

To prove Theorem 3.2, we first introduce two important lemmas.

Lemma A.2. (Lin et al., 2010) Let H be a real Hilbert space endowed with an inner product ⟨·, ·⟩, a norm ∥ · ∥ with the
dual norm ∥ · ∥dual, and y ∈ ∂∥x∥, where ∂f(x) is the subgradient of f(·). Then we have ∥y∥dual = 1 if x ̸= 0, and
∥y∥dual ≤ 1 if x = 0.

Lemma A.3. (Lewis & Sendov, 2005) Suppose that F : Rm×n → R is defined as F (X) = f ◦ σ(X) =
f(σ1(X), . . . , σr(X)), where X = UDiag(σ(X))VT is the SVD of matrix X ∈ Rm×n, r = min(m,n), and f : Rr → R
is differentiable and absolutely symmetric at σ(X). Then, the subdifferential of F (X) at X is

∂F (X)

∂X
= UDiag(∂f(σ(X)))VT ,

where

∂f(σ(X)) = (
∂f(σ1(x))

∂X
, . . . ,

∂f(σr(x))

∂X
).

Proof. Proof of the first part: On the k + 1 iteration, from the updating rule of Ek+1, the first-order optimal condition
should be satisfied.

0 = α∂
∥∥Ev

k+1

∥∥
2,1

+ µk(E
v
k+1 − (Xv − Zk+1

vAv +Bv
k/µk))

= α∂
∥∥Ev

k+1

∥∥
2,1

−Bv
k+1,

(22)

Thus, we have

1

α
[Bv

k+1]i,j = ∂
∥∥∥[Ev

k+1

]
:,j

∥∥∥
2
,

where [Bv
k+1]i,j and [Ev

k+1]i,j are the j-th columns of Bv
k+1 and Ev

k+1. And the ℓ2 norm is self-dual, so based on the
Lemma A.2, we have

∥∥ 1
α [B

v
k+1]:,j

∥∥
2
≥ 1. So the sequence {Bv

k+1} is bounded.

Then, we prove the sequence {Ck+1} is bounded. According to the updating rule of G, the first-order optimality condition
holds

∂ ∥Gk+1∥LTR = Ct+1. (23)

Let U ∗ S ∗ VT be the t-SVD of tensor G. According to the Lemma A.3 and definition of LTR, we have:
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∥∂ ∥Gk+1∥LTR ∥2F

=

∥∥∥∥ 1

n3
U ∗ ifft(∂(Sf ), [], 3) ∗ VT

∥∥∥∥2
F

=
1

n3
3

∥∂f(Sf )∥2F

≤ 1

n3
3

n3∑
i=1

min(n1,n2)∑
j=1

[
∂f(Sv

f (j, j))
]2

≤ e2δmin(n1, n2)

δ2n2
3

(24)

where the second inequality is by the fact ∂f(x) ≤ eδ

δ , and fLTR(x) = 1− exp
(
− eδx

δ

)
is our rank approximation function.

So ∂ ∥Gk+1∥LTR is bounded, meanwhile the sequence {Ck+1} is also bounded.

Moreover, from the iterative method in the algorithm of solving TMvML, we can deduce

Lµk,ρk
(Zv

k+1,W
v
k+1,E

v
k+1,A

v
k+1,Gk+1,B

v
k, Ck)

≤ Lµk,ρk
(Zv

k,W
v
k,E

v
k,A

v
k,Gk,B

v
k, Ck)

= Lµk−1,ρk−1
(Zv

k,W
v
k,E

v
k,A

v
k,Gk,B

v
k−1, Ck−1)

+
ρk + ρk−1

2ρ2k−1

∥Ck − Ck−1∥2F

+
µk + µk−1

2µ2
k−1

V∑
v=1

∥∥Bv
k −Bv

k−1

∥∥2
F
,

(25)

Thus, summing two sides of Eq.(25) form k = 1 to n,

Lµk,ρk
(Zv

k+1,W
v
k+1,E

v
k+1,A

v
k+1,Gk+1,B

v
k, Ck)

≤ Lµ0,ρ0
(Zv

1,W
v
1 ,E

v
1,A

v
1,G1,B

v
0, C0)

+

n∑
k=1

ρk + ρk−1

2ρ2k−1

∥Ck − Ck−1∥2F

+

n∑
k=1

(
µk + µk−1

2µ2
k−1

V∑
v=1

∥∥Bv
k −Bv

k−1

∥∥2
F

) (26)

Observe that

n∑
k=1

µk + µk+1

2µ2
k−1

< ∞,

n∑
k=1

ρk + ρk+1

2ρ2k−1

< ∞ (27)

Note that Lµ0,ρ0
(Zv

1,W
v
1 ,E

v
1,A

v
1,G1,B

v
0, C0) is finite, and sequence {Bv

k}, {Ck},
∑n

k=1
µk+µk+1

2µ2
k−1

and
∑n

k=1
ρk+ρk+1

2ρ2
k−1

are

all bounded. So Lµk,ρk
(Zv

k+1,W
v
k+1,E

v
k+1,A

v
k+1,Gk+1,B

v
k, Ck) is bounded.

Notice
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Lµk,ρk
(Zv

k+1,W
v
k+1,E

v
k+1,A

v
k+1,Gk+1,B

v
k, Ck)

= α ∥Ek+1∥2,1 + β∥Gk+1∥LTR +

V∑
v=1

∥∥S (Y − Zv
k+1W

v
k+1

)∥∥2
F

+

V∑
v=1

(
(Bv

k,X
v − Zv

k+1A
v
k+1 −Ev

k+1) +
µk

2

∥∥Xv − Zv
k+1A

v
k+1 −Ev

k+1

∥∥2
F

)
+ ⟨Ck,Wk+1 − Gk+1⟩+

ρk
2

∥Wk+1 − Gk+1∥2F ,

(28)

and each term of Eq.(28) is nonnegative, due to the boundedness of Lµk,ρk
(Zv

k+1,W
v
k+1,E

v
k+1,A

v
k+1,Gk+1,B

v
k, Ck), we

can deduce each term of Eq.(28) is bounded. So the boundedness of ∥Gk+1∥LTR implies that all singular values of Gk+1 are
bounded. Furthermore, based on the following equation

∥Gk+1∥2F =
1

n3
∥Gf,k+1∥2F =

1

n3

n3∑
i=1

min(n1,n2)∑
j=1

(
Si
f (j, j)

)2
, (29)

we can derive the sequence {Gk+1} is bounded, then, it is easy to prove the boundedness of {Zk+1} and {Ak+1}.

Therefore, we can conclude that the sequence (Zv
k,E

v
k,A

v
k,W

v
k,B

v
k, Ck,Gk)

∞
k=0 generated by the Algorithm 1.

2). Proof of 2nd part: According to Weierstrass-Bolzano theorem (Bartle & Sherbert, 2000), there is at least one accumulation
point of the sequence {Pk}∞k=1, we denote one of the points as P∗. Then we have

lim
k→∞

(Zv
k,E

v
k,A

v
k,W

v
k,B

v
k, Ck,Gk) = (Zv

∗,E
v
∗,A

v
∗,W

v
∗,B

v
∗, C∗,G∗).

Form the updating rule of C and Bv , we have the following equations:

Xv − Zv
k+1A

v
K+1 −Ev

k+1 = (Bv
k+1 −Bv

k)/µt,

Wk+1 − Gk+1 = (Ck+1 − Ck)/ρt.

According the boundedness of sequences {Ck} and {Bv
k}, and the fact limk→∞ µk = ∞, we have:

lim
k→∞

Xv − Zv
k+1A

v
K+1 −Ev

k+1 = lim
k→∞

(Bv
k+1 −Bv

k)/µt = 0,

lim
k→∞

Wk+1 − Gk+1 = lim
k→∞

(Ck+1 − Ck)/ρt = 0,

then, we can obtain

Xv − Zv
∗A

v
∗ −Ev

∗ = 0, W∗ − G∗ = 0.

Furthermore, due to the first-order optimality conditions of Ev
k+1 and Gk+1, we can deduce:

0 = α∂
∥∥Ev

k+1

∥∥
2,1

−Bv
k+1 ⇒ Bv

∗ = α∂ ∥Ev
∗∥2,1

0 = β∂ ∥Gk+1∥LTR − Ck+1 ⇒ C∗ = β∂ ∥G∗∥LTR

Thus, the accumulation point P∗ of sequence {Pk}∞k=1 generated by the algorithm of solving TMvML satisfied the KKT
condition.
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B. More Experimental Results
This section presents the experimental results for all six challenging datasets, including the ablation study of tensor rotation
and Laplace Tensor Rank (LTR).

Ablation Study of LTR: Table (4) reports the results of ablation experiments of LTR conducted across six datasets.
Specifically, table (4) compares TMvML with its variant TMvML-TNN, where the LTR was replaced by Tensor Nuclear
Norm (TNN) (Xie et al., 2018) to capture the low-rank tensor structure. Experimental results demonstrate that TMvML
consistently outperforms TMvML-TNN across all datasets. This compelling evidence proves that our proposed LTR is more
effective than traditional TNN in modeling the complex high-order correlations in multi-view multi-label learning tasks.

Table 4. The Performance of TMvML and TMvML-TNN
Emotions Yeast Corel5k Plant Espgame Human

TMvML AP 0.811 0.771 0.440 0.608 0.306 0.631
TMvML-TNN AP 0.738 0.747 0.382 0.601 0.270 0.621
TMvML Cov 0.300 0.460 0.266 0.169 0.409 0.150
TMvML-TNN Cov 0.344 0.467 0.279 0.171 0.452 0.162

Ablation Study of Tensor Rotation: Table (5) reports the results of ablation experiments of tensor rotation conducted
across six datasets. Specifically, Table (5) compared TMvML with a variant that removes the rotation operation (denoted
as TMvML-NoRot). The results show that TMvML consistently outperforms TMvML-NoRot across all datasets. This
significant performance gap highlights the critical role of rotation in extraction of both cross-view consistent correlations
and multi-label semantic relationships simultaneously.

Table 5. The Performance of TMvML and TMvML-NoRot
Emotions Yeast Corel5k Plant Espgame Human

TMvML AP 0.811 0.771 0.440 0.608 0.306 0.631
TMvML-NoRot AP 0.628 0.733 0.231 0.511 0.191 0.532
TMvML Cov 0.300 0.470 0.266 0.169 0.409 0.150
TMvML-NoRot Cov 0.473 0.485 0.350 0.210 0.498 0.185
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