
Online Submission ID: 0

Comparing Learned and Iterative Pressure Solvers for Fluid Simulation
Category: Research

(a) Jacobi (b) RBGS (c) PCG (d) Tompson et al. [21]Jacobi RBGS PCG Tompson et al. [21]

Figure 1: In the above Channeling scene at Frame 200, a red plume is shot from the bottom centre. White regions represent
obstacles, and each side of the scene is a wall (not shown explicitly). The set-up is identical across all four experiments, and we
execute each iterative solver for 300 ms. The fluid effect produced by each solver is shown accordingly. While different methods have
varying plausibility, we ultimately evaluate the magnitude of the velocity divergence for different amounts of compute time in 2D fluid
simulations such as this example.

ABSTRACT

This paper compares the performance of the neural network based
pressure projection approach of Tompson et al. [21] to traditional
iterative solvers. Our investigation includes the Jacobi and precondi-
tioned conjugate gradient solver comparison included in the previous
work, as well as a red-black Gauss-Seidel method, all running with
a GPU implementation. Our investigation focuses 2D fluid simu-
lations and three scenarios that present boundary conditions and
velocity sources of different complexity. We collect convergence of
the velocity divergence norm as the error in these test simulations
and use plots of the error distribution to make high level observa-
tions about the performance of iterative solvers in comparison to the
fixed time cost of the neural network solution. Our results show that
Jacobi provides the best bang of the buck with respect to minimizing
error using a small fixed time budget.

Index Terms: Computing methodologies—Physical simulation;
Computing methodologies—Neural networks;

1 INTRODUCTION

Simulating realistic fluid effects such as smoke, fire and water is
an important problem in physically-based animation with broad
applications in film and video games. In comparison to the accu-
racy required in computational physics and engineering domains,
computer graphics research typically aims to provide fast and ap-
proximate techniques. The stable fluids work of Stam [18] is an
excellent example of this, which has likewise had a strong influence
on graphics research over the last two decades. The key idea is
to take a splitting approach with the incompressible Navier-Stokes
equations, and to use different integration methods for solving each
term. A pressure projection to produce a divergence free velocity
field is an important and costly step, and has been on its own a topic
of research.

Our paper focuses specifically on comparing GPU implementa-
tions of iterative solvers with the work of Tompson et al. [21], which
proposes the use of a learned convolutional neural network (CNN) to
solve the pressure projection problem. With the growing popularity
of learning techniques in physics simulation, we believe it is valuable
to revisit this recent work using a set of tests that give us a better un-
derstanding of error and compute time in comparison to traditional

methods. In addition to the Jacobi and preconditioned conjugate
gradient (solvers that were discussed by Tompson et al.), we also
include experiments with red-black Gauss-Seidel to understand how
the convergence properties change in comparison. We design three
scenes to characterize typical 2D fluid simulation problems (e.g., see
Figure 1 for one example), and collect statistics on the convergence
across many time steps. With this data, we present the convergence
in these simulations as distributions, allowing an understanding the
typical behaviour of the different approaches.

2 RELATED WORK

Pressure projection is known to be one of the main bottlenecks
for incompressible fluid simulation as it involves solving a Poisson
equation (equivalently, a large-scale sparse linear system). The
efficiency of pressure solver can often be the determining factor to
overall speed performance of a fluid simulator. Such systems can be
solved using iterative numerical methods including Jacobi, Gauss-
Seidel (GS) and preconditioned conjugate gradient (PCG) [2, 7, 18,
19]. With the rise of multi-core CPUs and GPUs for general-purpose
parallel computing, there has been a push to adapt classic numerical
solvers in all variety of physics based simulation problems for these
parallel hardware platforms [8, 14]. For instance, GS is inherently
a sequential algorithm suitable only for running on a single thread.
However, a small modification inspired by graph colouring leads
to the red-black Gauss-Seidel (RBGS) method, which enables a
parallel implementation which is useful for a variety of applications.
For instance, Pall et al. [15] simulate cloth systems with projective
dynamics solved with a GPU-based RBGS implementation, which
performs more iterations than its CPU-based serial counterpart, but
attains lower residual error given the same time budget.

Novel approaches for speeding up the pressure projection are
important contributions in fluid simulation research. Extensions to
multigrid approaches are one example that shows great promise in
reducing computation times [8, 14]. McAdams et al. [14] employs
multigrid as a preconditioner for their PCG solver. In contrast, Jung
et al. [8] propose a heterogeneous CPU-GPU Poisson solver that
does wavelet decomposition and smooth processing on CPU, and
performs coarse level projection on GPU. In related work, Ando et
al. [1] improve the coarse grid pressure solver initially presented
by Lentine et al. [13], which reduces the size of the problem by

1

Online Submission ID: 0

introducing a novel change of basis to help resolve free-surface
boundary conditions in liquid simulation.

In contrast to numerical methods for fluid simulation, machine
learning techniques present an interesting alternative. Yang et al. [23]
present a data-driven method based on the neural network to infer
pressure per grid cell that completely avoids the computations of
traditional Poisson solvers. This approach significantly reduces the
computational cost of pressure projection and makes it independent
of the scene’s resolution due to the algorithmic nature of forward
propagation. The method still maintains a sufficiently good accuracy
for visual effects compared to traditional Poisson solvers as long
as the network is properly trained. However, their method does
not generalize well to previously unseen scenarios. Tompson et
al. [21] identifies test cases where the method of Yang et al. will fail,
and propose a method to overcome these limitations. They instead
pose the problem as an unsupervised learning task and introduce
a novel architecture for pressure inference using a convolutional
neural network (CNN), and their results show both greater stability
and accuracy. A key part of their approach involves training and
test sets representative of general fluids. They use wavelet turbulent
noise [10] to produce random divergence-free velocity fields, and
generate diverse boundaries a a collection of 3D models with varying
scale, rotation and translation. They also employ data augmentation
techniques, such as adding gravity, buoyancy, and vorticity con-
finement [20]. This helps their trained network be applicable to
simulating fluids in a more general setting. In general, these learn-
ing based approaches exploit the observation that neural networks
are very effective for regression, and are able to fit a deterministic
function (a simulation problem) that maps inputs to the solution of
an optimization problem.

Similar to the current trend for applications in other fields, ma-
chine learning has found increasing popularity for fluid simulations
as a powerful tool in a general sense, not only for pressure projection.
Ladický et al. [12] formulate the Lagrangian fluid simulation as a
regression problem and use the regression forest method to predict
positions and velocities of particles, possibly with a very large time
step. With a GPU implementation, they obtain a 10× to 1000×
speed-up compared to a state-of-the-art position-based fluid solver.
Most recent work heavily adopted CNN-based methods to synthesize
fluid flows thanks to its proven successful performance on computer
vision problems such as image classification (e.g., AlexNet [11]).
Chu et al. [4] use a CNN to learn small yet expressive feature de-
scriptors from fluid densities and velocities. With the help of those
descriptors, their simulation algorithm is capable of rapidly generat-
ing high-resolution realistic smoke flows with reusable space-time
flow data. Kim et al. [9] trained a generative model with underlying
CNN structure to reconstruct divergence-free fluid simulation veloci-
ties from a collection of reduced parameters. Their network includes
an autoencoder architecture to encode parametrizable velocity fields
into a latent space representation. They report a 1300× increase in
compression rates and a 700× performance improvement compared
to a CPU solver.

Beyond the core problem of fluid simulation, fluid super-
resolution and controlling style is another direction of enormous
interest that has seen great success in exploiting learning techniques.
By leveraging the idea behind the generative adversarial network
(GAN) [5]), Xie et al. [22] introduce tempoGAN, which comprises
two discriminators, one being a novel temporal discriminator, to
learn both spatial and temporal evolution of data for further synthesis
of fluid flows with high-resolution details only from low-resolution
data. We observe that learning techniques are broadly useful in fluid
simulation, and in our work we put effort into better understanding
their benefits and limitations within the core problem, specifically
in the solution of the Poisson problem to produce divergence free
velocity fields for incompressible fluids.

3 BACKGROUND

In this section, we give a brief review of the mathematical back-
ground and approaches to physically-based fluid simulation. We
only focus on the two-dimensional case, but it is easy to generalize
them to the three-dimensional space.

3.1 Fluid Equations
The motion of inviscid fluid flow is governed by the Euler equations,
a special case of the famous Navier-Stokes equations [3],

∂u
∂ t

+u ·∇u+
1
ρ

∇p = f (1)

∇ ·u = 0 (2)

where Equations 1 and 2 are usually referred to as the momentum
equation, which in fact is Newton’s second law applied to fluids,
and the incompressibility condition which restricts the volume of
fluids to be constant, respectively. In these equations, u stands for
velocity, p is pressure, ρ is density, and f is the total external force
(e.g., gravity, buoyancy, vorticity confinement) acting on the fluid.

We spatially discretize the above PDEs on a marker-and-cell
(MAC) grid, as done by Harlow and Welch [6], rather than a simple
collocated grid to avoid the non-trivial nullspace problem, and to
make the boundary condition easier to handle. Then, we use the
finite difference method to approximate all partial derivatives. On
the fluid-solid boundary, we require the normal component of the
fluid velocity to be equal to that of the solid’s velocity, that is,

u · n̂ = usolid · n̂,

or their relative velocity has zero normal component.

3.2 Stable Fluids Framework
Suppose the current velocity field ut at time t is known, and we
would like to advance our simulation to the next state and obtain
ut+∆ t given time step ∆ t. It requires us to integrate the momentum
equation while keeping the incompressibility condition satisfied,
but the momentum equation involves three terms (not counting
the velocity partial derivative with respect to time). Because it
is challenging to handle all terms simultaneously, we use Stam’s
operator splitting approach to integrate them one by one [18]. This
provides a modular framework, shown in Algorithm 1, which is
first-order accurate (see Bridson’s book [3]). Thus, we solve for the
velocity field at time t +∆ t in three steps.

On line 3 of Algorithm 1, we first compute and add all external
forces f over time step ∆ t to the velocity field according to the
standard forward Euler integration formula. Then on line 4, we self-
advect the velocity field using the MacCormack method proposed
by Selle et al. [17]. Finally, on line 5-6, we perform the pressure
projection to make the resulting field ut+1 divergence-free by solving
the Poisson problem

∇
2 p =

∆ t
ρ

∇ ·uB. (3)

1 Initialize a divergence-free velocity field u0;
2 for t← 0,1,2, · · · do
3 uA← ut +∆ tf;
4 uB← Advect(uA,∆ t);
5 p← SolvePoisson(uB);

6 ut+1← uB− ∆ t
ρ

∇p;

7 end

Algorithm 1: Stable fluids solver.

2

Online Submission ID: 0

This is equivalent to a linear system Ax = b under our spatial dis-
cretization scheme, where A is a sparse, symmetric, and positive
definite matrix often called five-point Laplacian matrix, b is a vec-
tor of velocity divergence of every fluid cell, and x consists of all
pressure unknowns we desire to find. Stam [18] showed that solvers
coupled with a semi-Lagragian advection algorithm such as Mac-
Cormack and an accurate Poisson solver are unconditionally stable,
meaning our simulation will not “blow up” no matter how large the
time step ∆ t. As a result, we can arbitrarily vary the time step ∆ t
in accordance with our requirement to create fluid animations with
different visual effects.

3.3 Iterative Methods for Linear Systems
Classic direct linear solvers, such as Cholesky factorization, can be
used to solve the above Poisson equation if the number of unknowns
is relatively small. When it comes to large-scale applications, how-
ever, those methods become impractical as they suffer from high
time and space complexities. Even for fluid simulations where the
matrix A is very sparse, the nonzero fill in the Cholesky factoriza-
tion for large problems can become unattractive. Instead, we can
use iterative linear solvers that gradually approximate the solution
by repeatedly applying the update rule xk+1 = f

(
xk) specified by

solver given an initial guess to the solution x0. Iterative methods can
be fast compared to their direct counterparts, using minimal storage,
and can be stopped at any time to yield an approximate solution.
We briefly review the methods relevant to our experiments in this
section, while Saad’s book [16] provides an excellent reference for
these techniques.

3.3.1 Jacobi
The update rule of Jacobi method can be written as

xk+1
i =

1
Aii

(
bi−∑

j 6=i
Ai jxk

j

)
, (4)

where Ai j, xk
j denote the entry of matrix A at row i and column

j, and the jth component of vector p at time step k, respectively.
Note that the positive definiteness of A implies A is invertible and
all diagonal elements Aii are positive, ensuring the validity of our
update rule. Furthermore, every component of xk+1 depends on
known values xk

j , hence Jacobi is inherently parallelizable, making
it trivial to implement and efficient to run on GPU. However, this
method tends to have a slow convergence rate and it may take many
iterations before we get a satisfying solution.

3.3.2 Gauss-Seidel (GS)
Consider modifying the update rule of Jacobi to use the updated
values xk+1

j once they are available. In this way, we obtain the
Gauss-Seidel method defined as

xk+1
i =

1
Aii

(
bi−∑

j<i
Ai jxk+1

j −∑
j>i

Ai jxk
j

)
. (5)

More precisely, for the ith component of xk+1, we compute the
matrix-vector product by replacing xk

j with xk+1
j when j < i, and

keep everything unchanged when j > i. Gauss-Seidel tends to ex-
hibit a faster convergence rate, but loses Jacobi’s parallel nature and
becomes a sequential algorithm.

3.3.3 Red-Black Gauss-Seidel (RBGS)
Graph colouring can provide a mechanism for obtaining the benefits
of Gauss-Seidel while still allowing for parallelization. We can
construct an undirected dependency graph G as follows:

P0,0

P0,1

P0,2

P0,3

P1,0

P1,1

P1,2

P1,3

P2,0

P2,1

P2,2

P2,3

P3,0

P3,1

P3,2

P3,3

P0,0

P0,1

P0,2

P0,3

P1,0

P1,1

P1,2

P1,3

P2,0

P2,1

P2,2

P2,3

P3,0

P3,1

P3,2

P3,3

Figure 2: Left : The dependency graph for a 4×4 fluid pressure grid.
Right : A red-black colouring partitions the graph into two independent
sets. All vertices within the same set can be solved in parallel.

• Each component of x is a vertex;

• If the computation of xi and x j is interdependent, then add an
edge (i, j) to G.

At the (i, j)-entry of fluid grid, the Laplacian of the pressure P is
equal to the divergence of the velocities u. The discretized relation-
ship is given by

4Pi, j−Pi−1, j−Pi+1, j−Pi, j−1−Pi, j+1 = (∇ ·u)i, j . (6)

A vertex in graph G corresponding to pressure Pi, j is connected to all
its neighbours in a five-point stencil, namely, Pi−1, j,Pi+1, j,Pi, j−1
and Pi, j+1. We can colour this dependency graph by alternatively
choosing from two colours, red and black. The coloured graph dis-
plays a checkerboard pattern, where a simplified example is shown
in Figure 2. Observe that vertices of the same colour form an in-
dependent set, which indicates the computation of every vertex in
this set can be done in parallel. As a consequence, we can solve
Equation 3 in two parallel steps.

3.3.4 Preconditioned Conjugate Gradient (PCG)
Given matrix A and vector v, a Krylov subspace of Rn has the form

Kn (A,v) = span
{

v,Av,A2v, · · · ,An−1v
}
.

Conjugate Gradient (CG) is an orthogonal projection method onto
the Krylov subspace Kn (A,r0) where r0 = b−Ap0 is the initial
residual. It rephrases solving linear system as an optimization prob-
lem of the quadratic function

f (x) =
1
2

xᵀAx−xᵀb,

in which the solution to the system x∗ is its unique minimizer. CG
then follows from the gradient descent algorithm. To improve conver-
gence rate, we further incorporate an incomplete Cholesky precondi-
tioner with zero-fill, IC(0). In our experiments, this is what we use
for preconditioned conjugate gradients (PCG). CG and PCG expect
the matrix A to be positive, symmetric, and definite, but eliminating
variables by substituting boundary conditions into Equation 6 leads
to a rank deficient matrix. To avoid the problems caused by matrix A
being not full rank (both for the incomplete Cholesky preconditioner,
and for the CG method), we instead solve the regularized system

(A+λ I)x = b

for a carefully selected regularization parameter λ . Notice that in all
our results we still report the residual norm as r = ‖b−Ax‖ rather
than ‖b− (A+λ I)x‖. Our regularized IC(0) PCG solver is given
in Algorithm 2.

3

Online Submission ID: 0

Data: A, b, regularization parameter λ

Result: x
1 M← Generate-IC0-Preconditioner(A);
2 A← A+λ I;
3 r0← b−Ap0;
4 z0←M−1r0;
5 p0← z0;
6 for j← 0,1,2, · · · do

7 α j←
rᵀj z j

pᵀ
j Ap j

;

8 x j+1← x j +α jp j;
9 r j+1← r j−α jAp j;

10 if ‖r j+1 +λx j+1‖< ε for given threshold ε then
11 exit the loop;
12 end
13 z j+1←M−1r j+1;

14 β j←
rᵀj+1z j+1

rᵀj z j
;

15 p j+1← z j+1 +β jp j;
16 end

Algorithm 2: The regularized PCG solver used in our experiments.

(a) Bunny (b) Two Plumes (c) Channeling

Figure 3: Three test scenes we designed and used to demonstrate
and compare the performance of each pressure solver.

4 RESULTS

We use Jacobi, RBGS and PCG solvers implemented on the GPU in
C++ with NVIDIA’s CUDA, cuBLAS and cuSPARSE libraries. All
experiments were carried out on a 3.6 GHz Intel i9-9900k CPU with
32 GB of RAM, and an NVIDIA GeForce RTX 2080 Ti GPU which
contains 4352 shading units.

4.1 Test Scenes and Parameters
Figure 3 shows the three test scenes that we created to evaluate error
and convergence of different solvers in different situations. The
Bunny scene is designed to examine solver’s basic performance in
response to a simple scenario. It consists of an obstacle in the shape
of a 2D Stanford bunny located at the centre of the domain, with an
emitter shooting out red plumes from the midpoint of the bottom side.
The Two Plumes scene is identical to the Bunny scene except that
there is a second blue plume emitter placed in the gap behind the ears
of bunny model. This scene mainly aims to test the case of multiple
plume sources. Finally, we designed a Channeling scene, which
has symmetry in vertical direction, to both test fluid channeling
behaviours and to visually compare how well can different pressure
solvers preserve the natural symmetry within the plume. In all
scenes, white colours represent obstacles, and each side is a wall but
not shown explicitly.

In order to obtain consistent and convincing results, we kept the
test environment parameters identical across all our experiments.
Specifically, we use a resolution of 256×256 pixels, and run every

simulation for 300 frames with a step size of 0.25 seconds, and for
the iterative solvers we executed 200 iterations for each. We do not
use vorticity confinement, gravity, or buoyancy.

Notice that the CNN-based solver by Tompson et al. [21] is not
an iterative method, so it does not have the concept of residual
that converges like the Jacobi, RBGS, and PCG solvers. However,
using the Helmholtz-Hodge decomposition we can observe that the
residual is in fact equal to the norm of the divergence of the velocity
at the next time step (see Appendix A). Thus we use this quantity as
a means of comparing the iterative methods to the neural network
approach.

4.2 Performance
Before examining and comparing performances of various methods,
we need to first choose a suitable regularization parameter λ for our
PCG solver with respect to each scene. For the Bunny scene, we
investigate the case with no regularization (or λ = 0) by running 400
PCG iterations and noted its relative residual, as shown in Figure 4(a).
The simulation is executed for only one frame, because the relative
residual diverges and animation of subsequent frames blows up.

Given the diverging residual that we observe with the non full rank
matrix A, we explore different amounts of regularization. Specifi-
cally we test how well λ = 10−5, λ = 10−4, λ = 10−3 work, and
repeat the same procedure as before. Figure 4(b)–(d) shows the
order statistics (minimum, 25th percentile, median, 75th percentile,
maximum) of relative residuals across all 300 frames at different
iteration numbers. Since we only run 200 PCG iterations in our
main comparisons, we choose λ = 10−4 as it attains the lowest true-
residual median at iteration 200 among all three choices of λ . Using
the same criteria, we also selected λ = 10−4 for the Two Plumes
and Channeling scenes.

Figure 5 shows order statistics of relative residual over Jacobi,
RBGS, and regularized PCG solver iterations for all Ax = b systems
and for each scene across 300 frames. We note that the iterations
do not take the same amount of time, but the plots are still useful to
observe the typical reduction in residual across different steps of the
simulation.

We also show the order statistics of absolute residual ‖∇ ·u‖2 over
total solving time (in milliseconds) for every scene in Figure 6. Since
the forward propagation of CNN-based solver (Tompson et al. [21])
always takes a fixed amount of time, its performance is depicted as
the intersection of horizontal and vertical purple lines in the graph.
While we might expect PCG to have the fastest convergence rate
and achieve lowest residual, it takes a longer time to solve compared
to the highly parallel GPU implementations of the Jacobi, RBGS,
and CNN-based solvers.

4.3 Robustness
An important feature of good numerical method is robustness, which
we investigate by observing the behaviour of the four solvers when
there is a sudden and fierce change of external conditions. In our
stress-test, we monitor the L2 norm of the velocity divergence of the
pressure solvers to see how rapidly the residual returns to normal
levels after facing a large external pressure is injected into the fluid
region.

Figure 7 shows the set-up and result of our experiment. Our
fluid simulator supports user interaction with a mouse to perturb
the plume behaviour and it is with this mechanism that we inject
a scripted mouse movement. We first run the simulation with the
Jacobi solver for 100 frames, then at the moment that we inject the
external pressure we switch to the different solvers to examine the
post disturbance divergence norm trajectory.

The scripted mouse interactions used to inject a consist distur-
bance in each test, and the result of the disturbance, can be seen in
Figure Figure 7(a)-(b). The disturbance lasts a total of 10 frames,
with the scripted mouse drag first moving horizontally across the

4

Online Submission ID: 0

0 100 200 300 400

Solver iteration

10-1

100

101

102

103

R
el

at
iv

e
re

si
du

al

(a) = 0 (Frame 1)

0 100 200 300 400

Solver iteration

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

(b) = 10-5

0 100 200 300 400

Solver iteration

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

(c) = 10-4

Minimum 25th Percentile Median 75th Percentile Maximum

0 100 200 300 400

Solver iteration

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

(d) = 10-3

Figure 4: Convergence for the Bunny scene. (a) Without regularization, the relative residual over PCG solver’s iteration for the Ax = b system
corresponding to frame 1 shows poor divergent behaviour. (b)–(d) Order statistics of the true relative residual at each PCG iteration (that is,
measured without regularization), for all Ax = b systems across 300 frames when the regularization parameter is λ = 10−5, λ = 10−4, λ = 10−3.

0 50 100 150 200
Solver iteration

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

(a) Bunny

0 50 100 150 200
Solver iteration

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

(b) Two Plumes

Jacobi RBGS PCG

0 50 100 150 200
Solver iteration

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

(c) Channeling

Figure 5: Order statistics of relative residual over each solver’s iteration for all Ax = b systems of each scene across 300 frames. Five curves from
top to bottom of every solver represent maximum, 75th percentile, median, 25th percentile, minimum, respectively, and only curves for medians are
in bold for clarity. PCG shows the true residual rather than that of the regularized problem being solved.

10-2 10-1 100 101 102

Total solving time [ms]

100

101

102

||

u

|| 2

(a) Bunny

10-2 10-1 100 101 102

Total solving time [ms]

100

101

102

||

u

|| 2

(b) Two Plumes

Tompson et al. [21] Jacobi RBGS PCG

10-2 10-1 100 101 102

Total solving time [ms]

100

101

102

||

u

|| 2

(c) Channeling

Figure 6: Order statistics of residual norm ‖∇ ·u‖2 over each solver’s running time across 300 frames. Five curves from top to bottom of every solver
represent maximum, 75th percentile, median, 25th percentile, minimum, respectively. Median curves are bold for clarity. Since the CNN-based
solver (Tompson et al. [21]) always takes a fixed amount of time, its absolute residual over total solving time is shown as the purple intersection.

5

Online Submission ID: 0

(a)

(b)

0 50 100 150 200 250 300

Frame

100

101

102

103

104

||

 u
|| 2

 Jacobi
 RBGS
 PCG
 Tompson et al. [21]

External pressure is injected

Pressure injection stops after frame 110

(c)

Figure 7: (a) The black arrow shows the mouse trajectory for external pressure injection. The mouse moves first horizontally for one frame, then
vertically for the next frame, and this process is repeated 5 times for 10 frames violent scene perturbation. (b) Strong shape distortion of the red
plume caused by our violent mouse perturbation. (c) L2 norm of the velocity divergence over simulation frame count for different fluid solvers in our
mouse perturbation experiment. The external pressure is injected at frame 101, and the injection terminates after frame 110.

scene for one frame, and then vertically in the next frame, with the
process repeating 5 times. This produces a strong shape distortion
of the red plume as seen in Figure 7(b). We then observe the norm
of the divergence of the velocity after frame 110 to understand how
high the norm rises, and then how quickly it drops to normal lev-
els for the different solvers. The divergence norm trajectories in
Figure 7(c) show that PCG has the most stable behaviour during
the perturbation, while the method of Tompson et al. [21] fluctuates
more violently than all others. After the perturbation ends, the norm
of velocity divergence gradually drops to lower levels in all cases.
Comparing the final divergence norm after the simulation stops at
frame 300, we see that PCG achieves the lowest residual, followed
by Jacobi and RBGS (with similar behaviour), while Tompson et
al. [21] method has much higher residual and does not ultimately
return to levels similar to those prior to the disturbance.

4.4 Discussion and Limitations

There are some high level observations we can make about our
experiments. First, we expected RBGS to converge more quickly
than Jacobi, at least with respect to the iteration count, but we did
not observe this in our test scenes. We had also expected that PCG
would have much better behaviour, it is perhaps still possible that
with a different problem formulation and GPU implementation that
we could see better advantages with PCG. We can note that there
is likewise a vast number of other solvers we are not including in
our comparison, such as those that exploit substructuring, or others
based on multigrid. We believe all the results have good plausibility,
but we also note that we were not able to observe preservation
of symmetry in cases where it would be expected. That is, there
is no guarantee that symmetry would be preserved with a neural
network approach, and the arbitrary ordering of red before black in
RBGS would have us not expect symmetry, but we had expected
symmetric plumes in our Channeling scene when using Jacobi and

PCG. It is possible that our initial conditions and plume locations
make it hard to achieve symmetry in these examples, and the single
precision floating point used in the GPU implementations may yet
be another explanation. Finally, it is interesting to note that the
method of Tompson et al. actually increases the norm of the velocity
divergence in our test scenes. While this is surprising, we note
that the solutions it produces still tend to be useful for producing
plausible incompressible flows.

5 CONCLUSION AND FUTURE WORK

We present a collection of tests to understand the convergence behavi-
ous of different pressure solvers in 2D fluid simulations. Specifically,
we compare Jacobi, red-black Gauss-Seidel, regularized precon-
ditioned conjugate gradients, and a convolutional neural network
(CNN) based solution proposed by Tompson et al. [21]. Our results
show that Jacobi provides the best bang of the buck with respect to
minimizing error using a small fixed time budget when running on
the GPU. We note that the CNN solution has less desirable properties
in our 2D tests, but may ultimately prove to be a good choice for
specific scenarios, or larger 3D simulations. There are a number
of interesting directions for future work, such as repeating experi-
ments in 3D, and including comparisons with other solvers such as
multigrid methods.

A HELMHOLTZ-HODGE DECOMPOSITION

The Helmholtz-Hodge decomposition states that every vector field
u can be decomposed into a divergence-free vector field v and a
gradient field ∇q, that is,

u = v+∇q.

Stam [18] shows that the divergence of this decomposition leads to
the Poisson problem in Equation 3 needed for the pressure projection.

6

Online Submission ID: 0

This problem has the form

∇
2q = ∇ ·uB,

hence, the residual produced by iterative methods is defined as

r = ∇ ·uB−∇
2q.

Furthermore, the velocity update formula on line 6 in Algorithm 1
can be rewritten as

ut+1 = uB−∇q.

Again, taking divergence of both sides of the above equation yields

∇ ·ut+1 = ∇ ·uB−∇
2q

= r,

which justifies our comparison of the residual norm to the norm
of the divergence of the next time velocity produced by the neural
network approach.

REFERENCES

[1] R. Ando, N. Thürey, and C. Wojtan. A Dimension-reduced Pressure
Solver for Liquid Simulations. EUROGRAPHICS 2015, 2015.

[2] J. Bolz, I. Farmer, E. Grinspun, and P. Schröder. Sparse matrix solvers
on the gpu: Conjugate gradients and multigrid. In ACM SIGGRAPH
2003 Papers, SIGGRAPH 03, p. 917924. Association for Computing
Machinery, New York, NY, USA, 2003. doi: 10.1145/1201775.882364

[3] R. Bridson. Fluid Simulation for Computer Graphics. CRC Press,
Boca Raton, FL, 2nd. ed., Sep 2015.

[4] M. Chu and N. Thuerey. Data-driven synthesis of smoke flows with
cnn-based feature descriptors. ACM Trans. Graph., 36(4):69:1–69:14,
July 2017. doi: 10.1145/3072959.3073643

[5] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, eds., Advances in Neural Information Processing Systems
27, pp. 2672–2680. Curran Associates, Inc., 2014.

[6] F. H. Harlow and J. E. Welch. Numerical calculation of time-dependent
viscous incompressible flow of fluid with free surface. Physics of
Fluids, 8:2182–2189, Dec 1965.

[7] M. J. Harris. Fast fluid dynamics simulation on the gpu. SIGGRAPH
Courses, 220(10.1145):1198555–1198790, 2005.

[8] H.-R. Jung, S.-T. Kim, J. Noh, and J.-M. Hong. A Heterogeneous
CPU–GPU Parallel Approach to a Multigrid Poisson Solver for Incom-
pressible Fluid Simulation. Computer Animation and Virtual Worlds,
24(3-4):185–193, 2013. doi: 10.1002/cav.1498

[9] B. Kim, V. C. Azevedo, N. Thuerey, T. Kim, M. Gross, and B. So-
lenthaler. Deep fluids: A generative network for parameterized fluid
simulations. Computer Graphics Forum, 38(2):59–70, 2019. doi: 10.
1111/cgf.13619

[10] T. Kim, N. Thürey, D. James, and M. Gross. Wavelet turbulence for
fluid simulation. ACM Trans. Graph., 27(3):50:1–50:6, Aug. 2008. doi:
10.1145/1360612.1360649

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, eds., Advances in Neural Information
Processing Systems 25, pp. 1097–1105. Curran Associates, Inc., 2012.

[12] L. Ladický, S. Jeong, B. Solenthaler, M. Pollefeys, and M. Gross. Data-
driven fluid simulations using regression forests. ACM Trans. Graph.,
34(6):199:1–199:9, Oct 2015.

[13] M. Lentine, W. Zheng, and R. Fedkiw. A Novel Algorithm for In-
compressible Flow Using Only a Coarse Grid Projection. ACM Trans.
Graph., 29(4):114:1–114:9, July 2010. doi: 10.1145/1778765.1778851

[14] A. McAdams, E. Sifakis, and J. Teran. A parallel multigrid poisson
solver for fluids simulation on large grids. In Proceedings of the 2010
ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
SCA ’10, pp. 65–74. Eurographics Association, Goslar Germany, Ger-
many, 2010.

[15] P. Pall, O. Nylén, and M. Fratarcangeli. Fast Quadrangular Mass-
Spring Systems using Red-Black Ordering. In Workshop on Virtual
Reality Interaction and Physical Simulation, VRIPHYS’18, pp. 37–43.
The Eurographics Association, 2018.

[16] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for
Industrial and Applied Mathematics, Philadelphia, PA, 2nd. ed., Jan
2003.

[17] A. Selle, R. Fedkiw, B. Kim, Y. Liu, and J. Rossignac. An uncondi-
tionally stable maccormack method. Journal of Scientific Computing,
35(2):350–371, Jun 2008.

[18] J. Stam. Stable fluids. In Proceedings of the 26th Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH ’99,
pp. 121–128. ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, 1999.

[19] J. Stam. Real-time fluid dynamics for games. In Proceedings of the
game developer conference, vol. 18, p. 25, 2003.

[20] J. Steinhoff and D. Underhill. Modification of the Euler equations for
“vorticity confinement”: Application to the computation of interacting
vortex rings. Physics of Fluids, 6(8):2738–2744, 1994. doi: 10.1063/1.
868164

[21] J. Tompson, K. Schlachter, P. Sprechmann, and K. Perlin. Accelerating
Eulerian Fluid Simulation with Convolutional Networks. In Proceed-
ings of the 34th International Conference on Machine Learning, vol. 70
of ICML’17, pp. 3424–3433. JMLR.org, 2017.

[22] Y. Xie, E. Franz, M. Chu, and N. Thuerey. tempoGAN: A temporally
coherent, volumetric GAN for super-resolution fluid flow. ACM Trans.
Graph., 37(4):95:1–95:15, July 2018.

[23] C. Yang, X. Yang, and X. Xiao. Data-driven Projection Method in Fluid
Simulation. Computer Animation and Virtual Worlds, 27(3-4):415–424,
2016. doi: 10.1002/cav.1695

7

