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ABSTRACT

A way to overcome expensive and time-consuming manual data labeling is weak
supervision - automatic annotation of data samples via a predefined set of label-
ing functions (LFs), rule-based mechanisms that generate artificial labels for the
classes associated with the LFs. In this work, we investigate noise reduction tech-
niques for weak supervision based on the principle of k-fold cross-validation. We
introduce a new algorithm ULF for denoising weakly annotated data which uses
models trained on all but some LFs to detect and correct biases specific to the
held-out LFs. Specifically, ULF refines the allocation of LFs to classes by re-
estimating this assignment on highly reliable cross-validated samples. We realize
two variants of this algorithm: feature-based ULF (relying on count-based feature
vectors), and DeepULF (fine-tuning pre-trained language models). We compare
ULF to methods originally developed for detecting erroneous samples in manually
annotated data, as well as to our extensions of such methods to the weakly super-
vised setting. Our new weak supervision-specific methods (ULF and extensions)
leverage the information about matching LFs, making detecting noisy samples
more accurate. Evaluation on several datasets shows that ULF can successfully
improve weakly supervised learning without utilizing any manually labeled data.

1 INTRODUCTION

A large part of today’s machine learning success rests upon a vast amount of annotated training data.
However, a manual expert annotation turns out to be tedious and expensive work. There are differ-
ent approaches to reduce this data bottleneck: fine-tuning large pre-trained models (Devlin et al.,
2019), applying active learning (Sun & Grishman, 2012) and semi-supervised learning (Kozareva
et al., 2008). However, even if in a reduced amount, these approaches still demand manually anno-
tated data. Moreover, constant data re-annotation would be necessary in settings with dynamically
changing task specifications or changing data distributions.

Another strategy that does not require any manual data labeling is weak supervision (WS), which
allows to obtain massive amounts of labeled training data at a low cost. In a weakly supervised
setting, the data is labeled in an automated process using one or multiple weak supervision sources,
such as external knowledge bases (Lin et al., 2016; Mintz et al., 2009) and manually-defined or au-
tomatically generated heuristics (Varma & Ré, 2018). By applying such rules, or labeling functions
(LFs, Ratner et al., 2020), to a large unlabeled dataset, one can quickly obtain weak training labels,
which are, however, potentially error-prone and need additional denoising (see examples in Fig. 1).

In this work, we explore methods for improving the quality of weak labels using methods based
on the principle of k-fold cross-validation. Intuitively, if some part of the data is left out during
training, the model does not overfit on errors specific to that part. Therefore, a mismatch between
predictions of a model (trained on a large portion of the data set) and labels (of the held-out portion)
can indicate candidates of noise specific to the held-out portion.

This idea has motivated different approaches to data cleaning (Northcutt et al., 2021; Wang et al.,
2019c). As they deal with general, non-weakly supervised data, they usually split the data samples
into folds randomly and independently on the sample level. However, a direct application of these
methods to weakly labeled data ignores valuable knowledge stemming from the weak supervision
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process (e.g., which LFs matched in each sample or what class each LF corresponds to). In this work,
we leverage this additional source of knowledge by splitting the data considering the LFs matched
in the samples. We build on the intuition that a mismatch between predictions of a model (trained
with a large portion of the LFs) and labels (generated by held-out LFs) can indicate candidates of
noise specific to the held-out LFs. If this LF-specific cross-validation is done for each LF, noise
associated with all LFs could be found and corrected. This idea is realized in our extensions to
methods proposed in Northcutt et al. 2021 and Wang et al. 2019c.

Figure 1: Examples of weakly supervised annotation from
YouTube dataset. In (1), both matched LFs correspond to
the SPAM class; the sample is therefore assigned to SPAM
class. In (2), there is a conflict as one of the matched LFs
belongs to the SPAM class, while the other - to the HAM
class. In (3), no LFs matched, meaning the sample does not
get any weak signal.

Apart from that, we use the prin-
ciple of weakly supervised cross-
validation to break out of the logic
of just repairing the labels, to in-
stead repair the LF-to-class assign-
ment. This approach is formal-
ized in ULF - our new method for
Unsupervised Labeling Function cor-
rection with k-fold cross-validation.
Its primary goal is to improve the LFs
to classes allocation in order to cor-
rect the systematically biased label
assignments. ULF re-estimates the
joint distribution between LFs and
class labels during cross-validation
based on highly confident class pre-
dictions and their co-occurrence with
matching LFs. The improved alloca-
tion allows to re-assign the weak la-
bels for further training. Importantly,
ULF also improves labels of the sam-
ples with no LFs matched, in contrast
to other methods that filter them out
(Ratner et al., 2020).

Overall, our main contributions are: (1) A new method ULF for improving the LFs to classes
allocation in an unsupervised fashion. ULF not only detects inconsistent predictions but corrects
the process that led to them by re-estimating the assignment of LFs to classes. Training with ULF
results in more accurate labels and a better quality of the trained classifier. (2) Two implementations
of ULF: feature-based ULF for feature-based learning (without a hidden layer), and DeepULF for
fine-tuning pre-trained language models. (3) Extensions of two methods for denoising the data
using the principle of k-fold cross-validation (Wang et al., 2019c; Northcutt et al., 2021). Our
extensions Weakly Supervised CrossWeigh and Weakly Supervised Cleanlab profit from the WS-
specific information and make the denoising of WS data more accurate. (4) Extensive experiments
on several weakly supervised datasets in order to demonstrate the effectiveness of our methods. To
the best of our knowledge, we are the first (1) to adapt k-fold cross-validation-based noise detection
methods to WS problems, and (2) to refine the LFs to classes allocation in the WS setting.

2 RELATED WORK

Weak supervision has been widely applied to different tasks in various domains, such as text classi-
fication (Ren et al., 2020; Shu et al., 2020), relation extraction (Yuan et al., 2019; Hoffmann et al.,
2011), named entity recognition (Lan et al., 2020; Wang et al., 2019c), video analysis (Fang et al.,
2020; Kundu et al., 2019), medical domain (Fries et al., 2021), image classification (Li et al., 2021),
and others. Weak labels are usually cheap and easy to obtain, but also potentially error-prone, and
thus often need additional denoising.

Denoising methods. Among the most popular approaches to improving weakly supervised data is
building a specific model architecture or reformulating the loss functions (Karamanolakis et al.,
2021; Hedderich & Klakow, 2018; Goldberger & Ben-Reuven, 2017; Sukhbaatar et al., 2014).
Sometimes, weak labels are combined with additional expert annotations: for example, by adding
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Figure 2: ULF: Unsupervised Labeling Function Correction

a set of manually annotated data to the weakly labeled one (Mazzetto et al., 2021; Karamanolakis
et al., 2021; Awasthi et al., 2020), or learning from manual user corrections or guidance (Hedderich
et al., 2021; Chatterjee et al., 2020; Boecking et al., 2021; Lange et al., 2019). The methods we intro-
duce in this paper, on the contrary, do not require any manual supervision and can be used with any
classifier. Other approaches aim at finding and removing or downweighting erroneous samples by
estimating the relation between noisy and clean labels (Wang et al., 2019a; Northcutt et al., 2021).
Rather than discarding potentially erroneous samples, our method ULF aims at label correction,
utilizing as much of the weakly supervised data as possible.

Cross-Validation. There are several methods that share the idea of using k-fold cross-validation for
denoising manually labeled data (Wang et al., 2019b;c; Northcutt et al., 2021; Teljstedt et al., 2015).
Being a stable and reliable method of trained model quality estimation (Wong & Yeh, 2019), k-fold
cross-validation has proven to be a fruitful method for detecting errors in data as well. Wang et al.
2019c denoise crowdsourcing annotations by repeatedly training k models and downweighting the
samples with disagreeing out-of-sample predicted and original labels. Northcutt et al. 2021 consider
the confidence of the predicted class probabilities, identify the mislabeled samples using ranking
and prune them. However, being used as-is for denoising the weakly supervised data, both of these
methods miss a lot of potentially profitable WS-specific information.

Data Programming. We follow the data programming approach (Ratner et al., 2016) which allows
encoding the weak supervision sources in form of labeling functions (LFs) which could be viewed as
annotators annotating data samples. Such annotations often result in conflicting or erroneous labels,
which are usually refined by applying more sophisticated LFs aggregation techniques (Ratner et al.,
2019; Hoffmann et al., 2011) and modifying the LFs (Chatterjee et al., 2019).

3 ULF: UNSUPERVISED LABELING FUNCTION CORRECTION

Inaccurate and erroneous allocation of LFs to classes often becomes a cause of noise in a weakly
supervised setting. For example, in Figure 1, among the LFs used to annotate the YouTube Dataset,
there is a LF ”my” that is set to correspond to the SPAM class. The dataset creators (Alberto
et al., 2015) included this LF to capture the often encountered spam messages like ”subscribe to my
channel” or ”follow my page”. However, this correspondence is not that straightforward and may
be potentially misguiding; it is not hard to come up with a dozen non-spam messages containing
the word ”my”. Thus, the weak labeling for Sample 2, where this LF matched alongside another
one from class HAM (i.e., a non-SPAM class), would lead to a tie and, by a random tie-breaking,
potentially to an incorrect label assignment. However, if the class assignment of ”my” were adjusted
so that its association with the SPAM class is reduced, the overall HAM probability would dominate,
and a correct label would be assigned to this sample.

3.1 PRELIMINARIES

Given a dataset X with N data samples, X = {x1, x2, ..., xN}; each sample is a sequence of words
(i.e., one or several sentences). This set is used for training a classifier with K output classes.
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Figure 3: Weak annotation encoded with Z and T matrices.
Z contains the information about LFs matches in samples.
T is a matrix with LFs-to-class correspondence. Multiplica-
tion of Z and T matrices and applying majority vote results
in weak labels Ỹ . T ∗ is the T matrix improved with ULF.

In the weakly supervised setting,
there are no known-to-be-correct la-
bels for the training samples. In-
stead, we are provided with a set of
LFs L, L = {l1, l2, ..., lL}. The
LFs can express different weak su-
pervision sources, such as knowledge
bases, lists of keywords and other
human-defined heuristics. We say
that a LF lj matches a sample xi if
some condition formulated in lj holds
for xi (e.g. a keyword or a regular
expression matches); then lj maps xj

to a label. For example, in the case
of keyword-based LFs, a LF matches
a sample if the keyword is present in
it and, thus, a corresponding label is
assigned to this data sample. A set
of LFs matched in a sample xi is de-
noted by Lxi , where |Lxi | ∈ [0, L].
This information can be saved for
an entire data set in a binary matrix
ZN×L, where Zij = 1 means that lj
matches in sample xi.

Each LF lj corresponds to some class ki; in other words, lj assigns the corresponding label to sam-
ples where lj matches1. The information about this correspondence is stored in a binary matrix
TL×K , where Tij = 1 means LF li corresponds to class j. The most straightforward way of ob-
taining weak labels Ỹ = {ỹ1, ỹ2, ..., ỹn}, ỹj ∈ K is to multiply Z and T , apply majority vote, and
break the ties.

3.2 OVERVIEW

The main goal of the ULF algorithm is to refine the matrix of LFs to classes assignments T . The
main steps are the following: first, the predictions (together with their confidences) are calculated
with k-fold cross-validation. Second, these predictions are used to build a LFs-to-classes confident
matrix CL×K . This matrix counts how many samples with a particular LF have highly confident
predictions (exceeding a threshold) for a particular class. C is then re-normalized to provide a cross-
validated re-estimation of T . The graphical illustration of the algorithm is provided in Figure 3, the
method is summarized in Algorithm 1.

3.3 LABEL PROBABILITIES WITH CROSS-VALIDATION

Firstly, class probabilities for each training sample are predicted by k-fold cross-validation. For that,
we use the training set X and weak labels Ỹ obtained by multiplying Z and T matrices. There are
three possible ways of splitting the data in folds for cross-validation training:

• randomly (ULFrndm): the samples are assigned to folds the same way as it would be done
in standard k-fold cross-validation irrespective of LFs matching;

• by LF (ULFlfs): the LFs are randomly split into k folds {f1, ..., fk} and each fold fi
is iteratively taken as held-out LFs, while others become training LFs. All samples
where training LFs match become training samples, the rest are used for re-estimation:
Xtraini = {xj |Lxj ∩ fi = ∅}, Xouti = X \Xtraini (1).

• by signatures (ULFsgn): for each training sample xi we take the set of matching
LFs Lxi

as its signature and build k folds from them, each of which iteratively be-

1The initial manual class assignment is typically such that a LF corresponds to exactly one class, for which
it covers a prototypical case. A manual assignment to several classes would however be possible in principle
and compatible with ULF.
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comes a held-out fold, while others are used as training folds: Xtraini
= {xj |Lxj

/∈ fi},
Xouti = {xj |Lxj

∈ fi} (2).

Secondly, k models are separately trained on Xtraini
, i ∈ [1, k] and applied on the held-out folds

Xouti to obtain the out-of-sample predicted probabilities PN×K . From PN×K the out-of-sample
labels ŷ are derived:

ŷi = argmax
1≤j≤K

p(ỹ = j;xi, θ) (3)

Importantly, a xi sample probability p(ỹ = j;xi, θ) is considered only if it exceeds the class j
average threshold tj :

tj :=
∑

xi∈Xỹ=j

p(ỹ = j;xi, θ)/|Xỹ=j | (4)

This allows handling of the sample xi as belonging to the class j if and only if this sample confidently
belongs to the corresponding class. If no probability exceeds the class thresholds for a sample
(e.g., it belongs to all classes with equally small probabilities), the sample is disregarded in further
calculations as unreliable.

3.4 RE-ESTIMATE LABELING FUNCTIONS

In order to refine the LFs to classes allocation, ULF re-estimates the joint distribution between
matched LFs and predicted labels. For each LF li and each class kj , the number of samples is calcu-
lated, which have the LF li matched and were confidently assigned to the class kj . This information
is saved as a LFs-confident matrix CL×K that contains the counts of samples:

Cli,ŷj
= |{xi ∈ X : ŷi = ỹj , li ∈ Lxi

}| (5)

Next, the confident matrix is calibrated and normalized to Q̂L×K to correspond to the data propor-
tion in the Z matrix:

Q̂li,ŷj
=

(
Cli,ŷj

·
L∑

m=1

Zlm,ŷj

)
/

(
L∑

m=1

Clm,ŷj

)
, (6)

where
∑

i∈L,
j∈K

Cli,ŷj
= n,

K∑
j=1

Zlm,ŷj
=

K∑
j=1

Q̂lm,ŷj
.

The joint matrix Q̂ can now be used for improving the LFs-to-class matrix T that contains the initial
LFs to class allocations. T and Q̂ are summed with multiplying coefficients p and 1 − p, where
p ∈ [0, 1]. The value of p balances the initial manual label assignment with the unsupervised re-
estimation and determines how much information from the estimated assignment matrix Q̂ should
be preserved in the refined matrix T ∗:

T ∗ = p ∗ Q̂+ (1− p) ∗ T (7)

With the multiplication of Z and the newly recalculated T ∗ matrices, an updated set of labels Y ∗ is
calculated. It can be used either for rerunning the denoising process or for training the end classifier.

3.5 FEATURE-BASED ULF VS DEEPULF

We propose two ways of realizing the unsupervised label correction procedure described above. The
first variation of the ULF algorithm is feature-based ULF, which uses count-based features. The
training steps (i.e., Alg. 1, lines 7 and 14) are realized with Algorithm 2, where any model for the
feature-based prediction can be used. The second one - DeepULF - fine-tunes pre-trained language
models. The fine-tuning can be combined with an additional contrastive self-learning step from
the Cosine framework (Yu et al., 2021), which leverages unlabeled data and potentially improves
the quality of the trained classifier. The training steps (Alg. 1, lines 7 and 14) for DeepULF are
summarized in Algorithm 3. As signature-based data splitting was the best performing method in
the experiments with feature-based ULF, we select it for the DeepULF experiments.
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Algorithm 1: ULF: Unsupervised Labeling
Function Correction for Weak Supervision
Input: unsupervised training data X ,

samples to LFs matrix ZN×L,
LFs to classes matrix TL×K

1 Calculate noisy labels Ỹ ← Z ∗ T
2 for iter = 1, 2, ...I do
3 Randomly split LFs L or signatures⋃

Lxi
into k folds f1, ..., fk

4 for f = 1, 2, ..., k do
5 Build Xtraini , Xouti sets (Eq. 1, 2)
6 Ỹtraini = {ỹ ∈ Ỹ : ∀x ∈ Xtraini}
7 Train (θi, Xtraini , Ỹtraini )
8 Calculate p(ỹ = j;xi, θi)
9 Get labels ŷi (Eq. 3) with respect to the

thresholds tj (Eq. 4)
10 Calculate LFs-to-class confident matrix

Cl,ŷ (Eq. 5)
11 Estimate a joint matrix Q̂l,ŷ (Eq. 6)
12 Recalculate T ∗ matrix (Eq. 7)
13 Calculate new noisy labels Ỹ ∗ with T ∗

14 Train (θ, X , Ỹ ∗)
Output: Trained θ

Algorithm 2: Train (θ, X , Ỹ ):
Feature-based ULF

1 θ = AdamW(θ, X , Ỹ )
Output: Trained θ

Algorithm 3: Train (θ, X , Ỹ ): DeepULF;
pretrained language model fine-tuning (op-
tionally: with Cosine self-training)

1 Xlab = {x ∈ X : |Lxi | > 0}
2 Ỹlab = {ỹ ∈ Ỹ : ∀x ∈ Xlab}

# 1. fine-tune θ with Xlab and Ỹlab

3 θ = AdamW(θ, Xlab, Ỹlab)
# 2. (optional) contrastive self-training of θ
with X

4 Calculate pseudo labels ypsd
5 for step = 1, 2, ..., num steps do
6 Select confident samples
7 Calculate classification loss Lc(θ, ypsd),

contrastive regularizer R1(θ, ypsd),
confidence regularizer R1(θ)

8 L(θ, ypsd) = Lc + λR1 +R1

9 θ = AdamW(θ, X)
Output: Trained θ

Unlabeled instances. One of the challenges in weak supervision is the data samples where no LF
matches; in other words, the samples without any weak signal. In some approaches, such samples
are filtered out, while in others they are kept as belonging to a random or the other class. In feature-
based ULF, such samples are initially assigned with random labels and partly involved in cross-
validation training. The number of samples to be used in cross-validation training is defined by
hyper-parameter λ. After each T ∗ matrix recalculation, their new labels are calculated directly from
the out-of-samples predicted probabilities with respect to the class average threshold (see Eq. 3 and
4). In DeepULF combined with Cosine such samples are leveraged during self-supervised learning.

4 WSCROSSWEIGH AND WSCLEANLAB

In order to have suitable baselines, we consider two other cross-validation-based methods initially
proposed to improve manual data annotations: CrossWeigh (Wang et al., 2019c), and Cleanlab
(Northcutt et al., 2021). For a more detailed comparison, we introduce extensions of these frame-
works for the weakly supervised setting. In contrast to the original methods, our extensions leverage
the LF information resulting in more accurate results.

CrossWeigh was proposed for tracing inconsistent labels in the crowdsourced annotations for named
entity recognition. The algorithm traces the repeatedly mislabeled entities by training multiple mod-
els in a cross-validation fashion on different data subsets, comparing the predictions on unseen data
with its crowdsourced labels and reweighting the conflicting ones. Our Weakly Supervised Cross-
Weigh (WSCW) splits the data with respect to the LFs (by Eq. 1) and trains the k separate models
on Xtraini

. The labels ŷ predicted by the trained model for the samples in Xouti are then compared
to the initial noisy labels ỹ. All samples Xj where ŷj ̸= ỹj are claimed to be potentially mislabeled;
their influence is reduced in further training. The whole procedure of errors detection is performed
t times with different partitions to refine the results. More details are provided in Appendix A.

The Cleanlab framework allows to find erroneous labels by estimating the joint distribution between
the noisy labels and out-of-sample labels calculated by k-fold cross-validation. In our extension
Weakly Supervised Cleanlab (WSCL), we follow a similar approach, but adapt it to the weak
supervision the same way as in WSCW: the cross-validation sets Xtraini

and Xouti sets are built
considering the matched LFs by Eq. 1 (WSCL lfs) or Eq. 2 (WSCL sgn). These sets are used to train
k models, which predict the class probabilities for the held-out samples, which are later transformed
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YouTube
(Acc)

Spouse
(F1)

TREC
(Acc)

SMS
(F1) Avg

Manually Supervised
Gold 94.0 ± 0.0 - 81.9 ± 0.5 91.6 ± 0.2 89.3

Weakly Supervised
Majority Vote 86.8 ± 0.5 41.2 ± 0.2 55.9 ± 0.1 80.0 ± 0.2 66.0
Snorkel-DP (Ratner et al., 2020) 88.0 ± 0.1 41.5 ± 0.7 42.2 ± 2.2 82.8 ± 0.1 63.6

Denoising
CrossWeigh (Wang et al., 2019c) 90.1 ± 0.6 41.6 ± 0.5 40. ± 0.1 79.6 ± 1.4 62.8
Cleanlab (Northcutt et al., 2021) 78.0 ± 0.2 45.1 ± 0.1 58.5 ± 0.1 79.5 ± 0.2 65.3
CL-PyTorch 86.9 ± 0.7 44.4 ± 1.2 55.8 ± 0.3 86.0 ± 0.6 68.3

WS Extentions (Ours)
WSCW 90.8 ± 0.7 42.0 ± 0.0 46.0 ± 0.4 84.0 ± 0.9 65.7
WSCL lfs 87.2 ± 0.4 44.4 ± 0.7 58.9 ± 0.3 86.6 ± 0.3 69.3
WSCL sgn 88.3 ± 0.5 44.6 ± 0.9 56.4 ± 0.3 85.1 ± 0.3 68.6

ULF (Ours)
ULF rndm 92.8 ± 0.1 44.8 ± 0.5 58.0 ± 0.2 85.7 ± 0.5 70.3
ULF lfs 90.8 ± 0.9 44.0 ± 0.9 55.5 ± 0.4 70.0 ± 0.4 65.1
ULF sgn 94.6 ± 0.2 49.8 ± 1.0 58.2 ± 0.2 88.6 ± 0.3 72.8

Table 1: Feature-based ULF results. The best results are marked bold, the second best - underlined.
All results are averaged over 10 trials and reported with the standard error of the mean.

to the exact labels ŷ with respect to the class expected value. The correspondence between noisy and
out-of-sample predicted labels determines the number of samples to be pruned (the same way as in
the default setting of Northcutt et al. 2021). Notably, Cleanlab counts the samples with presumably
incorrect noisy labels ỹ only, but does not provide any estimate about what LFs assigned these noisy
labels (in contrast to ULF). More details are provided in Appendix B.

5 EXPERIMENTS

In order to demonstrate the effectiveness of our approach, we conducted several experiments of
ULF and DeepULF on different datasets and tasks. The results are summarized in Tables 1 and 2;
implementation details are provided in Appendix D2.

Datasets. We evaluate feature-based ULF on four weakly supervised English datasets: (1) YouTube
Spam Classification dataset (Alberto et al., 2015); (2) Spouse Relation Classification dataset (Corney
et al., 2016); (3) Question Classification dataset from TREC-6 (Li & Roth, 2002); (4) SMS Spam
Classification dataset (Almeida et al., 2011). For testing the DeepULF, we also added two topic
classification datasets for African languages (5) Yorùbá and (6) Hausa (Hedderich et al., 2020). We
use the same LFs and evaluation metrics as in previous works for a fair comparison. For all datasets
except Spouse, the gold manual labels are available but used only for Gold baseline. The datasets
and LFs descriptions as well as examples of LFs are provided in Appendix C.

Baselines. Feature-based ULF is compared against five baselines. (1) Gold: the classifier is trained
with gold labels. As this is the only setting where manually obtained gold labels are used, it serves as
an upper-bound baseline. (2) Majority Vote: the classifier is trained on the data and noisy labels ac-
quired with simple majority voting and randomly broken ties. (3) Snorkel-DP: a classifier is trained
using both generative and discriminative Snorkel steps (Ratner et al., 2020), (4) CrossWeigh (Wang
et al., 2019c), (5a) Cleanlab: the original implementation of Northcutt et al. 2021 with Scikit-learn
library, (5b) Cleanlab-PyTorch: our PyTorch-based reimplementation of the Cleanlab algorithm to
provide a fair comparison with our methods implemented with the PyTorch library. DeepULF is
compared towards seven baselines based on fine-tuning of a pre-trained language model. In all ex-
periments, the pre-trained RoBERTa model (Liu et al., 2019) is used for the English datasets, and

2The code will be publicly released on acceptance.
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the pre-trained multilingual BERT (Devlin et al., 2018) - for Yorùbá and Hausa following Hed-
derich et al. 2020. (1) Gold, (2) Majority Vote, and (3) Snorkel-DP: the same baselines as for the
feature-based ULF, but with a pre-trained language model as the end model, (4) FS + RoBERTa:
Flying Squid (Fu et al., 2020) is used as the label model and a pre-trained language model as the end
model, (5) Majority Vote + Cosine, 6) Snorkel-DP + Cosine, and (7) FS + Cosine: the same as the
baselines (2), (3) and (4), but applying the Cosine end model.

Feature-based Experiments. Table 1 reports the results of feature-based learning using a logistic
regression classifier and TF-IDF data representations averaged over ten trials together with the stan-
dard error of the mean. Our WSCW and WSCL extensions of CrossWeigh and Cleanlab frameworks
outperform the corresponding base methods in most cases and lead to consistent improvements com-
pared to the Majority and Snorkel-DP baselines. These results support our initial hypothesis of LFs’
importance in applying cross-validation techniques for weak supervision. At the same time, the ULF
algorithm shows the best result overall on most datasets and even outperforms the model trained on
YouTube data with gold manual annotations. ULFsgn outperforms the classifier trained on the data
with labels chosen by majority voting without any additional denoising by 6.8% on average and
Snorkel-DP by 9.2%, ULFrndm - by 4.3% and 6.7% respectively. Interestingly, the ULFlfs demon-
strates a worse result compared to ULFsign and even ULFrndm. That could be explained by the fact
that more than one LF is matched in significant amounts of data samples in all datasets. As a re-
sult, these samples are included in several training and held-out folds (during the folds splitting in
the cross-validation training according to the matched LFs) and therefore are reestimated multiple
times, while ideally each data sample should be considered only once in each denoising round.

Language model-based experiments. DeepULF results are provided in Table 2. We did not per-
form a grid search for energy considerations and resource constraints but a random search with ten
trials for each model type (DeepULF and baselines) with different hyperparameters. The search
space and the best parameter settings are provided in Appendix D. We report the results for the
model that was selected based on the performance on the development set.3 For the baselines, we
used the Wrench implementations (Zhang et al., 2021). We evaluated DeepULF in four variants
which are determined by the combinations of two additional binary hyper-parameters: the first con-
trols the model used for cross-validation (Alg. 1, line 7), the second controls the end model (Alg. 1,
line 14); in both cases, the options are either simple fine-tuning or followed by additional Cosine
training. Results of all cross-validation and end model combinations are provided in Appendix E,
the best ones are included to Table 2. DeepULF outperforms the baselines on five out of six datasets
and shows the second-best result for Yorùbá data. Note that both feature-based ULF and DeepULF
do not involve manually annotated data or manual correction and cannot be directly compared to the
results reported for settings that include manual annotations (Karamanolakis et al., 2021; Awasthi
et al., 2020).

YouTube
(Acc)

Spouse
(F1)

TREC
(Acc)

SMS
(F1)

Yorùbá
(F1)

Hausa
(F1) Avg

Manually Supervised
Gold 98.8 - 96.6 97.7 67.3 83.5 88.8
Weakly Supervised
Majority Vote 93.2 21.3 68.6 93.0 48.1 43.9 61.4
Snorkel-DP 95.6 32.6 61.8 94.6 58.7 45.7 64.8
FS (Fu et al., 2020) 94.0 14.9 35.8 23.7 32.4 45.1 41.0
Cosine-based (Yu et al., 2021)
Majority Vote + Cosine 96.4 33.3 65.8 93.6 52.6 45.4 64.5
Snorkel-DP + Cosine 96.0 28.1 73.8 96.1 55.0 46.5 65.9
FS + Cosine 95.6 24.9 38.6 90.1 33.3 41.5 54.0

DeepULF (Ours) 96.8 36.9 76.8 96.1 55.8 48.2 68.4

Table 2: DeepULF results. The best results are marked bold, the second best - underline.

3Trained models will be publicly released on acceptance.
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6 CASE STUDY

For the case study, we chose a couple of samples with the wrong weak labels (i.e., the annotation
done by labeling functions was incorrect) and check their labels after the ULF training. These
examples are provided in Figure 4.

Sample 1 is clearly a SPAM comment. However, it is misclassified and assigned to the HAM
class, because no LF corresponding to the SPAM class matched in it (this sample includes a spam
keyword ”subscribe”; however, as it is reduced to ”sub”, the corresponding LF did not match),
but a LF short comment (labeling a sample as HAM if it is shorter than 5 words) did. Sample 2 is
also a SPAM message not covered by any keyword-based LFs (as they are primarily concerned with
cases where a user asks to subscribe to the channel, e.g. keywords ”subscribe”, ”my”, while here
there is a request to like the comment). Nevertheless, again, a signal from the LF short comment
wrongly assigns this sample to the HAM class. Thus, the LF short comment consistently mislabels
samples that, although short, should still be classified as SPAM. ULF detects this LF and adjusts
its assignment: it now corresponds to the HAM class with only roughly a 40% probability, and not
100% as before; with the remaining 60% it corresponds to the SPAM class. As a result, after label
recalculation, both of these samples obtain a correct label SPAM.

In sample 3, a word ”subscribe” (which is usually used in spam comments and, therefore, was
leveraged to build a SPAM class LF ”keyword subscribe”) is mentioned, but in a context related
to the video; This makes this message not-SPAM in contrast to the assigned label HAM in effect.
In the same way, the keyword ”password”, which is defined as a LF corresponding to the SPAM
class in SMS dataset (in order to detect spam messages like ”Send me your id and password”), is
matched in a HAM sample 4 and annotates it with SPAM label. Again, ULF detects these noisy LFs
and changes their assignment, which results in a change of the sample labels.

The samples where two LFs from different classes match can be assigned to either of the two classes
with a 50% probability. In sample 5, the tie was broken randomly in favor of a wrong SPAM label.
After the ULF reassignments, the LF keyword direct was related to SPAM class with 70% instead
of 100%. Although the assignment of LF keyword thanks also changed slightly (90% to the HAM
class and 10% to the SPAM class), overall the HAM class outweighed, and the sample label was
changed to the correct one.

Figure 4: Examples of changed labels in YouTube and SMS datasets after denoising with ULFsgn.

7 CONCLUSION

In our work, we explored the denoising of weakly supervised data using information from labeling
functions that annotate the data. Our original intuition was that the noise specific to some LFs
can be detected by training a model that does not use those LFs signals (i.e., the LFs are held-out)
and then comparing the predictions of that model to the labels generated by the held-out LFs. A
mismatch between such out-of-sample predictions and the weak labels could point to potentially
incorrect labels produced by the noisy LF. This way, improving the weak labels can be done without
involving any additional source of annotation or external knowledge but with the data itself.

This idea was realized in our new extensions of two k-fold cross-validation frameworks, initially
proposed for denoising the manually annotated data (CrossWeigh and Cleanlab), as well as in our
new method ULF for unsupervised labeling functions denoising. The extensive experiments with
feature-based ULF and DeepULF demonstrate the effectiveness of our approach and confirm the
significant role of labeling functions in weakly supervised data denoising.
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dia - a large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web Journal,
6, 01 2014. doi: 10.3233/SW-140134.

11

https://aclanthology.org/W18-3402
https://aclanthology.org/W18-3402
https://doi.org/10.18653/v1/2020.emnlp-main.204
https://doi.org/10.18653/v1/2020.emnlp-main.204
https://arxiv.org/abs/2102.13129
https://arxiv.org/abs/2102.13129
https://aclanthology.org/P11-1055
https://doi.org/10.18653/v1/2021.naacl-main.66
https://doi.org/10.18653/v1/2021.naacl-main.66
https://aclanthology.org/P08-1119
https://aclanthology.org/P08-1119
https://doi.org/10.18653/v1/2020.acl-main.193
https://aclanthology.org/D19-1362


Under review as a conference paper at ICLR 2023

Jiahui Li, Wen Chen, Xiaodi Huang, Shuang Yang, Zhiqiang Hu, Qi Duan, Dimitris N. Metaxas,
Hongsheng Li, and Shaoting Zhang. Hybrid supervision learning for pathology whole slide im-
age classification. In Marleen de Bruijne, Philippe C. Cattin, Stéphane Cotin, Nicolas Padoy,
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A WEAKLY SUPERVISED CROSSWEIGH

The original CrossWeigh framework (CW, Wang et al. 2019c) was proposed for tracing inconsistent
labels in the crowdsourced annotations for the NER task. After randomly splitting the data into k
folds and building k training and hold-out sets, CrossWeigh additionally filters the training samples
that include the entities matched in hold-out folds samples. The intuition behind this approach is: if
an entity is constantly mislabeled, the model would be misguided; but the model trained without it
would be rid of this confusion.

We consider this approach quite promising for detecting unreliable LFs in weakly supervised data in
a similar way. If a potentially erroneous LF systematically annotates the samples wrongly, a reliable
model trained data without it will not make this mistake in its prediction, and, thus, the error will be
traced and reduced. Our new Weakly Supervised CrossWeigh method (WSCW) allows splitting
the data not entirely randomly but considering the LFs so that all LFs matched in a test fold are
eliminated from the training folds.

More formally, we, firstly, randomly split labeling functions L into k folds {f1, ..., fk}. Then, we
iteratively take LFs from each fold fi as test LFs and the others as training LFs. So, all samples
where no LFs from hold-out fold match become training samples, while the rest are used for testing.

Xtraini = {xj |Lxj ∩ fi = ∅}
Xouti = X \Xtraini

After that we train the k separate models on Xtraini
and evaluate them on Xouti . In the same way

as in the original CrossWeigh algorithm, the labels predicted by the trained model for the samples
in the hold-out set ŷ are compared to the initial noisy labels y. All samples Xj where ŷj ̸= yj
are claimed to be potentially mislabeled; their influence is reduced in further training. The whole
procedure of error detection is performed t times with different partitions to refine the results. The
sample weights wxN

are then calculated as wxj = ϵcj , where cj is the number of times a sample xj

was classified as mislabeled, 0 ≤ cj ≤ t, and ϵ is a weight reducing coefficient.

B WEAKLY SUPERVISED CLEANLAB

The second method we introduce is Weakly Supervised Cleanlab (WSCL) - an adaptation of Clean-
lab framework Northcutt et al. (2021) for weak supervision. In the same way as in WSCW, not data
samples, but the labeling functions L are split into k folds {f1, ..., fk} and used for building the
Xtraini and Xouti sets, 1 < i < k, for training k models.
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In contrast to WSCW, for each sample xi the label is not directly predicted on the Xouti , but the
probability vector of class distribution p̂(y = j;xi, θ), j ∈ K is considered. The exact labels ŷ are
calculated later on with respect to the class expected self-confidence value tj (see Northcutt et al.
2021):

tj :=

∑
Xj

p̂(y = j;xi, θ)

|Xj |
, (8)

where Xj = {xi ∈ Xy=j} , 1 < j < c

A sample xi is considered to confidently belong to class j ∈ K if the probability of class j is greater
than expected self-confidence for this class tj or the maximal one in the case of several classes is
probable:

ŷi = argmax
j∈[K]:

p̂(y=j;xi,θ)≥tj

p̂(y = j;xi, θ) (9)

The samples with no probability that would exceed the thresholds have no decisive label and do not
participate in further denoising.

After that, a class-to-class confident joint matrix Cy,ŷ is calculated, where:

Cy,ŷ[j][k] = |{xi ∈ X|yi = j, ŷi = j}|

Notably, Cy,ŷ contains only the information about correspondence between noisy and out-of-sample
predicted labels (the same way as in Northcutt et al. 2021). So, it gives the idea about the number
of samples with presumably erroneous noisy labels y but does not give us any insights about the
erroneous labeling functions that assigned this noisy label to this sample (in contrast to the ULF
approach we present in Section 3).

The confident matrix Cy,ŷ is then calibrated and normalized in order to obtain an estimate matrix
of the joint distribution between noisy and out-of-sample predicted labels Q̂y,ŷ , which determines
the number of samples to be pruned. We perform the pruning by noise rate following the Cleanlab
default setting: n ·Qyi,ŷj , i ̸= j samples with max(p̂(y = j)− p̂(y = i)) are eliminated in further
training.

C DATASETS

YouTube (Alberto et al., 2015) A spam detection dataset was collected from the YouTube video
comments. The samples that are not relevant to the video (e.g. advertisement of user’s channel or ask
for subscription) are classified as SPAM, while others belong to the HAM class. We use the same
labeling functions as in (Ratner et al., 2020); they were created using keywords, regular expres-
sions, and heuristics. For example, there is a labeling function keyword my which corresponds to
class SPAM, meaning that if a sample contains the word ”my”, it will be assigned to the SPAM
class. Examples of other labeling functions are KEYWORD SUBSCRIBE, KEYWORD PLEASE,
KEYWORD SONG (all are the keyword-based), SHORT COMMENT (i.e., if a YouTube comment is
short, it is probably not spam; thus, samples less than 5 words long would be classed as HAM) and
so on.

Spouse (Corney et al., 2016) A relation extraction dataset based on the Signal Media One-Million
News Articles Dataset, which main task is to define whether there is a spouse relation in a sample.
We use the Snorkel annotation (Snorkel); the labeling functions were created based on keywords
(e.g. spouse, husband), spouse relationships extracted from DBPedia (Lehmann et al., 2014),
and language patterns (e.g. check whether the person mentioned in a sample have the same last
name).

TREC (Li & Roth, 2002) A question classification dataset that maps each data sample to one of
6 classes. The labeling functions were generated based on keywords (Awasthi et al., 2020), e.g.
which, what, located, situated keywords relate a sample to the class LOCATION.
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SMS (Almeida et al., 2011) A spam detection dataset comprised of text messages. The annotation
(Awasthi et al., 2020) includes keyword-based and regular expression-based labeling functions. For
example, a regex-based labeling function:

( |ˆ)(won|won)[ˆ\w]* ([ˆ\s]+ )*(claim,|claim)[ˆ\w]*( |$)

corresponds to class SPAM (e.g. as in a sample 449050000301 You have won a ??2,000 price! To
claim, call 09050000301.).

Yorùbá and Hausa (Hedderich et al., 2020) Topic classification datasets of the second (Hausa)
and the third (Yorùbá) most spoken languages in Africa comprised of news headlines. The weak
keyword rules are provided by the authors (Hedderich et al., 2020).

YouTube Spouse TREC SMS Yorùbá Hausa
Train Data 1586 22254 4965 4502 1340 2045
Valid Data 150 2711 500 500 189 290
Test Data 250 2701 500 500 379 582
#Classes (K) 2 2 6 2 7 5
#LFs (L) 10 9 68 73 19897 18624
#Unlabeled 195 16520 242 2719 0 0
Avg LF Hits 1.6 33.7 1.7 0.5 3.0 2.9
LF Accuracy 81%± 2.0 53%± 0.6 50%± 2.6 60%± 1.6 55%± 1.5 54%± 0.3
LF Coverage 87% 25% 85% 40% 100% 100%

Table 3: Statistics of all the datasets. The LF accuracy metrics are calculated with majority vote
without any model training reported across 5 runs with standard deviation in order to reduce the
instability caused by randomly broken ties.

D IMPLEMENTATION DETAILS

Feature-based ULF. The feature-based ULF is realized with logistic regression model; the train-
ing data are encoded with TF-IDF vectors. For training, we set the number of epochs to 20 and
applied the early stopping with patience = 5. Each experiment was run 10 times with different
initializations. Development set is used for early stopping as well as to estimate the number of iter-
ations I: initially, it is set to I = 20, but if training labels do not change after three iterations, the
algorithm stops, and the last saved model is used for final testing. The actual number of iterations
in training of the best performing ULF model ULFsng, alongside other hyperparameter values found
using grid-search, can be found in Table 10; the search space is provided in Table 4.

Hyperparameter Values

Multiplying coefficient p 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9
Learning rate lr 1e-1, 1e-2, 1e-3, 1e-4
Number of folds k 3, 5, 8, 10, 15, 20 (with respect to the overall number of LFs)
Non-labeled data rate λ 0, 0.5, 1, 2, 3

Table 4: Feature-based ULF: hyperparameter values tried in grid search.
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YouTube Spouse TREC SMS

Multiplying coefficient p 0.5 0.2 0.3 0.1
Learning rate lr 1e-2 1e-2 1e-1 1e-1
Number of folds k 8 3 3 10
Number of iterations I 5 1 1 2
Non-labeled data rate λ 0 3 1 0.5

Table 5: ULFsng selected hyperparameters.

DeepULF. The pre-trained language models were downloaded from HuggingFace4. To encode the
features, we used a multilingual pre-trained BERT model5 for Yoruba and Hausa datasets and pre-
trained RoBERTa model6 for others and followed the Wrench encoding method (Zhang et al., 2021).
The gradient-based optimization was performed with AdamW Optimizer and linear learning rate
scheduler, and the early stopping was applied based on the evaluation metric values on the validation
set. For the baselines and Cosine training, we took the parameters listed by zhang2021wrench.
Additionally, we include the label prediction parameter: if it equals ”soft”, the probabilistic labels
are used for training; otherwise (”hard”) a label is the one-hot encoding of the most probable class
(the ties are broken randomly). ULF-specific parameter search space was defined heuristically. All
parameters are provided in Table 6.

In order to reduce computational load we used the random parameter search instead of grid search.
Specifically, we tried 10 random parameter combinations from search space and selected the one
which performed the best on the development set.

Hyperparameter Values

Multiplying coefficient p 0.1, 0.3, 0.5, 0.7, 0.9
Learning rate lr 1e-4, 1e-5, 1e-6
Number of folds k 3, 5, 7 (with respect to the overall number of LFs)
Number of iterations I 1, 2, 3, 4
Confident regularization weight λ 0.01, 0.1
The confident threshold ξ 0.2, 0.4, 0.6, 0.8
Label prediction soft, hard

Table 6: DeepULF: hyperparameter values tried in random search.

YouTube Spouse TREC SMS Yorùbá Hausa

Multiplying coefficient p 0.5 0.1 0.1 0.3 0.1 0.1
Learning rate lr 1e-4 1e-06 1e-05 1e-05 1e-06 1e-06
Number of folds k 2 3 3 3 2 2
Number of iterations I 1 2 1 1 2 2
Confident regularization weight λ 0.1 0.01 0.1 0.1 0.1 0.05
Confident threshold ξ 0.8 0.2 0.6 0.8 0.2 0.8
Label prediction soft soft soft soft soft soft

Table 7: DeepULFFT FT selected hyperparameters.

4https://huggingface.co/models
5https://huggingface.co/bert-base-multilingual-cased
6https://huggingface.co/roberta-base
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YouTube Spouse TREC SMS Yorùbá Hausa

Multiplying coefficient p 0.5 0.1 0.3 0.3 0.1 0.1
Learning rate lr 1e-4 1e-06 1e-06 1e-05 1e-05 1e-05
Number of folds k 2 3 5 3 2 2
Number of iterations I 1 3 1 1 2 1
Confident regularization weight λ 0.1 0.01 0.01 0.1 0.1 0.05
Confident threshold ξ 0.8 0.2 0.8 0.8 0.2 0.4
Label prediction soft hard soft soft soft soft

Table 8: DeepULFFT COS selected hyperparameters.

YouTube Spouse TREC SMS Yorùbá Hausa

Multiplying coefficient p 0.1 0.1 0.1 0.3 0.1 0.1
Learning rate lr 1e-06 1e-06 1e-05 1e-06 1e-06 1e-05
Number of folds k 3 3 3 5 7 2
Number of iterations I 2 1 1 2 4 1
Confident regularization weight λ 0.1 0.01 0.1 0.01 0.05 0.05
Confident threshold ξ 0.2 0.2 0.6 0.4 0.4 0.4
Label prediction soft hard soft soft soft soft

Table 9: DeepULFCOS FT selected hyperparameters.

YouTube Spouse TREC SMS Yorùbá Hausa

Multiplying coefficient p 0.7 0.1 0.3 0.1 0.1 0.1
Learning rate lr 1e-05 1e-06 1e-06 1e-05 1e-06 1e-05
Number of folds k 5 3 5 7 7 2
Number of iterations I 4 2 2 1 1 2
Confident regularization weight λ 0.01 0.01 0.01 0.05 0.05 0.05
Confident threshold ξ 0.2 0.2 0.8 0.4 0.4 0.4
Label prediction soft hard soft hard soft hard

Table 10: DeepULFCOS COS selected hyperparameters.

Both feature-based ULF and DeepULF were implemented with Python and PyTorch (Paszke et al.,
2019) in the setting of the weak supervision framework Knodle (Sedova et al., 2021). By providing
an access to all WS components Knodle allowed us to implement and benchmark all algorithms
described above. ULF experiments were performed on a machine with a CPU frequency of 2.2GHz
with 40 cores; DeepULF experiments were run on asingle Tesla V100 GPU on Nvidia DGX-1. The
full setup took on average 20 hours for each dataset for ULF and 96 hours for DeepULF.

E DEEPULF RESULTS

YouTube
(Acc)

Spouse
(F1)

TREC
(Acc)

SMS
(F1)

Yorùbá
(F1)

Hausa
(F1)

DeepULFFT FT 96.8 22.0 68.2 96.1 54.6 43.0
DeepULFFT Cos 94.4 36.9 76.6 96.1 54.2 48.2
DeepULFCos FT 95.2 21.3 68.6 96.1 55.8 43.6
DeepULFCos Cos 94.8 33.0 76.8 96.1 54.2 44.5

Table 11: DeepULF results. All possible cross-validation and end model combinations.
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