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ABSTRACT

Molecule-and-text cross-modal representation learning has emerged as a promising
direction for enhancing the quality of molecular representation, thereby improving
performance in various scientific fields. However, most approaches employ a global
alignment approach to learn the knowledge from different modalities that may
fail to capture fine-grained information, such as molecule-and-text fragments and
stereoisomeric nuances, which is crucial for downstream tasks. Furthermore, it is
incapable of modeling such information using a similar global alignment strategy
due to the lack of annotations about the fine-grained fragments in the existing
dataset. In this paper, we propose Atomas, a hierarchical molecular representation
learning framework that jointly learns representations from SMILES strings and
text. We design a Hierarchical Adaptive Alignment model to automatically learn
the fine-grained fragment correspondence between two modalities and align these
representations at three semantic levels. Atomas’s end-to-end training framework
supports understanding and generating molecules, enabling a wider range of down-
stream tasks. Atomas achieves superior performance across 12 tasks on 10 datasets,
outperforming 10 baseline models thus highlighting the effectiveness and versatility
of our method. Scaling experiments further demonstrate Atomas’s robustness and
scalability. Moreover, visualization and qualitative analysis, validated by human
experts, confirm the chemical relevance of our approach.

1 INTRODUCTION

Molecular representation learning is crucial in fields like drug discovery (Drews, 2000; Liu et al.,
2023b), virtual screening (Walters et al., 1998; Goel et al., 2023), and molecular design (Ye et al., 2023;
Thomas et al., 2023). Recent advances in molecule-and-text cross-modal models (Liu et al., 2023c;
Luo et al., 2023; Liu et al., 2023e) have enhanced the generalization of molecular representations
by integrating internal structures (SMILES strings, structural data) and external domain knowledge
(textual descriptions, knowledge graphs).

However, current approaches encounter three primary challenges. (1) Fine-Grained Correspon-
dence: Existing molecule-and-text alignment methods (Christofidellis et al., 2023; Edwards et al.,
2022; Liu et al., 2023c; Luo et al., 2023; Liu et al., 2023e) struggle to effectively capture fine-grained
correspondence related to local parts within different modalities, which is essential for downstream
molecular tasks (Xia et al., 2023). For example, molecule captions generated by global alignment
often fail to distinguish between ‘D-glutamate‘ and ‘L-glutamate‘ enantiomers, indicating a lack
of sensitivity to subtle details. This oversight can lead to inaccuracies in chemical analysis and
interpretation. Currently, there is a lack of fine-grained datasets with explicit annotations of local
correspondences between molecules and text. Acquiring such datasets is difficult due to the com-
plexity and specialization of molecular strings and text descriptions, which require extensive human
expert annotation. This limitation hinders the ability of globally aligned methods to effectively learn
fine-grained information and address fine-grained alignment challenges. (2) Molecular Modality
Focus: Current fine-grained alignment methods (Feng et al., 2023; Ji et al., 2022) focus on molecular
modality and fine-grained aligning substructures. The cross-modality alignment molecular fragments
and textual descriptions is largely overlooked. Existing segmentation tools for text and SMILES
struggle with complexity and specialization, making it challenging to construct hierarchical text-
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The molecule is a dipeptide obtained by formal condensation of the 
carboxy group of L-lysine with the amino group of acid.

Retrieval

GenerationCyclopropyl  carboxylic fluoro piperazin-1-yl fluoro 
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Ciprofloxacin is quinolin-4(1H)-one bearing cyclopropyl, carboxylic acid, 

fluoro and piperazin-1-yl substituents at positions 1, 3, 6 and 7, respectively. 

N1CCN(CC1)C(C(F)=C2)=CC(=C2C4=O)N(C3CC3)C=C4C(=O)O

Molecule Generation

Molecule Caption

Molecule-to-Text Retrieval

Text-to-Molecule Retrieval

Figure 1: Atomas is a hierarchical, end-to-end model designed to discover and automatically align
local substructures of input while performing conditional generation. The learned cross-modal
representations can be adapted to both understanding tasks (retrieval tasks) and generation tasks.

molecular pairs. (3) Generative Task Optimization: Most approaches (Feng et al., 2023; Yu et al.,
2024; Ji et al., 2022; Liu et al., 2022) are designed for prediction tasks and do not optimize aligned
representations for generative tasks.

To this end, we propose Atomas, a hierarchical cross-modal molecular representation learning
framework that jointly learns representations from SMILES and text. Figure 1 provides a conceptual
illustration of Atomas. In Atomas, we exploit the unique characteristic of SMILES as a specialized
form of text and employ a unified encoder for both SMILES and text modalities. This results in
more isomorphic representations for both modalities, thereby facilitating subsequent alignment tasks.
Meanwhile, considering the textual description of molecules naturally has a hierarchical structure
and the need for local molecular alignment, we design a Hierarchical Adaptive Alignment (HAA)
model which comprises two components: Adaptive Polymerization Module (APM) and Weighted
Alignment Module (WAM). APM assigns the quantities of the low-level tokens into high-level tokens
(fragments) for the single modality, while WAM leverages token representations from both SMILES
and text modalities to automatically learn the matching of token and aligns the representation of two
modalities in a set-wise manner. By iteratively invoking APM and WAM, we devised a three-level
alignment scheme (atom level, fragment level, and molecule level). This hierarchical alignment
structure enables improved learning of local alignment across different abstraction levels within the
two modalities. Additionally, by incorporating a conditional decoder within the alignment process,
Atomas can optimize the representation of molecule and text specifically for generation tasks. Our
contributions are summarized as follows:

• To the best of our knowledge, Atomas is the pioneering molecule-and-text representation learning
framework that tackles the challenge of aligning local information without the need for explicit
labeling between text fragments and molecular substructures.

• We introduce the concept of Hierarchical Adaptive Alignment, enabling automatic learning the
fine-grained correspondence between molecule and text at three semantic levels from coarse to fine.
Atomas achieves state-of-the-art performance on a wide range of molecule-text tasks, including
molecule and text retrieval, text-based de novo molecule generation, and molecule captioning.

• Atomas brings new insights into molecule generation tasks: (1) Aligning before generation improves
the efficacy of molecule conditional generation tasks. (2) Fine-grained hierarchical alignment
enhances the quality of controllable molecule generation. (3) Joint optimization within a unified
training framework surpasses the efficacy of a two-stage approach for molecular generation tasks.
(4) Employing a unified encoder may advantageous in scenarios characterized by data scarcity.

2 RELATED WORKS

The primary challenge in multi-modal molecular representation learning is effectively leveraging
information from various modalities to learn common representations shared between them, i.e.,
aligning different modalities. Existing multi-modal molecule alignment approaches can be broadly
categorized into two types: internal modalities and external modalities. Internal molecule structure
representations include 1D fingerprints and molecule strings (specifically, SMILES - Simplified
Molecular Input Line Entry System), 2D topological graphs, and 3D conformational structures.
External functional descriptions encompass textual descriptions and biological knowledge graphs.

Molecule-and-Text Cross-Modal Models: (Edwards et al., 2022; Christofidellis et al., 2023; Liu
et al., 2023f;c; Luo et al., 2023; Chen et al., 2024) investigate the interaction between internal and
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Figure 2: Illustration of the proposed Atomas. Atomas is composed of four components. (1)
Unified Encoder encodes both the input molecule and its corresponding textual description. (2) Global
Alignment module projects and aligns the global features of the molecule and text. A momentum
model is used to ensure alignment consistency. (3) Hierarchical Adaptive Alignment aligns the
molecule and text at three levels, including the Adaptive Polymerization module which clusters the
original token features into distinct representation sets, and the Weighted Alignment module which
aligns two modalities in a set-wise manner. (4) Conditional Decoder takes the molecule and text
embedding as input and generates the target modality.

external modalities, exchanging information between molecular structures and textual descriptions to
complement and enhance the overall information content. However, these methods only consider
global representations of SMILES and text, overlooking finer-grained modal interactions. Atomas
introduces hierarchical fine-grained alignment between SMILES and text, which is crucial for
controlled molecule generation and molecular captioning, enabling better performance. While
(Edwards et al., 2022; Christofidellis et al., 2023) treat conditional generation tasks as translation
tasks without establishing alignment, Atomas demonstrates the efficacy of performing preliminary
alignment. Unlike (Liu et al., 2023f;c; Luo et al., 2023; Chen et al., 2024)’s two-stage training
strategies, Atomas employs a joint optimization approach, which is essential for effectively learning
and generating molecular representations. More discussions are provided in Appendix A.1.

Molecular Modalities Representation Learning: (Feng et al., 2023; Yu et al., 2024) focus on
fine-grained aligning molecular modalities and tailoring for prediction tasks. Different from these
paradigms, Atomas addresses cross-modal learning between molecule and text modalities. Chal-
lenges arise from the lack of expert fine-grained textual annotations for molecules and difficulty in
constructing positive and negative pairs, as a text fragment may suit multiple molecule substructures.
These challenges make Atomas’ achievements in this field particularly noteworthy. See Appendix A.2
for more discussions.

3 METHODOLOGY

In this section, we present the details of each component of Atomas. Figure 2 illustrates the overall
framework of Atomas. The algorithm details are shown in Appendix D.

3.1 MOLECULE-TEXT UNIFIED ENCODING

For a SMILES-text pair M = (S, T ), SMILES S and text description T are fed into the unified
encoder fθ since both are essentially languages. We discuss the advantages of utilizing a unified
encoder in Section 4.6. The input T with Nta tokens is embedded into word sequence Ta =

{
tia
}Nta

i=1
,

3
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where tia ∈ RDt denotes the feature vector of the i-th word. The input S with Nsa tokens is embedded
into atom sequence Sa =

{
sja

}Nsa

j=1
, where sja ∈ RDs . Since the T5 model does not have the [CLS]

token, we first aggregate the Ta and Sa by a projection module proj (·) to obtain the global feature
tg and sg :

tg = proj(Ta) = W⊤
t Ta + bt, sg = proj(Sa) = W⊤

s Sa + bs, (1)

where Wt ∈ RNt×1 and Ws ∈ RNs×1 are the learned matrix, bt and bs are the bias terms.

We then align the global representation pair (tg, sg) by performing cross-modal contrastive learning.
To ensure sufficient negative pairs and consistent feature representation from both modalities, we
follow (He et al., 2020) to introduce a momentum unified encoder fm

θ and two queues for text t and
SMILES s denote as Qt and Qs, respectively. fm

θ is updated by fθ in the following way,

fm
θ ← αfm

θ + (1− α)fθ, (2)

where α ∈ [0, 1) is a momentum coefficient parameter and only the parameters fθ are updated by
back-propagation.

Qt and Qs store the global feature t
′

g and s
′

g generated by fm
θ , thereby creating two large and

consistent dictionaries that cover a rich set of negative samples. By doing this, we calculate the global
similarity score of text-to-SMILES within the specified queue range instead of in a mini-batch:

Sg(t, s
′
) =

exp(sim(tg, s
′

g)/τ)∑Q
q=1 exp(sim(tg,Q

q
s)/τ)

, (3)

where τ is a learnable temperature parameter. and sim(·, ·) is the similarity metric, here we calculate
it using the cosine similarity function. Similarly, we can obtain the global SMILES-to-text similarity
score Sg(s, t

′
). Inspired by (Li et al., 2021; 2022), soft labels are created from the momentum

encoder fm
θ as training targets to account for the potential positives in the negative pairs. Then the

global alignment loss Lga can be formulated as:

Lga = −1

2

{
[(1−β)yt2s+βSg(t

′
, s

′
)]log(Sg(t, s

′
))+[(1−β)ys2t+βSg(s

′
, t

′
)]log(Sg(s, t

′
))
}
,

(4)
where β is a hyperparameter controlling label smoothness. ys2t and yt2s denote ground-truth
similarity, with negative pairs assigned a probability of 0 and positive pairs a probability of 1.

3.2 HIERARCHICAL ADAPTIVE ALIGNMENT

Given an encoded SMILES-text pair M = (S,T ), it is challenging to explicitly extract the corre-
sponding fine-grained information (e.g., functional groups in SMILES and phrases in text) from S
and T . To address this, we propose an adaptive polymerization module that clusters token-wise
features into disentangled representation sets. Subsequently, we introduce a weighted alignment
module to estimate the correlation between the two modalities and identify potential active units
in a set-wise manner. Figure 2 illustrates the framework of hierarchical adaptive alignment. The
adaptive polymerization module includes an assignment step and a merge step. The weighted
alignment module performs the alignment step. By stacking these two modules, we expand the
fine-grained alignment between SMILES and text to the hierarchical interaction. The effectiveness of
this hierarchical adaptive alignment is demonstrated in Table 7.

Specifically, we perform hierarchical adaptive alignment at three levels: atom level, where atom is
aligned with word; fragment level, where functional group is aligned with phrase; and molecule
level, where molecule is aligned with paragraph. Thus, it process alternates between three steps in a
level-wise manner: assignment step, merge step, and alignment step.

Assignment Step: We utilize a learnable token aggregation module to implement adaptive poly-
merization. The density peak-based clustering algorithm with k-nearest neighbors (Du et al., 2016)
(DPC-KNN) is utilized to assign tokens to clusters. Starting with the atom level, we firstly take atom
(word) token features Sa =

{
sja

}Nsa

j=1
into one-dimensional convolution to extract local features.

Sa = LayerNorm(Conv(Sa,W , b) + Sa). (5)

4
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Then we compute the local density ρ of each atom token feature sja according to it’s k-nearest
neighbors:

ρj = exp

−1

k

∑
sia ∈ KNN

(
sja

)
∥∥sia − sja

∥∥2
2√

Ds

,

+ ϵ, (6)

where sia and sja are their corresponding SMILES token features. Ds is the channel number of
SMILES token features. KNN (sja) denotes the k-nearest neighbors of an atom token j. ϵ is a random
noise that is randomly sampled from the uniform distribution within the interval [0,1), ensuring that
no tokens have the same density.

Then, we calculate the distance indicator δ for each token feature sja by determining the minimum
distance between it and any other token possessing a higher local density. As for the token with the
highest local density, its indicator is determined as the maximum distance between it and any other
tokens:

δj =

{
mini:ρi>ρj

∥∥sia − sja
∥∥2 , if ∃i s.t. ρi > ρj

maxi
∥∥sia − sja

∥∥2 , otherwise.
. (7)

Here, ρ serves as an indicator of the local density of tokens, which reflects the number of tokens
located in the vicinity of sja. δ represents the distance of a token from other high-density tokens,
which measures how far it is from other tokens that are also located in highly dense regions. Together,
ρ and δ provide valuable information about the distribution and proximity of sia ∈ Sa.

We identify tokens with relatively high values of ρ× δ as cluster centers and then assign all other
tokens to their nearest cluster center based on the Euclidean distance d. This clustering approach
enables us to decode the input tokens into coherent semantic units, providing a more structured and
meaningful representation for both word sequence Ta and atom sequence Sa.

Merge Step: Tokens with similar semantic meanings may not have equal importance, so in the merge
step we first assign a weight to each token feature and calculate the weighted average token features
of each cluster to represent the corresponding cluster:

Sj
m =

∑Nj
sf

k=1 wkS
k
a∑Nj

sf

k=1 wk

, (8)

where w = MLPω(Sa) is the weight of each token feature in Sa, N j
sf represents the number of

features within the j-th cluster at the fragment level, Sk
a is the k-th token feature of Sa and wk is the

corresponding weight score. Sj
m is the j-th weighted average token feature.

Then we apply an attention mechanism on merged token features. Sm are used as queries Q and
key K, value V corresponding to the original token features Sa. We take the resulting output of the

attention module as a higher semantic level features, i.e., functional group sequence Sf =
{
sjf

}Nsf

j=1
,

where sjf ∈ RDs . Perform the same operation of the above two steps on word tokens to get phrase

sequence Tf =
{
tif
}Ntf

i=1
, where tif ∈ RDt , Ntf represents the number of clusters formed by word

tokens. We repeat this process at the fragment level to obtain the molecule-level features.

Alignment Step: After the assignment and merge steps, tokens are polymerized into semantic units.
we perform the weighted alignment module (Wang et al., 2022) on each level in set-wise between
the SMILES and text to get the weighted average maximum alignment score. Starting with the atom
level, we can obtain the text-to-SMILES similarity score:

Sa
haa(t, s) =

Nta∑
i=1

wi
t(Ta)

Nsa
max
j=1

aij , aij =
(tia)

⊤sja∥∥tia∥∥2 ∥∥sja∥∥2 , (9)

where wt = Softmax(MLPωt
(Ta)) represent the learnable weights for each textual token. The

normalized alignment score aij captures the similarity between the i-th description token feature and
j-th SMILES token feature. Then the hierarchical adaptive alignment loss at the atom level can be
calculated as:

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

La
haa = −1

2

[ 1
B

B∑
k

log
exp(Sa

haa(tk, sk)/τ)∑B
l exp(Sa

haa(tk, sl)/τ)
+

1

B

B∑
k

log
exp(Sa

haa(sk, tk)/τ)∑B
l exp(Sa

haa(sl, tk)/τ)

]
, (10)

where B is the batch size and τ is the temperature hyperparameter. The same alignment operation is
performed on the fragment level and molecule level to get Lf

haa and Lm
haa.

3.3 CONDITIONAL GENERATION BASED ON ALIGNED REPRESENTATION

We employ a conditional generation approach to generate the target modality based on the aligned

representations denoted as T̃a =
{
t̃
i
a

}Nta

i=1
and S̃a =

{
s̃ja

}Nsa

j=1
. In text-based molecule generation

task, the decoder takes an aligned textual description T̃a as input. The decoder then iteratively attends
to previously generated tokens ŝ<j

a via self-attention and input condition T̃a via cross-attention.
Using these attended representations, the decoder predicts the probability of future SMILES tokens
P (ŝja|ŝ<j

a , T̃a). Then the decoder can be optimized by minimizing the negative log-likelihood of
label SMILES s tokens given textual description T̃a and the same operation is applied to the molecule
captioning task:

Llm = −
Nsa∑
j=1

logP (ŝja|ŝ<j
a , T̃a). (11)

3.4 TRAINING OBJECTIVES

The goal of Atomas is to align the molecule and text at different levels of granularity while condition-
ally reconstructing the molecule or text description. We jointly optimize the global alignment loss
Lga, hierarchical adaptive alignment loss Lhaa, and language modeling loss Llm in an end-to-end
manner. The overall loss function of Atomas simultaneously:

min
θ
Lga + Lhaa + Llm, Lhaa = La

haa + L
f
haa + L

m
haa, (12)

where θ denotes all learnable parameters of Atomas, La
haa, Lf

haa, Lm
haa operates at the atom level,

fragment level, and molecule level, respectively.

4 EXPERIMENTS

In this section, we present the quantitative and qualitative results of Atomas. The experiment is set
to evaluate the effectiveness of Atomas in four aspects: (1) improving the efficiency of retrieval
and property prediction tasks, (2) enhancing the generation capability of generation tasks, (3)
evaluating the effectiveness of each module, (4) chemical significance and scalability.

4.1 INITIAL TRAINING

Table 1: Performance comparison on molecule-text re-
trieval task. Bold and underlined indicate the best and
second-best results, respectively. Details are provided in
Section 4.2 and Appendix G.

Text to Molecule Molecule to TextModel (No Fine-tuning) R@1 R@5 R@10 MRR R@1 R@5 R@10 MRR
1D SMILES + 2D Graph

MoMu 4.90 14.48 20.69 10.33 5.08 12.82 18.93 9.89
MolCA 35.09 62.14 69.77 47.33 37.95 66.81 74.48 50.80

1D SMILES + 2D Graph + Knowledge Graph
MolFM 16.14 30.67 39.54 23.63 13.90 28.69 36.21 21.42

1D SMILES
MoleculeSTM 35.80 - - - 39.50 - - -

Atomas-base (Ours) 39.08 59.72 66.56 47.33 37.88 59.22 65.56 47.81
Atomas-large (Ours) 49.08 68.32 73.16 57.79 46.22 66.02 72.32 55.52

Dataset and Training Details: We
follow the MoleculeSTM’s pipeline
(Liu et al., 2023c) to collect molecu-
lar SMILES-text pairs from PubChem
website. Pairs with the same Pub-
Chem ID and descriptions shorter than
18 characters are merged, and dupli-
cates are removed from the down-
stream task datasets to prevent data
leakage. This process results in a high-
quality dataset of 51,340 unique pairs,
which is used for the initial training
phase. Dataset details and statistics
are provided in Appendix E. The model is trained on 8 NVIDIA Tesla A100-SXM4-40GB GPUs
using a batch size of 16 SMILES-text pairs, no weight decay, and the learning rate is set to 1e−4.
More implementation details are provided in Appendix F.

6
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Table 2: Performance comparison on text-based de novo molecule generation. Bold and
underlined indicate the best and second-best results, respectively. “↑” denotes that higher is better.
“↓” denotes that lower is better. We repeat the Atomas-large 3 times and report the average with a
95% confidence interval. Details are provided in Section 4.3 and Appendix G.

Model BLEU↑ Exact↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ Validity↑
1D SMILES + 2D Graph + 2D Image

GIT-Mol 0.756 0.051 26.32 0.738 0.582 0.519 0.928
1D SMILES + 2D Graph + Knowledge Graph

MolFM-small 0.803 0.169 20.868 0.834 0.721 0.662 0.859
MolFM-base 0.822 0.210 19.45 0.854 0.758 0.758 0.892

1D SMILES
MolT5-small 0.749 0.082 28.816 0.780 0.654 0.601 0.725
MolT5-base 0.779 0.082 25.19 0.788 0.662 0.602 0.787
MolT5-large 0.854 0.318 16.32 0.889 0.813 0.750 0.958

Text+Chem T5-augm 0.853 0.322 16.87 0.901 0.816 0.757 0.943
MolXPT - 0.215 - 0.859 0.757 0.667 0.983

MolReGPT (GPT-3.5-turbo) 0.790 0.139 24.91 0.847 0.708 0.624 0.887
MolReGPT (GPT-4-0413) 0.857 0.280 17.14 0.903 0.805 0.739 0.899

Atomas-base (Ours) 0.868 0.343 13.76 0.908 0.827 0.773 0.971
Atomas-large (Ours) 0.874±.003 0.387±.008 12.70±.28 0.914±.004 0.841±.002 0.788±.002 0.980±.003

Table 3: Performance comparison on molecule captioning task. Bold and underlined indicate the
best and second-best results, respectively. We repeat the Atomas 3 times and report the average with
a 95% confidence interval. Details are provided in Section 4.4 and Appendix G.

Model #Params BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L
1D SMILES + 2D Graph

MoMu-small 82M 0.532 0.445 - - 0.564
MoMu-base 252M 0.549 0.462 - - 0.575
MoMu-large 782M 0.599 0.515 - - 0.593

InstructMol-GS 6.9B 0.475 0.371 0.566 0.394 0.502
MolCA, Galac1.3B 1.3B 0.620 0.531 0.681 0.537 0.618

1D SMILES + 2D Graph + Image
GIT-Mol-GS 700M 0.352 0.263 0.575 0.485 0.560

1D SMILES + 2D Graph + Knowledge Graph
MolFM-small 136.2M 0.542 0.452 0.623 0.469 0.562
MolFM-base 296.2M 0.585 0.498 0.653 0.508 0.594

1D SMILES
MolT5-small 77M 0.519 0.436 0.620 0.469 0.563
MolT5-base 248M 0.540 0.457 0.634 0.485 0.578
MolT5-large 783M 0.594 0.508 0.654 0.510 0.594

Text+Chem T5-augm 220M 0.625 0.542 0.682 0.543 0.622
MolXPT 350M 0.594 0.505 0.660 0.511 0.597

MolReGPT (GPT-3.5-turbo) >175B 0.565 0.482 0.450 0.543 0.585
MolReGPT (GPT-4-0314) - 0.607 0.525 0.634 0.476 0.562

Atomas-base w/o initial training (Ours) 271M 0.6045±.003 0.5185±.004 0.6745±.006 0.5315±.007 0.6155±.004

Atomas-base (Ours) 271M 0.632±.005 0.549±.002 0.685±.003 0.545±.004 0.626±.003

4.2 MOLECULE-TEXT RETRIEVAL

Set Up: To evaluate Atomas’s performance and generalization, we use the PCdes dataset (Zeng et al.,
2022) instead of PubChem dataset, which includes 15,000 molecule pairs. Following MolFM (Luo
et al., 2023), we apply scaffold splitting to divide the dataset into training, validation, and test sets at
a 7:1:2 ratio. We directly evaluate Atomas and other baseline models on test sets without fine-tuning.
For inference, we retrieve results directly from the entire test dataset without first selecting a top-k
candidate set. We assess performance using Mean Reciprocal Rank (MRR) and Recall at 1, 5, and 10.

Results: Table 1 demonstrates that Atomas outperforms recent state-of-the-art methods in both
text-to-molecule and molecule-to-text retrieval tasks on R@1. This indicates that multi-level fine-
grained interaction and alignment can yield significantly better outcomes than methods based only on
coarse-grained representations. For a detailed introduction to the baselines, refer to Appendix G.2.

4.3 TEXT-BASED DE NOVO MOLECULE GENERATION

Set Up: ChEBI-20 (Edwards et al., 2022) is a gold standard dataset extensively used for molec-
ular generation tasks. It comprises 33,010 molecule-description pairs and is split into 80/10/10%
train/validation/test sets. To assess our model’s performance, we use standard metrics for the genera-
tion task. More details are provided in Appendices E and G.1.
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Table 4: Performance comparison on molecule property prediction. We present the ROC-AUC
(%) scores of molecular property prediction task on MoleculeNet. We use scaffold split following
MoleculeSTM. We repeat the Atomas 3 times and report the average with a 95% confidence interval.

Method BBBP Tox21 ToxCast Sider ClinTox MUV HIV Bace Avg
MoleculeSTM-SMILES 70.75±1.90 75.71±0.89 65.17±0.37 63.70±0.81 86.60±2.28 65.69±1.46 77.02±0.44 81.99±0.41 73.33

MolFM 72.9±0.1 77.2±0.7 64.4±0.2 64.2±0.9 79.7±1.6 76.0±0.8 78.8±1.1 83.9±1.1 74.62
MoMu 70.5±2.0 75.6±0.3 63.4±0.5 60.5±0.9 79.9±4.1 70.5±1.4 75.9±0.8 76.7±2.1 71.63

MolCA-SMILES 70.8±0.6 76.0±0.5 56.2±0.7 61.1±1.2 89.0±1.7 - - 79.3±0.8 72.1
Atomas 73.72±1.67 77.88±0.36 66.94±0.9 64.40±1.9 93.16±0.5 76.30±0.7 80.55±0.43 83.14±1.71 77.01

Table 5: The scaling of the initial train-
ing dataset on molecule generation task.
Atomas consistently surpasses baselines in
limited data size.

Model Data sizes Exact↑ Levenshtein↓ RDK FTS↑
MolFM-base 15k 0.210 19.45 0.758
Atomas-base 0 0.298 15.47 0.809
Atomas-base 15k 0.318 14.68 0.817
Atomas-base 51k 0.343 13.76 0.827

Table 6: The scaling of the model size on
molecule generation task. Increasing Atomas
parameters can enhance generation performance.
Complete indicators are in the Appendix H.1.

Model Model sizes Exact↑ Levenshtein↓ RDK FTS↑
MolReGPT(GPT-4-0413) >175B 0.280 17.14 0.805

MolT5-large 783M 0.318 16.32 0.813
Atomas-base 271M 0.343 13.76 0.827

Atomas-large 825M 0.387 12.70 0.841

Quantitative Results: Table 2 and Table 9 show the text-based de novo molecule generation
performance. Atomas outperforms all baseline models in all metrics. We also calculate the scores of
molecule novelty to show that Atomas can perform generation well. Since SMILES is the dominant
molecular representation, Atomas uses SMILES and compares only with methods based on SMILES.
Methods like (Liu et al., 2023a; Luo et al., 2023) use separate unimodal pre-trained models for
different modalities, complicating information exchange and limiting fine-grained interactions. Their
two-stage training process also restricts generative capabilities. Additionally, GPT-like and encoder-
decoder-based methods (Edwards et al., 2022; Christofidellis et al., 2023; Liu et al., 2023d; Li et al.,
2023a) miss the benefits of well-aligned multimodal representations.

4.4 MOLECULE CAPTIONING

Set Up: We evaluate Atomas for molecule generation using the ChEBI-20 dataset. Evaluation
metrics include BLEU-2, BLEU-4, ROUGE-1, ROUGE-2, and ROUGE-L. We present more details
in Appendices E and G.1.

Quantitative Results: Table 3 presents the overall molecule captioning performance. Atomas
surpasses all baseline methods across all evaluation metrics. Notably, our Atomas-base model
outperforms the MolT5-large model while using only 35.0% of its parameters and requiring no initial
training, highlighting the effectiveness of our proposed framework.

4.5 MOLECULAR PROPERTY PREDICTION

Set Up and Results: We evaluate Atomas on eight binary classification datasets from MoleculeNet.
We use scaffold split following (Liu et al., 2023c). The evaluation metric is the area under the receiver
operating characteristic curve (ROC-AUC). Table 4 shows that we have consistent improvements
on seven out of eight tasks compared to the baseline models using the SMILES string as input. The
overall performance exceeds that of all baseline models.

4.6 ABLATION STUDY

The Scalability and Robustness of Atomas: Table 5 and Table 6 show that Atomas consistently
outperforms baseline methods in both the scaling of training dataset and the scaling of model size.
We also explore how Atomas’s performance varies with complex molecular structures and textual
descriptions. In the ChEBI-20 test dataset, molecules are categorized into length intervals of 100, with
"Mol_len 100" representing lengths between 100 and 200. Similarly, the input molecule descriptions
are categorized by length, with "Text_len 100" indicating descriptions between 100 and 200 characters.
As shown in Tables 14 and 15, Atomas performs more robust performance than baseline methods on
complex molecular structures and highly technical textual descriptions.

Unified Encoder Better than Separate Encoders: To investigate the impact of using a unified
encoder versus two separate encoders for text and SMILES, we sample 75%, 50%, and 25% of

8
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Table 7: Ablation study for the effectiveness and time consumption of components on molecule
generation task. The first row is the baseline without alignment to generate SMILES based on text.
The second row is the baseline only using global alignment. More details are in the Appendix H.3

Global Alignmnet Hierarchical Alignment Conditional Generation Exact↑ Levenshtein↓ Morgan FTS↑ Training Time(s/sample)Lga Lhaa Llm

✓ 0.082 24.846 0.602 0.0112
✓ ✓ 0.223 16.946 0.716 0.0119

✓ ✓ 0.266 16.675 0.736 0.0132
✓ ✓ ✓ 0.298 15.472 0.750 0.0145

Table 8: Ablation study for the effectiveness of
joint optimization on molecule retrieval task.

Text to MoleculeTraining Strategy R@1 R@5 R@10 MRR
2Stages 37.74 58.01 65.02 47.20

Joint optimization 39.08 59.72 66.56 48.47

Molecule to TextTraining Strategy R@1 R@5 R@10 MRR
2Stages 36.54 57.31 63.58 46.10

Joint optimization 37.88 59.22 65.56 47.81

Table 9: The scores of molecule novelty
on text-based de novo molecule generation
task. And The human expert evaluation
on molecule caption task.The numbers in
brackets indicate the number of ranks 1, 2,
and 3. The lower rank score indicates better
performance of molecule caption.

Method Novelty↑ Average Ranking of
Human Expert Evaluation ↓

Text+Chem T5-augm 0.84 2.2(1/2/2)
MolT5-large 0.76 2.6(0/2/3)

Atomas-large 0.85 1.2(4/1/0)

the training set as training subsets, based on the distribution of text lengths, and evaluate on the
original validation and test sets. As shown in Figure 3, the performance of the separate encoders
(Sep-Encoder) significantly declines as the training sets decrease, compared to the unified encoder
(Uni-Encoder). These findings may provide insight into molecular design, where data scarcity is a
common challenge. Complete performance details are provided in Appendix H.2.

The Effectiveness of Hierarchical Alignment: The scarcity of fine-grained molecule and text pair
datasets makes it challenging to quantify the model’s ability to capture fine-grained information,
unlike the vision community, where extensive datasets exist to evaluate models on fine-grained image
recognition tasks. Nonetheless, we can implicitly validate the effectiveness of Atomas by observing
improvements in component ablation studies. Table 7 provides clear insights into the effectiveness of
fine-grained alignment. Figure 4 (right) shows the effect of adaptive alignment level numbers. We
find that the model achieves the best performance at 3-level numbers.

The Computational Efficiency: Table 7 reports the average training time on the ChEBI-20 dataset
using an NVIDIA A100 40 GB GPU and the performance on the molecule generation task. While
hierarchical alignment slightly increases training time by just 0.0026 seconds, it significantly boosts
Atomas’s overall performance. The increase in inference time is almost negligible. This result
highlights the effectiveness of our efficient design.

Joint Optimization Benefits Both Learned Representation Quality and Generation Task Per-
formance: Table 8 and Figure 4 (left) show the ablation study on molecule retrieval and generation
task for the different training strategies. The "Baseline" refers to the MolT5-base model. From these
results, we can conclude that the essence of joint optimization is the mutual facilitation between
the caption/generation task and molecular representation learning (retrieval tasks) (Bahdanau et al.,
2015). More detailed discussions are provided in Appendix H.6.

Merging Methods Comparison: We compared Atomas with other molecular decomposition meth-
ods like BRICS decomposition method. The decomposition by BRICS resulted in fragments
like’[1*]C(=O)C[7*]’, which introduces additional characters and does not allow for hierarchical
decomposition, limiting its direct replacement of the Adaptive Polymerization Module in Atomas.

4.7 VISUALIZATION AND QUALITATIVE ANALYSIS

Visualization: To better understand Atomas, we present the visualization of the adaptive polymeriza-
tion module in Figure 5. The molecule is formed by combining atoms at positions 0-15 and at sites
16-26 through dehydration condensation. From atom level to fragment level, Atomas clusters atoms
(words) into functional groups (phrases) using an adaptive polymerization module. From fragment
level to molecule level, Atomas clusters atoms at sites 0-13 and 15 together to form a monomer-like
structure. This indicates Atomas tends to focus on macro-level information as it ascends the hierarchy.

9
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Uni-Encoder Sep-Encoder

Figure 3: Unified encoder vs separate en-
coder with the scaling dataset. Evaluate on
molecule generation task.

Morgan FTS↑ Levenshtein↓Exact↑Baseline 2Stages Jointly Optimization

Figure 4: Ablation study for the effective-
ness of joint optimization (left) and hierar-
chical alignment level numbers (right).

The molecule is a glucosyl hydroxycinnamic 
acid that is the cinnamate ester obtained by the 
formal condensation of the carboxy group of 
trans-sinapic acid with the anomeric hydroxy 
group of beta-D-glucose.  

15 - 16

13 - 15

obtained the  condensation carboxy group trans-
sinapic anomeric hydroxy group beta-D-
glucose  The molecule is a glucosyl 
hydroxycinnamic acid that is the cinnamate 
ester by formal of the of acid with the . 

that obtained the formal condensation the 
carboxy group of trans-sinapic cinnamate 
hydroxy beta-D-glucose The molecule is a 
glucosyl hydroxycinnamic acid is the ester by 
of acid with the anomeric group of .

Atom Level Fragment Level Molecule Level Reference Diagram

0 - 15

16 - 26

The molecule is a glucosyl hydroxycinnamic 
acid that is the cinnamate ester obtained by the 
formal condensation of the carboxy group of 
trans-sinapic acid with the anomeric hydroxy 
group of beta-D-glucose.  

Figure 5: The visualization of adaptive polymerization module. The process of atom (word)
polymerization to form individual sets is illustrated at three levels, including the reference diagram,
from left to right. Atoms (words) belonging to the same set are highlighted using the same color.

Molecule Input Molecule Caption 
Ground Truth

The molecule is a dipeptide obtained by 
formal condensation of the carboxy group 

of L-lysine with the amino group of D-
glutamic acid. It is a constituent of bacterial 
peptidoglycan type A4alpha. It derives from 

a L-lysine and a D-glutamic acid.

Atomas Output
The molecule is a dipeptide obtained by 

formal condensation of the carboxy 
group of L-lysine with the amino group 
of D-glutamic acid. It is a constituent of 
bacterial peptidoglycan type A4alpha. It 
derives from a D-glutamic acid and a L-

lysine.
MolT5 Output

The molecule is a dipeptide formed from 
L-lysine and L-glutamic acid residues. It 
has a role as a metabolite. It derives from 

a L-lysine and a 
L-glutamic acid.

BioT5 Output
The molecule is a dipeptide obtained by 

formal condensation of the carboxy group 
of (2S)-2-amino-4-(2-aminoethyl)butanoic 
acid with the amino group of D-glutamic 

acid. It is a dipeptide and a D-glutamic acid 
derivative. It derives from a D-glutamic 

acid and a L-glutamic acid.

Text+Chem Output
The molecule is a dipeptide composed 
of L-lysine and L-glutamic acid joined 
by a peptide linkage. It has a role as a 
metabolite. It derives from a L-lysine 

and a L-glutamic acid.

Figure 6: Comparing the performance of
global alignment methods with Atomas on
molecule captioning task.

Text Input Generated Molecule 
The molecule is a purine ribonucleoside 

5'-monophosphate that is the 2-oxo 
derivative of AMP. It derives from an 
adenosine 5'-monophosphate. It is a 

conjugate acid of a 2-oxo-AMP(2-). It is a 
tautomer of a 2-hydroxy-AMP.

Ground Truth Atomas Output

MolT5 Output BioT5 Output Text+Chem Output

Figure 7: Comparing the performance of
global alignment methods with Atomas on
molecule generation task.

Qualitative Analysis of Molecule Caption: As shown in Figure 6, global alignment methods like
(Christofidellis et al., 2023; Edwards et al., 2022; Pei et al., 2023) struggle to distinguish between
"D-glutamate" and "L-glutamate" enantiomers. In contrast, Atomas generates more accurate and
detailed molecule descriptions, demonstrating the effectiveness of hierarchical alignment models.

Qualitative Analysis of Molecule Generation: As shown in Figure 7. gloabl alignment methods
like (Christofidellis et al., 2023; Edwards et al., 2022) can generate the "AMP" structure but miss
fine-grained details like "2-hydroxy". Conversely, Atomas successfully generates the right structure.

Human Evaluation: To provide additional validation of the model’s performance and practical
utility, we incorporated human expert evaluations. We randomly selected five molecular captions
of varying lengths generated by Atomas, Text+Chem T5, and MolT5. The average rankings from
these evaluations are shown in Table 9. Atomas achieved the overall best performance among the
three models, ranking first in 4 out of 5 generated molecular captions. The corresponding SMILES
samples are provided in Appendix I.

5 CONCLUSION

We introduce Atomas, a hierarchical alignment framework designed to enhance molecular representa-
tion by aligning SMILES strings with textual descriptions through a Hierarchical Adaptive Alignment
model. Atomas excels at capturing fine-grained details, achieving state-of-the-artin retrieval, property
prediction, and molecule generation tasks while demonstrating robust scalability and generalizability.
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ETHICS STATEMENT

This paper does not involve crowdsourcing or research with human subjects. The proposed method
poses no high risk for misuse. We cite the original paper that produced the code package or dataset.
Below is the broader impact of our research:

• For machine learning community: In this study, we introduce a Hierarchical Adaptive
Alignment model for automatically learning fine-grained information. This offers a novel
approach to facilitate the fine-grained learning of extensive unlabeled datasets in diverse
domains.

• For the drug discovery community: Atomas utilizes the uni-encoder to alleviate the
problem of limited data in the specific domain of molecular studies. This approach offers a
novel training methodology for the data-scarce molecular drug discovery domain. Atomas’s
end-to-end training method involves alignment followed by generation and demonstrates
superior performance in molecular understanding and generation tasks. Furthermore, Atoms
provides the way for high-precision controllable molecular generation research. The adap-
tive alignment module in Atomas presents an efficient solution for leveraging large-scale
unlabeled biochemical texts. We hope that the cross-modal representations learned from
Atomas can be applied to a variety of molecular downstream tasks such as virtual screening
and molecular drug design.

REPRODUCIBILITY STATEMENT

We provide a .zip file containing our code and submit it in the Supplementary Material. We fully
disclose all the information needed to reproduce the main experimental results of the paper. The
detailed dataset construction can be found in Section 4.1 and Appendix E. The detailed training
process is provided in Section 4.1 and Appendix F.
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Appendix

A COMPARISON TO RELATED WORKS

A.1 TEXT GUIDED CONDITIONAL MOLECULE GENERATION

Text-based molecule generation models can be primarily categorized into two types. One type uses a
decoder-only transformer architecture, such as MolXPT (Liu et al., 2023d). This is a GPT-like model
that utilizes the GPT-2medium configuration, which has been pre-trained on SMILES sequences
encapsulated by text. The second type employs an encoder-decoder transformer architecture. This
type translates between text and molecule strings, and it can adapt to the text-conditional de novo
generation. Models like MolT5 and Text+Chem T5 (Christofidellis et al., 2023) work by jointly
encoding the molecule string and natural language. They then use the input description to generate a
molecule string.

In Table 10, we provide a comprehensive overview of existing works on molecule-text alignment
methods. We have identified two key distinctions from existing methods: (i) Current contrastive
learning-based alignment methods primarily align global features, neglecting finer-grained modal
interactions. Fine-grained alignment is important in tasks such as controlled molecule generation and
molecular captioning, as it enables greater precision and accuracy. (ii) Existing end-to-end training
methods use conditional generation to create molecules, without aligning the molecule modality
and text modality. However, our experimental results demonstrate that performing alignment before
conditional generation can significantly improve generation performance.

Table 10: Comparison between Atomas and existing molecule-and-text cross-modal methods.

Input Task Training Strage
MoleculeModel Text 1D 2D 3D

Alignment Molecule Retrieval Molecule Generation Molecule Caption Multi-Stage End-to-End

MoMu (Su et al., 2022) ✓ ✓ ✓ - ✓ ✓ ✓ ✓ ✓ -
KV-PLM (Zeng et al., 2022) ✓ ✓ - - - ✓ - - ✓

InstructMol (Cao et al., 2023) ✓ ✓ ✓ - - - - ✓ ✓ -
MolCA (Liu et al., 2023e) ✓ ✓ ✓ - ✓ ✓ - ✓ ✓ -
GIT-Mol (Liu et al., 2024) ✓ ✓ ✓ - ✓ ✓ ✓ - ✓ -
MolFM (Luo et al., 2023) ✓ ✓ ✓ - ✓ ✓ ✓ ✓ ✓ -

MolT5 (Edwards et al., 2022) ✓ ✓ - - - - ✓ ✓ - ✓
Text+Chem T5 (Christofidellis et al., 2023) ✓ ✓ - - - - ✓ ✓ - ✓

MolXPT (Liu et al., 2023d) ✓ ✓ - - - - ✓ ✓ ✓ -
MolReGPT (Li et al., 2023a) ✓ ✓ - - - - ✓ ✓ - -

MoleculeSTM (Liu et al., 2023c) ✓ ✓ ✓ - ✓ ✓ - - ✓ -
BioT5 (Pei et al., 2023) ✓ ✓ - - - - ✓ ✓ - ✓

3D-MOLM (Li et al., 2024) ✓ - - ✓ ✓ ✓ - ✓ ✓ -
Atomas (Ours) ✓ ✓ - - ✓ ✓ ✓ ✓ - ✓

A.2 DIFFRENCE WITH MOLECULAR MODALITIES REPRESENTATION LEARNING METHODS

Different alignment objectives: Intra-molecular modality vs Extra-molecular modality. (Feng
et al., 2023; Yu et al., 2024; Ji et al., 2022; Liu et al., 2022) focus on aligning intra-molecular
modalities, i.e., 1D SMILES, 2D molecule graph, and 3D structure, which is different from the
text-based molecule representation learning. This alignment benefits from easily obtainable molecular
datasets and pair-wise alignments, facilitated by tools like RDKit for SMILES-to-graph conversion.
Conversely, Atomas addresses text-driven tasks, involving cross-modal learning between intra- and
extra-molecular modalities. Challenges arise from the lack of expert fine-grained textual annotations
for molecules and difficulty in constructing positive/negative pairs, as a text fragment may suit multiple
molecule substructures. These challenges make Atomas’ achievements in this field particularly
noteworthy.

Different segmentation objectives: (Feng et al., 2023) utilizes established algorithms for the
segmentation of SMILES and graph representations. In contrast, Atomas is the first to segment both
text descriptions and SMILES.

Different fine-grained alignment methods: Explicit vs Automatic. Atomas uses Hierarchical
Adaptive Alignment, eliminating the need for explicit labeling between text fragments and molecular
substructures. The weighted alignment allows for a flexible representation of cross-modal rela-
tionships. This approach is particularly beneficial in scenarios where the alignment between text
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and SMILES is not direct or where the textual data is rich in contextual information that requires
sophisticated modeling.

Different training objectives: Prediction task vs Understanding and Generation task (Feng et al.,
2023; Yu et al., 2024; Ji et al., 2022; Liu et al., 2022) are tailored for prediction tasks, while Atomas
optimizes aligned representations for both understanding and generative tasks.

Table 11: Comparison between Atomas and existing molecular modalities representation
learning methods.

Input Task
Molecule SegmentationModel Text 1D-SMILES 2D-Graph 3D-Structure Automatic Explicit Prediction Molecule Retrieval Molecule Generation Molecule Caption

GraphMVP (Liu et al., 2022) - - ✓ ✓ - ✓ ✓ - - -
UniMAP (Feng et al., 2023) - ✓ ✓ ✓ - ✓ ✓ - - -

MOLEBLEND (Yu et al., 2024) - - ✓ ✓ - - ✓ - - -
ReLMole (Ji et al., 2022) - - ✓ - - ✓ ✓ - - -

Atomas (Ours) ✓ ✓ - - ✓ - - ✓ ✓ ✓

B PRELIMINARIES

B.1 MOLECULE REPRESENTATION

The structure of a molecule can be represented as a 1D molecular string. Specifically, SMILES is
utilized to convert a chemical’s 3D structure into a string of symbols. For instance, the structure of a
benzene ring can be represented as a SMILES string: C1=CC=C(C=C1). The 1D molecular string
and the 2D graph are informationally equivalent, as SMILES can be losslessly converted to a graph
using chemical toolkits (e.g. RDKit). Furthermore, transformer-based encoder models exhibit less
information loss compared to Graph Neural Networks (GNNs) (Ma et al., 2022), which suffer from
over-smoothing problems, and GNNs cannot perform unified encoding with text modality, posing
challenges for interaction between the two modalities. In this study, we choose the 1D SMILES
string and textual description for molecule cross-modal representation learning.

B.2 ENCODER-DECODER T5 LANGUAGE MODEL

T5 (Raffel et al., 2020) is an encoder-decoder transformer-based model. In the self-supervised
pre-training stage, for the input sequence X , some words in the sequence are randomly chosen for
corruption. Each consecutive span of corrupted tokens is masked by a sentinel token(e.g. < x >,<
y >). Then the objective is to reconstruct the dropped-out spans:

Lmlm(X; θ) = E
x∼X

E
mask

∑
i∈ mask

log p
(
xi | xj /∈ mask ; θ

)
.

We use a 12-layer T5 model as the backbone and initialized using MolT5 (Edwards et al., 2022)
weights, which have been pre-trained on both the textual modality C4 dataset (Raffel et al., 2020) and
the molecular modality ZINC dataset (Sterling & Irwin, 2015) in a self-supervised manner.

B.3 DENSITY PEAKS CLUSTERING ALGORITHM

The Density Peaks Clustering Algorithm (DPC) (Rodriguez & Laio, 2014) is a granular computing
model that determines the number of clusters and their respective centers in a dataset by identifying
density peaks. The algorithm is based on two assumptions:

Assumption 1. The local density of cluster centers (density peaks) is greater than the local density of
their surrounding neighbors.

Assumption 2. The distance between different cluster centers is relatively large. Briefly, given a dataset
D = {x1, x2, . . . , xn} with n samples, the local density of xi is defined as ρi =

∑n
j=1 χ(dij − dc),

where χ is an indicator function: χ(x) = 1 when x < 0, and χ(x) = 0 otherwise, and dc a cutoff
distance. The relative distance δ is defined as δi = minj:ρj>ρi

(dij). Based on ρi and δ, DPC
algorithm constructs decision graphs to classify data points xi as density peak points, normal points,
or outliers.
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C LIMITAIONS

As Atomas demonstrated excellent generation and retrieval capabilities, there may concerns about
potential overfitting. To validate the generalization ability of Atomas, we used the Out-of-Distribution
(OOD) dataset, PCdes, in the retrieval task. Atomas outperformed recent state-of-the-art methods in
both text-to-molecule and molecule-to-text retrieval tasks on R@1, indicating robust generalization.

D ALGORITHM

Algorithm 1 The proposed hierarchical cross-modal molecular representation learning framework
that jointly learns representations from SMILES and text.

1: Input: SMILES strings S, Text descriptions T
2: Output: Aligned representations for molecules and texts
3: procedure UNIFIEDENCODER(S, T )
4: Sembed ← Encode(S)
5: Tembed ← Encode(T )
6: return Sembed, Tembed

7: end procedure
8: procedure ADAPTIVEPOLYMERIZATION(Sembed, Tembed)
9: for each level in {atom, fragment, molecule} do

10: Sclustered ← ClusterTokens(Sembed)
11: Tclustered ← ClusterTokens(Tembed)
12: Sembed, Tembed ← MergeClusters(Sclustered, Tclustered)
13: end for
14: return Sembed, Tembed

15: end procedure
16: procedure WEIGHTEDALIGNMENTMODULE(Sembed, Tembed)
17: for each level in {atom, fragment, molecule} do
18: alignment← ComputeAlignment(Sembed, Tembed)
19: Sembed, Tembed ← UpdateRepresentations(Sembed, Tembed, alignment)
20: end for
21: return Sembed, Tembed

22: end procedure
23: procedure CONDITIONALDECODER(Sembed, Tembed)
24: GeneratedOutput← Decode(Sembed, Tembed)
25: return GeneratedOutput
26: end procedure
27: Begin
28: Sembed, Tembed ← UNIFIEDENCODER(S, T )
29: Sembed, Tembed ← ADAPTIVEPOLYMERIZATION(Sembed, Tembed)
30: Sembed, Tembed ← WEIGHTEDALIGNMENTMODULE(Sembed, Tembed)
31: Output← CONDITIONALDECODER(Sembed, Tembed)
32: End

E DATA DETAILS

E.1 INITIAL TRAINING DATASET CONSTRUCTION

We obtain a dataset of 280K molecule-text pairs from PubChem database and follow the Molec-
ularSTM to preprocess the textual descriptions, named PubchemSTM-raw. Molecule names are
replaced by “This molecule is ...”or “These molecules are ....”to prevent the model from identifying
molecules by name alone. To create unique SMILES-text pairs, molecules with the same CID
(Chemical Identifier) are combined, resulting in 243K pairs. Text descriptions with less than 18
characters are filtered out, resulting in a set of 64,285 samples. In order to avoid data leakage, we
removed duplicates from the ChEBI-20 and PCdes datasets used in downstream tasks. Specifically,
we first convert the smiles string into a canonical SMILES string using the RDKit toolkit, and then
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de-duplicate the initial training dataset with the same SMILES string as the ChEBI-20 dataset and
PCdes datasets, respectively. This resulted in a high-quality and leak-free dataset of 51,340 pairs,
named PubchemSTM-distll. It should be noted that PubchemSTM-distll is used exclusively for initial
training and does not divide the training, testing, and validation sets.

E.2 DATASET STATISTIC

Table 12 presents the dataset statistics. We observe that PubchemSTM-raw includes many uninforma-
tive texts; for example, some descriptions include just one word, such as “4,4’-Methylenebis”. and
one molecule corresponds to multiple descriptions. So, we first create unique SMILES-text pairs by
grouping pairs by CID, and then filter out the texts with a length of less than 18 characters.

Table 12: Statistics of the datasets.

Dataset Molecule-Text Pair Train Valid Test Min Word Avg Word Median Word
PubchemSTM-raw 280011 - - - 1 18.37 13

PubchemSTM-distll 51340 51340 0 0 18 44.64 30
ChEBI-20 33008 26407 3301 3300 18 43.49 40

PCdes 14995 10495 1500 3000 17 61.2 50

E.3 DATASET EXAMPLES

Figure 8 shows some examples of our dataset. To make it easier to understand, we use the RDKit
toolkit to convert SMILES strings into a 2D molecular graph. As shown in Figure 8, the text descrip-
tions available to us contain detailed local descriptions of molecular structures. The corresponding
parts of the text and molecular structures are highlighted with the same color in the table for clarity.
Effectively utilizing these localized descriptions is crucial for enhancing the performance of text-
based controlled molecule generation tasks. The result of our experiments offers substantial evidence
supporting the significance of leveraging these fine-grained descriptions in the generation process.

Molecule Graph SMILES Description
C1=CC(=CC=C1C2=CC(=O)C3=C(O
2)C=C(C(=C3O)C4=C(C=C(C5=C4O
C(=CC5=O)C6=CC=C(C=C6)O)O)O)
O)O

The molecule is a biflavonoid that is obtained 
by oxidative coupling of two molecules of 

apigenin resulting in a bond between 
positions C-6 and C-8 of the two chromene 

rings. It has a role as an antineoplastic agent, 
an antiviral agent, a hepatoprotective agent 

and a metabolite. It is a biflavonoid, a 
hydroxyflavone and a biaryl.

C1=CC(=C(C=C1CC(C(=O)O)N)O)O The molecule is a hydroxyphenylalanine 
carrying hydroxy substituents at positions 3 
and 4 of the benzene ring. It has a role as a 

human metabolite. It is a 
hydroxyphenylalanine, a tyrosine derivative 
and a non-proteinogenic alpha-amino acid.

CC(=O)N1CCC(CC1)NC(=O)NC2=C
C=C(C=C2)OC(F)(F)F

The molecule is a phenylurea that is urea 
substituted by 1-acetylpiperidin-4-yl and 4-

(trifluoromethoxy)phenyl groups at positions 
1 and 3 respectively. It has a role as an EC 

3.3.2.10 (soluble epoxide hydrolase) inhibitor.

Figure 8: Examples of dataset.
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F INITIAL TRAINING DETAILS

F.1 TRAINING SET UP

For the backbone models, we choose MolT5-base which is pre-trained in masked language modeling
manner on two uni-modal datasets: natural language dataset and molecular dataset. For the model
implementation, we use the PyTorch Lightning framework and employ distributed parallel training.
We use the AdamW optimizer with no weight decay and the learning rate is set to 1e−4. The key
hyperparameters used in Atomas are illustrated in the table Table 13.

Table 13: Hyperparameter details for Atomas.

Hyperparameter Value

batchsize 16
epoch 100

encoder learning rate 1e-4
decoder learning rate 1e-4

text projection learning rate 1e-5
molecule projection learning rate 1e-5

max padding length 512
queue size 13200
precision BFloat16 Automatic Mixed Precision

F.2 TRAINING ANALYSIS

We visualized the loss curve for training 100 epochs during initial training. We scaled the loss value
using a logarithmic scale. Figure 9a shows the loss curve of the global alignmentLga after the addition
of hierarchical adaptive alignment loss Lhaa. Figure 9b shows the loss curve of language modeling
Llm after the addition of the hierarchical adaptive alignment loss Lhaa. The observations suggest
that the hierarchical adaptive alignment enhances global alignment and controllable generation.

(a) The convergence of Lga loss both in
the absence and presence of Lhaa loss.

(b) The convergence of Llm loss both in
the absence and presence of Lhaa loss
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G DOWNSTREAM TASK DETAILS

G.1 METRICS

Metrics of Molecule-Text Retrieval: In retrieval task, we are consistent with the natural scene,
using the most common search indicators in the natural scene (i.e., text-image retrieval (Radford
et al., 2021)). Recall at 1/5/10 (Manning et al., 2008) is a performance metric for information
retrieval systems, such as search engines or recommendation systems, that measures the proportion
of relevant results found within the top 1, 5, or 10 returned items, indicating the model’s effectiveness
in retrieving pertinent information. MRR(Voorhees, 2000): mean reversed rank. MRR evaluates
information retrieval model by averaging the inverse positions of the first relevant results across
multiple queries, reflecting the model’s effectiveness in ranking relevant items.

Metrics of Molecule Captioning: In molecule catpioning task, we follow the MolT5(Edwards
et al., 2022) model and employ BLEU (Bilingual Evaluation Understudy) (Papineni et al., 2002)
and ROUGE (Recall-Oriented Understudy for Gisting Evaluation) (Lin, 2004) as evaluation metrics
for captions. BLEU measures the overlap of n-grams between the generated text and the reference
text. BLEU-n refers to the BLEU metric with n-grams, where n is an integer value (e.g., 1 for
unigrams, 2 for bigrams, 3 for trigrams). For example, BLEU-1 measures the accuracy of word level,
and higher-order BLEU can measure the fluency of sentences. The BLEU score ranges between
0 and 1. A BLEU score of 0.6 or 0.7 is considered to be a good result. ROUGE-N measures the
overlap of N-grams (e.g., unigrams, bigrams, trigrams) between the generated and reference texts. It
calculates precision, recall, and F-score for N-grams, providing a balanced assessment of the model’s
performance. ROUGE-L is based on the longest common subsequence (LCS) between the generated
and reference texts. It considers the longest continuous sequence of words that appear in both texts,
capturing the overall coherence and flow of the generated text.

Metrics of Text-based de Novo Molecule Generation: In molecule generation task we use BLEU,
Exact, Levenshtein (Miller et al., 2009), MACCS FTS (Durant et al., 2002), RDK FTS (Schneider
et al., 2015), Morgan FTS (Rogers & Hahn, 2010), and Validity 7 metric. Exact refers to the Exact
Match metric measures the percentage of predictions that exactly match the true labels. The Leven-
shtein distance, also known as the edit distance, is a metric used to measure the similarity between
two strings by calculating the minimum number of single-character edits (insertions, deletions, or
substitutions) required to transform one string into the other. Validity refers to the percentage of
molecules that can be processed by the RDKIT and measures the grammatical normality of the
generated molecules. MACCS FTS, RDK FTS and Morgan FTS are molecule fingerprint metrics.

G.2 BASELINES

Baselines of Molecule-Text Retrieval: MolFM (Luo et al., 2023) jointly trains three unimodal
encoders, which separately encode molecular structures, biomedical texts, and knowledge graphs to
learn joint representations. MoMu (Su et al., 2022) is a pre-trained model that utilizes contrastive
learning to align molecular graphs with their corresponding text descriptions. MoleculeSTM (Liu
et al., 2023c) designs a multi-modal contrastive learning model for molecular understanding that
incorporates both molecular structural information and textual knowledge. MolCA (Liu et al.,
2023e) enables language models to understand both text- and graph-based molecular contents via the
cross-modal projector.

Baselines of Molecule Captioning: We compared 9 baselines including MoMu, MolXPT, GIT-Mol
(Liu et al., 2024), MolFM, MolT5, MolReGPT, Text+Chem T5, InstructMol (Cao et al., 2023) and
MolCA (Liu et al., 2023e). MolXPT is a GPT-like model that uses the GPT-2medium configuration
pre-trained on SMILES sequences wrapped by text. GIT-Mol maps molecular graphs, images, and
text SMILES modalities into a unified latent space using a GIT-Former designed based on the Q-
Former architecture in BLIP2 (Li et al., 2023b). MolT5 is a T5-based text-to-text model, pre-trained
on a large-scale single-modal corpus of natural language and molecules, thereby obtaining prior
knowledge of the two domains. MolReGPT employs GPT-3.5-turbo and GPT-4-0314, and designs a
retrieval-based prompt paradigm through in-context learning to improve molecule discovery without
any additional training. Text+Chem T5 develops a multi-task, multi-domain model for natural and
chemical language. InstructMol employs instruction-tuning manner through two-stage training to
fine-tune LLMs (large language models). InstructMol+GS refers to the use of both molecular graph
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tokens and SMILES tokens as input. MolCA bridges molecular 2D graph and text by projecting the
graph into a semantic space similar to text.

Baselines of Text-based de Novo Molecule Generation: We compared the performance of six out
of seven baselines used in molecule generation task. We excluded the InstructMol method from the
comparison, as it is not directly applicable to the molecule generation task.

H ABLATION STUDY

H.1 THE SCALABILITY AND ROBUSTNESS OF ATOMAS

Tables 14 and 15 show Atomas perform on complex molecular structures and textual descriptions.
"Mol_len 100" and "Text_len 100" indicate lengths from 100 to 200. Atomas performs more robust
performance than baseline methods on complex molecular structures and highly technical textual
descriptions.

Table 14: Performance comparison on complex structures using CHEBI20 test dataset on
molecule caption task.

Mol-Len Atomas-BLEU2 Text+Chem T5-augm-BLEU2 MolT5-BLEU2 Atomas-ROUGE-1 Text+Chem T5-augm-ROUGE-1 MolT5-ROUGE-1 Atomas-ROUGE-L Text+Chem T5-augm-ROUGE-L MolT5-ROUGE-L
100 0.712 0.629 0.653 0.745 0.691 0.702 0.693 0.640 0.651
200 0.679 0.588 0.603 0.722 0.651 0.669 0.659 0.599 0.613
300 0.742 0.607 0.699 0.785 0.670 0.717 0.741 0.619 0.673
400 0.692 0.464 0.612 0.749 0.521 0.651 0.688 0.454 0.583
500 0.760 0.639 0.736 0.756 0.726 0.768 0.686 0.679 0.714
600 0.811 0.470 0.638 0.842 0.683 0.662 0.793 0.601 0.662
700 0.588 0.516 0.583 0.675 0.644 0.672 0.637 0.536 0.637
800 0.388 0.430 0.560 0.488 0.528 0.559 0.429 0.466 0.530
900 0.352 0.057 0.331 0.494 0.263 0.488 0.414 0.248 0.442

Table 15: Performance comparison on complex textual descriptions using CHEBI20 test dataset
on generation task.

Text-Len Atomas-BLEU↑ Text+Chem T5-augm-BLEU↑ MolT5-BLEU↑ Atomas-Levenshtein↓ Text+Chem T5-augm-Levenshtein↓ MolT5-Levenshtein↓ Atomas-Morgan FTS↑ Text+Chem T5-augm-Morgan FTS↑ MolT5-Morgan FTS↑

100 0.867 0.783 0.842 10.218 17.140 13.084 0.902 0.849 0.864
200 0.888 0.849 0.871 10.234 16.455 13.777 0.930 0.901 0.907
300 0.883 0.867 0.861 13.236 17.619 16.137 0.921 0.901 0.908
400 0.861 0.793 0.832 17.463 28.942 22.668 0.910 0.882 0.881
500 0.858 0.828 0.845 22.127 34.035 26.479 0.874 0.831 0.845
600 0.793 0.807 0.800 35.789 40.281 38.912 0.817 0.805 0.794
700 0.667 0.642 0.640 58.789 65.579 61.632 0.817 0.786 0.818
800 0.878 0.845 0.820 36.857 42.429 39.143 0.929 0.803 00.790
900 0.809 0.549 0.528 14.001 24.030 25.200 0.963 0.672 0.550

Tables 16 and 17 presents the complete results of the two scaling experiments to show Atomas’s
scalability and robustness.

Table 16: The scaling of the initial training dataset on molecule generation task Here we choose
15k training data to be consistent with MolFM which is one of the baselines in the paper.

Model Data sizes BLEU↑ Exact↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ Validity↑
Atomas-base 0 0.854 0.298 15.47 0.898 0.809 0.750 0.947
Atomas-base 15k 0.861 0.318 14.68 0.902 0.817 0.757 0.965
Atomas-base 51k 0.868 0.343 13.76 0.908 0.827 0.773 0.971

H.2 ABLATION STUDY FOR UNIFIED ENCODER VS SEPARATE ENCODER

Table 18 presents the advantages of utilizing a unified encoder in the Atomas.

Figures 10a to 10d illustrates the distribution of the ChEBI-20 training data after weighted sampling.
These data is utilized to verify that the unified encoder outperforms separate encoders in scenarios
with limited data availability.
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Table 17: The scaling of the model size on molecule generation task The results presented below
demonstrate that increasing the parameters of Atomas can lead to further improvements generation
performance.

Model Model sizes BLEU↑ Exact↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ Validity↑
MolReGPT (GPT-3.5-turbo) >175B 0.790 0.139 24.91 0.847 0.708 0.624 0.887
MolReGPT (GPT-4-0413) >175B 0.857 0.280 17.14 0.903 0.805 0.739 0.899

MolT5-base 248M 0.779 0.082 25.19 0.788 0.662 0.602 0.787
MolT5-large 783M 0.854 0.318 16.32 0.889 0.813 0.750 0.958
Atomas-base 271M 0.868 0.343 13.76 0.908 0.827 0.773 0.971

Atomas-large 825M 0.874 0.387 12.70 0.914 0.841 0.788 0.980

Table 18: Ablation study for the use of the unified encoder and separate encoder. Performance
on the text-based de novo molecule generation task using the ChEBI-20 dataset. “↑” denotes that
higher is better. “↓” denotes that lower is better.

Method BLEU↑ Exact↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ Validity↑
Baseline 0.783 0.082 24.846 0.788 0.661 0.602 0.787
Sep-encoder 0.853 0.278 15.72 0.895 0.805 0.745 0.945
Uni-encoder 0.854 0.298 15.472 0.898 0.809 0.750 0.947

(a) The text length distribution of full ChEBI-
20 training dataset.

(b) The distribution of text length in 75% of
the ChEBI-20 training dataset after applying
weighted sampling.

(c) The distribution of text length in 50% of
the ChEBI-20 training dataset after applying
weighted sampling.

(d) The distribution of text length in 25% of
the ChEBI-20 training dataset after applying
weighted sampling.
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H.3 ABLATION STUDY FOR THE EFFECTIVENESS OF COMPONENTS.

Table 19 presents the complete results of the ablation study for the effectiveness of components.

Table 19: Ablation study for the effectiveness of components. Performance on the text-based de
novo molecule generation task using the ChEBI-20 dataset. “↑” denotes that higher is better. “↓”
denotes that lower is better.

Lga Lhaa Llm BLEU↑ Exact↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ Validity↑
✓ 0.783 0.082 24.846 0.788 0.661 0.602 0.787

✓ ✓ 0.841 0.223 16.946 0.886 0.784 0.716 0.954
✓ ✓ 0.844 0.266 16.675 0.893 0.799 0.736 0.952

✓ ✓ ✓ 0.854 0.298 15.472 0.898 0.809 0.750 0.947

H.4 ABLATION STUDY FOR THE EFFECTIVENESS OF JOINT OPTIMIZATION.

Table 20 presents the complete results of the ablation study for the effectiveness of joint optimization.

Table 20: Ablation study for the effectiveness of joint optimization. Performance on the text-based
de novo molecule generation task using the ChEBI-20 dataset.

Method BLEU↑ Exact↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ Validity↑
Baseline 0.783 0.082 24.846 0.788 0.661 0.602 0.787
2Stages 0.782 0.106 26.029 0.812 0.689 0.602 0.910
Jointly optimization 0.841 0.223 16.946 0.886 0.784 0.716 0.954

H.5 ABLATION STUDY FOR THE EFFECTIVENESS OF DIFFERENT NUMBER OF HIERARCHICAL
ALIGNMENT LEVELS.

Table 21 presents the complete results of the effect of different number of hierarchical alignment
levels.

Table 21: Ablation study for the effect of different number of hierarchical alignment levels.
Performance on the text-based de novo molecule generation task using the ChEBI-20 dataset.

Level Num BLEU↑ Exact↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ Validity↑
0 0.841 0.223 16.946 0.886 0.784 0.716 0.954
2 0.854 0.289 15.506 0.896 0.805 0.746 0.950
3 0.854 0.298 15.472 0.898 0.809 0.750 0.947
4 0.852 0.287 15.580 0.897 0.808 0.746 0.952

H.6 JOINT OPTIMIZATION BENEFITS BOTH LEARNED REPRESENTATION QUALITY AND
GENERATION TASK PERFORMANCE.

The essence of joint optimization is the mutual facilitation between the caption/generation task and
molecular representation learning (retrieval tasks). Here we provide the in-depth discussion of this
joint optimization strategy. From model perspective: As suggested by the existing study (Bahdanau
et al., 2015), attention-based generation tasks essentially perform a form of soft alignment. During
the generation process, the attention mechanism facilitates a mutual translation between text and
SMILES, reinforcing the semantic consistency between the textual description and the molecular
structure it represents. Concurrently, representation learning bridges the domain gap between text
and SMILES, enhancing the caption/generation task. From data perspective: The captioning and
generation tasks may provide complementary information for learning molecular representations.
These tasks necessitate the model to learn the mapping between text and molecular domains, which
allows the model to grasp the intricate relationship between textual descriptions and molecular
structures, thereby enriching the quality of the learned molecular representations—hierarchical
alignment further aids in capturing local data pair relationships, benefiting the generation process.
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I HUMAN EVALUATION

To provide additional validation of the model’s performance and practical utility, we incorporated
human expert evaluations. We randomly selected five molecular captions of varying lengths generated
by Atomas, Text+Chem T5, and MolT5. The average rankings from these evaluations are shown in
Table 9, where a lower average ranking indicates better performance. Atomas achieved the overall
best performance among the three models, ranking first in 4 out of 5 generated molecular captions.

Below are the SMIELS samples tested by human expert:

SMILES(1): C[C@@]12CC[C@@H]3[C@@]([C@H]1C[C@H]([C@]4([C@H]2CCC5=C4C
(=O)OC5)C)O)(CC[C@@H](C3(C)C)O)C

SMILES(2): C[C@@H](C(=O)N[C@H](CCC(=O)NCCCC[C@H](C(=O)O)N)
C(=O)O)NC(=O)[C@@H](C)O[C@@H]1[C@H]([C@H](O[C@@H]([C@H]1O)CO)OP(=O)
(O)OP(=O)(O)OC[C@@H]2[C@H]([C@H]([C@@H](O2)N3C=CC(=O)NC3=O)O)O)NC(=O)C

SMILES(3): C[C@@H]1[C@@H](C[C@H]([C@H](O1)O[C@H]2[C@@H]([C@H](O[C@@H]
([C@H]2O[C@@H]3[C@@H]([C@H]([C@H]([C@H](O3)CO)O)O[C@H]4[C@@H]([C@@H]
([C@H]([C@@H](O4)C)O)O)O)O)O[C@H]5[C@@H](O[C@H]([C@@H]([C@@H]5O)O)O)C)C
O)O)O)O

SMILES(4): C[C@H]1[C@@H]([C@@](C[C@@H](O1)O[C@@H]2[C@H]([C@@H]([C@H]
(O[C@H]2OC3=C4C=C5C=C3OC6=C(C=C(C=C6)[C@H]([C@H]7C(=O)N[C@@H](C8=C(C(
=CC(=C8)O)O)C9=C(C=CC(=C9)[C@H](C(=O)N7)NC(=O)[C@@H]5NC(=O)[C@@H]
(NC(=O)[C@@H]([C@@H](C1=CC(=C(O4)C=C1)Cl)O)NC(=O)[C@@H](CC(C)C)[NH2+]C)CC
(=O)N)O)C(=O)[O-])O[C@H]1C[C@]([C@H]([C@@H](O1)C)O)(C)[NH3+])Cl)CO)O)O)(C)[NH3+])
O

SMILES(5): C[C@H]1[C@H]([C@H]([C@@H]([C@@H](O1)OC[C@@H]2[C@H]([C@@H]([C@H]
(C(O2)O)NC(=O)C)O)O[C@H]3[C@@H]([C@H]([C@@H]([C@H](O3)CO)O[C@H]4[C@H]([C@H]
([C@@H]([C@H](O4)CO[C@@H]5[C@H]([C@H]([C@@H]([C@H](O5)CO)O)O)O[C@H]6[C@@H]
([C@H]([C@@H]([C@H](O6)CO)O)O)NC(=O)C)O[C@H]7[C@@H]([C@H]([C@@H]([C@H](O7)
CO)O)O)NC(=O)C)O[C@@H]8[C@H]([C@H]([C@@H]([C@H](O8)CO)O)O)O[C@H]9[C@@H]
([C@H]([C@@H]([C@H](O9)CO)O)O)NC(=O)C)O)O)NC(=O)C)O)O)O
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J CASE STUDY OF MOLECULE CAPTIONING

Figure 11 shows more molecule caption examples selected from ChEBI-20 test dataset.

Molecule Input Atomas Output Ground Truth

The molecule is an unsaturated fatty acyl-CoA that 
results from the formal condensation of the thiol 
group of coenzyme A with the carboxy group of 
8,9-epoxy-(5Z,11Z,14Z)-icosatrienoic acid. It is a 
long-chain fatty acyl-CoA and an unsaturated fatty 
acyl-CoA. It derives from an 8,9-EET. It is a 
conjugate acid of an 8,9-epoxy-(5Z,11Z,14Z)-
icosatrienoyl-CoA(4-).

The molecule is an unsaturated fatty acyl-CoA that 
results from the formal condensation of the thiol 
group of coenzyme A with the carboxy group of 8,9-
epoxy-(5Z,11Z,14Z)-icosatrienoic acid. It is a long-
chain fatty acyl-CoA and an unsaturated fatty acyl-
CoA. It derives from an 8,9-EET. It is a conjugate 
acid of an 8,9-epoxy-(5Z,11Z,14Z)-icosatrienoyl-
CoA(4-).

The molecule is an organophosphate oxoanion
obtained by deprotonation of the carboxy and 
phosphate OH groups of (9S,10R)-10-hydroxy-9-
(phosphonooxy)octadecanoic acid; major species at 
pH 7.3. It is an organophosphate oxoanion and a 
monocarboxylic acid anion. It is a conjugate base of 
a (9S,10R)-10-hydroxy-9-
(phosphonooxy)octadecanoic acid.

The molecule is an organophosphate oxoanion
obtained by deprotonation of the carboxy and 
phosphate OH groups of (9S,10R)-10-hydroxy-9-
(phosphonatooxy)octadecanoic acid; major species 
at pH 7.3. It is an organophosphate oxoanion and a 
hydroxy monocarboxylic acid anion. It is a 
conjugate base of a (9S,10R)-10-hydroxy-9-
(phosphonooxy)octadecanoic acid.

The molecule is a methyl glycoside that consists of 
a 4-O-(5-aminopentyl)-alpha-D-mannose residue 
and three N-formyl-alpha-D-perosamine residues 
linked sequentially (1->2), (1->3) and (1->2) and 
linked at the reducing end glycosidically to a 
methyl group. It is a methyl glycoside and a 
trisaccharide derivative.

The molecule is a methyl glycoside that consists of a 
4-O-(5-aminopentyl)-alpha-D-mannose residue and 
two N-formyl-alpha-D-perosamine residues linked 
sequentially (1->2) and (1->3) and linked at the 
reducing end glycosidically to a methyl group. It is a 
methyl glycoside and a trisaccharide derivative.

The molecule is the organosulfonate oxoanion that 
is the trianion of Reactive Blue 5, formed by loss of 
a proton from each of the sulfo groups; major 
species at pH 7.3. It is a conjugate base of a 
Reactive Blue 5.

The molecule is the organosulfonate oxoanion that is 
the trianion of Reactive Blue 5 quinol form, 
obtained by loss of a proton from each of the sulfo
groups; major species at pH 7.3. It is a conjugate 
base of a Reactive Blue 5 quinol form.

The molecule is a pyrrolizine alkaloid that is 
produced by a hybrid species of Jacobaea. It has a 
role as a Jacobaea metabolite. It is a pyrrolizine
alkaloid, a tertiary amine oxide, a tertiary alcohol, a 
macrocyclic lactone, an organic heterotricyclic 
compound and a tertiary amine oxide. It derives 
from a Senecivernine.

The molecule is a pyrrolizine alkaloid that is 
jacoline in which the tertiary amino function has 
been oxidised to the corresponding N-oxide. It has a 
role as a Jacobaea metabolite. It is a macrocyclic 
lactone, an organic heterotricyclic compound, a 
pyrrolizine alkaloid, a triol and a tertiary amine 
oxide. It derives from a jacoline.

The molecule is a pyrrolizine alkaloid that is 
produced by a hybrid species of Jacobaea. It has a 
role as a Jacobaea metabolite. It is a pyrrolizine
alkaloid, a tertiary amine oxide, a tertiary alcohol, a 
macrocyclic lactone, an organic heterotricyclic 
compound and a tertiary amine oxide. It derives 
from a Senecivernine.

The molecule is a pyrrolizine alkaloid that is 
jacoline in which the tertiary amino function has 
been oxidised to the corresponding N-oxide. It has a 
role as a Jacobaea metabolite. It is a macrocyclic 
lactone, an organic heterotricyclic compound, a 
pyrrolizine alkaloid, a triol and a tertiary amine 
oxide. It derives from a jacoline.

The molecule is a hydroxy fatty acid anion obtained 
by deprotonation of the carboxy function of lipoxin 
A4; major species at pH 7.3. It has a role as a 
human metabolite and a Saccharomyces cerevisiae 
metabolite. It is a hydroxy fatty acid anion, an 
icosanoid anion, a long-chain fatty acid anion and a 
polyunsaturated fatty acid anion. It is a conjugate 
base of a lipoxin A4.

The molecule is a hydroxy fatty acid anion obtained 
by deprotonation of the carboxy function of lipoxin 
A4: major species at pH 7.3. It is a hydroxy fatty 
acid anion and a lipoxin anion. It is a conjugate base 
of a lipoxin A4.

BLEU-2: 1.0

BLEU-2: 0.95

BLEU-2: 0.9

BLEU-2: 0.85

BLEU-2: 0.8

BLEU-2: 0.7

BLEU-2: 0.6

Figure 11: Additional molecule captioning examples.
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K CASE STUDY OF TEXT-BASED DE NOVO MOLECULE GENERATION

Figure 12 shows more text-based de novo molecule generation examples selected from ChEBI-20
test dataset.

Text Input Atomas Output Ground Truth

The molecule is a carbamate ester of thymidine in 
which the 5'-hydroxy group has been esterified 
with [3-(benzoyloxy)-3-oxopropyl]carbamic acid, 
It derives from a thymidine.

The molecule is a resin glycoside that is the 
tetrasaccharide derivative of jalapinolic acid. It 
has been isolated from Ipomoea batatas. It has a 
role as a metabolite. It is a cinnamate ester, a 
macrocyclic lactone, a resin glycoside, a 
tetrasaccharide derivative and a dodecanoate ester. 
It derives from a trans-cinnamic acid and a 
jalapinolic acid.

The molecule is a monoterpenoid indole alkaloid 
with formula C22H24N2O4, originallly isolated 
from the seeds of Strychnos nux-vomica. It has a 
role as a plant metabolite. It is a delta-lactam, a 
cyclic ketone, a monoterpenoid indole alkaloid, an 
organic heterohexacyclic compound, a tertiary 
amino compound and a member of phenols.

The molecule is a secondary carboxamide 
resulting from the formal condensation of the 
carboxy group of tetrahydro-2H-pyran-4-
carboxylic acid with the amino group of 5-{[(5-
tert-butyl-1,3-oxazol-2-yl)methyl]sulfanyl}-1,3-
thiazol-2-amine. It is a CDK18 kinase inhibitor. It 
has a role as an EC 2.7.11.22 (cyclin-dependent 
kinase) inhibitor. It is a member of 1,3-oxazoles, a 
member of 1,3-thiazoles, an organic sulfide, a 
secondary carboxamide and a member of oxanes.

The molecule is an organic heterohexacyclic
compound that is cladoniamide B in which both of 
the chlorines are replaced by hydrogen. It has 
been isolated from the culture broth of 
Streptomyces uncialis. It is a cladoniamide, an 
organic heterohexacyclic compound, a 
dicarboximide, a tertiary alcohol and a diol.

The molecule is a polyketide that is monacolin L 
bearing an additional hydroxy substituent at 
position 8. It has a role as an antimicrobial agent, 
a fungal metabolite and an EC 1.1.1.34/EC 
1.1.1.88 (hydroxymethylglutaryl-CoA reductase) 
inhibitor. It is a secondary alcohol, a polyketide, a 
carbobicyclic compound, a member of 2-
pyranones and a member of 
hexahydronaphthalenes. It derives from a 
monacolin L.

The molecule is a lipid A that is lipid A-core in 
which the anomeric phosphate is replaced by a 
diphosphate. It is a member of lipid As, a 
dodecanoate ester and a tetradecanoate ester. It is 
a conjugate acid of a lipid A-core 1-
diphosphate(11-).

Morgan FTS: 1.0

Morgan FTS: 0.95

Morgan FTS: 0.9

Morgan FTS: 0.85

Morgan FTS: 0.8

Morgan FTS: 0.7

Morgan FTS: 0.6

Figure 12: Additional text-based de novo molecule generation examples.
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