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Abstract

Multimodal Large Language Models (MLLMs)
demonstrate strong high-level visual reasoning,
yet their foundational understanding of nuanced
perceptual details is often overlooked by existing
evaluations. To address this, we introduce Hue-
Manity, a novel benchmark specifically designed
to assess this crucial dimension of MLLM vi-
sual understanding. HueManity comprises 83,850
Ishihara-style images with embedded alphanu-
meric strings, challenging models on precise
pattern recognition - a fundamental aspect of
visual understanding. Our evaluation of nine
MLLMs reveals a profound performance deficit:
the best-performing model achieved only 33.6%
accuracy on an ‘easy’ numeric task and 3% on
a ‘hard’ alphanumeric task. This starkly con-
trasts with human (100% numeric, 95.6% al-
phanumeric) and fine-tuned ResNet50 (96.5% nu-
meric, 94.5% alphanumeric) performance. These
findings uncover a critical gap in MLLMs’ fine-
grained visual understanding, a limitation not
apparent through conventional high-level assess-
ments. HueManity offers a new paradigm for
evaluating this specific type of model understand-
ing. We open-source the dataset and code to foster
research towards robust perception in MLLMs.

Code: https://github.com/rynaa/huemanity
Dataset: https://huggingface.co/datasets/Jayant-
Sravan/HueManity

1. Introduction
Recent advances in Multimodal Large Language Models
(MLLMs) (Team et al., 2023; Achiam et al., 2023; Bai et al.,
2023a; Li et al., 2023b; Gong et al., 2023; Liu et al., 2024a;
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2023; Anthropic, 2025) have enabled sophisticated integra-
tion of visual and textual information, leading to strong
performance in tasks like image description (Dong et al.,
2024; Fu et al., 2024a) and visual question answering (Weng
et al., 2025; Chen et al., 2025; Kuang et al., 2024). This suc-
cess is largely attributed to pre-training on vast image-text
datasets, fostering high-level semantic understanding (Jia
et al., 2021; Radford et al., 2021; Schuhmann et al., 2022;
Alayrac et al., 2022; Qi et al., 2020; Zhai et al., 2022; Pham
et al., 2023).

However, existing evaluations of MLLMs primarily focus on
these conceptual capabilities, neglecting their fine-grained
perceptual acuity (Bai et al., 2023b; Li et al., 2024; 2023a;
Xu et al., 2024; Yin et al., 2023; Liu et al., 2023). This paper
addresses this gap by introducing HueManity, a benchmark
designed to test MLLMs’ ability to discern subtle visual
details. Our methodology draws inspiration from the prin-
ciples of Ishihara plates (Clark, 1924), a technique tradi-
tionally employed in human ophthalmology to assess color
vision by embedding figures (like numbers or paths) within
fields of multicolored, varied-size dots. HueManity uses
controlled Ishihara-style stimuli with embedded alphanu-
meric characters to assess pattern recognition under visual
clutter and subtle color/luminance contrasts.

HueManity benchmark serves as a crucial indicator of an
MLLM’s potential for robust visual understanding in com-
plex, real-world scenarios. Unlike often curated benchmark
datasets, real-world visual environments are frequently char-
acterized by clutter, partial occlusions, variable lighting,
and unconventional information presentation. The ability of
an MLLM to reliably parse characters in our Ishihara-style
plates is intended to assess its resilience to visual clutter and
its pattern recognition capabilities — foundational skills of-
ten linked to dependable performance in challenging visual
settings.

To address this gap and facilitate further research in this
domain, this paper makes the following specific contribu-
tions: (1) We introduce HueManity, a new large-scale
benchmark of 83,850 Ishihara-inspired alphanumeric im-
ages, meticulously designed with 25 carefully curated color
pairs for systematic challenge. (2) We present a compre-
hensive evaluation of nine state-of-the-art MLLMs on
HueManity, which reveals a notable performance gap com-
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Figure 1. HueManity — A new benchmark for MLLM fine-grained visual perception. The pipeline creates a character mask from
alphanumeric characters and renders it as an Ishihara-style pattern. While models achieve high accuracy on clear masks, they struggle on
the challenging pattern images.

pared to human and fine-tuned ResNet50 baselines, thereby
indicating current MLLM limitations in fine-grained percep-
tion. (3) We release open-source code for stimuli genera-
tion, enabling reproducible research and community-driven
extensions in this domain.

2. Related Works
Multimodal Large Language Models (MLLMs) (Team et al.,
2023; Achiam et al., 2023; Bai et al., 2023a; Li et al., 2023b;
Gong et al., 2023; Liu et al., 2024a; 2023) have emerged
from Large Language Models (LLMs), integrating visual
information via modality adaptation layers. Early examples
like BLIP-2 (Li et al., 2023b) focused on pre-training for
tasks such as Visual Question Answering (VQA), while
LLaVA (Liu et al., 2023) advanced instruction tuning with
synthetic data. However, MLLMs’ success in visual tasks
often appears to depend more on strong language capabili-
ties than on fundamental visual perception. HueManity is
designed to rigorously evaluate these core, non-linguistic
visual skills.

Despite strong global image understanding, MLLMs strug-
gle with fine-grained visual tasks such as precise recog-
nition (Huang & Zhang, 2024; Li et al., 2024). Various
benchmarks exist, including TouchStone (Bai et al., 2023b)
and LLaVA-Bench (Liu et al., 2023) with their manually
annotated visual dialog questions. However, reliance on
GPT-based models for evaluation in LLaVA-Bench (Liu
et al., 2023), LAMM (Yin et al., 2023), and TouchStone
(Bai et al., 2023b) introduces reliability and cost issues.
LVLM-eHub (Xu et al., 2024) aggregates benchmarks but
remains subjective and expensive due to human annotation.
MME and MMBench (Liu et al., 2024b) offer more objec-

tive multiple-choice questions for perception and reasoning,
with MM-Vet (Yu et al., 2023) extending coverage to OCR
and math, but often rely on existing VQA datasets or GPT-
generated questions. SEED-Bench (Li et al., 2024; 2023a)
provides 24,000 human-annotated questions but remains
simple. Blink (Fu et al., 2024b) attempts holistic evaluation
across 14 perception tasks but does not assess task combi-
nations and shows high model accuracies, indicating less
challenge.

HueManity provides a scalable, objective, and reliable
methodology through procedural generation and exact-
match evaluation, distinct from more subjective or resource-
intensive techniques.

3. Data Creation
The HueManity dataset contains 83,850 images, each with
a two-character alphanumeric string with its ground truth
label and full generation parameters. We excluded visually
ambiguous characters (‘l’, ‘I’, ‘J’, ‘O’) and combinations
starting with ‘0’ to prevent prediction conflicts. The full
dataset was generated using 25 carefully chosen color pairs.

For our MLLM evaluations, we sampled two distinct sub-
sets, each with 1,000 randomly selected images, due to time
and API cost constraints:

• Number Recognition Set (Easier Task): This subset
contains images with only two-digit numeric strings (e.g.,
17, 83, 05).

• Text Recognition Set (Harder Task): This subset in-
cludes diverse two-character alphanumeric strings (e.g., A7,
b9, XG).
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3.1. Text Mask Generator

First, we create a 900x900 pixel binary text mask for each
two-character string. These masks, rendered in white on a
black background using Pygame, utilize the DejaVu Sans
font (size 550, bold and italic) to ensure readability and
adequate character width for dot-based rendering (Figure
1).

3.2. Ishihara-Style Pattern Generation

Our pattern generator, adapted from an open-source
Pygame project1, iteratively populates the image with non-
overlapping circles. Over 30,000 iterations, the genera-
tor randomly places circles, computes their maximum non-
colliding radius (4-15 pixels), and assigns an initial color
(foreground or background) based on whether the circle’s
center falls within the character mask. This initial color then
undergoes three randomized transformations: a gradient
shift towards the other pair color, an RGB color shift (range
[-30, +30]), and an RGB lightness scaling (factor 0.66 - 1.5).
These transformed circles are then rendered, resulting in the
final dense Ishihara-style pattern (Figure 1).

3.3. Color Pairs Selection

We meticulously selected 25 distinct foreground-
background color pairs for the HueManity stimuli through
a multi-stage process. This procedure involved both
quantitative CIEDE2000 (Luo et al., 2001) analysis
and extensive manual verification, balancing perceptual
challenge with human legibility (Appendix D).

4. Experiments
We evaluated nine state-of-the-art Multimodal Large Lan-
guage Models (MLLMs), including both commercial APIs
and open-source models.

Our evaluation focused on two tasks: numerical recognition
(digits only) and alphanumeric recognition (digits and let-
ters). For each task, we used a subset of 1,000 two-character
strings and their generated images from HueManity. Models
were tested on two types of visual stimuli:

• HueManity Pattern: The 1,000 randomly sampled
Ishihara-style dot pattern images.

• Text Masks: The corresponding 1,000 binary text mask
images (white text on a black background, as in Figure 1).
This baseline helps distinguish a model’s fundamental OCR
capabilities from its performance on perceptually challeng-
ing dot patterns. The prompts used for both are tasks are
mentioned in Appendix A.

1https://github.com/hakrackete/
Ishihara-color-plate-generator

4.1. Human Performance Evaluations

To establish a human baseline, three adult volunteers with
self-reported normal color vision were tested on a represen-
tative subset of 100 images for each task (numerical and
alphanumeric recognition). Volunteers viewed the 900x900
pixel images in a Google Sheets document and entered
responses using the same prompts given to the MLLMs,
ensuring direct comparison.

4.2. Traditional Computer Vision Baseline (ResNet50)

As a traditional computer vision baseline, we fine-tuned
an ImageNet-pretrained ResNet50 model from the PyTorch
vision library. We replaced its standard classification layer
with two independent classification heads, treating the task
as two separate character recognition problems. The model
was fine-tuned for 30 epochs on 2,000 randomly sampled
HueManity images (distinct from evaluation sets) using the
Adam optimizer (1e− 3 learning rate) and the sum of cross-
entropy losses from both heads. The trained model was
evaluated on the same 1,000-image subsets used for MLLM
evaluations.

5. Results and Analysis
5.1. Human Performance: A Near-Perfect Baseline

Human evaluators established a crucial baseline, demon-
strating exceptionally high accuracy and efficiency on the
HueManity benchmark (Table 2). For numerical recogni-
tion, volunteers achieved a perfect 100% accuracy, while for
the more complex alphanumeric task, they achieved a strong
95.6% average accuracy. Annotator feedback highlighted
that minor errors in the alphanumeric task stemmed from
differentiating visually similar character forms (e.g., ‘s’, ‘c’,
‘w’ upper and lower case variants), not from an inability
to perceive characters within the dot patterns. Volunteers
also processed images remarkably fast, typically under one
second per image. These near-perfect and rapid human
scores are critical as they:

• Confirms task solvability and stimulus clarity for profi-
cient visual systems.

• Establishes a clear performance ceiling for machine
perception on this perceptually simple task.

• Highlights MLLM-specific limitations, indicating strug-
gles in perceptual grouping or recognition rather than task
impossibility.

• Contextualizes machine errors, showing where MLLM
perception diverges starkly from human visual understand-
ing.
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5.2. ResNet50 Baseline: Demonstrating Task
Learnability

A fine-tuned ResNet50 model provided a strong traditional
computer vision baseline, achieving 96.5% on the numerical
task and 94.5% on the alphanumeric task (Table 1). This
robust performance from a standard convolutional architec-
ture, fine-tuned on a relatively small dataset (2,000 images
from HueManity), demonstrates that identifying characters
within these dot patterns is fundamentally learnable by estab-
lished computer vision techniques. Achieving near-human
accuracy suggests that the perceptual cues are rich enough
for a focused model to learn recognition. This implies the
task is not inherently intractable for AI and highlights that
MLLM difficulties likely stem from how these larger, more
general models process or prioritize fine-grained perceptual
information.

Table 1. Accuracy on the number and alphanumeric recogni-
tion tasks for human evaluators, ResNet50, and various MLLMs
on both text masks and patterned HueManity images.

Number Task Alphanumeric Task
Mask Pattern Mask Pattern

Humans (average) 100% 100% 100% 95.6%
ResNet50 - 96.5% - 94.5%

API-based models

GPT-4.1 mini 100% 19.0% 72.4% 0.6%
GPT-4.1 100% 33.6% 80% 3.0%
Claude 3.7 Sonnet 100% 0.4% 82.2% 0%

Open-source models

LLaVA-v1.6-7B 87.7% 3.3% 15% 0%
LLaVA-v1.6-13B 87.2% 8.1% 31.8% 0.1%
LLaVA-v1.6-34B 96.6% 7.8% 27.1% 0%
Mistral-small3.1-24b 100% 0.1% 58.7% 0%
Qwen VL Max 100% 0.2% 83.5% 0%
Pixtral 100% 1% 65.8% 1.8%

5.3. The Perceptual Gap: MLLM Performance vs.
Baselines on HueManity

The performance of the nine evaluated MLLMs on HueMan-
ity sharply contrasts with the near-perfect accuracies of both
humans and the ResNet50 baseline (Table 1). All MLLMs
consistently struggled, with the best achieving only 33.6%
on the numeric task and a mere 3% on the alphanumeric task.
This shocking underperformance on demonstrably solvable
tasks signals a critical gap in current MLLMs’ fine-grained
visual perception.

Several characteristics inherent to the current design and
training paradigms of many MLLMs may contribute to their
observed difficulties on tasks demanding nuanced visual
perception.

• Semantic Optimization, Pipeline Bottleneck: MLLM

vision encoders (e.g., ViT variants (Liu et al., 2023; 2024a;
Agrawal et al., 2024; Bai et al., 2023a; 2025), often opti-
mized for semantic information and global scene context,
might unintentionally de-emphasize or lose fine-grained lo-
cal details crucial for these tasks (e.g., subtle color shifts
defining patterns in cluttered backgrounds). The projection
layers connecting vision encoders to language models (Liu
et al., 2023; 2024a; Agrawal et al., 2024; Bai et al., 2023a;
2025) could also act as an information bottleneck, abstract-
ing or losing precise, high-resolution feature distinctions.

• Impact of Pre-Training Paradigms on Foundational
Visual Acuity: MLLMs are primarily pre-trained on vast
web-scale corpora with image-text pairings (Liu et al., 2023;
2024a; Agrawal et al., 2024; Bai et al., 2023a; 2025; Achiam
et al., 2023). While fostering semantic alignment and con-
textual understanding, these datasets may not adequately
represent stimuli requiring intensive perceptual organization
based purely on low-level visual features without strong
linguistic or object-based anchors. Consequently, MLLMs
might lack specialized visual routines needed for tasks like
grouping elements based on subtle shared properties (e.g.,
color similarity). Their success often relies on powerful
integrated LLMs for conceptual interpretation and reason-
ing (Achiam et al., 2023; Anthropic, 2025; Liu et al., 2023;
Gong et al., 2023; Jiang et al., 2023). This reliance is less ef-
fective when the core challenge demands direct, bottom-up
visual processing and pattern extraction rather than semantic
inference. Such tasks require a foundational visual acuity
that may not be a primary emergent outcome of training
focused on multimodal semantics and instruction following.

6. Conclusion and Future Directions
Our HueManity benchmark (83,850 Ishihara-style images)
assesses MLLM fine-grained visual perception, uncovering
critical limitations. Evaluations revealed a stark MLLM
performance gap: top models scored as low as 3% on chal-
lenging alphanumeric tasks (and only 33.6% on easier nu-
meric ones), far underperforming human and ResNet50
baselines in discerning patterns amidst visual noise. Hue-
Manity will be open-sourced to spur further research. Future
work should target novel MLLM architectures, data, and
training objectives to improve foundational visual acuity.

7. Limitations
HueManity focuses on a specific task of identifying two-
character alphanumeric strings, and its direct generalization
to the full spectrum of real-world fine-grained challenges re-
quires further investigation. The dataset primarily explores
color and basic character forms; future work could expand
to texture, orientation, or motion.
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Gervet, T., Ghosh, S., Héliou, A., Jacob, P., Jiang, A. Q.,
Khandelwal, K., Lacroix, T., Lample, G., Casas, D. L.,
Lavril, T., Scao, T. L., Lo, A., Marshall, W., Martin, L.,
Mensch, A., Muddireddy, P., Nemychnikova, V., Pellat,
M., Platen, P. V., Raghuraman, N., Rozière, B., Sablay-
rolles, A., Saulnier, L., Sauvestre, R., Shang, W., Solet-
skyi, R., Stewart, L., Stock, P., Studnia, J., Subramanian,
S., Vaze, S., Wang, T., and Yang, S. Pixtral 12b, 2024.
URL https://arxiv.org/abs/2410.07073.

Alayrac, J.-B., Donahue, J., Luc, P., Miech, A., Barr,
I., Hasson, Y., Lenc, K., Mensch, A., Millican, K.,
Reynolds, M., Ring, R., Rutherford, E., Cabi, S., Han,
T., Gong, Z., Samangooei, S., Monteiro, M., Menick,
J., Borgeaud, S., Brock, A., Nematzadeh, A., Shar-
ifzadeh, S., Binkowski, M., Barreira, R., Vinyals, O.,
Zisserman, A., and Simonyan, K. Flamingo: a vi-
sual language model for few-shot learning, 2022. URL
https://arxiv.org/abs/2204.14198.

Anthropic. Claude 3.5 sonnet, 2025. URL https://
claude.ai/. Accessed May 18, 2025.

Bai, J., Bai, S., Yang, S., Wang, S., Tan, S., Wang, P., Lin, J.,
Zhou, C., and Zhou, J. Qwen-vl: A frontier large vision-
language model with versatile abilities. arXiv preprint
arXiv:2308.12966, 1(2):3, 2023a.

Bai, S., Yang, S., Bai, J., Wang, P., Zhang, X., Lin, J., Wang,
X., Zhou, C., and Zhou, J. Touchstone: Evaluating vision-
language models by language models. arXiv preprint
arXiv:2308.16890, 2023b.

Bai, S., Chen, K., Liu, X., Wang, J., Ge, W., Song, S., Dang,
K., Wang, P., Wang, S., Tang, J., Zhong, H., Zhu, Y.,
Yang, M., Li, Z., Wan, J., Wang, P., Ding, W., Fu, Z., Xu,
Y., Ye, J., Zhang, X., Xie, T., Cheng, Z., Zhang, H., Yang,
Z., Xu, H., and Lin, J. Qwen2.5-vl technical report, 2025.
URL https://arxiv.org/abs/2502.13923.

Chen, B., Khare, A., Kumar, G., Akula, A., and Narayana,
P. Seeing beyond: Enhancing visual question answer-
ing with multi-modal retrieval. In Rambow, O., Wan-
ner, L., Apidianaki, M., Al-Khalifa, H., Eugenio, B. D.,
Schockaert, S., Darwish, K., and Agarwal, A. (eds.), Pro-
ceedings of the 31st International Conference on Compu-
tational Linguistics: Industry Track, pp. 410–421, Abu

Dhabi, UAE, January 2025. Association for Computa-
tional Linguistics. URL https://aclanthology.
org/2025.coling-industry.35/.

Clark, J. The ishihara test for color blindness. American
Journal of Physiological Optics, 1924.

Dong, R., Han, C., Peng, Y., Qi, Z., Ge, Z., Yang, J., Zhao,
L., Sun, J., Zhou, H., Wei, H., Kong, X., Zhang, X.,
Ma, K., and Yi, L. Dreamllm: Synergistic multimodal
comprehension and creation, 2024. URL https://
arxiv.org/abs/2309.11499.

Fu, T.-J., Hu, W., Du, X., Wang, W. Y., Yang, Y., and
Gan, Z. Guiding instruction-based image editing via
multimodal large language models, 2024a. URL https:
//arxiv.org/abs/2309.17102.

Fu, X., Hu, Y., Li, B., Feng, Y., Wang, H., Lin, X., Roth, D.,
Smith, N. A., Ma, W.-C., and Krishna, R. Blink: Multi-
modal large language models can see but not perceive. In
European Conference on Computer Vision, pp. 148–166.
Springer, 2024b.

Gong, T., Lyu, C., Zhang, S., Wang, Y., Zheng, M., Zhao, Q.,
Liu, K., Zhang, W., Luo, P., and Chen, K. Multimodal-gpt:
A vision and language model for dialogue with humans.
arXiv preprint arXiv:2305.04790, 2023.

Huang, J. and Zhang, J. A survey on evaluation of
multimodal large language models. arXiv preprint
arXiv:2408.15769, 2024.

Jia, C., Yang, Y., Xia, Y., Chen, Y.-T., Parekh, Z., Pham,
H., Le, Q. V., Sung, Y., Li, Z., and Duerig, T. Scaling up
visual and vision-language representation learning with
noisy text supervision, 2021. URL https://arxiv.
org/abs/2102.05918.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., de las Casas, D., Bressand, F., Lengyel,
G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.-
A., Stock, P., Scao, T. L., Lavril, T., Wang, T., Lacroix,
T., and Sayed, W. E. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Kuang, J., Xie, J., Luo, H., Li, R., Xu, Z., Cheng, X., Li,
Y., Lin, X., and Shen, Y. Natural language understanding
and inference with mllm in visual question answering:
A survey, 2024. URL https://arxiv.org/abs/
2411.17558.

Li, B., Wang, R., Wang, G., Ge, Y., Ge, Y., and Shan, Y.
Seed-bench: Benchmarking multimodal llms with gener-
ative comprehension. arXiv preprint arXiv:2307.16125,
2023a.

5

https://arxiv.org/abs/2410.07073
https://arxiv.org/abs/2204.14198
https://claude.ai/
https://claude.ai/
https://arxiv.org/abs/2502.13923
https://aclanthology.org/2025.coling-industry.35/
https://aclanthology.org/2025.coling-industry.35/
https://arxiv.org/abs/2309.11499
https://arxiv.org/abs/2309.11499
https://arxiv.org/abs/2309.17102
https://arxiv.org/abs/2309.17102
https://arxiv.org/abs/2102.05918
https://arxiv.org/abs/2102.05918
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2411.17558
https://arxiv.org/abs/2411.17558


HueManity: Probing Fine-Grained Visual Perception in MLLMs

Li, B., Ge, Y., Ge, Y., Wang, G., Wang, R., Zhang, R.,
and Shan, Y. Seed-bench: Benchmarking multimodal
large language models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 13299–13308, 2024.

Li, J., Li, D., Savarese, S., and Hoi, S. Blip-2: Bootstrapping
language-image pre-training with frozen image encoders
and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023b.

Liu, H., Li, C., Wu, Q., and Lee, Y. J. Visual instruction tun-
ing. Advances in neural information processing systems,
36:34892–34916, 2023.

Liu, H., Li, C., Li, Y., and Lee, Y. J. Improved baselines
with visual instruction tuning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 26296–26306, 2024a.

Liu, Y., Duan, H., Zhang, Y., Li, B., Zhang, S., Zhao, W.,
Yuan, Y., Wang, J., He, C., Liu, Z., et al. Mmbench:
Is your multi-modal model an all-around player? In
European conference on computer vision, pp. 216–233.
Springer, 2024b.

Luo, M., Cui, G., and Rigg, B. The development of the
cie 2000 colour-difference formula: Ciede2000. Color
Research Application, 26:340 – 350, 10 2001. doi: 10.
1002/col.1049.

Pham, H., Dai, Z., Ghiasi, G., Kawaguchi, K., Liu, H., Yu,
A. W., Yu, J., Chen, Y.-T., Luong, M.-T., Wu, Y., Tan, M.,
and Le, Q. V. Combined scaling for zero-shot transfer
learning, 2023. URL https://arxiv.org/abs/
2111.10050.

Qi, D., Su, L., Song, J., Cui, E., Bharti, T., and Sacheti,
A. Imagebert: Cross-modal pre-training with large-scale
weak-supervised image-text data, 2020. URL https:
//arxiv.org/abs/2001.07966.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark,
J., Krueger, G., and Sutskever, I. Learning transferable
visual models from natural language supervision, 2021.
URL https://arxiv.org/abs/2103.00020.

Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C.,
Wightman, R., Cherti, M., Coombes, T., Katta, A.,
Mullis, C., Wortsman, M., Schramowski, P., Kundurthy,
S., Crowson, K., Schmidt, L., Kaczmarczyk, R., and
Jitsev, J. Laion-5b: An open large-scale dataset for
training next generation image-text models, 2022. URL
https://arxiv.org/abs/2210.08402.

Team, G., Anil, R., Borgeaud, S., Alayrac, J.-B., Yu, J., Sori-
cut, R., Schalkwyk, J., Dai, A. M., Hauth, A., Millican,
K., et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023.

Weng, W., Zhu, J., Meng, X., Zhang, H., Zhang, R., and
Yuan, C. Learning to compress contexts for efficient
knowledge-based visual question answering, 2025. URL
https://arxiv.org/abs/2409.07331.

Xu, P., Shao, W., Zhang, K., Gao, P., Liu, S., Lei, M.,
Meng, F., Huang, S., Qiao, Y., and Luo, P. Lvlm-ehub:
A comprehensive evaluation benchmark for large vision-
language models. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

Yin, Z., Wang, J., Cao, J., Shi, Z., Liu, D., Li, M., Huang,
X., Wang, Z., Sheng, L., Bai, L., et al. Lamm: Language-
assisted multi-modal instruction-tuning dataset, frame-
work, and benchmark. Advances in Neural Information
Processing Systems, 36:26650–26685, 2023.

Yu, W., Yang, Z., Li, L., Wang, J., Lin, K., Liu, Z., Wang,
X., and Wang, L. Mm-vet: Evaluating large multi-
modal models for integrated capabilities. arXiv preprint
arXiv:2308.02490, 2023.

Zhai, X., Wang, X., Mustafa, B., Steiner, A., Keysers, D.,
Kolesnikov, A., and Beyer, L. Lit: Zero-shot transfer
with locked-image text tuning, 2022. URL https://
arxiv.org/abs/2111.07991.

6

https://arxiv.org/abs/2111.10050
https://arxiv.org/abs/2111.10050
https://arxiv.org/abs/2001.07966
https://arxiv.org/abs/2001.07966
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2210.08402
https://arxiv.org/abs/2409.07331
https://arxiv.org/abs/2111.07991
https://arxiv.org/abs/2111.07991


HueManity: Probing Fine-Grained Visual Perception in MLLMs

Table 2. Human evaluation accuracies on 100-image subsets for both number and alphanumeric pattern recognition tasks.

Number Pattern Alphanumeric Pattern

Evaluator 1 100% 97%
Evaluator 2 100% 95%
Evaluator 3 100% 95%

Average 100% 95.6%

A. MLLM Prompts

Number Recognition Prompt

“What is the number in this image? Strictly stick to the format: Answer: [number in the image]”

Text Recognition Prompt

“What is the exact text in this image? It has only alpha-numeric characters excluding small L, capital O, capital I,
and capital J to avoid ambiguity. Strictly stick to the format: Answer: [exact text in the image]”

B. Qualitative Analysis of MLLM Failure Patterns
This section details common failure patterns observed in Multimodal Large Language Models (MLLMs) when tasked
with identifying alphanumeric characters embedded in Ishihara-style dot patterns from the HueManity dataset. These
observations stem from a comparative analysis of MLLM responses against human performance and ground truth data.
Notably, human visual perception proved highly accurate on these tasks, with any infrequent errors typically involving
confusion between graphically similar characters. In contrast, MLLMs exhibited distinct and more fundamental failure
modes.

B.1. Prevalent Hallucination of Unrelated or Overly Complex Characters

A dominant failure mode across multiple MLLMs was the generation of characters, words, or even entire phrases that bore
no resemblance to the two-character ground truth. This phenomenon of “hallucination” often resulted in outputs significantly
more complex or contextually incongruous than the target stimuli. For instance, in the alphanumeric task, a model such as
Claude 3.7 Sonnet might interpret a simple two-letter combination as a short phrase (e.g., responding with “MUST
SEE” or “SOLU” for simple targets like “Rw” or “Tv”). Similarly, llava-7b could produce non-sensical strings like
“HQJHSTOS”, and LLaVA-13b occasionally generated contextually unrelated phrases like “[G3T1NGST4RT3D]”. The
numeric task was not immune — for a two-digit number, Claude 3.7 Sonnet was observed to list a sequence of
unrelated two-digit numbers. This pattern suggests that when the fine-grained perceptual challenge overwhelms the MLLMs’
visual processing, they may default to generating text that, while perhaps linguistically plausible, is detached from the actual
visual content.

B.2. Frequent Resort to Descriptive Evasion or Explicit Admission of Inability

Rather than consistently attempting to identify the embedded characters, many MLLMs frequently defaulted to one of two
evasive strategies: providing a general description of the image (often correctly identifying it as a color vision test) or explic-
itly stating their incapacity to discern any characters. This behavior contrasted significantly with human participants, who
invariably attempted the identification task. For example, models like GPT-4.1 Mini and Mistral-small3.1-24b,
when presented with alphanumeric stimuli, often responded by describing the image as an Ishihara test but stated they
could not clearly identify specific characters. In the numeric task, Claude 3.7 Sonnet sometimes offered similar
descriptive evasions, asserting no number was visible and describing the circular dot pattern. Furthermore, some models,
such as LLaVA-34b, occasionally provided categorical statements of inability, indicating they could not recognize or
interpret images and requesting a description or textual input instead. This pattern suggests that MLLMs may possess
internal confidence thresholds that, when triggered by low-confidence visual parsing, lead to evasive or pre-programmed

7



HueManity: Probing Fine-Grained Visual Perception in MLLMs

“unable to process” responses rather than a forced, best-guess attempt at character recognition.

B.3. Erratic, Unpredictable, and Systematically Flawed Output Patterns

MLLM outputs were frequently characterized by their erratic and unpredictable nature. This included the generation of
seemingly random strings of characters, peculiar systematic but incorrect patterns, or extreme numerical inventions far
removed from the two-character target. This high variance in error types was observed both across different models for the
same input and within the outputs of a single model across different images. For instance, when presented with the same
alphanumeric target (e.g., “Wh”), while one model (GPT-4.1) might respond almost correctly, others exhibited diverse
failures: Claude 3.7 Sonnet produced an unrelated number (“4726”); LLaVA-13b generated an exceptionally long
string of sequential numbers; and Qwen VL Max incorrectly reasoned the presence of a different number (“12”). Some
incorrect outputs also suggested flawed systematic processing, such as LLaVA-13b responding with a patterned string
like “[L1L1L1]” for one target or generating extremely long, patterned numeric strings for others. Lengthy, seemingly
gibberish character strings were also common from models like LLaVA-7b. This unpredictability underscores a lack of
robust and stable visual feature extraction and interpretation, contrasting with human visual processing, which tends towards
predictable errors based on similarity.

C. A Brief Discussion on CIEDE2000 Color Difference

∆E2000 =

√(
∆L′

KLSL

)2

+

(
∆C ′

KCSC

)2

+

(
∆H ′

KHSH

)2

+RT

(
∆C ′

KCSC

)(
∆H ′

KHSH

)
where ∆L′ is the corrected lightness difference,

∆C ′ is the corrected chroma difference,
∆H ′ is the corrected hue difference,
KL,KC ,KH are parametric factors (typically 1),
SL, SC , SH are weighting functions for lightness, chroma, and hue,
RT is a rotation term accounting for hue-chroma interaction.

(1)

The CIEDE2000 score (∆E2000, Equation 1) (Luo et al., 2001) quantifies the perceived difference between two colors
more accurately than prior formulae, especially for subtle variations. It calculates a single value representing the “distance”
between colors in the perceptually uniform CIE L∗a∗b∗ space, considering lightness, chroma, and hue. In the HueManity
benchmark, ∆E2000 was pivotal for systematically designing stimuli. The ability to discern characters in the Ishihara-style
plates directly depends on the perceived color contrast between foreground (character) and background dots. This score
provided a perceptually relevant, objective method to quantify this contrast, enabling the selection of color pairs across a
controlled spectrum of difficulty, refer to Figure 2. This ensured the benchmark could rigorously test visual perception for
varying degrees of color discriminability while maintaining stimuli legibility for human comparison, forming a foundational
aspect of our dataset’s controlled experimental design.

D. Color Pairs Selection
The selection of appropriate color pairs for the foreground (characters) and background dots was a critical phase in the
development of HueManity, undertaken with considerable care to ensure a balance between perceptual challenge and
unambiguous human legibility. The process involved several stages:

1. Initial Candidate Generation: We bootstrapped the process with 15 medium-contrast color pairs generated by LLMs
(Gemini, ChatGPT). This initial pool was iteratively refined by evaluating pairs against CIEDE2000 (∆E2000, Eq. 1)
scores and visual checks. We retained promising candidates, modified some, and discarded others, while simultaneously
manually crafting and vetting new pairs to meet the benchmark’s final requirements (detailed below). This refinement
cycle culminated in the selection of 25 distinct pairs for the subsequent validation stages.

2. Quantitative Contrast Filtering (CIEDE2000): Each of these candidate pairs then underwent rigorous quantitative
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Figure 2. Distribution of CIEDE2000 color difference scores for the 25 selected foreground-background color pairs utilized in the
HueManity benchmark.

analysis using the CIEDE2000 (∆E2000) color difference formula (Equation 1). This formula is a standard measure in
color science, designed to reflect perceptually meaningful differences as perceived by humans. We established a specific
target range for the ∆E2000 score, retaining only pairs with contrast values between 25 and 75. The lower bound of 25
was set to ensure sufficient theoretical distinguishability for individuals with normal color vision, preventing pairs that
would be inherently ambiguous. The upper bound of 75 aimed to exclude pairs with excessively high contrast, which
might render the perceptual task trivial and deviate from the subtle challenge intended.

3. Balanced Contrast Distribution: A key objective during selection was to ensure the benchmark included stimuli
across a spectrum of difficulty levels related to color similarity. Therefore, we deliberately curated the final set of 25
color pairs to achieve an approximately equal distribution around a ∆E2000 score of 50. This threshold is grounded in
color science literature, often considered a point distinguishing more subtle (scores <50) from more clearly distinct
(scores >50) color differences. We aimed for roughly half the selected pairs to fall below this threshold and half above,
ensuring HueManity evaluates performance across varying, literature-informed degrees of color contrast difficulty.

4. Manual Verification and Legibility Check: Recognizing that a single numerical contrast score like ∆E2000 captures
overall perceived difference but may not fully account for the complex interplay of hue, saturation, and luminance
components, especially when rendered as dots and subjected to further transformations (gradient, color, and light shifts
as described in Section 3.2), a crucial final step of manual verification was performed. It is hard to quantify the nuanced
visual impact of these combined factors with a single metric. Therefore, for every color pair that passed the quantitative
filtering, sample HueManity images were generated. These renderings were meticulously inspected by the authors. The
primary goal was to reject pairs where the characters, despite an acceptable overall contrast score, appeared visually
too similar to the background due to the specific combination of hue, saturation, luminance, or the effect of the applied
shifts. This ensured that the embedded alphanumeric characters were clearly legible and that the pattern recognition
was unambiguous for human observers with normal color vision. Any pairs that resulted in ambiguous characters or
were otherwise problematic during this visual check were discarded.

This multi-stage process, combining LLM-based idea generation, principled quantitative filtering based on color science, a
balanced distributional strategy, and crucial human judgment to account for complex visual interactions, resulted in the
final curated set of 25 color pairs. This ensures that the stimuli used in HueManity are not only theoretically sound but also
practically validated for fairness, legibility, and the intended level of perceptual challenge.

E. Usage of Generative AI tools
We utilized Generative AI tools to help improve the language, phrasing, and readability of this manuscript.
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