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ABSTRACT

Self-attention mechanism in graph neural networks (GNNs) led to state-of-the-
art performance on many graph representation learning task. Currently, at every
layer, attention is computed between connected pairs of nodes and depends solely
on the representation of the two nodes. However, such attention mechanism does
not account for nodes that are not directly connected but provide important net-
work context, which could lead to improved predictive performance. Here we
propose Multi-hop Attention Graph Neural Network (MAGNA), a principled way
to incorporate multi-hop context information into attention computation, enabling
long-range interactions at every layer of the GNN. To compute attention between
nodes that are not directly connected, MAGNA diffuses the attention scores across
the network, which increases the “receptive field” for every layer of the GNN. Un-
like previous approaches, MAGNA uses a diffusion prior on attention values, to
efficiently account for all paths between the pair of disconnected nodes. This
helps MAGNA capture large-scale structural information in every layer, and learn
more informative attention. Experimental results on node classification as well as
the knowledge graph completion benchmarks show that MAGNA achieves state-
of-the-art results: MAGNA achieves up to 5.7% relative error reduction over the
previous state-of-the-art on Cora, Citeseer, and Pubmed. MAGNA also obtains the
best performance on a large-scale Open Graph Benchmark dataset. On knowledge
graph completion MAGNA advances state-of-the-art on WN18RR and FB15k-
237 across four different performance metrics.

1 INTRODUCTION

The introduction of the self-attention mechanism (Bahdanau et al., 2015; Vaswani et al., 2017),
has pushed the state-of-the-art in many domains including graph presentation learning (Radford
et al., 2019; Devlin et al., 2019; Liu et al., 2019a; Lan et al., 2019). Graph Attention Network
(GAT) (Veličković et al., 2018) and related models (Li et al., 2018; Wang et al., 2019a; Liu et al.,
2019b; Oono & Suzuki, 2020) developed attention mechanism for Graph Neural Networks (GNNs),
which compute attention scores between nodes connected by an edge, allowing the model to attend
to messages of node’s direct neighbors according to their attention scores.
However, such attention computation on pairs of nodes connected by edges implies that a node can
only attend to its immediate neighbors to compute its (next layer) representation. This implies that
receptive field of a single GNN layer is restricted to one-hop network neighborhoods. Although
stacking multiple GATs could in principle enlarge the receptive field and learn non-neighboring
interactions, such deep GAT architectures suffer from the oversmoothing problem (Wang et al.,
2019a; Liu et al., 2019b; Oono & Suzuki, 2020) and do not perform well in practice. Furthermore,
edge attention weights in the single GAT layer are based solely on representations of the two nodes
at the edge endpoints, and do not depend on their graph neighborhood context. In other words, the
one-hop attention mechanism in GATs limits their ability to explore the relationship between the
broader graph structure and the attention weights. While previous works (Xu et al., 2018; Klicpera
et al., 2019b) have shown advantages in performing multi-hop message-passing in a single layer,
these approaches are not graph-attention based. Therefore, incorporating multi-hop neighboring
context into the attention computation in graph neural networks had not been explored.
Here we present Multi-hop Attention Graph Neural Network (MAGNA), an effective and efficient
multi-hop self-attention mechanism for graph structured data. MAGNA uses a novel graph attention
diffusion layer (Figure 1), where we first compute attention weights on edges (represented by solid
arrows), and then compute self-attention weights (dotted arrows) between disconnected pairs of
nodes through an attention diffusion process using the attention weights on the edges.
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Our model has two main advantages: 1) MAGNA captures long-range interactions between nodes
that are not directly connected but may be multiple hops away. Thus the model enables effective
long-range message passing, from important nodes multiple hops away. 2) The attention computa-
tion in MAGNA is context-dependent. The attention value in GATs (Veličković et al., 2018) only
depends on node representations of the previous layer, and is zero between disconnected pairs of
nodes. In contrast, for any pair of nodes within a chosen multi-hop neighborhood, MAGNA com-
putes attention by aggregating the attention scores over all the possible paths (length≥ 1) connecting
the two nodes.
Theoretically we demonstrate that MAGNA places a Personalized Page Rank (PPR) prior on the
attention values. We further apply spectral graph analysis to show that MAGNA has the capability
of emphasizing on large-scale graph structure and lowering high-frequency noise in graphs. Specif-
ically, MAGNA enlarges the lower Laplacian eigen-values, which correspond to the large-scale
structure in the graph, and suppresses the higher Laplacian eigen-values which correspond to more
noisy and fine-grained information in the graph.
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Figure 1: Multi-hop attention diffusion. Con-
sider making a prediction at nodes A and D.
Left: A single GAT layer only computes atten-
tion scores α between directly connected pairs
of nodes (i.e., edges) and thus αD,C = 0. Fur-
thermore, the attention αA,B between A and
B only depends on their node representations.
Right: A single MAGNA layer is able to: (1)
capture the information of two-hop neighbor
C to D via the diffused multi-hop attention
α′D,C ; And, (2) enhance graph structure learn-
ing by considering all paths between nodes via
diffused attention based on powers of graph ad-
jacency matrix.

We experiment on standard datasets for semi-
supervised node classification as well as knowl-
edge graph completion. Experiments show
that MAGNA achieves state-of-the-art results:
MAGNA achieves up to 5.7% relative error reduc-
tion over previous state-of-the-art on Cora, Cite-
seer, and Pubmed. MAGNA also obtains better
performance on a large-scale Open Graph Bench-
mark dataset. On knowledge graph completion,
MAGNA advances state-of-the-art on WN18RR
and FB15k-237 across four metrics, with the
largest gain of 7.1% in the metric of Hit at 1.
Furthermore, we show that MAGNA with just 3
layers and 6 hop wide attention per layer signif-
icantly out-performs GAT with 18 layers, even
though both architectures have the same recep-
tive field. Moreover, our ablation study reveals
the synergistic effect of the essential components
of MAGNA, including layer normalization and
multi-hop diffused attention. We further observe
that compared to GAT, the attention values learned
by MAGNA have higher diversity, indicating the
ability to better pay attention to important nodes.

2 MULTI-HOP ATTENTION GRAPH NEURAL NETWORK (MAGNA)

We first discuss the background and then explain Multi-hop Attention Graph Neural Network’s novel
multi-hop attention diffusion module and its overall model architecture.

2.1 PRELIMINARIES

Let G = (V, E) be a given graph, where V is the set of Nn nodes, E ⊆ V × V is the set of Ne edges
connecting M pairs of nodes in V . Each node v ∈ V and each edge e ∈ E are associated with their
type mapping functions: φ : V → T and ψ : E → R. Here T and R denote the sets of node types
(labels) and edge/relation types. Our framework supports learning on heterogeneous graphs with
multiple elements inR.
A general Graph Neural Network (GNN) approach learns an embedding that maps nodes and/or edge
types into a continuous vector space. Let X ∈ RNn×dn and R ∈ RNr×dr be the node embedding
and edge/relation type embedding, where Nn = |V|, Nr = |R|, dn and dr represent the embedding
dimension of node and edge/relation types, each row xi =X[i :] represents the embedding of node
vi (1 ≤ i ≤ Nn), and rj = R[j :] represents the embedding of relation rj (1 ≤ j ≤ Nr).
MAGNA builds on GNNs, while bringing together the benefits of Graph Attention and
Diffusion techniques. The core of MAGNA is Multi-hop Attention Diffusion, a princi-
pled way to learn attention between any pair of nodes in a scalable way, taking into
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Figure 2: MAGNA Architecture. Each
MAGNA block consists of attention computa-
tion, attention diffusion, layer normalization,
feed forward layers, and 2 residual connec-
tions for each block. MAGNA blocks can be
stacked to constitute a deep model. As illus-
trated on the right, context-dependent attention
is achieved via the attention diffusion process.
Here vi, vj , vp, vq ∈ V are nodes in the graph.

account the graph structure and enabling multi-
hop context-dependent attention directly.
The key challenge here is how to allow for flex-
ible but scalable context-dependent multi-hop at-
tention, where any node can influence embedding
of any other node in a single GNN layer (even if
they are far away in the underlying network). Sim-
ply learning attention scores over all node pairs is
infeasible and would lead to overfitting and poor
generalization.

2.2 MULTI-HOP ATTENTION DIFFUSION

We first introduce attention diffusion to compute
the multi-hop attention directly, which operates on
the MAGNA’s attention scores at each layer. The
input to the attention diffusion operator is a set
of triples (vi, rk, vj), where vi, vj are nodes and
rk is the edge type. MAGNA first computes the
attention scores on all edges. The attention dif-
fusion module then computes the attention values
between pairs of nodes that are not directly con-
nected by an edge, based on the edge attention
scores, via a diffusion process. The attention dif-
fusion module can then be used as a component in
MAGNA architecture, which we will further elab-
orate in Section 2.3.
Edge Attention Computation. At each layer l, a vector message is computed for each triple
(vi, rk, vj). To compute the representation of vj at layer l + 1, all messages from triples incident to
vj are aggregated into a single message, which is then used to update vl+1

j .

In the first stage, the attention score s of an edge (vi, rk, vj) is computed by the following:
s
(l)
i,k,j = LeakyReLU(v(l)a tanh(W

(l)
h h

(l)
i ‖W

(l)
t h

(l)
j ‖W

(l)
r rk)) (1)

whereW (l)
h ,W (l)

t ∈Rd
(l)×d(l) ,W (l)

r ∈Rd
(l)×dr and v(l)a ∈R1×3d(l) are the trainable weights shared

by l-th layer. h(l)
i ∈ Rd(l) represents the embedding of node i at l-th layer, and h(0)

i = xi. rk is
the trainable relation embedding of the k-th relation type rk (1 ≤ k ≤ Nr), and a‖b denotes con-
catenation of embedding vectors a and b. For graphs with no relation type, we treat as a degenerate
categorical distribution with 1 category 1.
Applying Eq. 1 on each edge of the graph G, we obtain an attention score matrix S(l):

S
(l)
i,j =

{
s
(l)
i,k,j , if (vi, rk, vj) appears in G
−∞, otherwise

(2)

Subsequently we obtain the attention matrix A(l) by performing row-wised softmax over the score
matrix S(l): A(l) = softmax(S(l)). A(l)

ij denotes the attention value at layer l when aggregating
message from node j to node i.
Attention Diffusion for Multi-hop Neighbors. In the second stage, we further enable attention
between nodes that are not directly connected in the network. We achieve this via the following
attention diffusion procedure. The procedure computes the attention scores of multi-hop neighbors
via graph diffusion based on the powers of the 1-hop attention matrixA:

A =

∞∑
i=0

θiA
i where

∞∑
i=0

θi = 1 and θi > 0 (3)

where θi is the attention decay factor and θi > θi+1. The powers of attention matrix, Ai, give us the
number of relation paths from node h to node t of length up to i, increasing the receptive field of the
attention (Figure 1). Importantly, the mechanism allows the attention between two nodes to not only
depend on their previous layer representations, but also taking into account of the paths between the

1In this case, we can view that there is only one “pseudo” relation type (category), i.e., Nr = 1
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nodes, effectively creating attention shortcuts between nodes that are not directly connected (Figure
1). Attention through each path is also weighted differently, depending on θ and the path length.
In our implementation we utilize the geometric distribution θi = α(1 − α)i, where α ∈ (0, 1]. The
choice is based on the inductive bias that nodes further away should be weighted less in message ag-
gregation, and nodes with different relation path lengths to the target node are sequentially weighted
in an independent manner. In addition, notice that if we define θ0 = α ∈ (0, 1], A0 = I , then Eq.
3 gives the Personalized Page Rank (PPR) procedure on the graph with the attention matrix A and
teleport probability α. Hence the diffused attention weights, Aij , can be seen as the influence of
node j to node i. We further elaborate the significance of this observation in Section 4.3.

We can also viewAij as the attention value of node j to i since
∑Nn

j=1Aij = 1.2 We then define the
graph attention diffusion based feature aggregation as

AttDiffusion(G,H(l), Θ) = AH(l), (4)
where Θ is the set of parameters for computing attention. Thanks to the diffusion process defined in
Eq. 3, MAGNA uses the same number of parameters as if we were only computing attention between
nodes connected via edges. This ensures runtime efficiency as well as good model generalization.
Approximate Computation for Attention Diffusion. For large graphs computing the exact atten-
tion diffusion matrix A using Eq. 3 may be prohibitively expensive, due to computing the powers
of the attention matrix (Klicpera et al., 2019a). To resolve this bottleneck, we proceed as follows:
Let H(l) be the input entity embedding of the l-th layer (H(0) = X) and θi = α(1 − α)i. Since
MAGNA only requires aggregation via AH(l), we can approximate AH(l) by defining a sequence
Z(K) which converges to the true value of AH(l) (Proposition 1) as K →∞:

Z(0) =H(l), Z(k+1) = (1− α)AZ(k) + αZ(0), where 0 ≤ k < K (5)

Proposition 1. limK→∞ Z(K) = AH(l)

In the Appendix we give the proof which relies on the expansion of Eq. 5.
Using the above approximation, the complexity of attention computation with diffusion is still
O(|E|), with a constant factor corresponding to the number of hops K. In practice, we find that
choosing the values of K such that 3 ≤ K ≤ 10 results in good model performance. Many real-
world graphs exhibit small-world property, in which case even a smaller value of K is sufficient.
For graphs with larger diameter, we choose larger K, and lower the value of α.

2.3 DIRECT MULTI-HOP ATTENTION BASED GNN ARCHITECTURE

Figure 2 provides an architecture overview of the MAGNA Block that can be stacked multiple times.
Multi-head Graph Attention Diffusion Layer. Multi-head attention (Vaswani et al., 2017;
Veličković et al., 2018) is used to allow the model to jointly attend to information from different
representation sub-spaces at different viewpoints. In Eq. 6, the attention diffusion for each head i is
computed separately with Eq. 4, and aggregated:

Ĥ(l) = MultiHead(G, H̃(l)) =

(∥∥∥M
i=1

headi

)
Wo, where

headi = AttDiffusion(G, H̃(l), Θi), H̃
(l) = LayerNorm(H(l)),

(6)

where ‖ denotes concatenation andΘi are the parameters in Eq. 1 for the i-th head (1 ≤ i ≤M ), and
Wo represents a parameter matrix. Since we calculate the attention diffusion in a recursive way in
Eq. 5, we add layer normalization which helpful to stabilize the recurrent computation procedure (Ba
et al., 2016).
Deep Aggregation. Moreover our MAGNA block contains a fully connected feed-forward sub-
layer, which consists of a two-layer feed-forward network. We also add the layer normalization and
residual connection in both sub-layers, allowing for a more expressive aggregation step for each
block (Xiong et al., 2020):

Ĥ(l+1) = Ĥ(l) +H(l)

H(l+1) =W
(l)
2 ReLU

(
W

(l)
1 LayerNorm(Ĥ(l+1))

)
+ Ĥ(l+1)

(7)

MAGNA generalizes GAT. MAGNA extends GAT via the diffusion process. The feature aggre-
gation in GAT is H(l+1) = σ(AH(l)W (l)), where σ represents the activation function. We can

2Obtained by the attention definition A(l) = softmax(S(l)) and Eq. 3.
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divide GAT layer into two components as follows:
H(l+1) = σ︸︷︷︸

(2)

(AH(2)W (l)︸ ︷︷ ︸
(1)

). (8)

In component (1), MAGNA removes the restriction of attending to direct neighbors, without re-
quiring additional parameters as A is induced from A. For component (2) MAGNA uses layer
normalization and deep aggregation which achieves significant gains according to ablation studies
in Table 1. Compared to the “shallow” activation function elu in GAT, we can view deep aggrega-
tion (i.e., two-layer MLP) as a learnable deep activation function as two layer MLP can approximate
many different functions (Pinkus, 1999).

3 ANALYSIS OF GRAPH ATTENTION DIFFUSION

In this section, we investigate the benefits of MAGNA from the viewpoint of discrete signal process-
ing on graphs (Sandryhaila & Moura, 2013). Our first result demonstrates that MAGNA can better
capture large-scale structural information. Our second result explores the relation between MAGNA
and Personalized PageRank (PPR).

3.1 SPECTRAL PROPERTIES OF GRAPH ATTENTION DIFFUSION

We view the attention matrix A of GAT, and A of MAGNA as weighted adjacency matrices, and
apply Graph Fourier transform and spectral analysis (details in Appendix) to show the effect of
MAGNA as a graph low-pass filter, being able to more effectively capture large-scale structure
in graphs. By Eq. 3, the sum of each row of either A or A is 1. Hence the normalized graph
Laplacians are L̂sym = I − A and Lsym = I − A for A and A respectively. We can get the
following proposition:

Proposition 2. Let λ̂gi and λgi be the i-th eigeinvalues of L̂sym and Lsym.
λ̂gi
λgi

=
1− α

1−(1−α)(1−λg
i )

λgi
=

1
α

1−α + λgi
. (9)

Refer to Appendix for the proof. We additionally have λgi ∈ [0, 2] (proved by (Ng et al., 2002)).
Eq. 9 shows that when λgi is small such that α

1−α + λgi < 1, then λ̂gi > λgi , whereas for large λgi ,
λ̂gi < λgi . This relation indicates that the use ofA increases smaller eigenvalues and decreases larger
eigenvalues3. See Section 4.3 for its empirical evidence. The low-pass effect increases with smaller
α.
The eigenvalues of the low-frequency signals describe the large-scale structure in the graph (Ng
et al., 2002) and have been shown to be crucial in graph tasks (Klicpera et al., 2019b). As λgi ∈
[0, 2] (Ng et al., 2002) and α

1−α > 0, the reciprocal format in Eq. 9 will amplify the ratio of lower
eigenvalues to the sum of all eigenvalues. In contrast, high eigenvalues corresponding to noise are
suppressed.

3.2 PERSONALIZED PAGERANK MEETS GRAPH ATTENTION DIFFUSION

We can also view the attention matrixA as a random walk matrix on graph G since
∑Nn

j=1Ai,j = 1

and Ai,j > 0. If we perform Personalized PageRank (PPR).with parameter α ∈ (0, 1] on G with
transition matrixA, the fully Personalized PageRank (Lofgren, 2015) is defined as:

Appr = α(I − (1− α)A)−1 (10)
Using the power series expansion for the matrix inverse, we obtain

Appr = α

∞∑
i=0

(1− α)iAi =

∞∑
i=0

α(1− α)iAi (11)

Comparing to the diffusion Equation 3 with θi = α(1− α)i, we have the following proposition.

Proposition 3. Graph attention diffusion defines a personalized page rank with parameter α ∈
(0, 1] on G with transition matrixA, i.e., A = Appr.

The parameter α in MAGNA is equivalent to the teleport probability of PPR. PPR provides a good
relevance score between nodes in a weighted graph (the weights from the attention matrix A). In

3The eigenvalues of A and A correspond to the same eigenvectors, as shown in Proposition 2 in Appendix.
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Table 1: Node classification accuracy on Cora, Citeseer, Pubmed. MAGNA achieves state-of-the-
art.

Models Cora Citeseer Pubmed

B
as

el
in

es
GCN (Kipf & Welling, 2016) 81.5 70.3 79.0
Chebyshev (Defferrard et al., 2016) 81.2 69.8 74.4
DualGCN (Zhuang & Ma, 2018) 83.5 72.6 80.0
JKNet (Xu et al., 2018)? 81.1 69.8 78.1
LGCN (Gao et al., 2018) 83.3 ± 0.5 73.0 ± 0.6 79.5 ± 0.2
Diffusion-GCN (Klicpera et al., 2019b) 83.6 ± 0.2 73.4 ± 0.3 79.6 ± 0.4
APPNP (Klicpera et al., 2019a) 84.3 ± 0.2 71.1 ± 0.4 79.7 ± 0.3
g-U-Nets (Gao & Ji, 2019) 84.4 ± 0.6 73.2 ± 0.5 79.6 ± 0.2
GAT (Veličković et al., 2018) 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3

A
bl

. No LayerNorm 83.8 ± 0.6 71.1 ± 0.5 79.8 ± 0.2
No Diffusion 83.0 ± 0.4 71.6 ± 0.4 79.3 ± 0.3
No Feed-Forward� 84.9 ± 0.4 72.2 ± 0.3 80.9 ± 0.3
No (LayerNorm + Feed-Forward) 84.3 ± 0.6 72.6 ± 0.4 79.6 ± 0.4
MAGNA 85.4 ± 0.6 73.7 ± 0.5 81.4 ± 0.2

? : based on the implementation in https://github.com/DropEdge/DropEdge;
� : replace the feed forward layer with elu used in GAT.

summary, MAGNA places a PPR prior over node pairwise attention scores: the diffused attention
between node i and j depends on the attention scores on the edges of all paths between i and j.

4 EXPERIMENTS

We evaluate MAGNA on two classical tasks4. (1) On node classification we achieve an average
of 5.7% relative error reduction; (2) On knowledge graph completion we achieve 7.1% relative
improvement in the Hit at 1 metric.5 We compare with numbers reported by baseline papers when
available.

4.1 TASK 1: NODE CLASSIFICATION

Datasets. We employ four benchmark datasets for node classification: (1) standard citation network
benchmarks Cora, Citeseer and Pubmed (Sen et al., 2008; Kipf & Welling, 2016); and (2) a bench-
mark dataset ogbn-arxiv on 170k nodes and 1.2m edges from the Open Graph Benchmark (Wei-
hua Hu, 2020). We follow the standard data splits for all datasets. Further information about these
datasets is summarized in the Appendix.
Baselines. We compare against a comprehensive suite of state-of-the-art GNN methods includ-
ing: GCNs (Kipf & Welling, 2016), Chebyshev filter based GCNs (Defferrard et al., 2016), Du-
alGCN (Zhuang & Ma, 2018), JKNet (Xu et al., 2018), LGCN (Gao et al., 2018), Diffusion-
GCN (Klicpera et al., 2019b), APPNP (Klicpera et al., 2019a), Graph U-Nets (g-U-Nets) (Gao
& Ji, 2019), and GAT (Veličković et al., 2018).
Experimental Setup. For datasets Cora, Citeseer and Pubmed, we use 6 MAGNA blocks with hid-
den dimension 512 and 8 attention heads. For the large-scale ogbn-arxiv dataset, we use 2 MAGNA
blocks with hidden dimension 128 and 8 attention heads. Refer to Appendix for detailed description
of all hyper-parameters and evaluation settings.

Table 2: Node classification accuracy on the OGB Arxiv dataset.
Data

GCN
(Kipf & Welling, 2016)

GraphSAGE
(Hamilton et al., 2017)

Node2vec
(Grover & Leskovec, 2016)

JKNet
(Xu et al., 2018)

GaAN
(Zhang et al., 2018) MLP MAGNA

ogbn-arxiv 71.74 ± 0.29 71.49 ± 0.27 70.07 ± 0.13 72.19 ± 0.21 71.97 ± 0.24 55.50 ± 0.23 72.76 ± 0.14

Results. We report node classification accuracies on the benchmarks. Results are summarized in
Tables 1 and 2. MAGNA improves over all methods and achieves the new state-of-the-art on all
datasets.

4All datasets used are public, and the code will be released at the time of publication.
5Please see the definitions of these two tasks in Appendix.
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Table 3: KG Completion on WN18RR and FB15k-237. MAGNA achieves state of the art.
Models WN18RR FB15k-237

MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10
TransE (Bordes et al., 2013) 3384 .226 - - .501 357 .294 - - .465
RotatE (Sun et al., 2019) 3340 .476 .428 .492 .571 177 .338 .241 .375 .533
OTE (Tang et al., 2020) - .491 .442 .511 .583 - .361 .267 .396 .550
ROTH (Chami et al., 2020) - .496 .449 .514 .586 - .344 .246 .380 .535
ComplEx (Trouillon et al., 2016) 5261 .44 .41 .46 .51 339 .247 .158 .275 .428
QuatE (Zhang et al., 2019) 2314 .488 .438 .508 .582 - .366 .271 .401 .556
CoKE (Wang et al., 2019b) - .475 .437 .490 .552 - .361 .269 .398 .547
ConvE (Dettmers et al., 2018) 4187 .43 .40 .44 .52 244 .325 .237 .356 .501
DistMult (Yang et al., 2015) 5110 .43 .39 .44 .49 254 .241 .155 .263 .419
TuckER (Balazevic et al., 2019) - .470 .443 .482 .526 - .358 .266 .392 .544
R-GCN (Schlichtkrull et al., 2018) - - - - - - .249 .151 .264 .417
SACN (Shang et al., 2019) - .47 .43 .48 .54 - .35 .26 .39 .54
A2N (Bansal et al., 2019) - .45 .42 .46 .51 - .317 .232 .348 .486
MAGNA + DistMult 2545 .502 .459 .519 .589 138 .369 .275 .409 .563

Ablation study. We report (Table 1) the model performance after removing each component of
MAGNA (layer normalization, attention diffusion and deep aggregation feed forward layers) from
every layer of MAGNA. Note that the model is equivalent to GAT without these three components.
We observe that both diffusion and layer normalization play a crucial role in improving the node
classification performance for all datasets. While layer normalization alone does not benefit GNNs,
its use in conjunction with the attention diffusion module significantly boosts MAGNA’s perfor-
mance. Since MAGNA computes many attention values, layer normalization is crucial in ensuring
training stability (Ba et al., 2016). Meanwhile, we also remove both layer normalization and deep
aggregation feed forward layer, and only keep the attention diffusion layer (see the next-to-last row
of Table 1). Comparing to GAT, attention diffusion allows multi-hop attention in each layer still
benefits the performance of node classification.

4.2 TASK 2: KNOWLEDGE GRAPH COMPLETION

Datasets. We evaluate MAGNA on standard benchmark knowledge graphs: WN18RR (Dettmers
et al., 2018) and FB15K-237 (Toutanova & Chen, 2015). See the statistics of these KGs in Appendix.
Baselines. We compare MAGNA with state-of-the-art baselines, including (1) translational dis-
tance based models: TransE (Bordes et al., 2013) and its latest extension RotatE (Sun et al., 2019),
OTE (Tang et al., 2020) and ROTH (Chami et al., 2020); (2) semantic matching based mod-
els: ComplEx (Trouillon et al., 2016), QuatE (Zhang et al., 2019), CoKE (Wang et al., 2019b),
ConvE (Dettmers et al., 2018), DistMult (Yang et al., 2015) and TuckER (Balazevic et al., 2019);
(3) GNN-based models: R-GCN (Schlichtkrull et al., 2018), SACN (Shang et al., 2019) and
A2N (Bansal et al., 2019).
Training procedure. We use the standard training procedure used in previous KG embedding mod-
els (Balazevic et al., 2019; Dettmers et al., 2018) (Appendix for details). We follow an encoder-
decoder framework: The encoder applies the proposed MAGNA model to compute the entity em-
beddings. The decoder then makes link prediction given the embeddings, and existing decoders in
prior models can be applied. To show the power of MAGNA, we employ the DistMult decoder (Yang
et al., 2015), a simple decoder without extra parameters.
Evaluation. We use the standard split for the benchmarks, and the standard testing procedure of
predicting tail (head) entity given the head (tail) entity and relation type. We exactly follow the
evaluation used by all previous works, namely the Mean Reciprocal Rank (MRR), Mean Rank (MR),
and hit rate at K (H@K). See Appendix for a detailed description of this standard setup.
Results. MAGNA achieves new state-of-the-art in knowledge graph completion on all four met-
rics (Table 3). MAGNA compares favourably to both the most recent shallow embedding meth-
ods (QuatE), and deep embedding methods (SACN). Note that with the same decoder (DistMult),
MAGNA using its own embeddings achieves drastic improvements over using the corresponding
DistMult embeddings.

4.3 MAGNA MODEL ANALYSIS

Here we present (1) the spectral analysis results, (2) effect of the hyper-parameters on MAGNA
performance, and (3) attention distribution analysis to show the strengths of MAGNA.
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Spectral Analysis: Why MAGNA works for node classification? We compute the eigenvalues of
the graph Laplacian of the attention matrix A, λ̂gi , and compare to that of the diffused matrixA, λgi .
Figure 3 (a) shows the ratio λ̂gi /λ

g
i on the Cora dataset. Low eigenvalues corresponding to large-

scale structure in the graph are amplified (up to a factor of 8), while high eigenvalues corresponding
to eigenvectors with noisy information are suppressed (Klicpera et al., 2019b).
MAGNA Model Depth. Here we conduct experiments by varying the number of GCN, GAT and
our MAGNA layers to be 3, 6, 12, 18 and 24 for node classification on Cora. Results in Figure 3
(b) show that both deep GCN and deep GAT (even with residual connection) suffer from degrading
performance, due to the over-smoothing problem (Li et al., 2018; Wang et al., 2019a). In contrast,
the MAGNA model achieves consistent best results even with 18 layers, making deep MAGNA
model robust and expressive. Notice that GAT with 18 layers cannot out-perform MAGNA with 3
layers and K=6 hops, although they have the same receptive field.
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Figure 3: Analysis of MAGNA. (a) Influence of MAGNA on Laplacian eigenvalues. (b) Effect of
depth on performance. (c) Effect of hop numberK on performance. (d) Effect of teleport probability
α.

Effect of K and α. Figures 3 (c) and (d) report the effect of hop number K and teleport probability
α on model performance. We observe significant increase in performance when considering multi-
hop neighbors information (K > 1). However, increasing the hop number K has a diminishing
returns, forK ≥ 6. Moreover, we find that the optimalK is correlated with the largest node average
shortest path distance (e.g., 5.27 for Cora). This provides a guideline for choosing the best K.
We also observe that the accuracy drops significantly for larger α > 0.25. This is because small α
increases the low-pass effect (Figure 3 (a)). However, α being too small results in the model only
focusing on large-scale graph structure and ignores too much high-frequency information.
Attention Distribution. Last we also analyze the learned attention scores of GAT and MAGNA.
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Figure 4: Attention weights
on Cora dataset.

We first define a discrepancy metric over the attention matrix A for
node vi as ∆i =

‖A[i,:]−Ui‖
degree(vi)

(Shanthamallu et al., 2020), where Ui is
the uniform distribution score for the node vi. ∆i gives a measure of
how much the learnt attention deviates from an uninformative uniform
distribution. Large ∆i indicates more meaningful attention scores.
Fig. 4 shows the distribution of the discrepancy metric of the atten-
tion matrix of the 1st head w.r.t. the first layer of MAGNA and GAT.
Observe that attention scores learned in MAGNA have much larger
discrepancy. This shows that MAGNA is more powerful than GAT in
distinguishing important and non-important nodes and assigns atten-
tion scores accordingly.

5 RELATED WORK

Our proposed MAGNA belongs to the family of Graph Neural Network (GNN) models (Battaglia
et al., 2018; Wu et al., 2020; Kipf & Welling, 2016; Hamilton et al., 2017), while taking advantage
of graph attention and diffusion techniques.
Graph Attention Neural Networks (GATs) generalize attention operation to graph data. GATs
allow for assigning different importance to nodes of the same neighborhood at the feature aggre-
gation step (Veličković et al., 2018). Based on such framework, different attention-based GNNs
have been proposed, including GaAN (Zhang et al., 2018), AGNN (Thekumparampil et al., 2018),
GeniePath (Liu et al., 2019b). However, these models only consider direct neighbors for each layer
of feature aggregation, and suffer from over-smoothing when they go deep (Wang et al., 2019a).

8
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Diffusion based Graph Neural Network. Recently Graph Diffusion Convolution (GDC) (Klicpera
et al., 2019b;a) proposes to aggregate information from a larger (multi-hop) neighborhood at each
layer, by sparsifying a generalized form of graph diffusion. This idea was also explored in (Liao
et al., 2019; Luan et al., 2019; Xhonneux et al., 2019; Klicpera et al., 2019a) for multi-scale deep
Graph Convolutional Networks. However, these methods do not incorporate attention mechanisms
which proves to have a significant gain in model performance, and do not make use of edge em-
beddings (e.g., Knowledge graph) (Klicpera et al., 2019b). Our approach defines a novel multi-hop
context-dependent self-attention GNN which resolves the over-smoothing issue of GAT architec-
tures (Wang et al., 2019a). EdgeNets (Isufi et al., 2020) also extends attention mechanism for
multi-hop information aggregation, but it needs more parameters to compute the attention scores
of multi-hop neighbors. In contrast, our method infers the attention scores of multi-hop neighbors
based on the one-hop neighbor attention scores via graph diffusion, and thus not only more param-
eter efficiency but show better spectral property.

6 CONCLUSION

We proposed Multi-hop Attention Graph Neural Network (MAGNA), which brings together bene-
fits of graph attention and diffusion techniques in a single layer through attention diffusion, layer
normalization and deep aggregation. MAGNA enables context-dependent attention between any
pair of nodes in the graph in a single layer, enhances large-scale structural information, and learns
more informative attention distribution. MAGNA improves over all state-of-the-art methods on the
standard tasks of node classification and knowledge graph completion.
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