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Abstract

In this work, we provide a fundamental unified convergence theorem used for
deriving expected and almost sure convergence results for a series of stochastic
optimization methods. Our unified theorem only requires to verify several repre-
sentative conditions and is not tailored to any specific algorithm. As a direct appli-
cation, we recover expected and almost sure convergence results of the stochastic
gradient method (SGD) and random reshuffling (RR) under more general settings.
Moreover, we establish new expected and almost sure convergence results for
the stochastic proximal gradient method (prox-SGD) and stochastic model-based
methods for nonsmooth nonconvex optimization problems. These applications
reveal that our unified theorem provides a plugin-type convergence analysis and
strong convergence guarantees for a wide class of stochastic optimization methods.

1 Introduction

Stochastic optimization methods are widely used to solve stochastic optimization problems and
empirical risk minimization, serving as one of the foundations of machine learning. Among the
many different stochastic methods, the most classic one is the stochastic gradient method (SGD),
which dates back to Robbins and Monro [36]. If the problem at hand has a finite-sum structure, then
another popular stochastic method is random reshuffling (RR) [20]. When the objective function has
a composite form or is weakly convex (nonsmooth and nonconvex), then the stochastic proximal
gradient method (prox-SGD) and stochastic model-based algorithms are the most typical approaches
[18, 11]. Apart from the mentioned stochastic methods, there are many others like SGD with
momentum, Adam, stochastic higher order methods, etc. In this work, our goal is to establish and
understand fundamental convergence properties of these stochastic optimization methods via a novel
unified convergence framework.

Motivations. Suppose we apply SGD to minimize a smooth nonconvex function f . SGD generates a
sequence of iterates {xk

}k�0, which is a stochastic process due to the randomness of the algorithm
and the utilized stochastic oracles. The most commonly seen ‘convergence result’ for SGD is the
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expected iteration complexity, which typically takes the form [17]

min
k=0,...,T

E[krf(xk)k2]  O

✓
1

p
T + 1

◆
or E[krf(xk̄)k2]  O

✓
1

p
T + 1

◆
, (1)

where T denotes the total number of iterations and k̄ is an index sampled uniformly at random
from {0, . . . , T}. Note that we ignored some higher-order convergence terms and constants to ease
the presentation. Complexity results are integral to understand core properties and progress of the
algorithm during the first T iterations, while the asymptotic convergence behavior plays an equally
important role as it characterizes whether an algorithm can eventually approach an exact stationary
point or not. We refer to Appendix H for additional motivational background for studying asymptotic
convergence properties of stochastic optimization methods. Here, an expected convergence result,
associated with the nonconvex minimization problem minx f(x), has the form

lim
k!1

E[krf(xk)k] = 0. (2)

Intuitively, it should be possible to derive expected convergence from the expected iteration complexity
(1) by letting T ! 1. However, this is not the case as the ‘min’ operator and the sampled k̄ are not
well defined or become meaningless when T goes to 1.

The above results are stated in expectation and describe the behavior of the algorithm by averaging
infinitely many runs. Though this is an important convergence measure, in practical situations the
algorithm is often only run once and the last iterate is returned as a solution. This observation moti-
vates and necessitates almost sure convergence results, which establish convergence with probability
1 for a single run of the stochastic method:

lim
k!1

krf(xk)k = 0 almost surely. (3)

Backgrounds. Expected and almost sure convergence results have been extensively studied for convex
optimization; see, e.g., [10, 34, 42, 46, 5, 41]. Almost sure convergence of SGD for minimizing a
smooth nonconvex function f was provided in the seminal work [3] using very standard assumptions,
i.e., Lipschitz continuous rf and bounded variance. Under the same conditions, the same almost
sure convergence of SGD was established in [33] based on a much simpler argument than that of [3].
A weaker ‘lim inf’-type almost sure convergence result for SGD with AdaGrad step sizes was shown
in [26]. Recently, the work [28] derives almost sure convergence of SGD under the assumptions that
f and rf are Lipschitz continuous, f is coercive, f is not asymptotically flat, and the �-th moment
of the stochastic error is bounded with � � 2. This result relies on stronger assumptions than the base
results in [3]. Nonetheless, it allows more aggressive diminishing step sizes if � > 2. Apart from
standard SGD, almost sure convergence of different respective variants for min-max problems was
discussed in [22]. In terms of expected convergence, the work [6] showed limk!1 E[krf(xk)k] = 0
under the additional assumptions that f is twice continuously differentiable and the multiplication of
the Hessian and gradient r2f(x)rf(x) is Lipschitz continuous.

Though the convergence of SGD is well-understood and a classical topic, asymptotic convergence
results of the type (2) and (3) often require a careful and separate analysis for other stochastic
optimization methods — especially when the objective function is simultaneously nonsmooth and
nonconvex. In fact and as outlined, a direct transition from the more common complexity results (1)
to the full convergence results (2) and (3) is often not possible without further investigation.

Main contributions. We provide a fundamental unified convergence theorem (see Theorem 2.1) for
deriving both expected and almost sure convergence of stochastic optimization methods. Our theorem
is not tailored to any specific algorithm, instead it incorporates several abstract conditions that suit a
vast and general class of problem structures and algorithms. The proof of this theorem is elementary.

We then apply our novel theoretical framework to several classical stochastic optimization methods
to recover existing and to establish new convergence results. Specifically, we recover expected and
almost sure convergence results for SGD and RR. Though these results are largely known in the
literature, we derive unified and slightly stronger results under a general ABC condition [24, 23]
rather than the standard bounded variance assumption. We also remove the stringent assumption used
in [6] to show (2) for SGD. As a core application of our framework, we derive expected and almost
sure convergence results for prox-SGD in the nonconvex setting and under the more general ABC
condition and for stochastic model-based methods under very standard assumptions. In particular, we
show that the iterates {xk

}k�0 generated by prox-SGD and other stochastic model-based methods
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will approach the set of stationary points almost surely and in an expectation sense. These results are
new to our knowledge (see also Subsection 3.5 for further discussion).

The above applications illustrate the general plugin-type purpose of our unified convergence analysis
framework. Based on the given recursion and certain properties of the algorithmic update, we can
derive broad convergence results by utilizing our theorem, which can significantly simplify the
convergence analysis of stochastic optimization methods; see Subsection 2.1 for a summary.

2 A unified convergence theorem

Throughout this work, let (⌦,F , {Fk}k�0,P) be a filtered probability space and let us assume that
the sequence of iterates {xk

}k�0 is adapted to the filtration {Fk}k�0, i.e., each of the random vectors
xk : ⌦ ! Rn is Fk-measurable.

In this section, we present a unified convergence theorem for the sequence {xk
}k�0 based on an

abstract convergence measure �. To make the abstract convergence theorem more accessible, the
readers may momentarily regard � and {µk}k�0 as rf and the sequence related to the step sizes,
respectively. We then present the main steps for showing the convergence of a stochastic optimization
method by following a step-by-step verification of the conditions in our unified convergence theorem.
Theorem 2.1. Let the mapping � : Rn

! Rm and the sequences {xk
}k�0 ✓ Rn and {µk}k�0 ✓

R++ be given. Consider the following conditions:

(P.1) The function � is L�-Lipschitz continuous for some L� > 0, i.e., we have k�(x)��(y)k 

L�kx� yk for all x,y 2 Rn.

(P.2) There exists a constant a > 0 such that
P1

k=0 µk E[k�(xk)ka] < 1.

The following statements are valid:

(i) Let the conditions (P.1)–(P.2) be satisfied and suppose further that

(P.3) There exist constants A,B, b � 0 and p1, p2, q > 0 such that

E[kxk+1
� xk

k
q]  Aµp1

k + Bµp2

k E[k�(xk)kb].

(P.4) The sequence {µk}k�0 and the parameters a, b, q, p1, p2 satisfy

{µk}k�0 is bounded,
X1

k=0
µk = 1, and a, q � 1, a � b, p1, p2 � q.

Then, it holds that limk!1 E[k�(xk)k] = 0.

(ii) Let the properties (P.1)–(P.2) hold and assume further that

(P.30) There exist constants A, b � 0, p1, p2, q > 0 and random vectors Ak,Bk : ⌦ ! Rn

such that
xk+1 = xk + µp1

k Ak + µp2

k Bk

and for all k, Ak,Bk are Fk+1-measurable and we have E[Ak | Fk] = 0 almost
surely, E[kAkk

q]  A, and lim supk!1 kBkk
q/(1 + k�(xk)kb) < 1 almost surely.

(P.40) The sequence {µk}k�0 and the parameters a, b, q, p1, p2 satisfy µk ! 0,
X1

k=0
µk = 1,

X1

k=0
µ2p1

k < 1, and q � 2, qa � b, p1 >
1

2
, p2 � 1.

Then, it holds that limk!1 k�(xk)k = 0 almost surely.

The proof of Theorem 2.1 is elementary. We provide the core ideas here and defer its proof to
Appendix A. Item (i) is proved by contradiction. An easy first result is lim infk!1 E[k�(xk)ka] = 0.
We proceed and assume that {E[k�(xk)k]}k�0 does not converge to zero. Then, for some � > 0,
we can construct two subsequences {`t}t�0 and {ut}t�0 such that `t < ut and E[k�(x`t)k] � 2�,
E[k�(xut)ka]  �a, and E[k�(xk)ka] > �a for all `t < k < ut. Based on this construction, the
conditions in the theorem, and a set of inequalities, we will eventually reach a contradiction. We
notice that the Lipschitz continuity of � plays a prominent role when establishing this contradiction.
Our overall proof strategy is inspired by the analysis of classical trust region-type methods, see, e.g.,
[9, Theorem 6.4.6]. Let us also mention that a different strategy for the fully deterministic setting and
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scalar case � : Rn
! R was provided in [8]. For item (ii), we first control the stochastic behavior of

the error terms Ak by martingale convergence theory. We can then conduct sample-based arguments
to derive the final result, which is essentially deterministic and hence, follows similar arguments to
that of item (i).

The major application areas of our unified convergence framework comprise stochastic optimization
methods that have non-vanishing stochastic errors or that utilize diminishing step sizes. In the next
subsection, we state the main steps for showing convergence of stochastic optimization methods.
This also clarifies the abstract conditions listed in the theorem.

2.1 The steps for showing convergence of stochastic optimization methods

In order to apply the unified convergence theorem, we have to verify the conditions stated in the
theorem, resulting in three main phases below.

Phase I: Verifying (P.1)–(P.2). Conditions (P.1)–(P.2) are used for both the expected and the almost
sure convergence results. Condition (P.1) is a problem property and is very standard. We present
the final convergence results in terms of the abstract measure �. This measure can be regarded as
f � f⇤ in convex optimization, rf in smooth nonconvex optimization, the gradient of the Moreau
envelope in weakly convex optimization, etc. In all the situations, assuming Lipschitz continuity
of the convergence measure � is standard and is arguably a minimal assumption in order to obtain
iteration complexity and/or convergence results.

Condition (P.2) is typically a result of the algorithmic property or complexity analysis. To verify this
condition, one first establishes the recursion of the stochastic method, which almost always has the
form

E[yk+1 | Fk]  (1 + �k)yk � µkk�(xk)ka + ⇣k.

Here, yk is a suitable Lyapunov function measuring the (approximate) descent property of the
stochastic method, ⇣k represents the error term satisfying

P1
k=0 ⇣k < 1, �k is often related to the

step sizes and satisfies
P1

k=0 �k < 1. Then, applying the supermartingale convergence theorem
(see Theorem B.1), we obtain

P1
k=0 µk E[k�(xk)ka] < 1, i.e., condition (P.2).

Since condition (P.2) is typically a consequence of the underlying algorithmic recursion, one can also
derive the standard finite-time complexity bound (1) in terms of the measure E[k�(xk)ka] based on it.
Hence, non-asymptotic complexity results are also included implicitly in our framework as a special
case. To be more specific, (P.2) implies

PT
k=0 µkE[k�(xk)ka]  M for some constant M > 0 and

some total number of iterations T . This then yields min0kT E[k�(xk)ka]  M/
PT

k=0 µk. Note
that the sequence {µk}k�0 is often related to the step sizes. Thus, choosing the step sizes properly
results in the standard finite-time complexity result.

Phase II: Verifying (P.3)–(P.4) for showing expected convergence. Condition (P.3) requires an
upper bound on the step length of the update in terms of expectation, including upper bounds for
the search direction and the stochastic error of the algorithm. It is often related to certain bounded
variance-type assumptions for analyzing stochastic methods. For instance, (P.3) is satisfied under the
standard bounded variance assumption for SGD, the more general ABC assumption for SGD, the
bounded stochastic subgradients assumption, etc. Condition (P.4) is a standard diminishing step sizes
condition used in stochastic optimization.

Then, one can apply item (i) of Theorem 2.1 to obtain E[k�(xk)k] ! 0.

Phase III: Verifying (P.30)–(P.40) for showing almost sure convergence. Condition (P.30) is parallel
to (P.3). It decomposes the update into a martingale term Ak and a bounded error term Bk. We will
see later that this condition holds true for many stochastic methods. Though this condition requires
the update to have a certain decomposable form, it indeed can be verified by bounding the step length
of the update in conditional expectation, which is similar to (P.3). Hence, (P.30) can be interpreted as
a conditional version of (P.3). To see this, we can construct

xk+1 = xk + µk ·
1
µk

�
xk+1

� xk
� E[xk+1

� xk
| Fk]

�

Ak

+µk ·
1
µk

E[xk+1
� xk

| Fk]

Bk

. (4)

By Jensen’s inequality, we then have E[Ak | Fk] = 0,

E[kAkk
q]  2qµ�q

k · E[kxk+1
� xk

k
q], and kBkk

q
 µ�q

k · E[kxk+1
� xk

k
q
| Fk].
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Thus, once it is possible to derive E[kxk+1
�xk

k
q
| Fk] = O(µq

k) in an almost sure sense, condition
(P.30) is verified with p1 = p2 = 1. Condition (P.40) is parallel to (P.4) and is standard in stochastic
optimization. Application of item (ii) of Theorem 2.1 then yields k�(xk)k ! 0 almost surely.

In the next section, we will illustrate how to show convergence for a set of classic stochastic methods
by following the above three steps.

3 Applications to stochastic optimization methods

3.1 Convergence results of SGD

We consider the standard SGD method for solving the smooth optimization problem minx2Rn f(x),
where the iteration of SGD is given by

xk+1 = xk
� ↵kg

k. (5)

Here, gk denotes a stochastic approximation of the gradient rf(xk). We assume that each stochastic
gradient gk is Fk+1-measurable and that the generated stochastic process {xk

}k�0 is adapted to the
filtration {Fk}k�0. We consider the following standard assumptions:

(A.1) The mapping rf : Rn
! Rn is Lipschitz continuous on Rn with modulus L > 0.

(A.2) The objective function f is bounded from below on Rn, i.e., there is f̄ such that f(x) � f̄
for all x 2 Rn.

(A.3) Each oracle gk defines an unbiased estimator of rf(xk), i.e., it holds that E[gk
| Fk] =

rf(xk) almost surely, and there exist C,D � 0 such that

E[kgk
�rf(xk)k2 | Fk]  C[f(xk)� f̄ ] + D almost surely 8 k 2 N.

(A.4) The step sizes {↵k}k�0 satisfy
P1

k=0 ↵k = 1 and
P1

k=0 ↵
2
k < 1.

We now derive the convergence of SGD below by setting � ⌘ rf and µk ⌘ ↵k.

Phase I: Verifying (P.1)–(P.2). (A.1) verifies condition (P.1) with L� ⌘ L. We now check (P.2).
Using (A.2), (A.3), and a standard analysis for SGD gives the following recursion (see Appendix C.1
for the full derivation):

E[f(xk+1)� f̄ | Fk] 

✓
1 +

LC↵2
k

2

◆
[f(xk)� f̄ ]� ↵k

✓
1�

L↵k

2

◆
krf(xk)k2 +

LD↵2
k

2
. (6)

Taking total expectation, using (A.4), and applying the supermartingale convergence theorem (Theo-
rem B.1) gives

P1
k=0 ↵kE[krf(xk)k2] < 1. Furthermore, the sequence {E[f(xk)]}k�0 converges

to some finite value. This verifies (P.2) with a = 2.

Phase II: Verifying (P.3)–(P.4) for showing expected convergence. For (P.3), we have by (5) and
(A.3) that

E[kxk+1
� xk

k
2]  ↵2

kE[krf(xk)k2] + C↵2
kE[f(xk)� f̄ ] + D↵2

k.

Due to the convergence of {E[f(xk)]}k�0, there exists F such that E[f(xk)� f̄ ]  F for all k. Thus,
condition (P.3) holds with q = 2, A = CF+ D, p1 = 2, B = 1, p2 = 2, and b = 2. Condition (P.4)
is verified by (A.4) and the previous parameters choices. Therefore, we can apply Theorem 2.1 to
deduce E[krf(xk)k] ! 0.

Phase III: Verifying (P.30)–(P.40) for showing almost sure convergence. For (P.30), it follows from
the update (5) that

xk+1 = xk
� ↵k(g

k
�rf(xk))� ↵krf(xk).

We have p1 = 1, Ak = gk
�rf(xk), p2 = 1, and Bk = rf(xk). Using (A.2), (A.3), E[f(xk)�

f̄ ]  F, and choosing any q = b > 0 establishes (P.30). As before, condition (P.40) follows from (A.4)
and the previous parameters choices. Applying Theorem 2.1 yields krf(xk)k ! 0 almost surely.

Finally, we summarize the above results in the following corollary.

Corollary 3.1. Let us consider SGD (5) for smooth nonconvex optimization problems under (A.1)–
(A.4). Then, we have limk!1 E[krf(xk)k] = 0 and limk!1 krf(xk)k = 0 almost surely.
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3.2 Convergence results of random reshuffling

We now consider random reshuffling (RR) applied to problems with a finite sum structure

min
x2Rn

f(x) :=
1

N

XN

i=1
f(x, i),

where each component function f(·, i) : Rn
! R is supposed to be smooth. At iteration k, RR

first generates a random permutation �k+1 of the index set {1, . . . , N}. It then updates xk to xk+1

through N consecutive gradient descent-type steps by accessing and using the component gradients
{rf(·,�k+1

1 ), . . . ,rf(·,�k+1
N )} sequentially. Specifically, one update-loop (epoch) of RR is given

by
x̃k
0 = xk, x̃k

i = x̃k
i�1 � ↵krf(x̃k

i�1,�
k+1
i ), i = 1, . . . , N, xk+1 = x̃k

N . (7)

After one such loop, the step size ↵k and the permutation �k+1 is updated accordingly; cf. [20, 30, 32].
We make the following standard assumptions:

(B.1) For all i 2 {1, . . . , N}, f(·, i) is bounded from below by some f̄ and the gradient rf(·, i)
is Lipschitz continuous on Rn with modulus L > 0.

(B.2) The step sizes {↵k}k�0 satisfy
P1

k=0 ↵k = 1 and
P1

k=0 ↵
3
k < 1.

A detailed derivation of the steps shown in Subsection 2.1 for RR is deferred to Appendix D.2. Based
on the discussion in Appendix D.2 and on Theorem 2.1, we obtain the following results for RR.
Corollary 3.2. We consider RR (7) for smooth nonconvex optimization problems under (B.1)–(B.2).
Then it holds that limk!1 E[krf(xk)k] = 0 and limk!1 krf(xk)k = 0 almost surely.

3.3 Convergence of the proximal stochastic gradient method

We consider the composite-type optimization problem

minx2Rn  (x) := f(x) + '(x) (8)

where f : Rn
! R is a continuously differentiable function and ' : Rn

! (�1,1] is ⌧ -weakly
convex (see Appendix E.1), proper, and lower semicontinuous. In this section, we want to apply our
unified framework to study the convergence behavior of the well-known proximal stochastic gradient
method (prox-SGD):

xk+1 = prox↵k'(x
k
� ↵kg

k), (9)

where gk
⇡ rf(xk) is a stochastic approximation of rf(xk), {↵k}k�0 ✓ R+ is a suitable step

size sequence, and prox↵k' : Rn
! Rn, prox↵k'(x) := argminy2Rn '(y) + 1

2↵k
kx� yk2 is the

well-known proximity operator of '.

3.3.1 Assumptions and preparations

We first recall several useful concepts from nonsmooth and variational analysis. For a function
h : Rn

! (�1,1], the Fréchet (or regular) subdifferential of h at the point x is given by

@h(x) := {g 2 Rn : h(y) � h(x) + hg,y � xi+ o(ky � xk) as y ! x},

see, e.g., [39, Chapter 8]. If h is convex, then the Fréchet subdifferential coincides with the standard
(convex) subdifferential. It is well-known that the associated first-order optimality condition for the
composite problem (8) — 0 2 @ (x) = rf(x) + @'(x) — can be represented as a nonsmooth
equation, [39, 21],

F↵nat(x) := x� prox↵'(x� ↵rf(x)) = 0, ↵ 2 (0, ⌧�1),

where F↵nat denotes the so-called natural residual. The natural residual F↵nat is a common stationarity
measure for the nonsmooth problem (8) and widely used in the analysis of proximal methods.

We will make the following assumptions on f , ', and the stochastic oracles {gk
}k�0:

(C.1) The function f is bounded from below on Rn, i.e., there is f̄ such that f(x) � f̄ for all
x 2 Rn, and the gradient mapping rf is Lipschitz continuous (on Rn) with modulus L > 0.

(C.2) The function ' is ⌧ -weakly convex, proper, lower semicontinuous, and bounded from below
on dom', i.e., we have '(x) � '̄ for all x 2 dom'.
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(C.3) There exists L' > 0 such that '(x)� '(y)  L'kx� yk for all x,y 2 dom'.
(C.4) Each gk defines an unbiased estimator of rf(xk), i.e., we have E[gk

| Fk] = rf(xk)
almost surely, and there exist C,D � 0 such that

E[kgk
�rf(xk)k2 | Fk]  C[f(xk)� f̄ ] + D almost surely 8 k 2 N.

(C.5) The step sizes {↵k}k�0 satisfy
P1

k=0 ↵k = 1 and
P1

k=0 ↵
2
k < 1.

Here, we again assume that the generated stochastic processes {xk
}k�0 is adapted to the filtration

{Fk}k�0. The assumptions (C.1), (C.2), (C.4), and (C.5) are fairly standard and broadly applicable.
In particular, (C.1), (C.4), and (C.5) coincide with the conditions (A.1)–(A.4) used in the analysis of
SGD. We continue with several remarks concerning condition (C.3).
Remark 3.3. Assumption (C.3) requires the mapping ' to be Lipschitz continuous on its effective
domain dom'. This condition holds in many important applications, e.g., when ' is chosen as a
norm or indicator function. Nonconvex examples satisfying (C.2) and (C.3) include, e.g., the minimax
concave penalty (MCP) function [45], the smoothly clipped absolute deviation (SCAD) [15], or the
student-t loss function. We refer to [4] and Appendix E.2 for further discussion.

3.3.2 Convergence results of prox-SGD

We now analyze the convergence of the random process {xk
}k�0 generated by the stochastic

algorithmic scheme (9). As pioneered in [11], we will use the Moreau envelope env✓ ,

env✓ : Rn
! R, env✓ (x) := miny2Rn  (y) +

1

2✓
kx� yk2, (10)

as a smooth Lyapunov function to study the descent properties and convergence of prox-SGD.

We first note that the conditions (C.1) and (C.2) imply ✓�1-weak convexity of  for every ✓ 2 (0, (L+
⌧)�1]. In this case, the Moreau envelope env✓ is a well-defined and continuously differentiable
function with gradient renv✓ (x) =

1
✓ (x� prox✓ (x)); see, e.g., [38, Theorem 31.5].

As shown in [13, 11], the norm of the Moreau envelope — krenv✓ (x)k — defines an alternative
stationarity measure for problem (8) that is equivalent to the natural residual if ✓ is chosen sufficiently
small. A more explicit derivation of this connection is provided in Lemma E.1.

Next, we establish convergence of prox-SGD by setting � ⌘ renv✓ and µk ⌘ ↵k. Our analysis is
based on the following two estimates which are verified in Appendix E.4 and Appendix E.5.
Lemma 3.4. Let {xk

}k�0 be generated by prox-SGD and let the assumptions (C.1)–(C.4) be satisfied.
Then, for ✓ 2 (0, [3L+ ⌧ ]�1) and all k with ↵k  min{ 1

2⌧ ,
1

2(✓�1�[L+⌧ ])}, it holds that

E[env✓ (xk+1)�  ̄ | Fk]  (1 + 4C✓�1↵2
k) · [env✓ (x

k)�  ̄]

� L✓↵kkrenv✓ (x
k)k2 + 2↵2

k(CL
2
' + D✓�1), (11)

almost surely, where  ̄ := f̄ + '̄.
Lemma 3.5. Let {xk

}k�0 be generated by prox-SGD and suppose that the assumptions (C.1)–(C.4)
hold. Then, for ✓ 2 (0, [ 43L+ ⌧ ]�1) and all k with ↵k 

1
2⌧ , we have almost surely

E[kxk+1
� xk

k
2
| Fk]  8(2L+ C)↵2

k · [env✓ (x
k)�  ̄] + 4(((2L+ C)✓ + 1)L2' + D)↵2

k. (12)

Phase I: Verifying (P.1)–(P.2). In [21, Corollary 3.4], it is shown that the gradient of the Moreau
envelope is Lipschitz continuous with modulus Le := max{✓�1, (1 � [L + ⌧ ]✓)�1[L+ ⌧ ]} for all
✓ 2 (0, [L+ ⌧ ]�1). Thus, condition (P.1) is satisfied.

Furthermore, due to ↵k ! 0 and choosing ✓ 2 (0, [3L + ⌧ ]�1), the estimate (11) in Lemma 3.4
holds for all k sufficiently large. Consequently, due to env✓ (x) �  (prox✓ (x)) �  ̄ and (C.5),
Theorem B.1 is applicable and upon taking total expectation, {E[env✓ (xk)]}k�0 converges to some
E 2 R. In addition, the sequence {env✓ (xk)}k�0 converges almost surely to some random variable
e? and we have

P1
k=0 ↵kE[krenv✓ (xk)k2] < 1. This verifies condition (P.2) with a = 2.

Phase II: Verifying (P.3)–(P.4) for showing convergence in expectation. Assumptions (C.1)–(C.5)
and Lemma 3.5 allow us to establish the required bound stated in (P.3). Specifically, taking total
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expectation in (12), we have

E[kxk+1
� xk

k
2]  8(2L+ C)↵2

k · E[env✓ (xk)�  ̄] + 4(((2L+ C)✓ + 1)L2' + D)↵2
k

for all k sufficiently large. Due to E[env✓ (xk)] ! E, there exists F such that E[env✓ (xk)� ̄]  F
for all k. Hence, (P.3) holds with q = 2, A = 8(2L+C)F+4(((2L+C)✓+1)L2' +D), p1 = 2, and
B = 0. The property (P.4) easily follows from (C.5) and the parameter choices. Consequently, using
Theorem 2.1, we can infer E[krenv✓ (xk)k] ! 0.

Phase III: Verifying (P.30)–(P.40) for showing almost sure convergence. We follow the construction
in (4) and set Ak = ↵�1

k (xk+1
� xk

� E[xk+1
� xk

| Fk]), Bk = ↵�1
k E[xk+1

� xk
| Fk], and

p1, p2 = 1. Clearly, we have E[Ak | Fk] = 0 and based on the previous results in Phase II, we can
show E[kxk+1

� xk
k
2] = O(↵2

k) which establishes boundedness of {E[kAkk
2
}k�0. Similarly, for

Bk and by Lemma 3.5 and Jensen’s inequality, we obtain

kBkk
2
 ↵�2

k E[kxk+1
� xk

k
2
| Fk]  8(2L+ C) · [env✓ (x

k)�  ̄] +O(1).

Due to env✓ (xk) ! e? almost surely, this shows lim supk!1 kBkk
2 < 1 almost surely. Hence,

all requirements in (P.30) are satisfied with q = 2 and b = 0. Moreover, it is easy to see that property
(P.40) also holds in this case. Overall, Theorem 2.1 implies krenv✓ (xk)k ! 0 almost surely.

As mentioned, it is possible to express the obtained convergence results in terms of the natural residual
Fnat = F 1

nat, see, e.g., Lemma E.1. We summarize our observations in the following corollary.
Corollary 3.6. Let us consider prox-SGD (9) for the composite problem (8) under (C.1)–(C.5). Then,
we have limk!1 E[kFnat(xk)k] = 0 and limk!1 kFnat(xk)k = 0 almost surely.
Remark 3.7. As a byproduct, Lemma 3.4 also leads to an expected iteration complexity result of
prox-SGD by using the ABC condition (C.4) rather than the standard bounded variance assumption.
This is a nontrivial extension of [11, Corollary 3.6]. We provide a full derivation in Appendix E.6.

3.4 Convergence of stochastic model-based methods

In this section, we consider the convergence of stochastic model-based methods for nonsmooth
weakly convex optimization problems

minx2Rn  (x) := f(x) + '(x) = E⇠⇠D[f(x, ⇠)] + '(x), (13)

where both f and ' are assumed to be (nonsmooth) weakly convex functions and  is lower bounded,
i.e.,  (x) �  ̄ for all x 2 dom'. Classical stochastic optimization methods — including proximal
stochastic subgradient, stochastic proximal point, and stochastic prox-linear methods — for solving
(13) are unified by the stochastic model-based methods (SMM) [14, 11]:

xk+1 = argminx2Rn fxk(x, ⇠k) + '(x) +
1

2↵k
kx� xk

k
2, (14)

where fxk(x, ⇠k) is a stochastic approximation of f around xk using the sample ⇠k; see Appendix F.1
for descriptions of three major types of SMM. Setting Fk := �(⇠0, . . . , ⇠k�1), it is easy to see that
{xk

}k�0 is adapted to {Fk}k�0. We analyze convergence of SMM under the following assumptions.

(D.1) The stochastic approximation function fx satisfies a one-sided accuracy property, i.e., we
have E⇠[fx(x, ⇠)] = f(x) for all x 2 U and

E⇠[fx(y, ⇠)� f(y)] 
⌧

2
kx� yk2 8 x,y 2 U,

where U is an open convex set containing dom'.
(D.2) The function y 7! fx(y, ⇠) + '(y) is ⌘-weakly convex for all x 2 U and almost every ⇠.
(D.3) There exists L > 0 such that the stochastic approximation function fx satisfies

fx(x, ⇠)� fx(y, ⇠)  Lkx� yk 8 x,y 2 U, and almost every ⇠.

(D.4) The function ' is L'-Lipschitz continuous.
(D.5) The step sizes {↵k}k�0 satisfy

P1
k=0 ↵k = 1 and

P1
k=0 ↵

2
k < 1.

Assumptions (D.1), (D.2), (D.3) are standard for analyzing SMM and identical to that of [11]. (D.5) is
convention for stochastic methods. Assumption (D.4) mimics (C.3); see Remark 3.3 for discussions.
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We now derive the convergence of SMM below by setting � ⌘ renv✓ and µk ⌘ ↵k. Our derivation
is based on the following two estimates, in which the proof of Lemma 3.9 is given in Appendix F.2.
Lemma 3.8 (Theorem 4.3 of [11]). Let ✓ 2 (0, (⌧ + ⌘)�1) and ↵k < ✓ be given. Then, we have

E[env✓ (xk+1) | Fk]  env✓ (x
k)�

(1� [⌧ + ⌘]✓)↵k

2(1� ⌘↵k)
krenv✓ (x

k)k2 +
2L2↵2

k

(1� ⌘↵k)(✓ � ↵k)
.

Lemma 3.9. For all k with ↵k  1/(2⌘), it holds that

E[kxk+1
� xk

k
2
| Fk]  (16(L+ L')

2 + 8L2)↵2
k.

Phase I: Verifying (P.1)–(P.2). As before, [21, Corollary 3.4] implies that the mapping renv✓ is
Lipschitz continuous for all ✓ 2 (0, (⌧ + ⌘)�1) Hence, condition (P.1) is satisfied. Using ↵k ! 0,
we can apply Theorem B.1 to the recursion obtained in Lemma 3.8 for all k sufficiently large and it
follows

P1
k=0 ↵kE[krenv✓ (xk)k2] < 1. Thus, condition (P.2) holds with a = 2.

Phase II: Verifying (P.3)–(P.4) for showing convergence in expectation. Taking total expectation in
Lemma 3.9 verifies condition (P.3) with q = 2, A = (16(L+ L')2 +8L2), p1 = 2, B = 0. Moreover,
condition (P.4) is true by assumption (D.5) and the previous parameters choices. Thus, applying
Theorem 2.1 gives E[krenv✓ (xk)k] ! 0.

Phase III: Verifying (P.30)–(P.40) for showing almost sure convergence. As in (4), we can set
Ak = ↵�1

k (xk+1
�xk

�E[xk+1
�xk

| Fk]), Bk = ↵�1
k E[xk+1

�xk
| Fk]. Applying Lemma 3.9

and utilizing Jensen’s inequality, we have E[Ak | Fk] = 0, E[kAkk
2]  (4/↵2

k)E[kxk+1
�xk

k
2] 

4(16(L + L')2 + 8L2) and kBkk
2
 16(L + L')2 + 8L2. Thus, condition (P.30) is satisfied with

p1 = p2 = 1, q = 2. Assumption (D.5), together with the previous parameter choices verifies
condition (P.40) and hence, applying Theorem 2.1 yields krenv✓ (xk)k ! 0 almost surely.

Summarizing this discussion, we obtain the following convergence results for SMM.
Corollary 3.10. We consider the family of stochastic model-based methods (14) for the optimization
problem (13) under assumptions (D.1)–(D.5). Let {xk

}k�0 be a generated sequence. Then, we have
limk!1 E[krenv✓ (xk)k] = 0 and limk!1 krenv✓ (xk)k = 0 almost surely.
Remark 3.11. The results presented in Corollary 3.10 also hold under certain extended settings. In
fact, we can replace (D.3) by a slightly more general Lipschitz continuity assumption on f . Moreover,
it is possible to establish convergence in the case where f is not Lipschitz continuous but has Lipschitz
continuous gradient, which is particularly useful when we apply stochastic proximal point method for
smooth f . A more detailed derivation and discussion of such extensions is deferred to Appendix F.3.

3.5 Related work and discussion

SGD and RR. The literature for SGD is extremely rich and several connected and recent works have
been discussed in Section 1. Our result in Corollary 3.1 unifies many of the existing convergence
analyses of SGD and is based on the general ABC condition (A.3) (see [23, 24, 19] for comparison)
rather than on the standard bounded variance assumption. Our expected convergence result generalizes
the one in [6] using much weaker assumptions. Our results for RR are in line with the recent theoretical
observations in [30, 32, 25]. In particular, Corollary 3.2 recovers the almost sure convergence result
shown in [25], while the expected convergence result appears to be new.

Prox-SGD and SMM. The work [11] established one of the first complexity results for prox-SGD
using the Moreau envelope. Under a bounded variance assumption (C = 0 in condition (C.4)) and
for general nonconvex and smooth f , the authors showed E[krenv✓ (xk̄)k2] = O((T + 1)�1/2),
where xk̄ is sampled uniformly from the past T + 1 iterates x0, . . . ,xT . As mentioned, this result
cannot be easily extended to the asymptotic convergence results discussed in this paper. Earlier
studies of prox-SGD for nonconvex f and C = 0 include [18] where convergence of prox-SGD is
established if the variance parameter D = Dk ! 0 vanishes as k ! 1. This can be achieved by
progressively increasing the size of the selected mini-batches or via variance reduction techniques as
in prox-SVRG and prox-SAGA, see [35]. The question whether prox-SGD can converge and whether
the accumulation points of the iterates {xk

}k�0 correspond to stationary points was only addressed
recently in [27]. The authors use a differential inclusion approach to study convergence of prox-SGD.
However, additional compact constraints x 2 X have to be introduced in the model (8) to guarantee
sure boundedness of {xk

}k�0 and applicability of the differential inclusion techniques. Lipschitz
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continuity of ' also appears as an essential requirement in [27, Theorem 5.4]. The analyses in [14, 12]
establish asymptotic convergence guarantees for SMM. However, both works require a priori (almost)
sure boundedness of {xk

}k�0 and a density / Sard-type condition in order to show convergence. We
refer to [16] for an extension of the results in [27, 12] to prox-SGD in Hilbert spaces. By contrast, our
convergence framework allows to complement these differential inclusion-based results and — for the
first time — fully removes any stringent boundedness assumption on {xk

}k�0. Instead, our analysis
relies on more transparent assumptions that are verifiable and common in stochastic optimization
and machine learning. In summary, we are now able to claim: prox-SGD and SMM converge under
standard stochastic conditions if ' is Lipschitz continuous. In the easier convex case, analogous
results have been obtained, e.g., in [18, 1, 40].

We provide an overview of several related and representative results in Table 1 in Appendix G.

4 Conclusion

In this work, we provided a novel convergence framework that allows to derive expected and almost
sure convergence results for a vast class of stochastic optimization methods under state-of-the-art
assumptions and in a unified way. We specified the steps on how to utilize our theorem in order to
establish convergence results for a given stochastic algorithm. As concrete examples, we applied our
theorem to derive asymptotic convergence guarantees for SGD, RR, prox-SGD, and SMM. To our
surprise, some of the obtained results appear to be new and provide new insights into the convergence
behavior of some well-known and standard stochastic methodologies. These applications revealed
that our unified theorem can serve as a plugin-type tool with the potential to facilitate the convergence
analysis of a wide class of stochastic optimization methods.

Finally, it is important to investigate in which situations our convergence results in terms of the
stationarity measure � can be strengthened — say to almost sure convergence guarantees for the
iterates {xk

}k�0. We plan to consider such a possible extension in future work.
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