Presented at Deep Reinforcement Learning Workshop, NeurIPS 2022

LEARNING A DOMAIN-AGNOSTIC POLICY THROUGH
ADVERSARIAL REPRESENTATION MATCHING FOR
CROSS-DOMAIN PoLICY TRANSFER

Hayato Watahiki*, Ryo Iwase; Ryosuke Unno & Yoshimasa Tsuruoka
The University of Tokyo
{watahiki, iwase}@logos.t.u-tokyo.ac.jp

ABSTRACT

The low transferability of learned policies is one of the most critical problems
limiting the applicability of learning-based solutions to decision-making tasks. In
this paper, we present a way to align latent representations of states and actions
between different domains by optimizing an adversarial objective. We train two
models, a policy and a domain discriminator, with unpaired trajectories of proxy
tasks through behavioral cloning as well as adversarial training. After the latent
representations are aligned between domains, a domain-agnostic part of the policy
trained with any method in the source domain can be immediately transferred to
the target domain in a zero-shot manner. We empirically show that our simple ap-
proach achieves comparable performance to the latest methods in zero-shot cross-
domain transfer. We also observe that our method performs better than other ap-
proaches in transfer between domains with different complexities, whereas other
methods fail catastrophically.

1 INTRODUCTION

Humans have an astonishing ability to learn skills in a highly transferable way. Once we learn the
route from home to the station, for example, we can get to the destination using different vehicles
(e.g., walking, cycling, or driving) in different environments (e.g., on a map or in the real world)
ignoring irrelevant perturbations (e.g., weather, time, or traffic conditions). We find underlying
structural similarities between situations, perceive the world, and accumulate knowledge in our way
of abstracting things. Such abstract knowledge can be readily applicable to various similar situations.
This seems easy for humans but not for autonomous agents. Agents trained in reinforcement learning
(RL) or imitation learning (IL) often have difficulties in transferring knowledge learned in a specific
situation to another. It is because the learned policies are strongly tied to the representation acquired
in a specific configuration of training, which is not generalizable even to subtle changes in an agent
or an environment.

Previous studies have attempted to address this problem with various approaches. Domain random-
ization (Tobin et al. 2017} |Peng et al., 2018} |Andrychowicz et al.l 2020) aims to learn a policy
robust to environmental changes by having access to multiple training domains, but it cannot handle
large domain gaps out of the domain distribution assumed in training such as drastically different
observations or agent morphologies. To overcome such domain discrepancies, |Gupta et al.| (2017)
and|Liu et al.[(2018) proposed methods to learn domain-invariant state representations for imitation,
but they require paired temporary-aligned datasets across domains and, in addition, need expensive
RL steps to adapt to the target domain. More recently, |Kim et al.| (2020) proposed a method to
find cross-domain correspondence of states and actions from unaligned datasets through adversarial
training. This method imposes a strong assumption that there is an exact correspondence of states
and actions between different domains and learns it as direct mapping functions. The assumption is
sometimes problematic when such correspondence is hard to find. For example, if one agent has no
leg while another agent has a few legs, we cannot expect all information on how the agent walks to
be translated into another domain.

*Equal contribution.

Presented at Deep Reinforcement Learning Workshop, NeurIPS 2022

Common)
Expert Domain Latent Space \ Target Domain
1

a

X y

Figure 1: Illustration of a domain-agnostic representation space. Since semantically similar states
are close together in the latent space regardless of the original domain, we can transfer knowledge
between different domains through the latent space.

In this work, we propose a method that does not require the existence of exact correspondence
between domains. Our approach learns domain-invariant representations and a common abstract
policy on them that is shared across different domains (Figure [I). Our model consists of two core
components: a policy and a domain discriminator. The policy has three blocks: a state encoder, a
common policy, and an action decoder. In the first stage, the model is optimized with an imitation
objective and an adversarial objective on a learned state representation simultaneously using an
unaligned dataset of proxy tasks. The adversarial training induces the state encoder to generate
latent state representations whose domains are indistinguishable to the domain discriminator. Such
representations do not contain domain-specific information and thus can work with the common
policy. Next, we freeze the parameters of the state encoder and action decoder and only update the
common policy in the source domain on the learned feature space to adapt the model to the target
task. In this process, as with Kim et al.|(2020), we can use any learning algorithm for updating the
policy and moreover do not require an expensive RL step interacting with the environment. After
the update, combined with the fixed encoder and decoder, the learned common policy can be readily
used in either domain in a zero-shot manner.

We conduct experiments on a challenging maze environment (Fu et al.,[2020) with various domain
shifts: domain shift in observation, action, dynamics, and morphology of an agent. Our experiments
show that our approach achieves comparative performance in most settings. We find that our method
is effective in the setting of cross-dynamics or cross-robot transfer, where no exact correspondence
between domains exists.

In summary, our contributions are as follows:

* We provide a novel method of cross-domain transfer with an unaligned dataset. In contrast
to the latest method that learns mappings between domains, our approach aims to acquire
domain-invariant feature space and a common policy on it.

* Our experiments with various domain shifts show that our method achieves comparable
performance in transfer within the same agent and better performance than existing meth-
ods in cross-dynamics or cross-robot transfer by avoiding direct mapping between domains.

2 RELATED WORK

Cross-Domain Policy Transfer between MDPs Transferring a learned policy to a different en-
vironment is a long-standing challenge in policy learning. IF |Gupta et al.|(2017) and IfO LLiu et al.
(2018) assume access to a temporary aligned dataset and make corresponding latent representations
close enough to get a domain-invariant feature space. TPIL (Stadie et al., |2017) obtains domain-
invariant features through adversarial training and performs GAIL (Ho & Ermon, 2016) on them.
These methods use costly RL steps in the adaptation. GAMA (Kim et al.,2020) learns a direct map-
ping of states and actions between domains through adversarial training without assuming temporal
correspondence between frames. No RL step is needed for the adaptation. CDIL (Raychaudhuri
et al.| 2021) learns a state mapping by CycleGAN (Zhu et al.| 2017)-like architecture with temporal
encoding and achieves cross-domain transfer without expert actions. MISA (Zhang et al., [2020)

Presented at Deep Reinforcement Learning Workshop, NeurIPS 2022

X: Source Domain | Sx Ay Sx’ Ry
\ e ___s7F
bx _ﬂ_ - _ll_}’i _ﬂ_ T Dd’x I
3 z
Z: Common Space ' Sz a; i SZ, R,
|
I
({)2’ | A < T . 3%
. H !
y: Target Domain | |S), ay Sy R,

Figure 2: Common latent MDP between a source MDP and a target MDP. The latent MDP is ex-
pected to be expressive enough to reproduce the dynamics and the reward of the original MDPs.

utilizes adversarial training to make a state representation of a value function domain-invariant. Our
approach can be seen as an extension that can handle more diverse domain shifts other than obser-
vation shifts. Hejna et al.| (2020) use a target position as a robot-invariant action representation in
locomotion tasks and transfer a high-level policy from one robot to another. |Gupta et al.|(2022) train
a policy with many robot agents with different morphologies to generalize to unseen morphologies.
We intend to perform more direct policy transfer without interacting with various environments.

State Abstraction for Transfer Theoretical aspects of latent state representation have been ana-
lyzed in previous studies. There exist several principled methods of state representation learning for
transfer such as bisimulation (Castro & Precup} 2010) and successor features (Barreto et al.,|2017),
although we use neither of them. Recently, (Gelada et al.| (2019) proved that the quality of the value
function is guaranteed if the representation is sufficient to predict the reward and dynamics of the
original MDP. In a similar context,|Zhang et al.|(2020); Sun et al.|(2022) provide performance guar-
antees in multi-task settings or cross-domain transfer without paired relationships between domains.

Unsupervised Domain Adaptation Domain adaptation with unaligned datasets has been inten-
sively studied in computer vision. CycleGAN (Zhu et al.|[2017)) finds a translation function between
domains by generating the corresponding instances in another domain. Similarly to our approach,
Tzeng et al.|(2017) matches the feature distributions between domains by fooling a domain discrim-
inator and successfully transfers an image classifier from the source domain to the target domain.
Besides, several studies learn domain-invariant features by optimizing an objective related to tem-
poral relationships of frames in videos (Sermanet et al., [2018; [Dwibedi et al., 2019). Such features
can be used in the reward shaping for cross-domain imitation through RL (Zakka et al., |[2022).

3 PROBLEM FORMULATION

We consider a Markov decision process (MDP): M = (S, A, R, T,), where S is a state space, A
is an action space, R : S x A — R is a reward function, 7" : § x A x § = Ry is a transition
function, and ~y is a discount factor. The aim of this paper is to transfer knowledge of a source
MDP M, = (S;, Ay, Ry, Ty, y) to a target MDP M, = (S, Ay, Ry, T}, 7). Here we assume that
these MDPs share a common latent structure which is also an MDP: M, = (S,, A, R, T.,7).
Formally, we assume the existence of state mapping functions ¢, : S, — S, ¢y : Sy — S, and
action mapping functions ¢, : A, — A., ¥, : A, — A, which translate states s, s, or actions
az, ay into shared states s, or actions a, respectively, satisfying the following relationships:

T (¢2(52), Yz (az)) = G2 (To (52, az)), Tz(ﬁby(sy)va(ay)) = ¢y(Ty(Sy7ay))v
R (¢2(52), Y2 (az)) = Re(82,az), Rz(¢y(3y)a¢y(ay)) = Ry(syvay)-

In short, as depicted in Figure [2] we assume that the common latent MDP is expressive enough to
reproduce the dynamics and reward structure of the source and target MDP. Our goal is to learn the
state mapping functions ¢, ¢, and the action mapping function)., 1, so that any policy learned
in the common latent space 7,(a.|s,) : S, x A, — R can be immediately used in either MDP
combined with the obtained mappings. In this paper, we use a deterministic policy and thus we
sometimes denote the latent policy as m.(s,) : S, — A,, although we can easily extend it to a
stochastic policy. We learn these mappings using state action trajectories of a set of proxy tasks
Dy = {Tdk,i}> where 74 ; = {(s}, a’))} is a successful trajectory of task & in domain d, and use

Presented at Deep Reinforcement Learning Workshop, NeurIPS 2022

Encoder Common Policy Decoder

State: Sy =p-
b >SS, A
-1
Domain: d =p Tz Y=t ¥ ag
Task ID: K =y d
Domain Discriminator
Learnable
Frozen q d
(a) Alignment phase
Encoder Common Policy Decoder Encoder Common Policy Decoder
State: Sy =p State: Sy =p
D >SS, PA» b »S,p PA»
1 -1
Domain: X = Tz r» PP Ay Domain: y = Tz r’ Pty ay
Task ID: f' el x Task ID: k' - y
(b) Adaptation phase (c) Inference

Figure 3: Overview of the training and inference procedure of our method. (a) In the alignment
phase, we jointly train the policy and the discriminator using trajectories of proxy tasks to match the
representation between domains. (b) In the adaptation phase, we only update the common policy to
adapt to the target task in the source domain. (c) In inference, we can use the updated policy trained
in the source domain combined with the encoder and decoder already trained in the alignment phase.

the learned relationships in task k¥’ unseen during training. The alignment of the representation is
obtained through behavioral cloning (BC) on the trajectories of proxy tasks and adversarial training
on the embeddings, which will be described in the following section.

4 LEARNING COMMON POLICY THROUGH REPRESENTATION MATCHING

In this work, we aim to learn state mapping functions ¢, ¢,, and action mapping functions 1), ¥,
or equivalents, and use them to transfer the policy learned in one domain to another. Our algorithm of
cross-domain transfer consists of two steps as illustrated in Figure[3} (i) Cross-domain representation
alignment, (ii) Policy adaptation to a target task in the source domain. We call them the alignment
phase and the adaptation phase, respectively. After the adaptation phase, the learned policy of a
target task can be immediately used in the target domain without any fine-tuning, additional training
interacting with the target domain (Gupta et al [2017; [Liu et al., 2018)), or a policy learning in the
mapped target domain (Raychaudhuri et al., [2021]).

4.1 CROSS-DOMAIN REPRESENTATION ALIGNMENT

In the alignment phase, we aim to learn the state and action mappings and acquire a domain-invariant
feature space that can be used in either the source domain or the target domain. We represent our
policy as a simple feed-forward neural network as shown in Figure [3] It consists of three compo-
nents: a state encoder, a common policy, and an action decoder. They correspond to ¢(s), (s,), and
11, respectively. Note that we feed domain ID d to the encoder and the decoder instead of using
two separate networks for the domains to simplify the architecture and the training. Additionally,
we input task ID & to the policy to deal with multiple proxy tasks simultaneously.

Even when the dataset contains trajectories from both domains performing the same tasks, sim-
ply training the policy with such a dataset does not necessarily match the representations of both
domains. Figure [a] shows the distribution of the representation of latent state s. acquired by be-
havioral cloning using expert trajectories from different domains in our experiment (Maze2D-OA).

Presented at Deep Reinforcement Learning Workshop, NeurIPS 2022

T
5 (‘».. —— »
;” S \T.. -~
K N o
¢ 1) =
%okt gk A
2P0y '-\'l\ od
LN [.
1 " r .7
LY AV:A“'}“ ““"
° ?9. « Source
Target
»
(a) Distribution without adversarial training (b) Distribution with adversarial training

Figure 4: Distribution of latent state representation s, with and without adversarial training. It is
visualized with t-SNE (Van der Maaten & Hinton, [2008)). Here we sample corresponding states from
two domains of the Maze2D environment in our experiment and encode them into the learned feature
space. Black lines connect 20 corresponding state pairs in each figure. Without adversarial training,
the model can learn the policy for different domains on different feature spaces. The adversarial
training encourages the model to learn them on the same feature space.

Although we trained a single policy, the learned representations are completely separated for each
domain. We need an additional objective to get a better alignment.

If we have access to temporary-aligned trajectories (i.e. (¢, (s%), ¥z (al)) = (o, (s}), ¥y (a}))), we
can directly learn corresponding representations ¢ (sz), ¢y (sy) o ¥z (az), ¥y (ay) close together
as done in |Gupta et al.| (2017). However, we do not assume such an alignment in the dataset and
hence we instead use the adversarial training to match the representations. Our purpose is to match
the corresponding latent representation of states and actions between domains. In other words, we
do not want latent representations to contain domain-specific information as much as possible. It
can be expressed as mutual information minimization between domains D and latent representation
S, or A,. Here we can skip this process on latent actions a, since a, is a function of latent states
s,. The objective for latent states can be formulated as follows:

m(gn I1(D;S,) = mdzn H(D)—- H(D|S.)
= mng(D|Sz). (1)

The second equation holds because we cannot control the domain distribution by the encoder. To
optimize this objective, we introduce a domain discriminator ¢(d|s) as an approximation of p(d|s)
in the objective. The training proceeds in a similar way to that of generative adversarial networks
(GAN) (Goodfellow et al.l 2014). The discriminator ¢(d|s,) predicts which domain each given s,
came from, while the encoder ¢ tries to fool the discriminator, as indicated in . Combined with
the behavioral cloning objective, we have our final objective L,;g, for the alignment phase:

min max Lyign = min max Lpc + ALagy
PR ¢t g

{zgc = E(opagainn | (7 (7=(6uls0),k)) — aa)’]

2
Laay = B, ay~p [logq(d|da(sa))]

where A is a constant that defines the importance of the adversarial term. More detailed derivation
and interpretation can be found in Appendix [A] By optimizing the adversarial objective along with
imitation, we can obtain an aligned representation as shown in Figure @bl Surprisingly, although
we only impose domain-to-domain distribution matching, each state in the distributions can also be
aligned. However, we have found that additional alignment signals lead to better and more stable
alignment in some cases. We employ a task-level alignment signal by feeding task ID k to the
discriminator. It encourages the model to align not only the entire latent state distributions but also
the ones in every single task. See Appendix [B.3|for the effect of task-level alignment.

Presented at Deep Reinforcement Learning Workshop, NeurIPS 2022

Next actions {a}}

Transformer > Transformer
Encoder Decoder

4

Demonstration Observations
{(s% a)} {s}}

. . . Maze-MR
Figure 5: TIllustration of a (a) Maze2D (medium) (b) Maze (umaze)

demonstration-conditioned policy.))
This policy cannot be trained only Figure 6: Pictures of Maze2D and Maze-MR. The red

with data of a source domain. points show the goal, which are not observable for agents.

4.2 POLICY ADAPTATION

In the adaptation phase, we train our policy to successfully perform the target task which we finally
would like to solve. We assume that the latent states and the latent actions are already aligned in the
alignment phase, and also we have state and action mapping functions between the common latent
space and each domain. Thus, our task in this phase is to train the common latent policy for the target
task. We can train it solely in the source domain using mapping functions. As described in Figure
B] the weights of the encoder and decoder are fixed during the training so that the common policy
is learned on top of the acquired aligned representations. In this phase, we can use any learning
algorithm, including reinforcement learning. In our experiments, we update the common policy
by behavioral cloning using expert trajectories in the source domain. Therefore, we minimize the
following objective in the adaptation phase.

min Logepe = min Lpc.
T, T,

This adaptation phase is one of the advantages of using a common policy over a demonstration-
conditioned policy (Figure [3) used in previous studies such as [Dasari & Guptal (2020). Since a
conditional policy cannot be trained with a dataset that only contains demonstrations in the source
domain, we cannot update it to adapt to the target task. This constraint requires the model to gener-
alize to demonstrations of an unseen target task in a zero-shot manner, which is difficult especially
when the target task is much more advanced than proxy tasks used in the training. We demonstrate
the effectiveness of our method from this perspective in our experiment.

5 EXPERIMENTS

In the experiment, our aim is to answer these questions: (i) Can our method align the states and ac-
tions of a source and a target domain? (ii) Can our method achieve zero-shot cross-domain transfer in
various settings? (iii) In which case is our method more effective compared to previous approaches?

5.1 ENVIRONMENTS

To evaluate the efficacy of our method, we choose the Maze environment used in the D4RL (Fu
et al., 2020) benchmark. It is a multi-task robotic locomotion environment suitable for defining
proxy tasks, and its simplicity enables us to evaluate the discrepancy of the alignment we obtain
from the ideal one. It also offers multiple agents with different morphologies, such as Point and Ant,
with which we can evaluate the performance of cross-domain transfer between significantly differ-
ent observation and action spaces. Concretely, we use four environments for our evaluation (Two of
them are shown in Figure [f). In each environment, agents explore the maze toward a specific goal.
The shape of the maze has two variations: umaze and medium. A task is defined as a 2D position of
a goal, and the dataset has expert trajectories of tasks. Note that the starting point can vary within
a task. Maze2D-O A point agent explores the maze. The observation space has four dimensions
(position and velocity for each direction), and the action space has two dimensions. The x-axis and
the y-axis are swapped in observations of the target domain. Maze2D-OA: In addition to the obser-
vation shift of Maze2D-O, actions for both directions are inverted (i.e., multiplied by —1). Maze-D
(Dynamics): In the source domain, inertia is removed and an action directly determines the velocity.

Presented at Deep Reinforcement Learning Workshop, NeurIPS 2022

Table 1: Alignment scores. The values are mean squared errors between the ground-truth states
in the source domain and the ones predicted from the corresponding target states. The results are

averaged over nine seeds with three fixed goals.

Task Ours GAMA CCA
Maze2D-O (umaze) 0.108 £0.062 0.092+0.039 1.987 +2.735
Maze2D-0O (medium) 0.213+£0.262 0.076 £0.022 0.007 +0.013
Maze2D-OA (umaze) 4.501 £1.747 0.112+0.033 1.987 +2.735
Maze2D-OA (medium) 2.261 +1.894 0.104 £0.045 0.007 =0.013

Agents in domains share the same observation, but they have different action spaces, dynamics, and
state distributions. Maze-MR (Multi-Robot): An ant agent is used as a target agent. The observa-
tion space and the action space of Ant are 29-dimensional and 8-dimensional, respectively. Transfer
between these agents is challenging since they have different morphologies and thus the observation
space, action space, and dynamics vary significantly. For other experimental settings, including the
detail of datasets, architectures, and the training procedures, refer to Appendix [C.1}

5.2 BASELINES

We compare our method with the following approaches. CCA (Hotelling) [1992) finds invertible
linear transformations to the space where unaligned demonstrations are maximally correlated. A
target policy is then optimized by reinforcement learning so that the policy can obtain observations
similar to the given demonstrations of a target task in the learned space. GAMA (Kim et al., 2020)
is one of the closest approaches to ours. It first learns direct mappings of states and actions between
domains in an adversarial way. After that, it updates the source domain policy and then solves
the target task by translating the states to those of the source domain, applying the source domain
policy, and translating the output actions back to the target domain. The critical difference between
this approach and ours is that GAMA uses the source domain policy for the target task, while ours
uses a common policy. In addition, we do not need a dynamics model and thus the training is simpler.
Cond is a Transformer (Vaswani et al., 2017)-based demonstration-conditioned policy depicted in
Figure 5] It digests a state-action demonstration of a task to perform and the observation history of
an agent, and outputs the next action to take. It only has the alignment step due to its structure as
discussed in Section[d.2] See Appendix [C.4]for more details of the training and implementation.

5.3 ALIGNMENT EVALUATION

Quantitative Evaluation We evaluate the quality of representation alignment in Maze2D, where
we know the ground-truth state correspondence between domains. We expect that the corresponding
states are mapped to the same latent representation. We calculate a prediction error of states in the
source domain from the corresponding states in the target domain and use it as a metric of the
alignment. Here we additionally train the state decoder ¢ !(s,) to calculate the metric. Note that
this metric is advantageous to GAMA since it has a direct mapping function of states. The scores
in Table[T] show that, while our method achieves similar scores to GAMA in Maze2D-O, it fails to
accurately recover the state in the other environments. It is not only because our method does not
learn direct mappings between domains, but also because the model possibly loses the information
on the original state when projected into the domain-invariant space. As long as latent states can use
the same common policy 7, it can be valid to map the corresponding states to different positions,
and hence a worse alignment score does not necessarily mean worse transfer performance. We
examine how it affects the final transfer performance in Section[5.4] Regarding the performance of
CCA, it is close to the perfect score in some settings since the observation shift is linear in Maze2D,
whereas CCA fails in other cases due to the lack of explicit temporal alignment and the variations
in the starting positions.

Qualitative Evaluation We visualize the distributions of the learned latent state space using t-
SNE (Van der Maaten & Hinton| [2008). As shown in Figure[7] our methods successfully align every
state pair in Maze2D-O and most pairs in successful cases in Maze2D-OA. In the more challenging
environment, Maze-MR, the latent states for the target domain (i.e. Ant) have a broader distribution

Presented at Deep Reinforcement Learning Workshop, NeurIPS 2022

DY -
- %\ P -
. 5 oS 3
Ty . .!"') o
> - A & * & e
A , D,
ord . ;'.4-:‘;“\\ o ke
y ChAs b LR
T P N X
e - -
‘e 4

(a) Maze2D-O (b) Maze2D-OA (c) Maze-MR

Figure 7: Comparison of distributions of latent states s, in the medium maze visualized by t-SNE
(Van der Maaten & Hinton| [2008). Similar to Figure @ we sample corresponding states from do-
mains and encode them into the learned feature space. Black lines connect 20 corresponding state

pairs in each figure. In Maze-MR, we do not show the lines since the ideal alignment is not available.

Table 2: Success rates of target tasks. Results are averaged over nine seeds with three fixed goals.

Task Ours GAMA CCA
Maze2D-O (umaze) 0.756 £0.334 0.633 £0.350 0.450 + 0.349
Maze2D-O (medium) 0.967 £0.067 0.767 +0.236 0.099 + 0.143
Maze2D-OA (umaze) 0.400 £0.337 0.767 =0.211 0.450 4+ 0.349
Maze2D-OA (medium) 0.611 +0.321 0.611+£0.420 0.099 £+ 0.143
Maze-D (umaze) 0.258 £0.256 0.033 +0.047 1.000 + 0.000
Maze-D (medium) 0.356 =0.285 0.011 +0.031 0.480 4+ 0.348
Maze-MR (umaze) 0.199 £ 0.259 0.000 £ 0.000 0.026 + 0.069
Maze-MR (medium) 0.393 £0.166 0.000 +0.000 0.000 + 0.000

than the source domain. Although it still can transfer information, improving the alignment would
be important future work.

5.4 CROSS-DOMAIN TRANSFER PERFORMANCE

We measure the performance of the cross-domain transfer by the success rate of a target task. We
choose a single goal for the target task and use the other goals as proxy tasks for the alignment phase.
The values are averaged over three different target tasks. Table [2] summarizes the average success
rates of methods that employ representation alignment in various settings. Note that CCA uses RL
for the adaptation and does not perform zero-shot transfer. In Maze2D, our method and GAMA
achieve better performance than CCA. Interestingly, our method shows comparable performance to
GAMA even though the alignment score is worse than that of GAMA. This shows that aligning the
latent representation is sufficient for transferring knowledge, instead of learning a direct mapping
between domains. In Maze-D and Maze-MR, GAMA fails to transfer the policy, while our method
achieves a non-zero success rate consistently. Since it is difficult to find an exact correspondence
between states with different complexities, direct state mapping and action mapping in GAMA are
hard to acquire. Our method instead reduces each MDP to the common one and thus we do not have
to learn the direct relationship between the source domain and target domain. However, the final
performance has much room for improvement. It is partly because the learned latent representation
can lose domain-specific information necessary for accurate action prediction. On this issue, supply-
ing domain-specific information directly or indirectly to the decoder would be a promising direction
for improvement. We also compare our method to Cond in Maze2D environments. The results in
Figure [§] show that Cond struggles to adapt to the target task since the lack of the adaptation phase
requires the model to perform zero-shot generalization to unseen demonstrations of a target task.
This supports our claim in Section[d.2]that adaptation through updating a domain-agnostic policy on
a shared representation space is effective for cross-domain transfer.

Presented at Deep Reinforcement Learning Workshop, NeurIPS 2022

mm Ours 1.0+
1.0 o i
on " 0.81
084 g /\
- i 0.6
w 4
7] (0]
o § 0.4+
S 0.41 &
n 0.2 —$— Ours
] GAMA
02 0.04
0.0, 1 3 5 10 25
’ 0O (umaze) O (medium) OA (umaze) OA (medium) Num PrOXy Tasks
Figure 8: Success rates of our method and a con- Figure 9: The number of proxy tasks vs
ditional model in Maze2D. Our model achieves success rate in Maze2D-OA. The scores are
better performance consistently because it can be averaged over three runs with a fixed goal.
trained only with source domain demonstrations. The error bars show the standard deviations.
The error bars show the standard deviations. More results are available in Appendix [B.T}

Table 3: Success rates of Maze2D (medium) with various coefficients A for the adversarial term.
Here we used a fixed single goal. The scores are averaged over three runs.

Task A=0 A=0.1 A=0.5 A=2.0 A=10

Maze2D-O (medium) 1.00£0.00 0.83+0.17 0.97+£0.07 093£0.09 0.87+0.13
Maze2D-OA (medium) 0.07£0.09 043+042 090+£0.08 0.70+0.28 0.27+0.13

5.5 ABLATION STUDIES

Alignment Complexity We measure the transfer performance, varying two aspects of the dataset
for alignment: the number of trajectories and the number of proxy tasks. We present plots of the
number of proxy tasks for Maze-OA in Figure 0] and more in Appendix [BI] These plots show
that a decrease in the number of demonstrations or proxy tasks leads to a decrease in performance.
However, regarding the number of proxy tasks, the requirement is not demanding and models can
achieve around 60% of episodes with only three proxy tasks.

Sensitivity to A Adversarial training is notorious for its difficulty in balancing the training of
multiple functions: the encoder and the discriminator in our case. To evaluate how sensitive our
method is to the adversarial coefficient A\, we measure the success rates in Maze2D environments
with various values of A. The results are shown in Table[3] Surprisingly, in Maze2D-O, the transfer
is successful without the adversarial term. In Maze2D-OA, on the other hand, adversarial training is
necessary to align the representations, and we have to choose the correct value of \.

6 CONCLUSION

In this work, we present a novel method to learn a domain-invariant policy in a common feature
space for cross-domain policy transfer. Our experimental results show that our method achieves
comparable performance to the prior methods in environments with domain shifts on the same agent
and dynamics. Our method is especially effective for transfer between domains with different com-
plexities, where no exact correspondence exists.

The main limitation of our work is the instability of the training due to adversarial training. Intro-
ducing techniques for more stable training of GANs could enhance the performance of our method.
Alternatively, some self-supervised objectives can give more signals for the alignment and conse-
quently stabilize or replace the adversarial training. Besides, relaxing the requirements on the dataset
is a promising direction for future work. If we do not require expert actions or task ID in a dataset for
the alignment, we can utilize prevalent, less-structured datasets including videos to scale the train-
ing. We hope our work provides some suggestions to researchers who will work on the development
of a domain-free policy, an abstract policy that can be applied to any domain in a zero-shot manner.

Presented at Deep Reinforcement Learning Workshop, NeurIPS 2022

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our experimental setups and implementations in Section[5.1]and
Appendix [C| These sections contain the key hyperparameters, links to the datasets, modified parts
of the existing environments, dataset size, duration of the training, and other necessary information
for reproduction. The training time does not exceed about five hours with a single GPU. We also
release our codebase and created datasets as supplementary materials.

REFERENCES

OpenAl: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning
dexterous in-hand manipulation. The International Journal of Robotics Research, 39(1):3-20,
2020.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt,
and David Silver. Successor features for transfer in reinforcement learning. Advances in neural
information processing systems, 30, 2017.

Pablo Samuel Castro and Doina Precup. Using bisimulation for policy transfer in mdps. In Tiventy-
Fourth AAAI Conference on Artificial Intelligence, 2010.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. InfoGAN:
Interpretable representation learning by information maximizing generative adversarial nets. Ad-
vances in neural information processing systems, 29, 2016.

Sudeep Dasari and Abhinav Gupta. Transformers for one-shot visual imitation. In Conference on
Robot Learning, pp. 1439—-1456. PMLR, 2020.

Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre Sermanet, and Andrew Zisserman. Tem-
poral cycle-consistency learning. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 1801-1810, 2019.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for deep
data-driven reinforcement learning, 2020.

Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G Bellemare. Deepmdp:
Learning continuous latent space models for representation learning. In International Conference
on Machine Learning, pp. 2170-2179. PMLR, 2019.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Learning invariant
feature spaces to transfer skills with reinforcement learning. In International Conference on
Learning Representations, 2017.

Agrim Gupta, Linxi Fan, Surya Ganguli, and Li Fei-Fei. MetaMorph: Learning universal controllers
with transformers. In International Conference on Learning Representations, 2022.

Donald Hejna, Lerrel Pinto, and Pieter Abbeel. Hierarchically decoupled imitation for morphologi-
cal transfer. In International Conference on Machine Learning, pp. 4159-4171. PMLR, 2020.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

Harold Hotelling. Relations between two sets of variates. In Breakthroughs in statistics, pp. 162—
190. Springer, 1992.

Kuno Kim, Yihong Gu, Jiaming Song, Shengjia Zhao, and Stefano Ermon. Domain adaptive imita-
tion learning. In International Conference on Machine Learning, pp. 5286-5295. PMLR, 2020.

10

Presented at Deep Reinforcement Learning Workshop, NeurIPS 2022

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

YuXuan Liu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Imitation from observation: Learn-
ing to imitate behaviors from raw video via context translation. In 2018 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 1118-1125. IEEE, 2018.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer of
robotic control with dynamics randomization. In 2018 IEEE international conference on robotics
and automation (ICRA), pp. 3803-3810. IEEE, 2018.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1-8, 2021. URL http://jmlr.org/papers/v22/
20-1364.htmll

Dripta S Raychaudhuri, Sujoy Paul, Jeroen Vanbaar, and Amit K Roy-Chowdhury. Cross-domain
imitation from observations. In International Conference on Machine Learning, pp. 8902-8912.
PMLR, 2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal, Sergey
Levine, and Google Brain. Time-contrastive networks: Self-supervised learning from video. In
2018 IEEE international conference on robotics and automation (ICRA), pp. 1134-1141. IEEE,
2018.

Bradly C Stadie, Pieter Abbeel, and Ilya Sutskever. Third person imitation learning. In International
Conference on Learning Representations,2017. URLhttps://openreview.net/forum?
id=BlodGcglx.

Yanchao Sun, Ruijie Zheng, Xiyao Wang, Andrew E Cohen, and Furong Huang. Transfer RL
across observation feature spaces via model-based regularization. In International Conference on
Learning Representations, 2022.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Do-
main randomization for transferring deep neural networks from simulation to the real world. In
2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 23-30.
IEEE, 2017.

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain
adaptation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp- 7167-7176, 2017.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Kevin Zakka, Andy Zeng, Pete Florence, Jonathan Tompson, Jeannette Bohg, and Debidatta
Dwibedi. XIRL: Cross-embodiment inverse reinforcement learning. In Conference on Robot
Learning, pp. 537-546. PMLR, 2022.

Amy Zhang, Clare Lyle, Shagun Sodhani, Angelos Filos, Marta Kwiatkowska, Joelle Pineau, Yarin
Gal, and Doina Precup. Invariant causal prediction for block mdps. In International Conference
on Machine Learning, pp. 11214-11224. PMLR, 2020.

11

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://openreview.net/forum?id=B16dGcqlx
https://openreview.net/forum?id=B16dGcqlx

Presented at Deep Reinforcement Learning Workshop, NeurIPS 2022

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), Oct 2017.

A DERIVATION AND INTERPRETATION OF LEARNING OBJECTIVE

Our objective in ((I) is to maximize the entropy of domain prediction given a latent state
mgx H(D|S,) =— mgX]Ed~p(D|Sz) [p(d]sz)]

= minEgppis.) [p(dlpa(sa))],

where s; is sampled from the dataset D. Here we cannot directly evaluate p(d|s,). We introduce
the variational approximator ¢(d|s.), which can be seen as a domain discriminator. Then we have

minE s [0(d]6(54)) + p(d]6(34)) — a(dlé(5a)
= md}n Egp(p|s.) [a(d]|d(sa))] + Dk [p(d|é(sa))|la(d|p(sa))]
= minE(s, a) [0(d16(34))] + D p(dlé(5) la(dl(50))]

In the second equation, we remove the necessity of the sampling from the posterior following the
discussion similar to Lemma 5.1 in|Chen et al.| (2016).

Since we would like to minimize this objective instead of maximizing it as done in the well-known
evidence lower-bound (ELBO) objective, we cannot take a lower bound by skipping the second
term. In our case, we can consider that the training of the discriminator ¢ toward correct domain
classification is a minimization of the KL divergence. Given the sufficient quality of the approxima-
tion, the KL term should be small thus the encoder can focus on optimizing the first term, which is
our final objective in (2).

B ADDITIONAL RESULTS

B.1 ADDTIONAL RESULT OF ALIGNMENT COMPLEXITY
Figure[I0]and Figure[TT|show the alignment complexity in Maze2D-O and Maze2D-OA with respect

to the number of demonstrations and the number of proxy tasks. As mentioned in Section [5.5] an
increase in the number of demonstrations or proxy tasks improves the performance.

B.2 SUCCESS RATES WITHOUT BEHAVIORAL CLONING

Although we align the representation through behavioral cloning and the adversarial objective
jointly, one might think that we can first align the representations with the adversarial term only

1.0 N 1.0 -—o\{
0.81)| 0.8
[[
5 |1 $ 1 5
< 0610/ < 0.6
%] %]
] :]
0 0.4 0 0.4
o o
=} =}
(%] (%]
0.2 0.2+ —$— Ours
GAMA
0.0 0.0
25 80 400 2000 10000 1 3 5 10 25
Num Demonstrations Num Proxy Tasks
(a) The number of demonstrations vs success rate (b) The number of proxy tasks vs success rate

Figure 10: Alignment complexity in Maze2D-O. Here we used a fixed single goal. The scores are
averaged over three runs. The error bars show the standard deviations.

12

Presented at Deep Reinforcement Learning Workshop, NeurIPS 2022

1.0 T 1.0
T
0.8 2 0.8
2 2
© ©
< 06 & 0.6 N1
%] %]
0 0 T
O 0.41 0 0.4
o o
> >
(%] (%]
0.2 0.2 —$— Ours
GAMA
0.0 0.0
25 80 400 2000 10000 1 3 5 10 25
Num Demonstrations Num Proxy Tasks
(a) The number of demonstrations vs success rate (b) The number of proxy tasks vs success rate

Figure 11: Alignment complexity in Maze2D-OA. The scores are averaged over three runs with a
fixed goal. The error bars show the standard deviations.

Table 4: Success rates with and without behavioral cloning. Results are averaged over nine seeds
with three fixed goals.

Task BC + adversarial adversarial only
Maze2D-O (medium) 0.967 £ 0.067 0.033 £ 0.047
Maze2D-OA (medium) 0.611 4 0.321 0.033 £ 0.067

and directly learn the common policy in the learned representation space. To measure how much
behavioral cloning helps the alignment, we measure the success rates when the alignment is only
done with the adversarial term. Table[dshows that behavioral cloning encourages the model to learn
the representation space that incorporates the closeness of states in terms of the actions to perform
in proxy tasks. The adversarial term is insufficient for the alignment because it only matches the
distributions of latent states of the source domain and the target domain. It implies that we could get
a better alignment if we impose appropriate additional constraints on the representations.

B.3 EFFECT OF TASK CONDITIONING

We measure the success rates of target tasks with and without task conditioning of the domain
discriminator. The results in Table[5]show that it improves the performance of both our method and
GAMA when there is a domain shift in actions (i.e., in Maze-OA). Based on this result, we use task
conditioning by default in our experiments.

C EXPERIMENT DETAILS

C.1 ENVIRONMENTS

All Maze environments used in this paper are based on D4RL (Fu et al., 2020). In Maze environ-
ments, two types of agents perform actions: Point and Ant. The Point agent has a state space of four
dimensions and an action space of two dimensions. The states consist of positions and velocities for
the x-axis and y-axis, while the actions consist of the force to be applied for each direction. The Ant
agent has a state space of 29 dimensions and an action space of eight dimensions. The states consist
of the position and velocity of the body, and the joint angles and angular velocities of the four legs.
The actions consist of the force to be applied to each joint.

In Maze-D and Maze-MR, we use an environment with different dynamics from the original envi-
ronment for the Point agent. We removed the inertia from the source domain and thus changes in
position depend only on the action at the step. In Maze-D, the task of the Point agent in the target
domain is to learn from the trajectories of an agent in the source environment that does not have in-
ertia. In Maze-MR, the task of the Ant agent is to learn from the Point agent in the environment with

13

Presented at Deep Reinforcement Learning Workshop, NeurIPS 2022

Table 5: Success rates of target tasks, with and without task conditioning of the discriminator.
Results are averaged over nine seeds with three fixed goals.

Task Ours (w/ task) Ours (w/o task) GAMA (w/task) GAMA (w/o task)

Maze2D-O (umaze) 0.756 £0.334 0.744 £0.377 0.633 £0.350 0.689 £ 0.228
Maze2D-O (medium) 0.967 £0.067 0.878 £ 0.140 0.767 £ 0.236 0.778 £0.155
Maze2D-OA (umaze) 0.400 £0.337 0.389 £ 0.288 0.767 £ 0.211 0.378 £ 0.349
Maze2D-OA (medium) 0.611 £0.321 0.444 +0.417 0.611 + 0.420 0.478 £0.352

the simpler dynamics. The input positions of x and y coordinates of the Point agent were reversed
from those of the Ant agent to prevent leaking information without representation alignment.

C.2 DATASETS

As described in Section[3] the dataset contains state action sequences of expert demonstrations with
various goals (i.e., multiple tasks). For the Maze2D and Maze-D, we provide about 10k trajectories
of six tasks for the umaze, and about 10k trajectories of 25 tasks for the medium maze unless ex-
plicitly mentioned in the ablation study. We downloaded the expert demonstrations from http: //
rail.eecs.berkeley.edu/datasets/offline_rl/maze2d//(maze2d-umaze-sparse-
v1, maze2d-medium-sparse-v1). For Maze-MR, we provide about 10k trajectories of six tasks for
the umaze and about 5k trajectories of 25 for the medium maze. When we created expert trajecto-
ries for the AntMaze and simpler Maze2D environement without inertia in Maze-D, we used PPO
(Schulman et al., 2017) from stable-baselines3 (Raffin et al., [2021])) to train agents to move only one
square up, down, left, or right. We then composed entire demonstrations by solving the maze with
BFS and giving the agent the direction of the next square.

C.3 ARCHITECTURE AND TRANING DETAILS OF OUR METHOD

Our policy is a simple multilayer perceptron. In the experiments of Maze2D, the state encoder,
the common policy, and the decoder have three, five, and three hidden layers with 256 units and
ReLU activations. Only the last layer of the decoder has Tanh activation. The dimension of latent
representations is also 256. We optimized our objective with Adam optimizer (Kingma & Ba, 2015)).
We set the learning rate to le-4 and the batch size to 256, and trained the model for 20 epochs. In
Maze-D, we used the same number of layers as in Maze2D, while, in Maze-MR, we used four, six,
and four hidden layers for the encoder, the policy, and the decoder, respectively. In Maze-D and
Maze-MR, we used Tanh activation for the last layer of each component, and Mish activation for
the other layers. The number of units and the dimension of the latent representation were set to 512.
We set the learning rate to 2e-4 and the batch size to 512, and trained the model for 40 epochs.

C.4 BASELINES

For GAMA, we re-implemented the algorithm referring to the original paper and an official imple-
mentation (https://github.com/ermongroup/dail). When we found a few differences
between the paper and the implementation, we followed the description in the paper. We swept the
adversarial coefficient from 0.01 to 10, the learning rate from le-4 to le-3, and used 0.5 and le-4,
respectively. For CCA, we used the trajectories of the proxy tasks to learn linear state correspon-
dence mappings. We first padded trajectories to the same length and created a single sequence of
trajectories for each domain by concatenating them sorted by task ID. The order of trajecories were
randomly shuffled within a task ID. In the adaptation phase, a policy is trained by reinforcement

learning using an auxiliary reward function r(sg(f)) defined as follows:

1
> llglsi) = £S5,

)y — _
=T 2

7(s,

where f(s,) is a learned mapping function from the source (expert) domain to the learned latent

space, g(s,) is its counterpart for the target (agent) domain, D, is the expert trajectories of a target

task in the source domain, sét) is a state of the target agent at time step ¢, and sgf)T is a target state

14

http://rail.eecs.berkeley.edu/datasets/offline_rl/maze2d/
http://rail.eecs.berkeley.edu/datasets/offline_rl/maze2d/
https://github.com/ermongroup/dail

Presented at Deep Reinforcement Learning Workshop, NeurIPS 2022

in the source domain at time step ¢ in a sampled expert trajectory 7. If the state correspondence
is learned sufficiently, r(sét)) would be a reward for tracking features of expert trajectories in the
source domain. We used the Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015)

algorithm for this step and trained MLP policy for 200k environmental steps.

For the demonstration-conditioned model (Cond), we used a Transformer (Vaswani et al.| 2017)-
based architecture to process sequences of observations and actions (Figure[5). We fed demonstra-
tions and observation history as they were without thining-out timesteps. The maximum sequence
length was 250 and 400 for the umaze and medium maze, respectively. The model had three encoder
layers and three decoder layers with 256 units and eight heads for each layer. The dropout rate was
set to 0.2. The activation function was ReLLU and it was applied after the normalization. We set the
batch size to 32, the learning rate to 1e-3, and trained the model for 100 epochs. We confirmed that
the error of behavioral cloning was going down to the similar value observed in the training of our
method and GAMA.

15

	Introduction
	Related Work
	Problem Formulation
	Learning Common Policy through Representation Matching
	Cross-Domain Representation Alignment
	Policy Adaptation

	Experiments
	Environments
	Baselines
	Alignment Evaluation
	Cross-Domain Transfer Performance
	Ablation Studies

	Conclusion
	Derivation and Interpretation of Learning Objective
	Additional Results
	Addtional result of alignment complexity
	Success Rates without Behavioral Cloning
	Effect of Task Conditioning

	Experiment Details
	Environments
	Datasets
	Architecture and Traning Details of our method
	Baselines

