
Order Agnostic Autoregressive Graph Generation

Anonymous Author(s)
Affiliation
Address
email

Abstract

Graph generation is a fundamental problem in various domains, including chemistry1

and social networks. Recent work has shown that molecular graph generation2

using recurrent neural networks (RNNs) is advantageous compared to traditional3

generative approaches which require converting continuous latent representations4

into graphs. One issue which arises when treating graph generation as sequential5

generation is the arbitrary order of the sequence which results from a particular6

choice of graph flattening method. In this work we propose using RNNs, taking into7

account the non-sequential nature of graphs by adding an Orderless Regularization8

(OLR) term that encourages the hidden state of the recurrent model to be invariant9

to different valid orderings present under the training distribution. We demonstrate10

that sequential graph generation models benefit from our proposed regularization11

scheme, especially when data is scarce. Our findings contribute to the growing body12

of research on graph generation and provide a valuable tool for various applications13

requiring the synthesis of realistic and diverse graph structures.14

1 Introduction15

Graphs are powerful representations of complex relationships and structures found in a wide range16

of domains, including social networks, molecular chemistry, transportation networks, distributed17

algorithms and many more. A dedicated class of architectures, Graph Neural Networks (GNNs), has18

been developed to handle the specific properties of graphs. Graphs are naturally versatile objects,19

but such versatility comes at the cost of lack of structure and no naturally induced order. Most GNN20

architectures therefore operate by applying a neural architecture at the node level followed by an21

aggregation step which takes into account the local neighborhood structure of the graph. By stacking22

multiple such layers, a GNN is able to perform node-level or graph-level tasks that take into account23

the entire structure of the graph.24

The ability to generate realistic and structured graphs is essential for various applications ranging from25

drug design [17, 20, 34, 36, 44, 55, 66, 69] to program synthesis [9, 32, 11, 1, 30, 65, 7, 15]. In recent26

years a wide variety of generative models have been developed, including generative adversarial27

networks (GANs), variational autoencoders (VAEs), normalizing flows, and diffusion models. These28

algorithms devise different strategies to learn continuous mappings from a latent distribution to a space29

of realistic examples. Unfortunately, graphs do not admit a natural representation in a continuous30

space; consequently, the discrete and unordered nature of graphs make them less amenable to the31

methods mentioned above for the task of graph generation. A different type of generative model32

relies on autoregressive architectures which enable processing a sequence and generating the next33

element; for example, these architectures are commonly used for large language models. Generally,34

autoregressive models are applicable when the generated objects admit a sequential order.35

In this work we focus on sequential generation of graphs using autoregressive neural architectures. A36

strong motivating factor for choosing autoregressive architectures is that we are particularly interested37

in molecular graph generation; and in this context Flam et al. [23] have shown that sequential38

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

generation is favorable compared to other approaches. The specific representation we consider is39

depth-first search (DFS) trajectories of graphs. The reasons for this choice of representation is40

twofold: (a) DFS is a natural way of flattening graphs into sequences; (b) in the chemistry community41

DFS is used to convert molecules into strings. However, an issue arises when converting graphs into42

sequences: there are many DFS trajectories for a given graph. Indeed, for many graph flattening43

methods, there is an arbitrariness in the order of the sequence which results [63, 12].44

In order to alleviate the dependency on a specific trajectory, we add a regularization term dubbed45

Orderless Regularization (OLR) which ensures the learnt model is invariant to different DFS orderings46

of the same graph. For the sake of training with OLR, one needs to generate different DFS trajectories47

with a common end-vertex which is known to be hard [5]. We formalize the notion of graph-level48

invariance and devise an efficient algorithm to generate such trajectories under certain constraints.49

Finally, we demonstrate empirically that our regularization term is beneficial when the amount of50

training data is limited by considering the use case of small molecule generation.51

The reminder of the paper is structured as follows: in Section 2 we provide background and introduce52

the concepts, definitions, and notations used throughout the paper. Section 3 goes into the details of53

OLR over DFS trajectories. Section 4 is devoted to related work. In Section 5 we provide empirical54

evidence for the effectiveness of OLR. Section 6 provides concluding remarks.55

2 Background56

In this section we formally define the problem of graph generation, the notations and definitions57

necessary to present our proposed method. We denote matrices by bold uppercase letters, M P Rnˆm,58

vectors by bold lowercase letters, v, and the ith entry of v by vi. We proceed with a general59

formulation of recurrent models.60

2.1 Recurrent Models61

Let X , H, and Y be the spaces of inputs, hidden states, and outputs, respectively. Given an input62

sequence x ” px1, . . . ,xnq P Xn, a recurrent model consists of two functions, the state update63

function fu : Hˆ X Ñ H,64

ht`1 “ fupht,xtq, (2.1)
and the output function fo : Hˆ X Ñ Y ,65

yt “ fopht,xtq. (2.2)

where h0 P H. We overload the notation and denote the hidden state and output of a recurrent model66

over a sequence as fupxq and fopxq respectively.67

The formulation presented of recurrent models is broad and able to capture RNNs as well as more68

complex architectures such as Gated Recurrent Units (GRUs, [13]) and Long-Short Term Memory69

networks (LSTMs, [33]). For example, in the case of a very simple, vanilla RNN,170

ht`1 “ σhpAht `Bxtq (2.3)

and71

yt “ σypCht `Dxtq (2.4)
where A,B,C,D are matrices with the appropriate dimensions and σh, σy are standard non-72

linearities such as sigmoid or tanh.73

2.2 Graph Generation74

A graph is given by G “ pV, Eq where V is a set of nodes (or vertices) and E Ď V ˆ V is a set of75

tuples denoting the nodes connected by an edge in the graph. Additionally, for each v P V , denote76

by xv P Rm the features of node v. Similarly, euv P Rk denotes the features of the edge pu, vq P E .77

For example, in a molecular graph, nodes are atoms, and their features will contain the element; and78

edges correspond to bonds, and their features will contain the bond types (single, double, etc.).279

1Note that the bias term may be encapsulated into the input processing matrices by expanding the input with
an additional dimension and assigning a fixed value of 1 on that coordinate.

2Molecular node and edge features may contain other properties as well.

2

Another example is of social networks, where nodes corresponds to users and their features to user80

profiles; and edges correspond to connections between users and their features contain metadata on81

this connection.82

The topic of designing neural networks to operate specifically on graphs is dominated by Graph83

Neural Networks (GNNs) which mostly rely on a message-passing scheme to propagate information84

between nodes. While these architectures are extremely successful in node level and graph level85

prediction, they are not as prevalent in the context of graph generation, and many such approaches86

are restricted to small graphs (though [16] is a notable exception).87

Formally, the task of graph generation is usually concerned with learning to model distributions:88

concretely, given a set of N graphs tGiuNi“1 originating from an underlying distribution p, the89

goal of graph generation is to devise an algorithm that generates new graphs from the underlying90

distribution p. Prior work has mostly adapted successful generative methods over a continuous space91

to the domain of graphs [25, 8, 37, 51]. In this work we focus on using recurrent models which92

can be employed naturally to generate discrete objects. Crucially, Flam et al. [23] have shown that93

sequential generation is favorable compared to competing approaches in the context of molecular94

graph generation.95

2.3 Sequential Graph Generation96

When applying recurrent models for graph generation, the graph first needs to be “flattened” into97

a sequence. As there is no natural order for a graph, one must artificially induce such an order; for98

example, the approach taken by [67] considers generation of breadth-first search (BFS) trajectories.99

While there are many ways to convert a graph into a sequence, in this work we focus on depth-first100

search (DFS); a strong motivation for this choice is that this is the method used to convert graph101

molecules into a linear representation called SMILES strings [64]. By convention, the output of the102

DFS algorithm is a spanning tree and we consider the induced order of the graph as the order in103

which the vertices were visited during the DFS run (also known as pre-order traversal).104

In what follows we formally define the concepts discussed.105

Definition 2.1. Given a connected graph G “ pV, Eq with |V| “ n, we say the permutation π P Sn106

is a valid ordering of G if it is possible to run DFS over G and visit the vertices in the order induced107

by π. Denote the sequence corresponding to a valid ordering π of G by108

spG, πq “ pvπp1q, . . . , vπpnqq. (2.5)

Denote the set of all such sequences for a given graph G by109

SpGq “ tspG, πq : π is a valid ordering of Gu. (2.6)

Clearly, for a non-trivial graph SpGq will contain many sequences. In this work we have a special110

interest in sequences that share the same end vertex.111

Definition 2.2. Let SpG, vq denote all sequences terminating at node v P V , formally,112

SpG, vq “ ts P SpGq : sn “ vu (2.7)

In the following section we discuss the desired properties for recurrent models when used for graph113

generation.114

3 Structure Agnostic Recurrent Models115

Recurrent models are a natural choice when generating discrete objects such as text. On the other116

hand, graphs are discrete objects with no naturally induced order. In Section 2 we described a117

mapping between graphs and sequences; and in particular, the fact that many different sequences118

correspond to the same graph. In this section we present our method that overcomes the issues119

described.120

3.1 Generating Depth-First Search Traversals121

In this work we use recurrent models to generate DFS traversals of graphs. Clearly when generating a122

DFS traversal, the next node to be generated depends on the nodes generated thus far and in particular123

3

A

B C D

E F

1

2

3 4

5 6

A

B C D

E F

1

3

5 4

2 6

Figure 1: Illustration of two DFS traversals of the same graph starting from node A and terminating
at node D, blue lines denote traversal order. (Left) traversal resulting in the sequence ApBEF qpCqD.
(Right) traversal resulting in the sequence ApCqpBFEqD. The parentheses denote the opening and
closing of branches when traversing the tree; with this syntax it is possible to reconstruct the tree
from such sequences. Note that multiple sequences correspond to the same tree, a fact that lies at the
heart of this work.

the last generated node. An important observation is that the output of the recurrent model should be124

invariant to different valid orderings corresponding to the same subgraph as long as they lead to the125

same node. The following definition formalizes this notion,126

Definition 3.1. We say a recurrent model is structure invariant with respect to a connected graph G127

if128

@v P V, @s1, s2 P SpG, vq it is the case that fops1q “ fops2q. (3.1)
If the above condition is satisfied for all G „ D, we say that the recurrent model is structure129

invariant with respect to a distribution D.130

Figure 1 depicts a graph and two different DFS traversals sharing the same root and terminal node. A131

recurrent model processing the two DFS traversals will ideally generate the same node that will be132

attached to node D.133

Definition 3.1 describes the structure invariance property with respect to a graph. Since recurrent134

models generate the traversal sequentially, we would like this property to hold at any moment during135

generation, i.e., we want to modify Definition 3.1 to take into account partial DFS traversals.136

Definition 3.2. For a connected graph G, we say a connected subgraph G̃ Ď G is induced by DFS137

over G if there exists a valid ordering π P Sn of G, and k ď n such that pvπp1q, . . . , vπpkqq is a valid138

ordering of G̃. Denote the set of all DFS induced subgraphs over G by GDFSpGq.139

At this stage, a reader might question the necessity of Definition 3.2 and why GDFSpGq differs from140

the set of all connected subgraphs of G. We note that for a general connected graph GDFSpGq does141

not correspond to the set of all connected subgraphs.142

Proposition 3.3. For a connected graph G,143

GDFSpGq ‰
!

G̃ | G̃ Ď G and G̃ is connected
)

(3.2)

Figure 2 depicts a graph and two connected subgraphs, one which is induced by DFS and the other144

that cannot be obtained by a DFS traversal.145

With the notion of DFS induced subgraphs in hand, we now present the following definition of total146

structure invariance:147

Definition 3.4. We say a recurrent model is totally structure invariant with respect to a connected148

graph G, if149

@G̃ P GDFSpGq, @v P VpG̃q, @s1, s2 P SpG̃, vq it is the case that fops1q “ fops2q. (3.3)

4

A

B C D

GFE

A

B C D

GFE

1

2

3

4

5

Figure 2: Illustration of the same graph with two connected subgraphs: (Left) subgraph which is
not induced by DFS. (Right) subgraph induced by DFS, arrows depict a traversal resulting in the
sequence BApCF qD.

If the above condition is satisfied for all G „ D, we say that the recurrent model is totally structure150

invariant with respect to a distribution D.151

In the next section we discuss how to train recurrent models which are totally structure invariant with152

respect to a given training distribution over graphs.153

3.2 Regularizing Towards Total Structure Invariance154

Motivated by the observation discussed in Section 3.1, we propose training recurrent models that155

are totally structure invariant with respect to the underlying distribution over graphs. It would be156

appealing to characterize the class of all totally structure invariant functions and optimize over those.157

Unfortunately, it is difficult to attain a crisp characterization of structure invariance as this property158

depends on the training distribution.159

Instead, we propose encouraging total structure invariance via regularization. Specifically, we would160

like to minimize the following auxiliary loss,161

EG„DEG̃„GDFSpGq
EvPVpG̃qEs1,s2PSpG̃,vq

”

pfops1q ´ fops2qq
2
ı

(3.4)

which we refer to as Orderless Regularization (OLR). Examining Equation 3.4, we note that sampling162

from GDFSpGq is easily done by randomly selecting a root node and running DFS with stochastic163

decision making. On the other hand, given G̃ and v, sampling from SpG̃, vq is hard and has been164

shown to be NP-complete [5].165

3.3 Sampling Trajectories with Common End Vertex166

The problem of generating all DFS trajectories that terminate at the same vertex is hard and there are167

no known efficient algorithms for this task. In order to overcome this obstacle we apply a heuristic168

for computing such trajectories. We highlight that our proposed scheme is not equivalent to a uniform169

sampling over all possible trajectories; however, in Section 5 we show that the resulting regularization170

scheme is effective empirically.171

Next, we formally show that for practical graphs there exists efficient algorithms to generate such172

trajectories.173

Definition 3.5. Let G “ pV, Eq be an arbitrary graph. G is said to be k-edge-connected if the174

subgraph G1 “ pV, EzẼq is connected for all Ẽ Ď E such that |Ẽ | ă k.175

Proposition 3.6. There is an efficient algorithm to find distinct DFS trajectories with common end176

vertex for any k-edge connected graph for k ď 2.177

5

We note that in many real world tasks, graph are rarely k-edge connected for k ą 2. For example, in178

the ZINC molecular dataset, more than 99.5% of molecular graphs are 1-edge connected.179

Proof Sketch. Find a min-cut: by the definition of 1-edge-connected graphs the min-cut includes180

a single crossing edge pu, vq. By removing pu, vq the graph is partitioned into two connected181

components, G1 and G2 containing u and v respectively. Run a DFS on G1 with u as the root vertex182

to result in pu1, . . . , ukq, and similarly for G2 to result in pv1, . . . , vmq (where v1 “ v and u1 “ u).3183

We can now construct a DFS traversal on G by ‘gluing’ together the sequences as,184

pv1, u1, . . . , uk, v2, . . . , vmq (3.5)

We can run another (stochastic) DFS on G1 from u to obtain
`

uπ̃p1q, . . . , uπ̃pkq
˘

where π P Sk and185

π̃p1q “ 1. We can construct a second DFS sequence as in Equation 3.5,186

pv1, uπ̃p1q, . . . , uπ̃pkq, v2, . . . , vmq (3.6)

We have created two valid DFS sequences that both terminate at vm.187

See Appendix B for the full details and the case of 2-edge connected graphs.188

4 Related Work189

In this section we discuss several relevant topics to graph generation. For a comprehensive review on190

graph generation see [28, 71].191

One Shot Generation Classic generative architectures (e.g. Variational autoencoders (VAEs) [39],192

Generative adversarial networks (GANs) [26], etc.) work by learning a continuous mapping from193

a latent distribution to generate new examples with similar properties to the training distribution.194

These models usually incorporate a neural architecture that maps directly from the latent space to195

the domain of the training data (e.g. images) and therefore the output space must be predetermined.196

These properties pose a challenge when applied to the domain of graphs, as the latter are discrete197

objects with variable size and no naturally induced order. In order to circumvent these caveats, prior198

work [3, 17, 19, 21, 22, 29, 34, 43, 44, 55, 58, 72] has used a one-shot generation strategy. That is,199

the output space is limited by design to a specific representation of graphs (i.e. adjacency matrix200

or adjacency list) of specific size and the output is generated in a single forward pass. While the201

one-shot strategy has its merits, there are a few significant drawbacks such as the inability to generate202

graphs with arbitrary large number of nodes.203

Sequential Generation The idea of using autoregressive models for graph generation is not new204

and there have been several works in this vein. GraphRNN [67] proposes generating BFS trajectories205

in order to limit the number of possible orderings per graph. Other works take a different approach206

of generating edges in an autoregressive manner [4, 27]. Additional approaches include Molecular-207

RNN [50] which incorporates a reinforcement learning environment to generate nodes and edges208

sequentially. Yet another approach includes sequentially generating subgraph structures [36, 41, 47].209

Another recent work [10] treats the induced order as a problem of dimensionality reduction and210

attempts to learn mappings from graphs to sequences. In this work we argue that the most effective211

inductive bias for the use of autoregressive models to generate graphs is to be invariant to different212

orderings possible under the training distribution.213

Molecule Generation One of the most prominent uses of graph generation, which is used for214

evaluation in this work, is that of molecule generation. Molecular generation is applicable to the215

development of synthetic materials, drug development and more. Molecules are 3D objects which216

are naturally represented as point clouds4 with corresponding geometric approaches [24, 56, 57, 35]217

which utilize inherent symmetries in the architectures employed. While 3D representations are218

richer and carry significant information that does not transfer to 1D and 2D representations, they219

3k and m denote the size of partitions and satisfy k `m “ |V|.
4In a point-cloud representation of a molecule each point represents an atom and bonds are implicit from the

distances between atoms.

6

are costly to obtain and therefore the corresponding amount of data is limited as compared to 1D220

and 2D representations, which are ubiquitous. Another aspect of molecule generation is when the221

generation is conditioned to satisfy certain properties. For example, [59, 70, 53] generate molecules222

that are conditioned to bind to specific ligand structures, [38, 69] generate molecules that fulfill223

certain chemical properties. In this work we consider the task of de-novo generation [2, 42, 48, 61]224

where the objective is to generate molecules with similar properties to those in the training data.225

Permutation Invariant Recurrent Models Another relevant topic is the use of autoregressive226

models for problems over sets which, like graphs, lack a natural order. There have been many works227

focusing on problems over sets. The most prominent of these is DeepSets [68] which applies a228

deep neural network on each element of the set and then aggregates the result with a permutation229

invariant operator (e.g. sum or max), finally applying another deep neural network on the aggregated230

result. There have also been autoregressive works designed for sets: [46] use RNNs on different231

permutations and output the average. While this requires n! orderings for a set of size n, the authors232

have presented several approximation techniques and justified them empirically. [14] have shown233

that while DeepSets are universal, some permutation invariant functions require unbounded width to234

implement successfully and have proposed using RNNs with a reqularization term which enforces235

permutation invariance.236

5 Experiments237

A prominent application of graph generation is that of molecule design. Graph generation tasks range238

from de novo generation where the objective is to generate molecules with similar properties to a239

given dataset, to conditional generation for which the task is to generate a graph given a second graph240

with specific characteristics, i.e. a ligand that binds to a specific target. Our empirical evaluation241

focuses on the former. We evaluate our proposed regularization method on the MOSES benchmark242

[49] and compare to relevant baselines. Our implementation is based on the work of CharRNN which243

use three layers of the LSTM architecture each with hidden dimension of 600 (for complete details244

refer to [54]). We find a consistent improvement when adding OLR to the objective of autoregressive245

models.246

The data curated by [49] is refined from the ZINC dataset [60] which contains approximately 4.6M247

molecules. The authors filter the data based on molecular weights, number of rotational bonds,248

lipophilicity, etc. to result in a total of 2M molecules. The authors provide partitions of the data into249

train, test and scaffold test to allow fair evaluation.5250

5.1 Computing Trajectories251

OLR works by feeding two different trajectories that terminate at the same node. While this calculation252

is feasible to perform during the forward pass it introduces a computational bottleneck. In order to253

circumvent this issue we employ the following calculations offline. For each molecule we first index254

all min-cuts and randomly select one. We then generate multiple (10) traversals terminating at the255

same node as described in Section 3.3 and write the sequences into a file along with the original256

molecule from which the trajectories are derived from. When loading the data, two trajectories are257

selected at random and used as inputs to the OLR objective described in Section 3.2.258

5.2 Data Filtering259

Our offline computation of trajectories in Section 5.1 requires that there are min-cuts that induce260

sufficient number of different DFS traversals terminating at the same node. While 99.9% of the261

molecules in MOSES have at least two such trajectories, we filter the data to remain with molecules262

which have at least 10 different trajectories satisfying the criteria defined. After filtering we are left263

with approximately 500K molecules for training, and 55K for test and scaffold test partitions. We264

note that in following sections we show our method is most effective when training data is scarce and265

therefore the filtering process does not limit the applicability of our proposed regularization scheme.266

5The scaffold of a molecule is the structure induced by its ring systems along with the connectivity pattern
between these systems. The scaffold test partition contains molecules with structures that did not appear in
the train and test partitions. The scaffold test allows for the evaluation of how well the model can generate
previously unobserved scaffolds.

7

Table 1: Generation results at validity threshold of 0.8. Leading result highlighted in bold for each
metric. Rank Average is the average position of each method over all metrics considered. As can be
seen, OLR outperforms the baselines considered. Refer to the text for further details.

Canonical Randomized OLR + Randomized

Unique@1K (Ò) 1.0 1.0 1.0
Unique@10K (Ò) 0.9965 0.9975 0.9981
FCD/Test (Ó) 0.6623 0.8568 0.7784
FCD/TestSF (Ó) 1.1980 0.4967 0.4936
SNN/Test (Ò) 0.5012 0.9947 0.9958
SNN/TestSF (Ò) 0.4835 0.8246 0.8220
Frag/Test (Ò) 0.9960 1.4236 1.3089
Frag/TestSF (Ò) 0.9943 0.4795 0.4769
Scaf/Test (Ò) 0.8193 0.9919 0.9926
Scaf/TestSF (Ò) 0.0862 0.1185 0.0931
IntDiv (Ò) 0.8515 0.8508 0.8537
IntDiv2 (Ò) 0.8457 0.8449 0.8479
Filters (Ò) 0.9720 0.9705 0.9702
Novelty (Ò) 0.9749 0.9797 0.9809
Rank Average 2.42 1.85 1.50

5.3 Results267

Our results for training with OLR compared to other baselines trained on the same data are shown in268

Table 1. The most relevant baselines is CharRNN [54] which is an autoregressive model trained on269

Canonical SMILES. We further compare to a randomized version of CharRNN inspired by the finding270

of [2] which show that augmenting the data by using randomly generated SMILES representations271

of the same molecule improves performance. We also attempted to compare our method to other272

non-autoregressive models such as those based on Variational Autoencoders (VAEs) [8, 25, 37];273

however, we found that the models did not produce valid molecules when trained with 1000 examples,274

so we do not report these results. We use the metrics defined by the MOSES benchmark [49]; see275

Appendix A for a thorough description of these metrics.276

In order to demonstrate the effectiveness of OLR we use 1000 randomly sampled data points from277

the training set and evaluate over the entire test set. When training with small amounts of data there278

is a trade-off between the validity of the generated molecules and the uniqueness and other metrics.279

Our evaluation considers the best performing models for each method providing the validity of the280

generated molecules exceeds 80%.281

Results are depicted in Table 1. As can be seen, adding randomized variants of the molecules282

outperforms the original work of [54] which train an RNN as a language model using only canonical283

SMILES. Furthermore, adding the OLR objective exceeds the performance of randomized SMILES.284

In order to clearly depict the performance difference, we calculate the rank of each method on each285

metric considered. The average rank of each method is added as the last row of Table 1.286

6 Conclusions287

In this work we highlight the innate gap that every autoregressive model for graph generation must288

mitigate - the induced order on graphs. We propose a different approach to previous works by289

introducing a novel regularization scheme that encourages learning hypotheses that are invariant to290

different DFS orderings. We demonstrate empirically that our proposed method improves performance291

for autoregressive models and is especially effective when the available datasets are small, as is the292

case in many real world problems. We believe that our approach can contribute to the applicability of293

autoregressive models for graph generation and that similar ideas may be incorporated in various294

generation strategies beyond the scope of this work.295

8

References296

[1] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent297

programs with graphs. arXiv preprint arXiv:1711.00740, 2017.298

[2] Josep Arús-Pous, Simon Viet Johansson, Oleksii Prykhodko, Esben Jannik Bjerrum, Christian299

Tyrchan, Jean-Louis Reymond, Hongming Chen, and Ola Engkvist. Randomized smiles strings300

improve the quality of molecular generative models. Journal of cheminformatics, 11(1):1–13,301

2019.302

[3] Rim Assouel, Mohamed Ahmed, Marwin H Segler, Amir Saffari, and Yoshua Bengio. De-303

factor: Differentiable edge factorization-based probabilistic graph generation. arXiv preprint304

arXiv:1811.09766, 2018.305

[4] Davide Bacciu, Alessio Micheli, and Marco Podda. Edge-based sequential graph generation306

with recurrent neural networks. Neurocomputing, 416:177–189, 2020.307

[5] Jesse Beisegel, Carolin Denkert, Ekkehard Köhler, Matjaz Krnc, Nevena Pivac, Robert Scheffler,308

and Martin Strehler. On the end-vertex problem of graph searches. Discrete Mathematics &309

Theoretical Computer Science, 21, 2019.310

[6] Guy W Bemis and Mark A Murcko. The properties of known drugs. 1. molecular frameworks.311

Journal of medicinal chemistry, 39(15):2887–2893, 1996.312

[7] Pavol Bielik, Veselin Raychev, and Martin Vechev. Phog: probabilistic model for code. In313

International conference on machine learning, pages 2933–2942. PMLR, 2016.314

[8] Thomas Blaschke, Marcus Olivecrona, Ola Engkvist, Jürgen Bajorath, and Hongming Chen.315

Application of generative autoencoder in de novo molecular design. Molecular informatics,316

37(1-2):1700123, 2018.317

[9] Marc Brockschmidt, Miltiadis Allamanis, Alexander L Gaunt, and Oleksandr Polozov. Genera-318

tive code modeling with graphs. arXiv preprint arXiv:1805.08490, 2018.319

[10] Jie Bu, Kazi Sajeed Mehrab, and Anuj Karpatne. Let there be order: Rethinking ordering in320

autoregressive graph generation. arXiv preprint arXiv:2305.15562, 2023.321

[11] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared322

Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large323

language models trained on code.(2021). arXiv preprint arXiv:2107.03374, 2021.324

[12] Xiaohui Chen, Xu Han, Jiajing Hu, Francisco JR Ruiz, and Liping Liu. Order matters: Prob-325

abilistic modeling of node sequence for graph generation. arXiv preprint arXiv:2106.06189,326

2021.327

[13] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation328

of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555,329

2014.330

[14] Edo Cohen-Karlik, Avichai Ben David, and Amir Globerson. Regularizing towards permutation331

invariance in recurrent models. Advances in Neural Information Processing Systems, 33:18364–332

18374, 2020.333

[15] Hanjun Dai, Yingtao Tian, Bo Dai, Steven Skiena, and Le Song. Syntax-directed variational334

autoencoder for structured data. arXiv preprint arXiv:1802.08786, 2018.335

[16] Alex O Davies, Nirav S Ajmeri, et al. Hierarchical gnns for large graph generation. arXiv336

preprint arXiv:2306.11412, 2023.337

[17] Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular338

graphs. arXiv preprint arXiv:1805.11973, 2018.339

[18] Jörg Degen, Christof Wegscheid-Gerlach, Andrea Zaliani, and Matthias Rarey. On the art of340

compiling and using’drug-like’chemical fragment spaces. ChemMedChem: Chemistry Enabling341

Drug Discovery, 3(10):1503–1507, 2008.342

9

[19] Yuanqi Du, Xiaojie Guo, Hengning Cao, Yanfang Ye, and Liang Zhao. Disentangled spatiotem-343

poral graph generative models. In Proceedings of the AAAI Conference on Artificial Intelligence,344

volume 36, pages 6541–6549, 2022.345

[20] Yuanqi Du, Xiaojie Guo, Amarda Shehu, and Liang Zhao. Interpretable molecular graph gener-346

ation via monotonic constraints. In Proceedings of the 2022 SIAM International Conference on347

Data Mining (SDM), pages 73–81. SIAM, 2022.348

[21] Shuangfei Fan and Bert Huang. Labeled graph generative adversarial networks. arXiv preprint349

arXiv:1906.03220, 2019.350

[22] Daniel Flam-Shepherd, Tony Wu, and Alan Aspuru-Guzik. Graph deconvolutional generation.351

arXiv preprint arXiv:2002.07087, 2020.352

[23] Daniel Flam-Shepherd, Kevin Zhu, and Alán Aspuru-Guzik. Language models can learn353

complex molecular distributions. Nature Communications, 13(1):3293, 2022.354

[24] Victor Garcia Satorras, Emiel Hoogeboom, Fabian Fuchs, Ingmar Posner, and Max Welling.355

E (n) equivariant normalizing flows. Advances in Neural Information Processing Systems,356

34:4181–4192, 2021.357

[25] Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,358

Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,359

Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven360

continuous representation of molecules. ACS central science, 4(2):268–276, 2018.361

[26] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil362

Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications363

of the ACM, 63(11):139–144, 2020.364

[27] Nikhil Goyal, Harsh Vardhan Jain, and Sayan Ranu. Graphgen: a scalable approach to domain-365

agnostic labeled graph generation. In Proceedings of The Web Conference 2020, pages 1253–366

1263, 2020.367

[28] Xiaojie Guo and Liang Zhao. A systematic survey on deep generative models for graph368

generation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.369

[29] Xiaojie Guo, Liang Zhao, Zhao Qin, Lingfei Wu, Amarda Shehu, and Yanfang Ye. Interpretable370

deep graph generation with node-edge co-disentanglement. In Proceedings of the 26th ACM371

SIGKDD international conference on knowledge discovery & data mining, pages 1697–1707,372

2020.373

[30] Vincent J Hellendoorn, Charles Sutton, Rishabh Singh, Petros Maniatis, and David Bieber.374

Global relational models of source code. In International conference on learning representations,375

2019.376

[31] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.377

Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in378

neural information processing systems, 30, 2017.379

[32] Abram Hindle, Earl T Barr, Mark Gabel, Zhendong Su, and Premkumar Devanbu. On the380

naturalness of software. Communications of the ACM, 59(5):122–131, 2016.381

[33] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,382

9(8):1735–1780, 1997.383

[34] Shion Honda, Hirotaka Akita, Katsuhiko Ishiguro, Toshiki Nakanishi, and Kenta Oono. Graph384

residual flow for molecular graph generation. arXiv preprint arXiv:1909.13521, 2019.385

[35] Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant386

diffusion for molecule generation in 3d. In International conference on machine learning, pages387

8867–8887. PMLR, 2022.388

10

[36] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for389

molecular graph generation. In International conference on machine learning, pages 2323–2332.390

PMLR, 2018.391

[37] Artur Kadurin, Alexander Aliper, Andrey Kazennov, Polina Mamoshina, Quentin Vanhaelen,392

Kuzma Khrabrov, and Alex Zhavoronkov. The cornucopia of meaningful leads: Applying deep393

adversarial autoencoders for new molecule development in oncology. Oncotarget, 8(7):10883,394

2017.395

[38] Seokho Kang and Kyunghyun Cho. Conditional molecular design with deep generative models.396

Journal of chemical information and modeling, 59(1):43–52, 2018.397

[39] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint398

arXiv:1312.6114, 2013.399

[40] Greg Landrum. Rdkit: Open-source cheminformatics. 2006. Google Scholar, 2006.400

[41] Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K Duvenaud, Raquel401

Urtasun, and Richard Zemel. Efficient graph generation with graph recurrent attention networks.402

Advances in neural information processing systems, 32, 2019.403

[42] Jaechang Lim, Seongok Ryu, Jin Woo Kim, and Woo Youn Kim. Molecular generative404

model based on conditional variational autoencoder for de novo molecular design. Journal of405

cheminformatics, 10(1):1–9, 2018.406

[43] Tengfei Ma, Jie Chen, and Cao Xiao. Constrained generation of semantically valid graphs via407

regularizing variational autoencoders. Advances in Neural Information Processing Systems, 31,408

2018.409

[44] Kaushalya Madhawa, Katushiko Ishiguro, Kosuke Nakago, and Motoki Abe. Graphnvp: An410

invertible flow model for generating molecular graphs. arXiv preprint arXiv:1905.11600, 2019.411

[45] Andreas Mayr, Günter Klambauer, Thomas Unterthiner, Marvin Steijaert, Jörg K Wegner, Hugo412

Ceulemans, Djork-Arné Clevert, and Sepp Hochreiter. Large-scale comparison of machine413

learning methods for drug target prediction on chembl. Chemical science, 9(24):5441–5451,414

2018.415

[46] Ryan L Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Janossy416

pooling: Learning deep permutation-invariant functions for variable-size inputs. arXiv preprint417

arXiv:1811.01900, 2018.418

[47] Marco Podda, Davide Bacciu, and Alessio Micheli. A deep generative model for fragment-based419

molecule generation. In International Conference on Artificial Intelligence and Statistics, pages420

2240–2250. PMLR, 2020.421

[48] Peter Pogány, Navot Arad, Sam Genway, and Stephen D Pickett. De novo molecule design422

by translating from reduced graphs to smiles. Journal of chemical information and modeling,423

59(3):1136–1146, 2018.424

[49] Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golovanov,425

Oktai Tatanov, Stanislav Belyaev, Rauf Kurbanov, Aleksey Artamonov, Vladimir Aladinskiy,426

Mark Veselov, et al. Molecular sets (moses): a benchmarking platform for molecular generation427

models. Frontiers in pharmacology, 11:565644, 2020.428

[50] Mariya Popova, Mykhailo Shvets, Junier Oliva, and Olexandr Isayev. Molecularrnn: Generating429

realistic molecular graphs with optimized properties. arXiv preprint arXiv:1905.13372, 2019.430

[51] Oleksii Prykhodko, Simon Viet Johansson, Panagiotis-Christos Kotsias, Josep Arús-Pous,431

Esben Jannik Bjerrum, Ola Engkvist, and Hongming Chen. A de novo molecular generation432

method using latent vector based generative adversarial network. Journal of Cheminformatics,433

11(1):1–13, 2019.434

[52] David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of chemical435

information and modeling, 50(5):742–754, 2010.436

11

[53] Eyal Rozenberg and Daniel Freedman. Semi-equivariant conditional normalizing flows, with437

applications to target-aware molecule generation. Machine Learning: Science and Technology,438

4(3):035037, 2023.439

[54] Marwin HS Segler, Thierry Kogej, Christian Tyrchan, and Mark P Waller. Generating focused440

molecule libraries for drug discovery with recurrent neural networks. ACS central science,441

4(1):120–131, 2018.442

[55] Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang.443

Graphaf: a flow-based autoregressive model for molecular graph generation. arXiv preprint444

arXiv:2001.09382, 2020.445

[56] Gregor Simm, Robert Pinsler, and José Miguel Hernández-Lobato. Reinforcement learning446

for molecular design guided by quantum mechanics. In International Conference on Machine447

Learning, pages 8959–8969. PMLR, 2020.448

[57] Gregor NC Simm, Robert Pinsler, Gábor Csányi, and José Miguel Hernández-Lobato.449

Symmetry-aware actor-critic for 3d molecular design. arXiv preprint arXiv:2011.12747, 2020.450

[58] Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs451

using variational autoencoders. In Artificial Neural Networks and Machine Learning–ICANN452

2018: 27th International Conference on Artificial Neural Networks, Rhodes, Greece, October453

4-7, 2018, Proceedings, Part I 27, pages 412–422. Springer, 2018.454

[59] Miha Skalic, Davide Sabbadin, Boris Sattarov, Simone Sciabola, and Gianni De Fabritiis. From455

target to drug: generative modeling for the multimodal structure-based ligand design. Molecular456

pharmaceutics, 16(10):4282–4291, 2019.457

[60] Teague Sterling and John J Irwin. Zinc 15–ligand discovery for everyone. Journal of chemical458

information and modeling, 55(11):2324–2337, 2015.459

[61] Xiaochu Tong, Xiaohong Liu, Xiaoqin Tan, Xutong Li, Jiaxin Jiang, Zhaoping Xiong, Tingyang460

Xu, Hualiang Jiang, Nan Qiao, and Mingyue Zheng. Generative models for de novo drug design.461

Journal of Medicinal Chemistry, 64(19):14011–14027, 2021.462

[62] Leonid Nisonovich Vaserstein. Markov processes over denumerable products of spaces, de-463

scribing large systems of automata. Problemy Peredachi Informatsii, 5(3):64–72, 1969.464

[63] Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to sequence for465

sets. arXiv preprint arXiv:1511.06391, 2015.466

[64] David Weininger. Smiles, a chemical language and information system. 1. introduction to467

methodology and encoding rules. Journal of chemical information and computer sciences,468

28(1):31–36, 1988.469

[65] Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose code470

generation. arXiv preprint arXiv:1704.01696, 2017.471

[66] Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional472

policy network for goal-directed molecular graph generation. Advances in neural information473

processing systems, 31, 2018.474

[67] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generat-475

ing realistic graphs with deep auto-regressive models. In International conference on machine476

learning, pages 5708–5717. PMLR, 2018.477

[68] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,478

and Alexander J Smola. Deep sets. Advances in neural information processing systems, 30,479

2017.480

[69] Chengxi Zang and Fei Wang. Moflow: an invertible flow model for generating molecular graphs.481

In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery &482

data mining, pages 617–626, 2020.483

12

[70] Zaixi Zhang, Yaosen Min, Shuxin Zheng, and Qi Liu. Molecule generation for target pro-484

tein binding with structural motifs. In The Eleventh International Conference on Learning485

Representations, 2022.486

[71] Yanqiao Zhu, Yuanqi Du, Yinkai Wang, Yichen Xu, Jieyu Zhang, Qiang Liu, and Shu Wu. A487

survey on deep graph generation: Methods and applications. arXiv preprint arXiv:2203.06714,488

2022.489

[72] Dongmian Zou and Gilad Lerman. Encoding robust representation for graph generation. In490

2019 International Joint Conference on Neural Networks (IJCNN), pages 1–9. IEEE, 2019.491

A Metric Details492

In this section we provide details for the metrics reported in Table 1.493

A few of the similarity measures (SNN and IntDiv) are based on the Tanimoto coefficient. In order to494

compute the Tanimoto coefficient, the molecules are mapped to a vector of fingerprints where each495

bit in the vector represents the presence (or absence) of a specific fragment.6 For molecules A,B,496

denote their fingerprints by mA and mB respectively, the Tanimoto coefficient is then calculated as497

the Jaccard index of the two vectors,498

JpmA,mBq “
|mA XmB |

|mA YmB |
“

|mA XmB |

|mA| ` |mB | ´ |mA XmB |
. (A.1)

We denote the Tanimoto coefficient of molecules A,B by T pA,Bq.499

Unique@K report the fraction of uniquely generated valid SMILES strings amongst the K500

molecules generated (validity is determined by the RDKit library). We generate 30, 000 molecules501

for each model and report for K “ 1, 000 and K “ 10, 000. High uniqueness values ensure the502

models do not collapse into repeatedly producing the same set of molecules.503

Fréchet ChemNet Distance (FCD) is a metric for evaluating generative models in the chemical504

context, the method is based on the well established Fréchet Inception Distance (FID) metric used to505

evaluate the performance of generative models in computer vision [31].506

Fréchet distance measure the Wasserstein-2 distance [62] from the distributions induced by taking507

the activations of the last layer of a relevant deep neural net. In the case of FCD, molecule activations508

are probed from ChemNet [45]. Given a set of generated molecules, denote by G the set of vectors509

as obtained by the activations of ChemNet, one can calculate the mean and covariance µG and ΣG.510

Similarly, denote µR and ΣR the mean and covariance of the set of molecules in the reference set,511

the FCD is calculated as follows,512

FCDpG,Rq “ }µG ´ µR}
2 ` Tr

´

ΣG ` ΣR ´ 2pΣGΣRq
1{2

¯

. (A.2)

where TrpMq denotes the trace of the matrix M . Low FCD values indicate that the generated513

molecules distribute similarly to the reference set.514

Similarity to Nearest Neighbor (SNN) is the average of the Tanimoto coefficient of the generated515

molecule set denoted by G and their respective nearest neighbor in a reference set of molecules516

denote by R. High SNN indicates the generated molecules have similar structures to those in the517

reference set. This metric is in the range of r0, 1s.518

Fragment similarity (Frag) is a fragment similarity measure based on the BRICS fragments [18].519

Denote the set of BRICS fingerprints vectors of the generated molecules by G and similarly R for the520

reference molecules. The fragment similarity is defined as the cosine similarity of the sum vectors,521

FragpG,Rq “ cosine

˜

ÿ

gPG

g,
ÿ

rPR

r

¸

(A.3)

6The molecular fingerprints are obtained from RDKit [40] and are based on the extended-connectivity
fingerprints [52].

13

Figure 3: Proof illustration - S has a cycle and two different trajectories starting from u and ending
with w (urw and uwprq. Concatenating with the trajectory from z to v we obtain two different DFS
trajectories with a shared suffix.

The Frag measure is in the range of r0, 1s, values closer to 1 indicate that the generated and reference522

molecule set have a similar distribution of BRICS fragment.523

Scaffold similarity (Scaff) is similar to the fragment similarity, instead of the BRICS fragment,524

Scaff is based on mapping molecules to their Bemis–Murcko scaffolds [6].7 The measure also has a525

range of r0, 1s, values closer to 1 indicate that the generated molecule set has a similar distribution of526

scaffold to the reference set.527

Internal diversity (IntDiv) is a mesure of the chemical diversity within a generated set of528

molecules G. This metric indicates529

IntDivp “ 1´

˜

1

|G|2

ÿ

A,BPG

T pA,Bqp

¸1{p

(A.4)

We report the internal diversity for p “ 1, 2. This measure is in the range r0, 1s. Low values indicate530

a lack of diversity in the generated molecules, i.e. that the model outputs molecules with similar531

fingerprints.532

Filters is the fraction of generated molecules that pass a certain filtering that has been applied to533

the training data. The metric is in the range of r0, 1s, high values indicate that the model has learnt to534

generate molecules which avoid the structures omitted by the filtering process.535

Novelty is the fraction of generated molecules that does not appear in the training set. This measure536

is in the range of r0, 1s and is an indication of the whether the model overfits the training data.537

B Missing Proofs538

In this section we show how to construct distinct DFS trajectories with common end vertex for a539

2´edge connected graph conditioned that the graph is not a cycle.540

Proof. From our assumption that the graph is not a cycle, there exists at least two nodes with degree541

ě 3. Denote by C “ pS, T q a minimal cut of size 2 (such a cut exists from our assumption that542

the graph is 2-connected). Denote the edges of the minimal cut by e1 “ pu, vq and e2 “ pw, zq543

such that u,w P S and v, z P T . Next, we claim that at least one of the partitions contains a cycle,544

otherwise there is a path connecting S and T since there are nodes in the graph which have a degree545

of 3 in the original graph with a path between them. Assume with out loss of generality that S is the546

partition with a cycle, therefore there are at least 2 different traversals of S that start with u and end547

7Bemis–Murcko scaffold is the ring structure of a molecule along with the bonds connecting the rings, i.e.
the molecule without the side chains.

14

with w. There is also a trajectory between z and v. Putting together, there are at least 2 trajectories548

of the entire graph with a common suffix which is the traversal of T . Figure 3 illustrates the proof549

concept.550

15

	Introduction
	Background
	Recurrent Models
	Graph Generation
	Sequential Graph Generation

	Structure Agnostic Recurrent Models
	Generating Depth-First Search Traversals
	Regularizing Towards Total Structure Invariance
	Sampling Trajectories with Common End Vertex

	Related Work
	Experiments
	Computing Trajectories
	Data Filtering
	Results

	Conclusions
	Metric Details
	Missing Proofs

