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Abstract
Offline design optimization problem arises in nu-
merous science and engineering applications in-
cluding material and chemical design, where ex-
pensive online experimentation necessitates the
use of in silico surrogate functions to predict and
maximize the target objective over candidate de-
signs. Although these surrogates can be learned
from offline data, their predictions are often in-
accurate outside the offline data regime. This
challenge raises a fundamental question about the
impact of imperfect surrogate model on the perfor-
mance gap between its optima and the true optima,
and to what extent the performance loss can be
mitigated. Although prior work developed meth-
ods to improve the robustness of surrogate mod-
els and their associated optimization processes,
a provably quantifiable relationship between an
imperfect surrogate and the corresponding perfor-
mance gap, as well as whether prior methods di-
rectly address it, remain elusive. To shed light on
this important question, we present a theoretical
framework to understand offline black-box opti-
mization, by explicitly bounding the optimization
quality based on how well the surrogate matches
the latent gradient field that underlines the offline
data. Inspired by our theoretical analysis, we
propose a principled black-box gradient match-
ing algorithm to create effective surrogate models
for offline optimization, improving over prior ap-
proaches on various real-world benchmarks.

1. Introduction
Many science and engineering applications involve optimiz-
ing an expensive-to-evaluate black-box objective function
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over large design spaces. Some examples include design
optimization over candidate molecules, proteins (Nguyen &
Daugherty, 2005), drugs, biological sequences, and super-
conducting materials (Si et al., 2016). To evaluate candidate
designs, we need to perform physical lab experiments or
computational simulations which are labor-intensive and
impractical to do in an online manner. Offline optimization
(Trabucco et al., 2022; 2021) is a more practical setting
where we assume the access to a dataset of input and objec-
tive function evaluation pairs, and the overall goal is to use
this offline training data to uncover optimal designs.

The prototypical approach (Hutter et al., 2011; Brookes
et al., 2019) to solve offline optimization problems is to
learn a surrogate model from the given training data which
can predict the objective function value for unknown inputs
and find optimal input (i.e., maximizer) for this surrogate
using gradient-based methods. The key implicit assump-
tion behind this approach is that we can learn an accurate
surrogate model over the entire input space using super-
vised learning. However, this is rarely achievable in practice
due to the size and sparsity of the offline training data. In
most cases, the surrogate model is only reliable within a
constrained neighborhood of the offline data (Fannjiang &
Listgarten, 2020) and can be highly erroneous outside this
neighborhood. Consequently, there will be a discrepancy
between the gradient fields of the target objective function
and the surrogate model which will misguide the gradient
search towards sub-optimal solutions.

This raises two related questions. First, how does the dis-
crepancy in gradient estimation affect the performance gap
between the optima of the surrogate model and the target
objective function? Second, how do we learn surrogate mod-
els that closely approximate the gradient field of the target
function? Both questions are challenging, given that the
target function’s gradient field is non-observable even at the
offline training data points, and have not been studied by
prior work. In fact, we note that while there is an existing
literature on random gradient estimation methods (Fu, 2015;
Wang et al., 2018), those methods require the ability to ac-
tively sample data from the black-box target function which
is not possible in the context of offline optimization.

Contributions. The main contributions of this paper include
(1) theoretically-sound answers to the above two questions;
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Figure 1. Comparison of gradient estimation error incurred by MATCH-OPT (orange) and standard regression (blue) while learning the
gradient field of the Shekel function on 4-dimensional input space at different out-of-distribution (OOD) settings where test inputs were
drawn from N(0, αI) while training inputs were drawn from N(0, I). Smaller α indicates larger deviation from the offline data regime,
which widens the performance gap between MATCH-OPT and standard regression.

and (2) practical demonstration of their significance on real-
world offline design optimization problems:

1. To answer the first question, we present a theoretical
framework that characterizes the offline optimization per-
formance of gradient-based search guided by a surrogate
model. We provably bound the performance gap between
the optima of the target function and trained surrogate as a
function of how well the surrogate matches the (latent) gra-
dient field of the target function on the offline training data.
Our derived bound is non-trivial and yet model-agnostic,
making it broadly applicable (Section 3).

2. To answer the second question, we present a principled
gradient matching algorithm, referred to as MATCH-OPT,
that is inspired by our theoretical analysis. Intuitively, our
analysis shows that the worst-case performance of an opti-
mizer following the surrogate gradient is bounded with the
gradient gap between the surrogate and target function, and
that the bound is tight up to a constant with a sufficiently
small learning rate. Hence, a surrogate model trained to
directly match gradients will result in good offline optimiza-
tion performance with gradient search from diverse starting
points (referred to as “reliable”). An overview of our al-
gorithm is given in Fig. 2. Our algorithm MATCH-OPT is
model-agnostic and allows us to approximate the gradient
field that underlies the offline training data using a para-
metric surrogate (Section 4). In practice, existing offline
optimizers exhibit high variance in their performance across
diverse optimization tasks. MATCH-OPT is aimed at achiev-
ing reliable performance to address this challenge.

To provide an intuition and sanity check to readers, we vi-
sualize the reliability of our method’s gradient estimation
in several out-of-distribution (OOD) settings. We train our
method, MATCH-OPT, and a standard regression model on
the same set of random inputs drawn from N(0, I) and their
Shekel function (Molga & Smutnicki, 2005) evaluations.
Fig. 1 plots the (sorted) gradient estimation error (i.e., the
norm difference between predicted and oracle gradients)

achieved by the two approaches at 1000 random inputs
drawn from different OOD distributions N(0, αI) parame-
terized with different values of α ∈ [0.1, 0.2, 0.5, 1.0]. It is
observed that (1) when the test and train distributions are
the same (α = 1.0), the performance of the two approaches
are the same; but (2) when α decreases (i.e., larger devia-
tion from the offline data regime), our approach achieves
significantly smaller error, suggesting that a direct gradient
matching is more reliable in OOD data regimes. While this
behaviour does not necessarily translate into better predic-
tive accuracy, our Theorem 3.2 demonstrates that it will
indeed minimize the optimization risk as we follow the sur-
rogate’s gradient towards the goal of finding the maximum
of the target objective function. We note that similar ideas
have shown great empirical success in structured predic-
tion where models were learned to guide greedy search in
combinatorial spaces (Doppa et al., 2014).

3. Finally, we demonstrate the efficacy of MATCH-OPT on
diverse real-world optimization problems from the design-
bench benchmark (Trabucco et al., 2022). Our results show
that MATCH-OPT consistently shows improved optimiza-
tion performance over existing baselines, and produces high-
quality solutions with gradient search from diverse start-
ing points (Section 5). Our code is publicly available at
https://github.com/azzafadhel/MatchOpt.

2. Background and Problem Setup
Offline Black-box Optimization. Suppose X is an input
space where each x ∈ X is a candidate input. Let g : X 7→ ℜ
be an unknown, expensive real-valued objective function
which can evaluate any given input x ∈ X to produce output
z = g(x). For example, in material design application, g(x)
corresponds to running a physical lab experiment. Our
overall goal is to find an optimal input or design x∗ ∈ X
that maximizes the output of an experimental process g(x),

x∗ ≜ argmax
x∈X

g(x) . (1)
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Figure 2. Our approach MATCH-OPT synthesizes input sequences with monotonically increasing target function values from the offline
dataset, which are used to train a parametric surrogate model. Our loss function incorporates both standard regression loss (i.e., value
matching) and a novel gradient matching loss. We perform gradient search on the trained surrogate to find optimized designs.

We are provided with a dataset of n input-output
pairs D={(x1, z1), (x2, z2), · · · , (xn, zn)} collected of-
fline, where zi = g(xi). We do not have access to the target
objective function g values on inputs outside the dataset D.

Surrogate Model. We do not have access to the black-
box target function g(x) beyond the offline dataset D of n
training examples. This allows us to learn a surrogate gϕ(x)
for g(x) via supervised learning.

ϕ ≜ argmin
ϕ′

n∑
i=1

ℓ

(
gϕ′

(
xi

)
, zi

)
, (2)

where ϕ denotes the parameters of surrogate model and
ℓ(z, z′) denotes the loss of predicting z when the true
objective value is z′ for a given input x. For example,
ℓ(z, z′) = (z − z′)2 and gϕ(x) = ϕ⊤x.

Gradient-based Search Procedure. Once learned, ϕ is
fixed and we can use gϕ(x) as a surrogate to approximate
the optimal design as:

xϕ ≃ xm
ϕ where xk+1

ϕ ≜ xk
ϕ + λ · ∇gϕ

(
xk
ϕ

)
(3)

which is defined recursively for 0 ≤ k ≤ m − 1 via a m-
step gradient ascent process starting from an initial solution
x0
ϕ = x0 with a fixed learning rate λ > 0. The final iterate

xm
ϕ is referred to as the solution of gradient search guided

by the surrogate. The use of a differentiable surrogate to
find the optimal design also imposes the following implicit
assumption on the unknown black-box target function.
Assumption 2.1. The target function is either differentiable
or sufficiently close to a differentiable (black-box) proxy.
This is not an unreasonable assumption because otherwise,
offline optimization and more broadly, machine learning is
an ill-posed problem following a simple thought experiment:

Suppose the target function is not sufficiently close to any
differentiable proxy functions, no algorithm that uses a dif-
ferentiable surrogate can learn a good approximation of the
target function.

To see this, suppose there exists an algorithm that uses a
differentiable surrogate that can approximate well the target
function. This means there exists a differentiable function
that is sufficiently close to the target function, which con-
tradicts the premise of the experiment. Thus, we argue that
the offline optimization task is only meaningful within the
set of target functions that can be characterized sufficiently
accurately using a (black-box) differentiable proxy.

As such, we would want the above surrogate-guided solu-
tion xm

ϕ to match the solution of gradient search guided
by the target function’s derivative, or the derivative of a
differentiable proxy function that is closest to the target
function g. Henceforth, we will refer to this as the target
function’s gradient, and the solution guided by the gradient
of the target function is defined as:

x∗ ≃ xm
∗ where xk+1

∗ ≜ xk
∗ + λ · ∇g

(
xk
∗
)

(4)

which forms a similar gradient search of m steps with the
same initial solution x0

∗ = x0
ϕ = x0 and learning rate λ > 0.

As such, a discrepancy between target function gradients
and surrogate gradients can result in a performance gap
between the objective function values of xm

∗ and xm
ϕ . This

paper therefore studies two related questions in the context
of surrogate-guided gradient search for offline optimization.

Q1. How does the discrepancy between target function
and surrogate gradients impact the quality of uncovered
solutions? This will be discussed in Section 3.

Q2. How to learn surrogate models that can closely approxi-
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mate target function gradients using the offline training data
D? This will be discussed in Section 4.

3. Theoretical Analysis
This section provides a rigorous theoretical analysis to an-
swer Q1. Explicitly, we derive an upper-bound for the per-
formance gap between gradient search guided by the target
function and the trained surrogate, which is characterized
explicitly in terms of how well the surrogate’s gradient field
fits with the offline data.

Performance Gap. First, we define the performance of
the solution found via m steps of gradient ascent on gϕ(x)
starting from x0

ϕ = x0 via

Rm
gϕ

(
x0
ϕ

)
= Rm

gϕ

(
x0
)

= g(x∗) − g(xϕ)

= g(x∗) − g(xm
ϕ ) . (5)

where xm
ϕ is defined in (3). Similarly, we have Rm

g (x0
∗) =

Rm
g (x0) = g(x∗) − g(xm

∗ ) ≥ 0. Note that we are dis-
tinguishing between the solution xm

∗ and x∗ here because,
often, finding x∗ is intractable even with access to the target
function g(x) (e.g., combinatorial spaces). Thus, it is more
practical to compare the surrogate solution with the solution
found via following the target function’s gradient, rather
than the true optima. We can now define the performance
gap and state our main result.

Definition 3.1. For a fixed gradient ascent process starting
from x with m update steps and learning rate λ > 0, the
performance gap between the surrogate solution xm

ϕ and the
target function solution xm

∗ , Gm,λ(x), is given by:

Gm,λ(x) ≜
∥∥∥ Rm

g (x) − Rm
gϕ
(x)

∥∥∥ , (6)

where Rg and Rgϕ are as defined above.

Theorem 3.2 (Worst-case optimization risk bound in terms
of gradient estimation error). Suppose g(x) is a ℓ-Lipschitz
continuous and µ-Lipschitz smooth function. The worst-
case performance gap, Gm,λ ≜ maxx Gm,λ(x), between g
and some arbitrary surrogate gϕ is upper-bounded by:

Gm,λ ≤ mλℓ
(
1 + λµ

)m−1

× max
x

∥∥∥∇g(x)−∇gϕ(x)
∥∥∥ . (7)

Note that despite the exponential dependence on m, the
bound becomes tight and independent of m when the learn-
ing rate λ ≤ 1/m, which is the case in all our experiments.
See Appendix A for a detailed derivation.

Theorem 3.2 establishes that the worst-case performance
gap between the surrogate and target function solutions is
upper-bounded by the maximum norm difference between

the surrogate and target function gradients over the input
space. This provides a direct quantification of optimization
quality as a function of gradient discrepancies. In addition,
the result of Theorem 3.2 also characterizes a balance be-
tween the risk and potential of gradient search in terms of
the learning rate and the number of update steps.

As the learning rate λ or the number of search steps m ap-
proaches zero, the bound in Theorem 3.2 also approaches
zero. This means an extremely conservative gradient search
(one that barely moves) would minimize the gap between
Rgϕ and Rg , making the performance of the surrogate solu-
tion arbitrarily close to that of the target function solution.
However, such a conservative strategy would also widen the
gap between the target function solution and the true optima,
and thus will ultimately deteriorate the overall performance
of offline optimization. Conversely, an explorative search
that uses larger λ and m would bring Rg closer to zero,
making the target function solution arbitrarily close to the
true optima. Simultaneously, it also widens the gap between
the surrogate and target function solution, again reducing
the performance of offline optimization. Furthermore, as
the bound in Eq. (7) holds for all possible choices of gϕ, we
can tighten it with respect to gϕ. That is:

Gm,λ ≤ mλℓ
(
1 + λµ

)m−1

× min
ϕ

max
x

∥∥∥∇g(x)−∇gϕ(x)
∥∥∥ . (8)

For a fixed gradient based search configuration (m,λ), the
offline optimization task is therefore reduced to solving a
minimax program,

ϕ∗ = argmin
ϕ

max
x

∥∥∥∇g(x)−∇gϕ(x)
∥∥∥ , (9)

which is non-trivial since we do not have direct access to
∇g(x). Instead, we only have the value of g(xi) at a fi-
nite number of inputs {xi}ni=1. Fortunately, this can be
circumvented via matching the gradient ∇gϕ(x) to that of
the observational data, which approximately represents the
target function. This is detailed in Section 4 below.

Remark. As mentioned in the statement of the theorem, the
exponential dependence on m of the above bound can be
mitigated by choosing λ ≤ 1/m. To see this, note that

(1 + λ · µ)m−1 ≤
(
1 +

µ

m

)m−1

<
(
1 +

µ

m

)m
(10)

which will approach eµ in the limit of m. Here, we use
the known fact that limm→∞(1 + µ/m)m = eµ with µ >
0. As such, when m is sufficiently large, the bound in
Theorem 3.2 is upper-bounded with m · λ · ℓ · (1 + λ ·
µ)m−1 · gradient-gap ≃ ℓ · eµ · gradient-gap which asserts
that the worst-case performance gap of our offline optimizer
is approaching (in the limit of m) ℓ · eµ ·maxx ∥∇g(x)−
∇gϕ(x)∥ = O(maxx ∥∇g(x) − ∇gϕ(x)∥) which is not
dependent on the no. of gradient steps.

4



Learning Surrogates for Offline Black-Box Optimization via Gradient Matching

Algorithm 1 MATCH-OPT: Black-Box Gradient Matching
from Offline Training Data
Input: Dataset D = {(xi, zi)}ni=1, initial surrogate model pa-
rameters ϕ, length of monotonic synthetic paths m, number of
iterations τ , learning rate λ > 0

Output: Surrogate gϕ with parameters ϕ(τ)

1: Generate monotonic trajectories Cm via strategy from Krish-
namoorthy et al. (2023b), Kumar et al. (2019)

2: ϕ(0) ← ϕ // initialize parameters of surrogate model
3: for t← 0 : τ − 1 do
4: L← 0 // initialize the average loss
5: for ζ = (x1, . . . ,xm) ∈ Cm do
6: Lζ

g ← gradient matching loss using Eq. 13 with ϕ = ϕ(t)

7: Lζ
r ← α ·

m∑
i=1

(
g (xi)− gϕ (xi)

)2

// using ϕ = ϕ(t)

8: L← L+
∣∣∣Cm∣∣∣−1(

Lζ
g + Lζ

r

)
// update average loss

9: end for
10: ϕ(t+1) ← ϕ(t) + λ · ∇ϕL

∣∣∣
ϕ=ϕ(t)

11: end for
12: return the learned surrogate model gϕ with ϕ = ϕ(τ)

4. Practical Algorithm: MATCH-OPT
This section answers Q2 by providing a principled algo-
rithm for black-box gradient matching, which we name
MATCH-OPT. The crux of solving Eq. (9) lies with how we
approximate the target function’s gradient field when we
are given evaluations of the target function at a fixed set
of inputs (i.e., offline dataset). Previous approaches often
address this by sampling perturbed values around a chosen
input and use the finite difference method to approximate
its gradient (Fu, 2015; Wang et al., 2018). However, these
methods require the ability to query the target function for
evaluations of perturbed data points, which is not possi-
ble in the offline optimization setting. To overcome this
challenge, we leverage the fundamental theorem for line
integrals, which states that for any two inputs x and x′ with
corresponding values z = g(x) and z′ = g(x′):

∆z ≜ z − z′ =
(
x′ − x

)⊤ ∫ 1

0

[
∇g
(
h(t)

)]
dt

≃
(
x′ − x

)⊤ ∫ 1

0

[
∇gϕ

(
h(t)

)]
dt , (11)

where h(t) = x · (1− t) + x′ · t. The above approximation
holds when ∇gϕ closely estimates ∇g. To enforce this, we
therefore need to find ϕ such that the averaged difference
between the LHS and RHS of (11) is minimized. This is
achieved by solving ϕ∗ = argminϕ Lg(ϕ), where

Lg(ϕ) ≜ Ex,x′∈D

(
∆z −∆x⊤

∫ 1

0

∇gϕ

(
h(t)

)
dt

)2

. (12)

Eq. (12) provides a tractable learning objective via taking
the empirical expectation over random inputs sampled from

the offline training dataset D. It can also be shown that
minimizing Eq. (12) will indeed decrease the gradient gap
between the surrogate and the black-box target function
(see Appendix B for a detailed derivation). Thus, by virtue
of Theorem 3.2, minimizing Eq. (12) has the effect of de-
creasing the upper-bound on the worst-case performance of
offline optimization using the learned surrogate’s gradient.

Furthermore, we note that in the ideal scenario, Eq. (12) can
be indirectly solved using a regression approach (i.e., value
matching) because the gradient fields of g and gϕ must be
the same when gϕ(x) accurately estimates g(x) for every
input x. However, as long as there are discrepancies, it is un-
clear which surrogate gradient (among surrogate candidates
that approximate the target function equally well) would
minimize the gradient discrepancy. As such, we argue that a
direct gradient matching approach is more preferable in this
case. This statement is supported by both our synthetic ex-
periment (see Fig. 1) and real-world experiments presented
in Section 5.3.

Practical Considerations. A naı̈ve optimization of Eq. (12)
requires enumerating over all pairs of training inputs, which
is more expensive than a standard regression algorithm. To
avoid this overhead, we adopt the strategy of Krishnamoor-
thy et al. (2023b) and Kumar & Levine (2020), which or-
ganizes training data into trajectories of monotonically in-
creasing target function values. These trajectories mimic
realistic optimization paths and thus encourages the model
to learn the behavior of a gradient-based optimization algo-
rithm, and thus allows the gradient matching algorithm to
focus more on strategic input pairs that are more relevant
for gradient estimation.

Specifically, let Cm denote a finite set of m-hop synthetic in-
put paths with increasing objective function values, such that
if ζ = {x1,x2, . . . ,xm} ∈ Cm, we have g(xi+1) ≥ g(xi).
To sample trajectories from this set, we first bin the offline
inputs based on their percentiles in the dataset, and subse-
quently sample one input from each bin to form a trajectory
with monotonically increasing function values. We adapt
the loss function in Eq. (12) to optimize along the sampled
paths, and thus focus on estimating gradient information
that is relevant to the downstream search procedure. That is,
we aim to minimize Lg(ϕ; Cm) ≜ Eζ∈Cm [Lg(ϕ; ζ)], where:

Lg (ϕ; ζ) ≜
m−1∑
i=1

(
∆z −∆x⊤

∫ 1

0

∇gϕ

(
hi(t)

)
dt

)2

≃
m−1∑
i=1

(
∆z − 1

2κ

κ∑
u=1

(
∆x⊤

(
ri(u)

)))2

(13)

with ri(u) = ∇gϕ(hi((u − 1)/κ)) + ∇gϕ(hi(u/κ)) and
hi(t) = xi · (1 − t) + xi+1 · t. Here, Eq. (13) takes em-
pirical expectation over the successive pairs along the syn-
thesized trajectories ζ ∈ Cm, ∆z ≜ g(xi+1)− g(xi), and
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∆x ≜ xi+1 − xi. In addition, the integral inside the ex-
pectation on the RHS of Eq. (13) is approximated via a
discretization of (0, 1) into κ intervals with equal lengths.
Our empirical investigations suggest that setting κ = 5
works best in practice. Finally, our ultimate loss function
L(ϕ) combines Eq. (13) with the regression loss along the
synthetic trajectory to achieve the best of both worlds:

L(ϕ) ≜ Lg,Cm(ϕ) + Eζ∈Cm

m∑
i=1

(
g(xi)− gϕ(xi)

)2

(14)

See Algorithm 1 for a complete pseudo-code of our method.
Interestingly, Eq. (14) is also motivated by a modification
of the above theoretical analysis in Section 3, which charac-
terizes a condition under which the worst-case optimization
risk in Theorem 3.2 has a tighter bound. It can be shown that
such a bound will depend on both the (worst-case) gradient-
and value-matching quantities, which inspires the addition
of the above regression loss in Eq. (14) to the original loss
in Eq. (13). This is formalized in Theorem 4.1 below.

Theorem 4.1 (Generalized worst-case optimization risk
bound). Suppose the target objective function g(x) is a ℓ-
Lipschitz continuous and µ-Lipschitz smooth function. For
all a ∈ (0, 1), the worst-case performance gap, Gm,λ ≜
maxx Gm,λ(x), between g and some arbitrary surrogate
gϕ with Lipschitz constant ℓϕ is upper-bounded by:

Gm,λ ≤ m · 2a ·max
x

∥∥∥g(x)− gϕ(x)
∥∥∥

+ m ·
(
ℓ+ a · (ℓϕ − ℓ)

)
·
(
1 + λµ

)m−1

× max
x

∥∥∥∇xg(x)−∇xgϕ(x)
∥∥∥ , (15)

which is tighter than the bound in Theorem 3.2 when the
Lipschitz constant ℓϕ of the surrogate satisfies:

ℓϕ ≤ λℓ−
2 ·max

∥∥∥g(x)− gϕ(x)
∥∥∥(

1 + λµ
)m−1

·max
∥∥∥∇xg

(
x
)
−∇xgϕ

(
x
)∥∥∥

The detailed proof of this result is deferred to Appendix D.

Although it has not been investigated how to further con-
dition the training loss in Eq. (14) so that ℓϕ satisfies the
above, we are able to empirically demonstrate the benefit
of adding the regression loss along the synthetic monotonic
trajectories via an ablation study in Section 5.3.

Complexity Analysis. Given a m-hop synthetic sequence
ζ of d-dimensional inputs, each step of the inner loop in
Algorithm 1 will require a linear scan over m segments.
For each segment, the algorithm needs to compute (1) the
gradient matching loss, which costs O(dmκ|ϕ|) where κ
is the granularity of the discretization in (13) and |ϕ| is
the number of parameters of the surrogate model, and

(2) the regression regularizer on this path, which costs
O(m|ϕ|). Thus, suppose p = |Cm| synthetic input se-
quences/paths were generated for our algorithm, the en-
tire inner loop of Algorithm 1 will incur a total cost of
O(p · (dmκ|ϕ| + m|ϕ|)) = O(p · dmκ|ϕ|). This is the
complexity per training iteration. For τ iterations, the total
complexity of Algorithm 1 will be O(τ · p · dmκ|ϕ|).

5. Experiments
This section describes the set of benchmark tasks used to
evaluate and compare the performance of MATCH-OPTwith
those of other baselines (Section 5.1), the configurations
of both our proposed algorithm and those baselines (Sec-
tion 5.2), as well as their reported results (Section 5.3).

5.1. Benchmarks

Our empirical studies are conducted on six benchmark tasks
from a diverse set engineering domains. Each task com-
prises a black-box target function and an offline training
dataset, which is a small subset of a much larger dataset used
to train the target function. Each participating algorithm
only has access to the offline dataset. The target function
is only used to evaluate the performance of the final inputs
recommended by those offline optimizers. The specifics of
these datasets and their target functions are further provided
in the design baseline package (Trabucco et al., 2022). Four
tasks are defined over continuous input spaces, whereas the
other two are discrete, as summarized below.

1 & 2. The Ant Morphology (Brockman et al., 2016)
(ANT) and D’Kitty Morphology dataset (Ahn et al., 2020)
(DKITTY) collect morphological observations of two robots
and their corresponding rewards in moving as fast as pos-
sible, or towards a specific location. The parameters of the
robot is defined over a 60/56-dimensional continuous space.

3. The Hopper Controller dataset (Ahn et al., 2020)
(HOPPER) collects observations of a neural network pol-
icy weights and their rewards on the Hopper-v2 locomotion
task in OpenAI Gym (Brockman et al., 2016). The search
space is defined over 5126-dimensional continuous space.

4. The Superconductor dataset (Brookes et al., 2019)
(SCON) collects observations of superconductor molecules
and their critical temperatures. Each molecule is represented
by a 86-dimensional continuous vector.

5 & 6. The TF-Bind-8 (TF8) and TF-Bind-10 (TF10)
datasets (Barrera et al., 2016) collect the binding activity
scores between a given human transcription factor and vari-
ous DNA sequences of length 8 and 10. The goal of these
discrete tasks is to find a DNA sequence that maximizes the
binding score with the given transcription factor.
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METHOD ANT DKITTY HOPPER SCON TF8 TF10 MNR

GA 0.271 0.895 0.780 0.699 0.954 0.966 0.600
ENS-MEAN 0.517 0.899 1.524 0.716 0.926 0.968 0.500
ENS-MIN 0.536 0.908 1.420 0.734 0.959 0.959 0.467
CMA-ES 0.974 0.722 0.620 0.757 0.978 0.966 0.367
MINS 0.910 0.939 0.150 0.690 0.900 0.759 0.700
CBAS 0.842 0.879 0.150 0.659 0.916 0.928 0.733
ROMA 0.832 0.880 2.026 0.704 0.664 0.820 0.667
BONET 0.927 0.954 0.395 0.500 0.911 0.756 0.683
COMS 0.885 0.953 2.270 0.565 0.968 0.873 0.467

MATCH-OPT 0.931 (2) 0.957 (1) 1.572 (3) 0.732 (3) 0.977 (2) 0.924 (6) 0.283 (1)

Table 1. Performance of MATCH-OPT and other baselines at 100th percentile level. The last column shows the mean normalized rank
(MNR) computed across all tasks (smaller is better). The individual rank of MATCH-OPT on each task is included next to its performance.

METHOD ANT DKITTY HOPPER SCON TF8 TF10 MNR

GA 0.130 0.742 0.089 0.641 0.510 0.794 0.600
ENS-MEAN 0.192 0.791 0.209 0.644 0.529 0.796 0.433
ENS-MIN 0.190 0.803 0.166 0.672 0.490 0.794 0.500
CMA-ES -0.049 0.482 -0.033 0.590 0.592 0.786 0.683
MINS 0.614 0.889 0.088 0.414 0.420 0.465 0.650
CBAS 0.376 0.757 0.013 0.099 0.442 0.613 0.817
ROMA 0.448 0.760 0.370 0.420 0.560 0.780 0.533
BONET 0.620 0.897 0.390 0.470 0.505 0.465 0.417
COMS 0.557 0.879 0.379 0.414 0.652 0.606 0.467

MATCH-OPT 0.611 (3) 0.887 (3) 0.393 (1) 0.439 (6) 0.594 (2) 0.720 (6) 0.350 (1)

Table 2. Performance of MATCH-OPT and other baselines at 50th percentile level. The last column shows the mean normalized rank
(MNR) computed across all tasks (smaller is better). The individual rank of MATCH-OPT on each task is included next to its performance.

5.2. Algorithm Configuration and Evaluation

Baselines. We evaluate and compare the performance of
MATCH-OPT against those of multiple state-of-the-art base-
lines including COMS (Trabucco et al., 2021), ROMA (Yu
et al., 2021), BONET (Krishnamoorthy et al., 2023b). Sev-
eral other baselines from the design bench benchmark (Tra-
bucco et al., 2022) including Gradient Ascent (GA), Gradi-
ent Ascent Ensemble Mean (ENS-MEAN), Gradient Ascent
Ensemble Min (ENS-MIN), covariance matrix adaptation
evolution strategy (CMA-ES) (Hansen, 2006), model inver-
sion networks (MINS) (Kumar & Levine, 2020), condition-
ing by adaptive sampling (CBAS) (Brookes et al., 2019) are
also included for a thorough comparison. The same neural
network architecture is used for all baselines. Our implemen-
tation of the MATCH-OPT framework is released at https:
//github.com/azzafadhel/MatchOpt. Other de-
tails of our experiments are deferred to Appendix C.

Evaluation Methodology. We follow the widely adopted
evaluation methodology introduced by Trabucco et al.
(2022). That is, each algorithm starts the search from the
same initial set of n = 128 offline inputs and generates

the corresponding set of solution candidates which are eval-
uated by the oracle function. For each algorithm, these
(128) solutions are then sorted in increasing order, and the
corresponding values at the 100th percentile (maximum so-
lution) and 50th (median solution) are reported in Table 1
and Table 2 below. All target function values are normalized
using the maximum and minimum values from a larger un-
observed dataset (that was used to train the target function).
We run each algorithm on each task four times and report the
mean. We report their standard deviations in Appendix E.

Comparison Metrics. The overall performance of a base-
line against other methods across different optimization
tasks can be assessed using (a) their mean (normalized)
performance; and (b) their mean (normalized) performance
rank. While the first metric has often been used in prior
work, it does not account for the variation in performance
among tasks. For example, normalized performance are of-
ten close to 1 for easy tasks, whereas for harder tasks, they
can be closer to 0. The mean performance metric therefore
might favor algorithms that do well on easy tasks, but poorly
on other hard tasks. To mitigate such biased assessment, we
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consider the mean normalized rank (MNR) metric that is
agnostic to such variation of performance:

MNR(A) ≜
1

p

p∑
i=1

rank(A; taski)

# algorithms
(16)

where p is the number of tasks and rank(A; taski) = q
means A is the q-best algorithm for the i-th task. To scale
the MNR to the same range of (0, 1) (for convenience),
we also normalize the rank by the number of participating
algorithms in the ranking order. An algorithm with low
MNR therefore has more reliable performance across tasks,
and is preferable to other methods with higher MNR.

5.3. Results and Discussion

To demonstrate the effectiveness of MATCH-OPT, we re-
port the 100th and 50th percentile results of all methods in
Table 1 and Table 2. Other than the algorithm’s individual
performance reported for each task, we calculate its mean
normalized rank (see Eq. (16)) to account for the reliability
of its performance (across tasks) in the comparison.

Mean Rank Comparison. Overall, no algorithm performs
best in more than two task domains due to the diverse and
challenging nature of the benchmark tasks. In fact, for the
100-percentile performance reported in Table 1, each al-
gorithm only performs best in at most one task. Among
these, MATCH-OPT performs best on the DKITTY dataset,
and second best on ANT and TF8 datasets. MATCH-OPT is
consistently among the top-3 performers on four out of six
task domains, which is an evidence of its reliable perfor-
mance. In fact, this is best reflected in terms of the mean
normalized rank metric (MNR) which averages the normal-
ized rank of each baseline across all six tasks (see Eq. (16)).
Among all algorithms, MATCH-OPT achieves the lowest
MNR, which is markedly lower than that of the second low-
est MNR of COMS. At 50th percentile, Table 2 shows that
MATCH-OPT achieves the best MNR among the baselines.

Reliability Assessment. To further demonstrate the con-
sistent reliability of MATCH-OPT as previously alluded to
in the introduction section, we also plot the MNRS of all
competing baselines at every solution percentile level in
Fig. 3a. As expected, MATCH-OPT achieves the lowest
MNR at almost every percentile, averaging at approximately
0.35 which is again markedly lower than the second lowest
MNR. In addition, we also plot the mean performance of
the tested algorithms across all percentile level in Fig. 3b,
which also show that MATCH-OPT is the best performer
(on average) between 0- and 80-percentile. Above that, be-
tween 80- and 100-percentile level, MATCH-OPT is the
second best performer. The above observations (both MNR
and mean performance) suggest that MATCH-OPT is con-
sistently the most reliable among all optimizers. We also
refer the readers to Appendix F which further visualizes

the entire rank distribution of the tested algorithm across
different percentile level. All observations are consistent
with our above observations in Fig. 3.

Ablation Studies for Regression Regularizer. To demon-
strate the effectiveness of our practical consideration men-
tioned in Section 4, we conduct an ablation study compar-
ing two versions of MATCH-OPT using the original gra-
dient matching loss in (12) (referred as MATCH-OPT (no-
regularizer)) and an augmented version with regression reg-
ularizer along a set of sampled synthetic input sequences
in (14) (referred to as MATCH-OPT (with-regularizer)).
Table 3 and 4 below reports the performance of these ab-
lated methods at the 100th and 50th percentile of solutions
respectively. Overall, we observe that MATCH-OPT (with-
regularizer) outperforms MATCH-OPT (no-regularizer) on
4/6 tasks for both the 100th-percentile and 50th-percentile
metric, thus confirming that it is an effective strategy to pri-
oritize optimizing the gradient matching loss along critical
trajectories of inputs.

6. Related Work
Black-box optimization problems were studied using
derivative-free methods, such as random gradient estima-
tion (Wang et al., 2018) or Bayesian optimization (Snoek
et al., 2012; Wang et al., 2013; Eriksson et al., 2019). These
methods require online evaluation of the target function to
approximate its derivative or learn its surrogate model. In
many practical applications, this can be very expensive (e.g.,
testing new protein or drug design), or even dangerous (e.g.,
test-driving autonomous vehicles in a real physical environ-
ment). To avoid this, offline optimization approaches tackle
this problem via utilizing an existing dataset that records
target function evaluations for a fixed set of inputs. These
approaches can be categorized into two main families:

Conditioning Search Model. Existing approaches in this di-
rection are grounded in the framework of density estimation,
which aims to learn a probabilistic prior over the input space.
The search model is treated as a probability distribution con-
ditioned on the rare event of achieving a high target function
score, and is estimated using different approaches, such as
adaptive trust-region based strategies (Brookes et al., 2019),
adaptive step-size in gradient update via reinforcement learn-
ing (Chemingui et al., 2024) or zero-sum game (Fannjiang
& Listgarten, 2020), or autoregressive modeling (Krish-
namoorthy et al., 2023b), (Krishnamoorthy et al., 2023a).
Kumar & Levine (2020) learns an inverse mapping of the
target function evaluations to inputs and uses it as a search
model that predicts which regions will most likely have high-
performing designs. These approaches are often sensitive to
the accuracy of the conditioning at out-of-distribution input
regimes and/or require learning a computationally expen-
sive generative model of the input space. The robustness of
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METHOD ANT DKITTY HOPPER SCON TF8 TF10

MATCH-OPT
(no-regularizer) 0.924 0.945 1.172 0.739 0.941 0.954

MATCH-OPT
(with-regularizer) 0.931 0.957 1.572 0.732 0.977 0.924

Table 3. Performance comparison between versions of MATCH-OPT with and without regression regularizer at the 100th performance
percentile (i.e., maximum solution) generated by each method.

METHOD ANT DKITTY HOPPER SCON TF8 TF10

MATCH-OPT
(no-regularizer) 0.572 0.876 0.372 0.471 0.551 0.768

MATCH-OPT
(with-regularizer) 0.611 0.887 0.393 0.439 0.594 0.720

Table 4. Performance comparison between versions of MATCH-OPT with and without regression regularizer at the 50th performance
percentile (i.e., maximum solution) generated by each method.
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Figure 3. Plots of (a) mean normalized ranks (MNRs); and (b) mean (normalized) performance of baselines at all performance percentiles.

these conditioning algorithms has neither been defined, nor
investigated.

Conditioning Surrogate Model. Approaches in this di-
rection tend to fix the search methodology and focus on
conditioning the surrogate model to improve the likelihood
of finding a good design. This is generally achieved via
adopting different forms of regularization on the predicted
values of OOD inputs based on the learned surrogate. For
example, Yu et al. (2021) uses robust model pre-training
and adaptation to ensure local smoothness, whereas Fu &
Levine (2021) maximizes data likelihood to reduce the un-
certainty in OOD prediction. Alternatively, Trabucco et al.
(2021) penalizes high-value predictions for OOD examples,
and Dao et al. (2024) penalizes surrogate candidates with
high prediction sensitivity over the offline data to avoid over-
estimation. These approaches are only justified empirically
through practical demonstrations. From a theoretical per-
spective, the extent of effectiveness of these algorithms, as

well as the fundamental question regarding when to trust a
surrogate function both remain unclear.

7. Conclusion
This paper presents a new theoretical perspective on offline
black-box optimization which established the first upper
bound on the performance gap between the solutions guided
by a trained surrogate and the target function. The bound
reveals that such performance gap depends on how well
the surrogate model matches the gradient field of the tar-
get function on the offline dataset. Inspired by this theory,
we studied a novel algorithm for creating surrogate models
based on gradient matching and demonstrated improved
solutions on diverse real-world benchmarks. Although our
theory and algorithm is grounded in the context of offline op-
timization, the developed principles can be broadly applied
to related sub-areas including safe Bayesian optimization
and safe reinforcement learning in online learning scenarios.
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Impact Statement
This paper introduces a new theoretical perspective to under-
stand and analyze the offline optimization problem, which
is a cost-effective alternative to the traditional online ex-
perimentation approach to material or experimental design.
The methodological improvements and new understand-
ing gained in the paper can lead to improvements in many
science and engineering applications including design opti-
mization of hardware, materials, and molecules. Our empir-
ical studies only use publicly available dataset. We do not
anticipate any negative ethical or societal impact.
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A. Proof of Theorem 3.2
Theorem A.1 (Worst-case optimization risk in terms of gradient estimation error). Suppose g(x) is a continuous function
with Lipschitz and smooth constants, ℓ and µ. Then, we have

Gm,λ ≜ max
x

Gm,λ

(
x
)

≤ mλℓ
(
1 + λµ

)m−1

·max
x

∥∥∥∇g(x)−∇gϕ(x)
∥∥∥

which characterizes the upper-bound of the worst-case performance gap in terms of the maximum norm difference between
the surrogate and oracle gradient over the input space.

Proof. We first note that the performance of the m-step oracle solution starting at x0
∗ = x0 is exactly the (m-1)-step oracle

solution starting at x1
∗. Likewise, the performance of the m-step surrogate solution starting at x0

ϕ = x0 is exactly the
(m-1)-step surrogate solution starting at x1

ϕ. That is:

Rm
g

(
x0
)
= Rm

g

(
x0
∗
)

= Rm−1
g

(
x1
∗
)

where x1
∗ = x0

∗ + λ∇g
(
x0
∗
)

Rm
g

(
x0
)
= Rm

gϕ

(
x0
ϕ

)
= Rm−1

gϕ

(
x1
ϕ

)
where x1

ϕ = x0
ϕ + λ∇gϕ

(
x0
ϕ

)
(17)

Consequently, for each initial point x0, we can bound the performance gap as follows:

Gm,λ

(
x0
)

≜
∥∥∥Rm

gϕ

(
x0
)
− Rm

g

(
x0
)∥∥∥ =

∥∥∥Rm−1
gϕ

(
x1
ϕ

)
−Rm−1

g

(
x1
∗
)∥∥∥

=
∥∥∥Rm−1

gϕ

(
x1
ϕ

)
− Rm−1

g

(
x1
ϕ

)
+ Rm−1

g

(
x1
ϕ

)
− Rm−1

g

(
x1
∗
)∥∥∥

≤
∥∥∥Rm−1

gϕ

(
x1
ϕ

)
− Rm−1

g

(
x1
ϕ

)∥∥∥ +
∥∥∥Rm−1

g

(
x1
ϕ

)
− Rm−1

g

(
x1
∗
) ∥∥∥

= Gm−1,λ

(
x1
ϕ

)
+
∥∥∥Rm−1

g

(
x1
ϕ

)
− Rm−1

g

(
x1
∗
) ∥∥∥ . (18)

Thus, let Em−1(x
1
ϕ,x

1
∗) ≜ ∥Rm−1

g (x1
ϕ) − Rm−1

g (x1
∗)∥, we have Gm,λ(x

0) ≤ Gm−1,λ(x
1
ϕ) + Em−1(x

1
ϕ,x

1
∗). To bound

the term Em−1(x
1
ϕ,x

1
∗), we will prove the following intermediate results.

Lemma A.2. For any k ∈ [1,m] and two different starting points u0 and v0, the performance gap between the k-step
oracle solutions respectively starting from u0 and v0 is bounded by the norm distance between the starting points:

Ek
(
u0,v0

)
=
∥∥Rk

g

(
u0
)
− Rk

g

(
v0
)∥∥ ≤ ℓ(1 + λµ)k

∥∥u0 − v0
∥∥ . (19)

Proof. Let us first define the respective oracle search trajectories using the same gradient ascent formalism. That is,
the respective candidate solutions at some intermediate step κ ∈ [1, k] are given by uκ = uκ−1 + λ∇g(uκ−1) and
vκ = vκ−1 + λ∇g(vκ−1). We can then make use of the Lipschitz continuous assumption to achieve the following bound:∥∥Rk

g

(
u0
)
−Rk

g

(
v0
)∥∥ =

∥∥g (x∗)− g
(
uk
)
− g (x∗) + g

(
vk
)∥∥

=
∥∥g (vk

)
− g

(
uk
)∥∥ ≤ ℓ ·

∥∥vk − uk
∥∥ . (20)

We subsequently bound the distance between the candidate solutions at step k in terms of the distance at step k − 1 using
the smoothness conditions:∥∥vk − uk

∥∥ =
∥∥vk−1 − uk−1 + λ∇g

(
vk−1

)
− λ∇g

(
uk−1

)∥∥
≤

∥∥vk−1 − uk−1
∥∥ + λ

∥∥∥∇g
(
vk−1

)
− ∇g

(
uk−1

) ∥∥∥
≤ (1 + λµ)

∥∥vk−1 − uk−1
∥∥ . (21)

Applying this bound recursively yields ∥vk − uk∥ ≤ (1 + λµ)k∥v0 − u0∥. We finally substitute the above into (20) to
arrive at the final bound ∥Rk

g(u
0)−Rk

g(v
0)∥ ≤ ℓ(1 + λµ)k∥v0 − u0∥.
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Applying Lemma A.2 with k = m− 1, u0 = x1
ϕ, and v0 = x1

∗ subsequently allows us to bound Em−1(x
1
ϕ,x

1
∗) as follows:

Em−1

(
x1
ϕ,x

1
∗
)

≤ ℓ(1 + λµ)m−1
∥∥x1

ϕ − x1
∗
∥∥

= ℓ(1 + λµ)m−1
∥∥x0 + λ∇gϕ(x

0)− x0 − λ∇g(x0)
∥∥

= λℓ(1 + λµ)m−1
∥∥∇gϕ(x

0)−∇g(x0)
∥∥ ≜ Q

(
x0
)
. (22)

We will now use this result to complete our bound for the performance gap. That is:

Gm,λ ≜ max
x0

Gm,λ

(
x0
)

≤ max
x0

Gm−1,λ

(
x1
ϕ

)
+ max

x0
Q
(
x0
)

≤ Gm−1,λ + max
x0

Q
(
x0
)

≤ G0,λ + m ·max
x0

Q
(
x0
)
, (23)

where the last inequality is obtained via recursively applying the previous inequality m times. Substituting G0,λ = 0 and

the upper-bound for Q
(
x0
)

above into (23) gives:

Gm,λ ≤ mλℓ(1 + λµ)m−1 · max
x0

∥∥∥∇gϕ
(
x0
)
−∇g

(
x0
) ∥∥∥ , (24)

which completes our proof for Theorem 3.2.

Tightness of the bound. Note that despite the exponential dependence on m of the above bound, its tightness can be
controlled by choosing a sufficiently small value for λ. For example, if we choose λ ≤ 1/m, it will follow that

(1 + λ · µ)m−1 ≤
(
1 +

µ

m

)m−1

<
(
1 +

µ

m

)m
(25)

which will approach eµ in the limit of m. Here, we use the known fact that limm→∞(1 + µ/m)m = eµ with µ > 0. As
such, when m is sufficiently large the bound in Theorem 3.2 is upper-bounded with m ·λ · ℓ · (1+λ ·µ)m−1 ·gradient-gap ≃
ℓ · eµ · gradient-gap which asserts that the worst-case performance gap of our offline optimizer is approaching (in the limit of
m) ℓ · eµ ·maxx ∥∇g(x)−∇gϕ(x)∥ = O(maxx ∥∇g(x)−∇gϕ(x)∥) which is not dependent on the no. of gradient steps.

B. Minimizing Eq. (12) Reduces Gradient Gap.
Intuitively, minimizing Eq. 12 will reduce the gradient gap. To formalize this intuition rigorously, we will show below that
(1) in the limit of optimization if a parameterization ϕ can be found that zeroes out the loss in Eq. 12 over the entire input
space, the gradient gap is zero; and (2) in more practical cases, where the loss in Eq. 12 is not zero, the gradient gap is
still guaranteed to be upper-bound by the Lipschitz constant of the function gap, which decreases as we optimize the loss
function in Eq. 12. These are detailed below.

A. The minimized loss in Eq. 12 is zero. In this case, let us define:

Fϕ(x,x
′) ≜

∫ 1

0

∇g(tx+ (1− t)x′)dt−
∫ 1

0

∇gϕ(tx+ (1− t)x′)dt . (26)

The loss in Eq. 12 can be rewritten as

Lg(ϕ) = E

(Fϕ

(
x,x′

)⊤(
x− x′

))2
 , (27)

where the expectation is over all pairs (x,x′) from the input space. At the optimal ϕ, since Lg(ϕ) = 0 as assumed,

Fϕ

(
x,x′

)⊤(
x− x′

)
= 0 (28)
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for any choice of (x,x′). Next, by the line integration theorem, we also have

g(x)− g(x′) = (x− x′)⊤
(∫ 1

0

∇g(tx+ (1− t)x′)dt

)
, (29)

gϕ(x)− gϕ(x
′) = (x− x′)⊤

(∫ 1

0

∇gϕ(tx+ (1− t)x′)dt

)
, (30)

which together imply that

Fϕ

(
x,x′

)⊤(
x− x′

)
= g(x)− g(x′)− gϕ(x) + gϕ(x

′) . (31)

Combining Eq. 28 and Eq. 31 results in

g(x)− gϕ(x) = g(x′)− gϕ(x
′) (32)

for any choice of (x,x′). This means there exists a constant c such that

g(x)− gϕ(x) = c (33)

for all x. Thus, taking the derivative with respect to x on both sides of the above yields

∇g(x)−∇gϕ(x) = 0 , (34)

which implies immediately that the gradient gap is zero everywhere. Hence, optimizing Eq. 12 guarantees in principle that
the gradient will be perfectly matched in the limit of data (i.e., when we take the expectation over the entire input space
rather than over a finite set of offline data points).

B. The minimized loss in Eq. 12 is not zero. In this case, let us define

h(x) = g(x)− gϕ(x) (35)

and it will follow that |Fϕ(x,x
′)⊤(x − x′)| = |h(x) − h(x′)| following Eq. 31 above. This means our loss function is

working towards minimizing (h(x)− h(x′))2 over (x,x′). This will makes h(x) smoother as the output distance between
different inputs are being reduced.

As a result, this process will reduce the Lipschitz constant ϵ of h(x), which is defined to be the minimum value such that

|h(x)− h(x′)| ≤ ϵ · ∥x− x′∥ , (36)

which implies

|(g(x)− g(x′))− (gϕ(x)− gϕ(x
′))| ≤ ϵ · ∥x− x′∥ (37)

Now, dividing both sides by ∥x− x′∥ yields∣∣∣∣g(x)− g(x′)

∥x− x′∥
− gϕ(x)− gϕ(x

′)

∥x− x′∥

∣∣∣∣ ≤ ϵ . (38)

Now, suppose we choose x′ = x + t · ei where ei is a d-dimensional one-hot vector with the hot component at the i-th
position where d denotes the input dimension. So, the above is equivalent to∣∣∣∣g(x+ t · ei)− g(x)

t∥ei∥
− gϕ(x+ t · ei)− gϕ(x)

t∥ei∥

∣∣∣∣ ≤ ϵ , (39)

or more expressively,

−ϵ ≤ g(x+ t · ei)− g(x)

t∥ei∥
− gϕ(x+ t · ei)− gϕ(x)

t∥ei∥
≤ ϵ (40)
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Taking limt→0 on all parts of the above inequality, the above can be rewritten as

−ϵ ≤ limt→0

(
g(x+ t · ei)− g(x)

t∥ei∥

)
− limt→0

(
gϕ(x+ t · ei)− gϕ(x)

t∥ei∥

)
≤ ϵ . (41)

Next, using the definition of directional gradient

∇r g(x) = limt→0
1

t

(
g(x+ t · r)− g(x)

)
(42)

and the fact that ∇rg(x) = ∇g(x)⊤r on r = ei, we have

−ϵ ≤ 1

∥ei∥
·
(
∇g(x)⊤ei

)
− 1

∥ei∥
·
(
∇gϕ(x)

⊤ei

)
≤ ϵ , (43)

which implies that (
∇g(x)−∇gϕ(x)

)⊤
ei ≤ ϵ · ∥ei∥ = ϵ . (44)

The last step is true because ∥ei∥ = 1. Next, repeat the above argument with r = ei for i = 1, 2, . . . , d and summing both
sides of the resulting inequalities over i = 1, 2, . . . , d, we have∥∥∥∇g(x)−∇gϕ(x)

∥∥∥
1

≜
d∑

i=1

[(
∇g(x)−∇gϕ(x)

)⊤
ei

]
≤ d · ϵ = O(ϵ) . (45)

Finally, we note that ∥∥∥∇g(x)−∇gϕ(x)
∥∥∥
2

≤
∥∥∥∇g(x)−∇gϕ(x)

∥∥∥
1

≤ O(ϵ) , (46)

which completes our proof and asserts that the gradient gap is indeed bounded by the Lipschitz constant of the gap function
h(x) = g(x)− gϕ(x) that decreases as we optimize the training objective.

C. Training and Evaluation Details of MATCH-OPT
We used a feed-forward neural network with 4 layers (512 → 128 → 32 → 1) activated by the Leaky ReLU function as the
surrogate model for MATCH-OPT. For each task, we trained the model using Adam optimizer with 1e-4 learning rate and a
batch size of 128 for 200 epochs.

During the evaluation, we employed gradient updates for 150 iterations uniformly across all the tasks. This evaluation
procedure used an Adam optimizer with a 0.01 learning rate for all discrete tasks, and a 0.001 learning rate for all continuous
tasks. We chose a larger learning rate for discrete tasks since the discrete inputs are converted into logits (same as all
baselines).

D. Extended Theoretical Analysis to Incorporate the Value Matching Regularizer
This section discusses an extension of the original theoretical analysis in Section 3 to provide a theoretical condition under
which the worst-case optimization in Theorem 3.2 has a tighter bound. We will show that this bound is expressed in terms of
both the gradient and value matching quantities, which inspires the addition of the value-matching regularizer in Eq. (14) to
the original loss in Eq. (13). This is formalized in Theorem D.1 below.

Theorem D.1 (Generalized worst-case optimization risk bound). Suppose the target objective function g(x) is a ℓ-Lipschitz
continuous and µ-Lipschitz smooth function. For all a ∈ (0, 1), the worst-case performance gap, Gm,λ ≜ maxx Gm,λ(x),
between g and some arbitrary surrogate gϕ with Lipschitz constant ℓϕ is upper-bounded by:

Gm,λ ≤ m · 2a ·max
x

∥∥∥g(x)− gϕ(x)
∥∥∥

+ m ·
(
ℓ+ a · (ℓϕ − ℓ)

)
·
(
1 + λµ

)m−1

·max
x

∥∥∥∇xg(x)−∇xgϕ(x)
∥∥∥ . (47)
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Proof. First, let us start from Eq. (20),∥∥∥Rk
g

(
u0
)
−Rk

g

(
v0
)∥∥∥ =

∥∥∥g(vk
)
− g
(
uk
)∥∥∥ =

∥∥∥g(vk
)
− gϕ

(
vk
)
+ gϕ

(
vk
)
− gϕ

(
uk
)
+ gϕ

(
uk
)
− g
(
uk
)∥∥∥

≤
∥∥∥g(vk

)
− gϕ

(
vk
)∥∥∥+ ∥∥∥gϕ(vk

)
− gϕ

(
uk
)∥∥∥+ ∥∥∥gϕ(uk

)
− g
(
uk
)∥∥∥

(48)

Next, similar to the derivation of Lemma A.2, we have:∥∥∥gϕ(vk
)
− gϕ

(
uk
)∥∥∥ ≤ ℓϕ · (1 + λµ)k ·

∥∥∥v0 − u0
∥∥∥ (49)

with ℓϕ denotes the Lipschitz constant of the surrogate gϕ(x).

Now, let Ek(u0,v0) ≜ |Rk
g(u

0)−Rk
g(v

0)| as defined in Lemma A.2 of Appendix A. It follows that

Ek
(
u0,v0

)
≤

∥∥∥g(vk
)
− gϕ

(
vk
)∥∥∥ +

∥∥∥gϕ(uk
)
− g
(
uk
)∥∥∥ + ℓϕ · (1 + λµ)k ·

∥∥∥v0 − u0
∥∥∥ . (50)

Let k = m− 1, u0 = x1
ϕ, v0 = x1

∗. Similar to Eq. (22), we have

Em−1

(
x1
ϕ,x

1
∗
)

≤
∥∥∥g(vm−1)− gϕ(v

m−1)
∥∥∥+ ∥∥∥gϕ(um−1)− g(um−1)

∥∥∥
+ ℓϕ · (1 + λµ)m−1 ·

∥∥∥∇xg
(
x0
)
−∇xg(x

0
)∥∥∥ . (51)

Additionally, the following was also shown in Lemma A.2:

Em−1

(
x1
ϕ,x

1
∗
)

≤ λℓ · (1 + λµ)m−1 ·
∥∥∥∇xg

(
x0
)
−∇xgϕ

(
x0
)∥∥∥ . (52)

Now, combining Eq. (51) and Eq. (52) with a ∈ (0, 1),

Em−1

(
x1
ϕ,x

1
∗
)

≤ a ·

(∥∥∥g(vm−1
)
− gϕ

(
vm−1

)∥∥∥ +
∥∥∥gϕ(um−1

)
− g
(
um−1

)∥∥∥)
+

(
(1− a) · λℓ+ a · ℓϕ)

)
· (1 + λµ)m−1 ·

∥∥∥∇xg
(
x0
)
−∇xgϕ

(
x0
)∥∥∥ . (53)

Plugging the above new bound to Eq. (23) in Appendix A,

Gm,λ = max
x0

Gm,λ

(
x0
)

≤ max
x0

Gm−1,λ

(
x0
)

+ max
x0

a ·

(∥∥∥g(vm−1
)
− gϕ

(
vm−1

)∥∥∥ +
∥∥∥gϕ(um−1

)
− g
(
um−1

)∥∥∥)
+ max

x0

(
(1− a) · λℓ+ a · ℓϕ)

)
· (1 + λµ)m−1 ·

∥∥∥∇xg
(
x0
)
−∇xgϕ

(
x0
)∥∥∥ . (54)

Rearranging the above gives the following upper bound:

Gm,λ −Gm−1,λ ≤ max
x0

2a ·
∥∥∥g(x0

)
− gϕ

(
x0
)∥∥∥

+ max
x0

(
(1− a) · λℓ+ a · ℓϕ)

)
·
(
1 + λµ

)m−1∥∥∥∇xg
(
x0
)
−∇xgϕ

(
x0
)∥∥∥ , (55)

where the first term on the RHS is derived from the fact that the maximum of an unconstrained optimization program upper
bounds that of a constrained optimization program (the dependency of um−1 and vm−1 on x0 can be seen as constraints).
Applying this m times consecutively gives:

Gm,λ −G0,λ ≤ 2am ·max
x

∥∥∥g(x)− gϕ(x)
∥∥∥

+ m ·
(
(1− a) · λℓ+ a · ℓϕ)

)
·
(
1 + λµ

)m−1

·max
x

∥∥∥∇xg
(
x
)
−∇xgϕ

(
x
)∥∥∥ . (56)
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Since G0,λ = 0, this implies:

Gm,λ ≤ 2am ·max
x

∥∥∥g(x)− gϕ(x)
∥∥∥

+ m ·
(
(1− a) · λℓ+ a · ℓϕ)

)
·
(
1 + λµ

)m−1

·max
x

∥∥∥∇xg
(
x
)
−∇xgϕ

(
x
)∥∥∥ . (57)

Using the above result, we can compute the difference between the RHS of this bound in Eq. (57) and that of the original
bound in Eq. (7), which is 2am ·maxx ∥g(x)− gϕ(x)∥+ am · (ℓϕ − λℓ) · (1 + λµ)m−1 ·maxx ∥∇xg(x)−∇xgϕ(x)∥.
The second term of this difference could be negative as ℓϕ decreases beyond λℓ (see Appendix B for intuition on why
ℓϕ decreases as we train gϕ). As a result, when ℓϕ and the ratio maxx ∥g(x)− gϕ(x)∥/maxx ∥∇xg

(
x
)
−∇xgϕ

(
x
)
∥ is

sufficiently small, or such that:

ℓϕ +
2 ·maxx

∥∥∥g(x)− gϕ(x)
∥∥∥

(1 + λµ)
m−1 ·maxx

∥∥∥∇xg
(
x
)
−∇xgϕ

(
x
)∥∥∥ ≤ λℓ , (58)

the bound will become tighter, thus justifying the importance of the value matching term. Developing a training algorithm to
substantiate the above condition will be part of our follow-up work.

E. Mean and Standard Deviation Results
As mentioned in the evaluation methodology, we ran each method for 4 different runs. This section reports the mean results
from Tables 1 and 2 along with the corresponding standard deviations.

METHOD ANT DKITTY HOPPER

GA 0.271 ± 0.013 0.895 ± 0.013 0.780 ± 0.462
ENS-MEAN 0.517 ± 0.039 0.899 ± 0.010 1.524 ± 0.710
ENS-MIN 0.536 ±0.031 0.908 ±0.019 1.42 ±0.645
CMA-ES 0.974 ± 0.556 0.722 ± 0.001 0.620 ±0.151
MINS 0.910 ± 0.034 0.939 ± 0.003 0.150 ± 0.186
CBAS 0.842 ± 0.015 0.879 ± 0.002 0.150 ± 0.014
ROMA 0.832 ± 0.055 0.880 ± 0.008 2.026 ± 0.225
BONET 0.927 ±0.002 0.954 ± 0.0001 0.395 ± 0.0002
COMS 0.885 ± 0.024 0.953 ± 0.016 2.270 ±0.237

MATCH-OPT 0.931 ± 0.011 (2) 0.957 ± 0.014 (1) 1.572 ± 0.322 (3)

METHOD SCON TF8 TF10

GA 0.699 ± 0.054 0.954 ± 0.020 0.966 ± 0.026
ENS-MEAN 0.716 ± 0.065 0.926 ±0.005 0.968 ± 0.019
ENS-MIN 0.734 ± 0.058 0.959 ± 0.052 0.959 ± 0.021
CMA-ES 0.757 ± 0.013 0.978 ± 0.007 0.966 ± 0.007
MINS 0.690 ± 0.024 0.900 ± 0.059 0.759 ±0.031
CBAS 0.659 ±0.086 0.916 ± 0.035 0.928 ±0.013
ROMA 0.704 ±0.032 0.664 ±0.015 0.820 ±0.014
BONET 0.500 ±0.002 0.911 ± 0.005 0.756 ±0.006
COMS 0.565 ± 0.012 0.968 ±0.018 0.873 ±0.053

MATCH-OPT 0.732 ±0.003 (3) 0.977 ±0.004 (2) 0.924 ±0.038 (6)

Table 5. Comparing MATCH-OPT and other baselines based on the 100th percentile of the solutions (i.e., maximum solution) generated by
each method. Each cell shows the mean and standard deviation of the function values found by each method over 4 runs. The individual
rank of our method is included next to its reported performance for each benchmark.
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METHOD ANT DKITTY HOPPER

GA 0.130 ± 0.029 0.742 ±0.012 0.089 ± 0.07
ENS-MEAN 0.192 ±0.010 0.791 ± 0.019 0.209 ± 0.035
ENS-MIN 0.190 ±0.006 0.803 ± 0.005 0.166 ±0.052
CMA-ES -0.049 ± 0.003 0.482 ± 0.171 -0.033 ± 0.006
MINS 0.614 ± 0.034 0.889 ± 0.004 0.088 ± 0.170
CBAS 0.376 ± 0.023 0.757 ± 0.005 0.013 ± 0.002
ROMA 0.448 ± 0.013 0.760 ± 0.028 0.370 ± 0.008
BONET 0.620 ±0.003 0.897 ± 0.0001 0.390 ± 0.0002
COMS 0.557 ± 0.015 0.879 ± 0.001 0.379 ±0.005

MATCH-OPT 0.611± 0.007 (3) 0.887±0.003 (3) 0.393 ± 0.005 (1)

METHOD SCON TF8 TF10

GA 0.641 ± 0.036 0.510 ± 0.055 0.794 ± 0.013
ENS-MEAN 0.644 ± 0.070 0.529 ± 0.030 0.796 ± 0.006
ENS-MIN 0.672 ± 0.042 0.490 ± 0.052 0.794 ± 0.008
CMA-ES 0.590 ± 0.012 0.592 ± 0.015 0.786 ± 0.009
MINS 0.414 ± 0.011 0.420 ± 0.009 0.465 ± 0.016
CBAS 0.099 ± 0.008 0.442 ± 0.038 0.613 ± 0.012
ROMA 0.420 ± 0.030 0.560 ± 0.104 0.780 ± 0.400
BONET 0.470 ± 0.004 0.505 ± 0.004 0.465 ± 0.002
COMS 0.414 ±0.023 0.652 ± 0.108 0.606 ± 0.027

MATCH-OPT 0.439 ± 0.016(6) 0.594 ± 0.015(2) 0.720 ±0.015 (6)

Table 6. Comparing MATCH-OPT and baselines based on 50th percentile of the solutions (i.e., median solution) generated by each method.
Each cell shows the mean and standard deviation of the function values found by each method over 4 runs. The individual rank of our
method is included next to its reported performance for each benchmark.

F. Rank Distribution Plots
To further illustrate the reliability of MATCH-OPT, this section visualizes the entire rank distribution of the tested algorithm
across different percentile level (i.e., 25, 50, 75 and 100). Overall, we observe that MATCH-OPT (colored in red) consistently
achieves lower mean and standard deviation of performance across all datasets at every percentile level, as compared to that
of other baselines. This observation corroborates previous results presented in the main text, and confirms our hypothesis
regarding the robustness of MATCH-OPT.

G. Additional Experiments
In addition to the results reported in the main text, we have also compared MATCH-OPTwith three additional baselines,
which include DDOM (Krishnamoorthy et al., 2023a), BO-qEI (Wilson et al., 2017) and BDI (Chen et al., 2022). The results
are reported in Table 7 and Table 8 below.

METHOD ANT DKITTY HOPPER SCON TF8 TF10

MATCH-OPT 0.931 0.957 1.572 0.732 0.977 0.924
DDOM 0.768 0.911 -0.261 0.570 0.674 0.538
BDI 0.967 0.940 1.706 0.735 0.973 OOM
BO-qEI 0.812 0.896 0.528 0.576 0.607 0.864

Table 7. Performance comparison between versions of MATCH-OPT with DDOM, BO-qEI and BDI at the 100th performance percentile
(i.e., maximum solution). OOM indicates that the method runs out of memory

In both the 50-th and 100-th percentile settings, it appears MATCH-OPT outperforms DDOM in all tasks. Furthermore,

18



Learning Surrogates for Offline Black-Box Optimization via Gradient Matching

the results also show that MATCH-OPT performs the best in 6 out of 12 cases (across both the 100-th and 50-th percentile
settings) while BO-qEI only performs best in 1 out of 12 cases. BDI performs best in 5 out of 12 cases, runs out of memory
in 2 out of 12 cases. Overall, MATCH-OPT appears to perform more stable than BDI and is marginally better than BDI. It is
also more memory-efficient than BDI as it does run successfully in all cases, while BDI runs out of memory in 2 cases.
MATCH-OPT also outperforms BO-qEI significantly in 11 out of 12 cases.

H. Running Time
We also report the running time achieved by all tested algorithms in Table 9.

All reported running times are in seconds. Our algorithm incurs more time than other baselines but its total running time is
still affordable in the offline setting: 4785s = 1.32hr. We do, however, want to remark that such complexity comparison is
only tangential to our main contribution. Our main focus is on building optimizer with better and more stable performance
overall, even at an affordable increase of running time. Furthermore, we want to point out that as some of the baselines (such
as BONET) use an entirely different model which has a different number of parameters than ours, the reported running times
here might not be comparable on the same compute platform. The computations were performed on a Ubuntu machine with
a 3.73GHz AMD EPYC 7313 16-Core Processor (32 cores, 251 GB RAM) and two NVIDIA RTX A6000 GPUs. Each has
48 GB RAM.

I. Limitation
One potential limitation of our approach in comparison to other baselines is that our gradient match algorithm learns from
pairs of data points. Thus, the total number of training pairs it needs to consume grows quadratically in the number of
offline data points. For example, an offline dataset with N examples will result in a set of O(N2) training pairs for our
algorithm, which increases the training time quadratically. However, an intuition here is that training pairs are not equally
informative and, in our experiments, it suffices to get competitive performance by just focusing on pairs of data along the
sampled trajectories with monotonically increasing objective function values. This allows us to keep training cost linearly
with respect to N .

On the other hand, while it is true that none of the existing baselines (including our algorithm) outperform others on all
tasks, we believe that at least on these benchmark datasets, our algorithm tends to perform most stably across all tasks, as
measured by the mean averaged rank reported in each of our performance tables. This is a single metric that is computed
based on the performance of all baselines across all tasks. The end-user can make a judgment based on such metrics. In
practice, by looking at how existing baselines perform overall on a set of benchmark tasks that are similar to a target task,
one can decide empirically which baseline is most likely to be best for the target task.

METHOD ANT DKITTY HOPPER SCON TF8 TF10

MATCH-OPT 0.611 0.887 0.393 0.439 0.594 0.720
DDOM 0.554 0.868 -0.570 0.390 0.418 0.461
BDI 0.583 0.870 0.400 0.480 0.595 OOM
BO-qEI 0.568 0.883 0.360 0.490 0.439 0.557

Table 8. Performance comparison between versions of MATCH-OPT with DDOM, BO-qEI and BDI at the 50th performance percentile
(i.e., maximum solution). OOM indicates that the method runs out of memory
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OURS BO-QEI CMA-ES ROMA MINS CBAS

TIME 4785 111 3804 489 359 189

BONET GA ENS-MEAN ENS-MIN DDOM

TIME 614 45 179 179 2658

Table 9. Total running time (in seconds) of all tested baselines.
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Figure 4. Plots of distributions of mean normalized rank (MNR) of the tested algorithms across all tasks at the (a) 25-th, (b) 50-th, (c)
75-th, and (d) 100-th performance percentile levels.
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